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Abstract

This note deals with a theoretical analysis of the dynamical behavior of a system made up of a plate with
a two degree of freedom (2-dof) system elastically mounted. This study was performed by means of an
analytical model based on Lagrange’s multipliers. The results are verified with the values obtained using
FEM.
The analysis is of interest from both academic and technological viewpoints. The case of a plate structure

supporting a 2-dof system has not been previously considered in the technical literature using the
Lagrange’s multipliers approach. This system can be considered as a dynamic absorber.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the dynamics of plates or slabs is of fundamental importance in structural design.
In many everyday situations the plate supports a discrete mass–spring system. The problem of free
vibrations of beams with additional complicating elements (elastic supports, elastically attached
see front matter r 2004 Elsevier Ltd. All rights reserved.
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masses, etc.) has been extensively studied and hence only a few selected references are given here
[1–5].
The analysis of higher-order discrete systems attached to continuous structural elements has

not, apparently, been performed in the case of plates. It is the goal of the present investigation to
consider an attached two degree of freedom (2-dof) which increases substantially the scope of
previously developed analysis.
2-dof systems added to structural elements are more difficult to treat than single dof systems,

specially because of the complexity of the mathematical expressions. An interesting approach to
the problem, in the case of beam vibrations was given by Jen and Magrab [6], and more recently in
an important paper by Wu and Whittaker [7].
Here, a well known but not usually employed method, previously developed by Dowell [2] to

solve vibrations of beams carrying elastically mounted systems, is employed for the title problem.
The eigenfrequencies and normal mode shapes of the system will be obtained for two types of
boundary conditions.
In Section 2, the analytical formulation of the problem is presented and in Section 3,

eigenfrequencies are computed using the finite element method (FEM). The results are shown in
Section 4 where we made a comparison between these two approaches (analytical and FEM).
Concluding remarks are presented in Section 5.
2. Lagrange’s formulation

Fig. 1 shows the 2-dof spring–mass system attached to a plate. The intervening parameters me;
Ie; ki are, respectively, the lumped mass, mass moment of inertia, and spring constants of the 2-
dof spring–mass system, a1 and a2 are, respectively, the distances between the mass center and the
two springs k1 and k2:
Initially, the plate and the 2-dof spring–mass system are considered to be unconnected. The

total kinetic and strain energies of the entire system are

T ¼
1

2
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mij _q
2
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1
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2
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2
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where qi;j are the generalized coordinates, oij are the eigenfrequencies of the bare plate and the
mij’s are given by
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Z
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Fig. 1. Plate with the 2-dof system attached to it.
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The transverse displacement of the plate is represented by

wðx; y; tÞ ¼
Xn;n0

i;j

qijðtÞfijðx; yÞ; (4)

where the fijðx; yÞ are the normal mode shapes of the ‘‘bare’’ plate. For convenience, the term
‘‘bare’’ plate will be used to define the primitive continuous system or in other words: the original
structural element without altering the discrete system.
As it is shown in Fig. 1, the plate is constrained at the points x1; yn and x2; yn by the 2-dof

spring–mass system. This can be expressed in the form

f 1 ¼
Xn;n0

i;j

qijðtÞfijðx1; ynÞ � z1 ¼ 0;

f 2 ¼
Xn;n0

i;j

qijðtÞfijðx2; ynÞ � z2 ¼ 0: ð5Þ

The equations of motion will be obtained by means of Lagrange’s equations. Additionally, we
must add the restrictions into them, given by Eqs. (5), by means of Lagrange multipliers. So, for a
system with N dof (here N ¼ n � n0) in which n are redundant coordinates, the equations are

d

dt

qL

qsk

� �
�

qL

qsk
¼
Xn
l¼1

ll

qf l

qsk
; k ¼ 1; . . . ;N þ nþ 2 (6)
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where the ll are the Lagrange multipliers. With the Lagrangian

L ¼ T � V ; (7)

upon taking into account the correspondence

½s1; . . . ; sN ; sNþ1; . . . ; sNþ4	 
 ½q11; . . . ; qnn0 ; zm1; zm2; z1; z2	; (8)

using Lagrange’s equations (6) yields

mijð €qij þ o2ijqijÞ ¼ l1fijðx1; ynÞ þ l2fijðx2; ynÞ;

me

ða1 þ a2Þ
2

a2ð€zm1a2 þ €zm2a1Þ �
Ie

ða1 þ a2Þ
2
ð€zm2 � €zm1Þ þ k1ðzm1 � z1Þ ¼ 0;

me

ða1 þ a2Þ
2

a1ð€zm1a2 þ €zm2a1Þ þ
Ie

ða1 þ a2Þ
2
ð€zm2 � €zm1Þ þ k2ðzm2 � z2Þ ¼ 0;

k1ðzm1 � z1Þ ¼ l1; k2ðzm2 � z2Þ ¼ l2: ð9Þ

Assuming simple harmonic motion the variables become

qijðtÞ ¼ q̄ije
iot; zm1ðtÞ ¼ z̄m1e

iot; zm2ðtÞ ¼ z̄m2e
iot; z1ðtÞ ¼ z̄1e

iot; z2ðtÞ ¼ z̄2e
iot:

