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1. Introduction.

• Parallel Solution for Coupled Surface/Subsurface Large Scale Hy-
drological Systems and several CFD problems in “Beowulf” clus-
ters.

• Direct solvers are highly coupled and don’t parallelize well (high
communication times). Also they require too much memory, and
they asymptotically demand more CPU time than iterative meth-
ods even in sequential mode. But they have the advantage that the
computational cost do not depend on condition number (κ(A) =
||A||||A−1||).

• Iteration on the global system of eqs. is highly uncoupled (low
communication times) but has low convergence rates, specially
for bad conditioned systems (κ(A) ∝ 1/h2).

• “Substructuring” or “Domain Decomposition” methods are some-
what a mixture of both: the problem is solved on each subdomain
with a direct method and we iterate on the interface values in or-
der to enforce the equilibrium equations there.

http://www.cimec.org.ar
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2. Global iteration methods

 A11 0 A1I

0 A22 A2I

AI1 AI2 AII

 x1

x2

xI

 =

 b1

b2

bI

 1
I

2

• Computing matrix vector operations involve to compute diagonal
terms A11x1 and A22x2 in each processor and,

• Communicate part of the non-diagonal contributions.

http://www.cimec.org.ar
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3. Domain Decomposition Methods
(SD/SCMI)

Eliminate x1 and x2 to arrive to the condensed eq.

(AII − AI1A−1
11 A1I−AI2A−1

22 A2I) xI

= (bI − AI1A−1
11 b1 − AI2A−1

22 b2)

S xI = b̃

Evaluation of yI = S xI implies

• Solving the local equilibrium equations in each processor forx j :
A jj x j = −A jI xI

• Suming the interface and local contributions:yI = AII xI +AI1 x1 +
AI2 x2

• This method will be referred later as SDD/SCMI (“Sub-Domain
Direct/Schur complement matrix iterative” ).

http://www.cimec.org.ar
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4. SDD/SCMI vs. Global iter.

• Iteration on the Schur complement matrix (condensed system) is
equivalent to iterate on the subspace where the local nodes (inter-
nal to each subdomain) are in equilibrium.

• The rate of convergence (per iteration) is improved, due to:

a) the condition number of the Schur complement matrix is lower,

b) the dimension of the iteration space is lower (non-stationary
methods like CG/GMRES tend to accelerate as iteration proceeds).
However this is somewhat compensated by factorization time and
backsubst. time in sub-domain problems/.

• As the iteration count is lower and the iteration space is signifi-
cantly smaller, RAM requirement for the Krylov space is signifi-
cantly lower ,, but this is somewhat compensated by the RAM
needed by the factorized internal matricesLU(A jj) /.

http://www.cimec.org.ar


Home Page

Title Page

Contents

JJ II

J I

Page 6 of 31

Go Back

Full Screen

Close

Quit

5. SDD/SCMI vs. global iter. (cont...)
• Better conditioning of the Schur comp. matrix prevents

CG/GMRES convergence break-down due to deterioration of or-
thogonality ,

• As GMRES CPU time is quadratic in iteration count (orthogo-
nalization stage) and global iteration requires usually more iter-
ations, Schur comp. matrix iteration is comparatively better for
lower tolerances (,//).

• Global iteration is usually easier to load balance since it is easier
to predict computation time accordingly to the number of d.o.f.’s
in the subdomain/.

http://www.cimec.org.ar
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6. Schur comp. matrix iter. vs. global iter.
(cont...)
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7. Subpartitioning

• For large problems, the
factorized part of the A jj

matrix may exceed the RAM
in the processor. So we can
further subpartition the
domain in the processor in
smaller sub-subdomains.

• In fact, best efficiency is
achieved with relatively small
subdomains of 2,000-4,000
d.o.f.’s per subdomain.

P1

P3

P2

P0
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8. Example. Navier Stokes cubic cavity
Re=1000

625,000 tetras mesh, rtol=10−4, NS monolithic, [Tezduyar et.al. TET
(SUPG+PSPG) algorithm, CMAME, vol. 95, pp. 221-242, (1992)]

global iter.

iter.
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||R||
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9. Example. NS cubic cavity Re=1000(cont.)
• Of course, each iteration of SDD/SCMI takes more time, but fi-

nally, in average we have

CPU TIME(SDD/SCMI) = 17.7 secs,
CPU TIME(Global iteration) = 63.8 secs

• Residuals are on the interface for SCMI, global for Global iter.
But vector iteration for the SCM is equivalent to a global vector
with null residual on the internal nodes. (So that they are equiva-
lent).

• SCMI requires much less communication,

http://www.cimec.org.ar
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10. Schur CM preconditioning - NN

• In order to further improve SCMI several preconditionings have
been developed over years. When solvingSx = b̃ a precondi-
tioner should solveSw = y for w in terms of y approximately.

• For the Laplace eq. this problem is equivalent to apply a“concen-
trated heat flux” (like a Dirac’s δ ) y at the interface and solving
for the corresponding temperature field. Its trace on the interface
is w.

• Neumann-Neumann preconditioning amounts to split the heat flux
one-half to each side of the interface (1/2y for each subdomain).

w

y/2
left subd. right subd. left subd. right subd.

w_left w_right

w = (w_left+w_right)/2
y/2

y

http://www.cimec.org.ar
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11. Flux splitting

• Neumann-Neumann prec. works well whenever“equal splitting”
is right: right subdomain equal to left subdomain, symmetric op-
erator.

