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1. Introduction
• One of the three tests proposed by “CIMEC CFD Team” to the E.S.A.

(ESTEC)/OE to evaluate two CFD codes for its Strong Fluid-Structure
Interaction project at supersonic/hypersonic regime:

. FINE/HEXA-3D code by Numeca (C. Hirsch) and OOFELIE by O.E.,
Belgium.

. PETSc-FEM code from CIMEC-INTEC, Argentina.
(http://www.cimec.org.ar/petscfem).

http://www.cimec.org.ar/petscfem


2. Supersonic gas exhaust in the nozzle of the
Vulcain rocket engine

file:C:/Desktop/tuyere-elev.mpeg


3. Introduction (contd...)
These tests involved different numerical techniques, namely:

• Weak/Strong algorithm to couple Fluid and Structure (separate) codes
(Presented in ENIEF 2006 by Mario Storti).

• Parallel code for ‘Inviscid/Viscous Hypersonic Flows’ in ‘Beowulf’ clus-
ters of PC’s.

• The Galerkin/SUPG formulation with added ‘isotropic/anisotropic shock
capturing’ operators.

• ALE and ‘Adaptive mesh refinement’ techniques.

• The use of ‘non-reflecting’ boundary conditions on fictitious (and sub-
sonic) walls.

• Finally, a ‘Domain Decomposition’ preconditioner for an efficient solu-
tion of the linear system.



4. Test: Flutter of a flat solid plate aligned with the supersonic gas flow
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• Viscous/inviscid supersonic flow (EULER/Compressible N-S eqs).

• Thin plate theory for structure: mü(x, t)+D∂4u(x,t)
∂x4 = −(p−p∞)+ f(x, t).

• Coupled through pressure and traction (viscous case only) on interface
boundary.

• Undisturbed flow (ρ, v, p)∞ is a solution of the problem for zero initial
condition (solid problem).



5. Theoretical Approximation: Houbolt’s model [1958]
• Fluid Problem

p − p∞ = Cx
∂u

∂x
+ Ct

∂u

∂t
,

Cx =
ρ∞U∞

2√
M∞

2 − 1
, Ct =

ρ∞U∞ (M∞
2 − 2)

(M∞
2 − 1)3/2

.

• Then, for the Plate Problem the deflection becomes

mü + D
∂4u

∂x4
= −Cx

∂u

∂x
− Ct

∂u

∂t
.

• Using a global basis for displacements

u(x) =
N∑

k=1

akψk(x),

ψk(x) =
4 x(L − x)

L2
sin(kπx/L).



• The basis functions satisfy the essential boundary conditions for plate
equation u =

(
∂u/∂x

)
= 0 at x = 0, L.

• Replacing u(x) in the Houbolt’s approximation and using Galerkin method

Mä + Ka + Hxa + Htȧ = 0,

where

Mjk =
∫ L

0
mψj(x)ψk(x) dx,

Kjk =
∫ L

0
Dψ′′

j (x)ψ′′
k (x) dx,

Hx,jk =
∫ L

0
Cxψj(x)ψ′

k(x) dx,

Ht,jk =
∫ L

0
Ctψj(x)ψk(x) dx.



• If the ansatz a(t) = âeλt is proposed as a solution for the Plate Problem,
the following eigenvalue problem is stated(

λ2M + λHt + K + Hx
)

â = 0.

• Using time and mass non-dimensional parameters

NT =
(

Tfl

Tstr

)2

=
L/U∞√
mL4/D

=
D

mL2U∞
2 and

NM =
ρ∞L3

mL2
=
ρ∞L

m
,

the space of parameters is full covered.

• Results for the Houbolt’s model
. N = 20, Nx = 5000, and a sweep in M∞ while keeping constant ρ∞,

m, L and D,

i.e., NM = cte and NT ∝ M∞
−2.
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6. Staged FSI-FEM Results for flutter
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Figure 1: Structure response at M=1.8
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Figure 2: Structure response at M=2.0
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Figure 3: Structure response at M=2.1
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Figure 4: Structure response at M=2.2
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Figure 5: Structure response at M=2.225
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Figure 6: Structure response at M=2.25
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Figure 7: Structure response at M=2.275
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Figure 8: Structure response at M=2.3
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Figure 9: Structure response at M=2.5
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Figure 10: Structure response at M=3.0
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Figure 11: Structure response at M=3.2



7. Flat plate in Flutter

Figure 12: Fluid and Solid fields at M∞ = 3.2

file:C:/Desktop/movie_flutter-M32-dx.mpeg


• Being
NM

NTM∞
2 =

ρ∞L3c∞

D
,

sweeps in NT, NM and M∞ estimated the flutter region as

NM

NTM∞
2 < 200 no flutter for any Mach number,

NM

NTM∞
2 > 300 flutter for the lowest Mach considered (M∞ ≥ 1.8).

• If
(
∂u/∂t

)
is neglected (i.e., characteristic times of struct. are much

lower than those of the fluid, NT � 1),

det(λ̄2M̄ + K + Hx) = 0

λ̄ =
√

mλ,

M̄ =
1

√
m

M,



the coefficients in M̄, K, Hx do not depend on m, neither do the eigenvalues
of equation, then the λ eigenvalues are of the form

λj =
λ̄j√
m

,

with λ̄ not depending on m. This means that the sign of the real part of
the λ is independent of m.



8. Stability of the staged algorithm (flutter re-
gion, contd...)

U∞ = M∞ = 2
t = 0.06
ν = 0.33
m = 0.002
E = 39.6
D = 8.010−4

NT =
D

mL2U∞
2 = 0.025

NM =
ρ∞L

m
= 1000.0

NM

NTM∞
2 = 10000 > 300

(i.e., inside the flutter region)
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9. Stability of the staged algorithm (flutter re-
gion, contd...)

0 5 10 15 20 25 30 35 40 45 50
−12

−10

−8

−6

−4

−2

0

2

4
x 10−4

 Time [ # of time steps ] 

 u
y 

 Vertical displacement of the plate vs time 

nstage =1



10. Stability of the staged algorithm outside the
flutter region, i.e. NM/(NTM∞2) � 200

• NM/(NTM∞
2) do not depend on plate density m

with m = 0.00135
NM

NTM∞
2 = 12 < 200

(i.e., outside the
flutter region)

n stage =1



11. Stability of the staged algorithm outside the
flutter region (contd...)

nstage =2



12. Stability of the staged algorithm (flutter re-
gion)
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Figure 13: Convergence of fluid state in stage loop



13. Conclusions

• “Staged” strategy provides a smooth blending between weak coupling and
strong coupling.

• Moderately coupled problems that can not be treated with the pure weak
coupling approach, can be solved with the staged algorithm using few
stages per time step.

• The elastic flat plate problem is geometrically simple, but gives physical
insight in the flutter phenomena, and was very useful in testing the pro-
posed algorithm in a wide range of non-dimensional parameters.
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