Computing qij; zm1; zm2; z1 and z2 in terms of l1 and l2 and substituting the result into system (5)
one obtains the matrix equation

a11 a12
a21 a22

 !
l1
l2

 !
¼

0

0

� �
; (10)

where the a’s are given by

a11 ¼
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i;j
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þ
1
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�

Ie þ mea
2
1
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1
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2
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From the matrix equation, the eigenfrequencies of the problem can be obtained, if the
determinant of the coefficient matrix is equated to zero.
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Once the eigenvalues (frequencies) are calculated, the eigenvectors (l1;2) are obtained in a
straightforward fashion. From Eq. (9), the q̄0

ijs can be expressed as

q̄
ðkÞ
ij ¼

lðkÞ1 fijðx1; yvÞ þ lðkÞ2 fijðx2; yvÞ

mijðo2ij � oðkÞ2Þ
; (15)

where the superscript (k) labels the eigenvalue under consideration.
Now, we are in a condition to express the new modes of the plate carrying a 2-dof mass–spring

system:

Y ðkÞðx; yÞ ¼
Xn;n0

i¼1;j¼1

fijðx; yÞq̄
ðkÞ
ij ; k ¼ 1; . . . ;N þ 2: (16)

3. Finite element formulation

According to the classical thin-plate theory, the governing equation for the transverse displacement
of the plate wðx; y; tÞ is the well-known elliptic, fourth-order, partial differential equation

Dr4w þ rh
q2w
qt2

¼ f ; in O� ½0; t	; (17)

where r4 is the two-dimensional bi-harmonic operator, h the thickness of the plate, D the flexural
rigidity (i.e. D ¼ Eh3=12ð1� n2Þ), r the mass density, f the lateral load per unit area and O the plate
domain with boundary qO: The plate discretization uses rectangular elements. In order to satisfy C1

continuity of w and conformal requirements, the bicubic Bogner–Fox–Schmidt element was used (see
Ref. [9]). Nodal dofs for this element are

ue ¼ w;
qw

qx
;
qw

qy
;
q2w
qxqy

� 	
: (18)

Eigenfrequencies are calculated solving the so-called characteristic equation

detð�o2Mþ KÞ ¼ 0; (19)

where the global mass and stiffness matrices M and K are given by

M ¼ A
nelem

e¼1
h

Z
Oe

rNT
e Ne dOe; (20)

K ¼ A
nelem

e¼1

Z
Oe

BTe DBe dOe; (21)

A being the standard finite element assembly operator and nelem the number of mesh element. The
constitutive matrix D for the plate is

D ¼ D

1 n 0

n 1 0

0 0 1� nð Þ=2

2
64

3
75 (22)
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and the strain–displacement matrix Be is obtained by differentiation of the shape functions Ne:

Be ¼

�
q2Ne

qx2

�
q2Ne

qy2

�
2q2Ne

qxqy

2
666666664

3
777777775
: (23)

The 2-dof spring–mass system is treated as in Ref. [7] where the spring–mass system is attached to a
prismatic beam. The mass and stiffness matrices for the 2-dof spring–mass element that have to be
assembled are

msm ¼

0 0 0 0

0 0 0 0

0 0 me 0

0 0 0 Ie

2
6664

3
7775; (24)

ksm ¼ k

1 0 �1 a1

0 1 �1 �a2

�1 �1 2 ða2 � a1Þ

a1 �a2 ða2 � a1Þ ða1 þ a2Þ

2
66664

3
77775; (25)

with associated dof’s ue
sm ¼ fwi;wk;wsm; ysmg: Here, k ¼ k1 ¼ k2; wi and wk are the plate

displacements at points where the 2-dof spring–mass system is mounted; and wsm and ysm are the
displacement and rotation of the attached mass.
4. Numerical results

Numerical results are presented for the cases where the plate is simply supported on all its sides
in Table 1 and for a cantilever plate, clamped at x ¼ 0 and free on the remainder, in Table 2. The
Table 1

First eight natural frequencies of simply supported square plate carrying a 2-dof spring–mass system located at

x1 ¼ 0:2; yv ¼ 0:5 and x2 ¼ 0:4; yv ¼ 0:5

o1 o2 o3 o4 o5 o6 o7 o8

Present 56.7879 556.9301 1542.1984 3779.8722 3790.8440 6047.7956 7565.1100 7565.1610

FEM 56.7315 556.4749 1542.1403 3779.8807 3790.8311 6047.7665 7565.2602 7565.3048

Bare plate — — 1511.9489 3779.8722 3779.8722 6047.7956 7559.7445 7559.7445

2-dof 56.8885 569.5240 — — — — — —

Note: 2-dof: natural frequencies of the two degree of freedom system attached to the plate.