• In the presence of advection, splitting is biased towards the down-
wind sub-domain. Then, eigenfunctions are no more symmetric.

http://www.cimec.org.ar
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12. Interface strip preconditioner

Consider the problem in figure. The precondi-
tioning consists in, given a vectorfI defined on
the nodes onI, compute an approximate solution
vI given by

nlay = 2strip

21

interface (I)strip boundaries (SB)

internal layers (S)

 AII AIS AI,SB

ASI ASS AS,SB

ASB,I ASB,S ASB,SB

 vI

vS

vSB

 =

 fI
0
0

 , (1)

with “Dirichlet boundary conditions” on I / vSB = 0, then, it reduces
to [

AII AIS

ASI ASS

] [
vI

vS

]
=

[
fI
0

]
, (2)

Once this equation is solved,vI is the value of the proposed precondi-
tioner applied to fI, i.e.

vI = P−1
IS fI (3)

http://www.cimec.org.ar
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13. Strongly advective case (Pe=50)
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14. Condition number, 100x100 mesh, Pe=50

u cond(S) cond(P−1
NNS) cond(P−1

IS S)
0 88.50 1.00 4.92
1 81.80 1.02 4.88

10 47.63 3.44 2.92
50 11.23 64.20 1.08

Table 1: Condition number for the Stekhlov operator and several precon-
ditioners for a mesh of100 × 100 elements.

http://www.cimec.org.ar
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14.1. Solution of Poisson problem (mesh 500×500), 4 subdo-
mains (one per processor).
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14.2. Solution of advective-diffusive problem (mesh 500×500),
4 subdomains (one per processor).
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14.3. Solution of advective-diffusive problem (mesh 1000 ×
1000), 7 subdomains (one per processor).
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15. Shallow Water equations

Conservative form of Mass and Momentum eqs.U = (h, u, v )T :

∂U
∂t

+
∂Fi(U)

∂xi
= Gi(U), i = 1, 2, on Ωst × (0, t ], (4)

Flux Functions:

F1(U) = (hu, hu2 + g h2

2 , huv )T , (5)

F2(U) = (hv , huv , hv2 + g h2

2 )T , (6)

Source Term:

G(U) = (Gs, gh(S0x − Sfx), gh(S0y − Sfy ))T (7)

Bed-Channel Friction Models:

Sfx =
1

C2
hh

u|ū|, Sfy =
1

C2
hh

v |ū| Chézy model. (8)

Sfx =
n2

h4/3
u|ū|, Sfy =

n2

h4/3
v |ū|, Manning model. (9)

http://www.cimec.org.ar
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15.1. 2D Shallow Water subcritical flow over an impermeable
unit square channel with a parabolic bump at the bot-
tom. Mesh: 105 linear triangles partitioned with METIS
into 5 sub-domains (one per processor).
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16. Coupled Surface-Subsurface Water Flow/

• Subsurface Flow in a confined (freatic) aquifer integrated in the
vertical direction:

∂

∂t
(S(φ− η)φ) = ∇ · (K (φ− η)∇φ) +

∑
Ga, on Ωaq × (0, t ].

(10)

• Surface Flow: (1D[variable cross section)/2D Shallow Water equa-
tions.)

• Coupling Term.

Stream gain/loss: Gs = P/Rf (φ− hb − h), (11)
Aquifer gain/loss: Ga = −Gs δΓs. (12)

http://www.cimec.org.ar
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16.1. 1D Saint-Venant/Groundwater interaction over several
basins in Sta Fe. 32900Km2, 1.65M triangles, 9 sub-
domains (one per processor). Annual average periodical
raindrop.
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16.2. Periodic Steady Solution in a Cululu basin.

http://www.cimec.org.ar
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17. Stokes Flow in a long lubricated chan-
nel.

http://www.cimec.org.ar
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18. Stokes Flow in a long lubricated chan-
nel. (cont..)
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19. N-S Flow arround a cylynder. Iteration
count.
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20. N-S Flow arround a cylynder. Vertical
velocity in the wake.
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21. N-S Flow arround a cylynder. Horizon-
tal velocity near the cyl.
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22. N-S Flow arround a cylynder. Vertical
velocity near the cyl.
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23. Conclusion

• Domain Decomposition + iteration on the Schur complement ma-
trix is an efficient algorithm for solving large linear systems in
parallel or sequentially.

• Specially suited for ill-conditioned problems.

• Interface strip preconditioner improves convergence, specially for
advection dominated problems or floating subdomains.

• SDD/SCMI + ISP performes better the most inner step in the so-
lution of a non-stationary/non-linear CFD problem.

• SDD/SCMI examples using PETSc-FEM (Finite Element paral-
lel, general purpose, multi-physics code developed at CIMEC).
Can be donwloaded at
http://www.cimec.org.ar/petscfem

http://www.cimec.org.ar
http://www.cimec.org.ar/petscfem
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24. Future Work

• Efficiency Tests of the IISD+IS Preconditioner on Disaggregate
Schemes (Fractional Step Scheme).

• Solve the predictor step (advection-diffusion term) in FS schemes
with IISD+IS preconditioner, then the pressure step (Laplacian
Problem) with Neumann-Neumann Preconditioner.

• Construction of a preconditioner with mixed multigrid (no more
than 3 levels) and IISD+ISP schemes.

• Test the IISD+ISP solver on turbulent problems (high Reynolds.)
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