ARTICLE IN PRESS

Table 2

First eight natural frequencies of a cantilever square plate carrying a 2-dof spring–mass system located at x1 ¼

0:2; yv ¼ 0:5 and x2 ¼ 0:4; yv ¼ 0:5

o1 o2 o3 o4 o5 o6 o7 o8

Present 56.4650 270.0592 567.9746 661.4260 1666.9924 2116.6842 2407.1138 4220.9719

FEM 56.3894 270.0388 566.7005 661.3694 1661.8238 2121.9127 2406.7592 4219.6910

Bare plate — 269.8571 — 661.4260 1654.9301 2115.2492 2407.1138 4214.5193

2-dof 56.8885 569.5240 — — — — — —

Fig. 2. Modes of the simply supported plate: (a) first mode of the bare plate, (b) first mode of the modified plate (plate

+ 2-dof system attached), (c) first mode of the bare plate for comparison with the second mode of the modified system,

(d) second mode of the modified system.
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mode shapes of the plate are represented in Fig. 2 for the simply supported plate and in Fig. 3 for
the cantilever plate.
In Fig. 2(a) the first mode for the bare plate is illustrated, with its corresponding first mode of

the modified system, in Fig. 2(b). In Fig. 2(c) we present, for comparison, the first mode of the
bare plate because it is very similar to the second mode of the modified system (plate with the
attached discrete system) shown in Fig. 2(d). The other modes will not be presented here due to
the similarity between the bare and modified plate modes. The same occurs for the cantilever
plate. In Fig. 3(a) the first mode of the bare structure is presented with its corresponding first
mode of the modified system in Fig. 3(b). We realize that the second frequency of the cantilever
plate (Table 2) possesses practically the same values for the modified and unmodified system.
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Fig. 3. Modes of the cantilever plate: (a) first mode of the bare plate, (b) first mode of the modified plate, (c) first mode

of the bare plate for comparison with the third mode of the modified system, (d) third mode of the modified system

(mode two is not shown here because it remains the same as for the unmodified system).
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Accordingly their modes are very similar. On the other hand we present in Fig. 3(d) the third
mode of the modified system and the first mode of the bare plate in Fig. 3(c) for comparison.
The dimensions and material constants for the plate are: length a ¼ 1m; width b ¼ 1m;

thickness h ¼ 0:05m; mass density r ¼ 7:8367� 103 kg=m3; mass plate mp ¼ rhab ¼ 391:835 kg;
Poisson coefficient n ¼ 0:3; Young modulus E ¼ 2:069� 1011 N=m2:
The 2-dof spring–mass system is located at x1 ¼ 0:2m and x2 ¼ 0:4m with a1 ¼ 0:06667m and

a2 ¼ 0:13333m as it is presented in Fig. 1. For the mass added at x1; yv and x2; yv we have
me ¼ 0:1� mp kg; Ie ¼ 0:1� mp � abkgm2; k1 ¼ 6:34761� 106 N=m; k2 ¼ k1: These dimensions
were chosen to make a correlation between present results and those previously published [6,7].
The normal mode shape functions, used for the calculations leading to the results given in Figs.

2 and 3, will be detailed in Appendix A. The modes chosen for the simply supported and the
cantilever plate were the first six modes.
5. Conclusions

In this paper the natural frequencies and mode shapes of a plate carrying a 2-dof system were
calculated. The technique presented here is simpler than those previously presented by other
methods, for example in Refs. [6,7], because our calculations lead to a determinant of order 2
despite the number of modes that have been used to create the transverse displacement function in
Eq. (4).
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Additionally, an alternative way to determine the results was presented employing the FEM
method (Section 3). By using this scheme the reliability of the analytical results were satisfactorily
confirmed.
The plate modes were drawn for the simply supported (Fig. 2) and for the cantilever plate (Fig.

3). It is clearly noticed that, for that mode where the mounted system is just in the position of a
nodal line of the ‘bare’ structure, the plate seems to be undisturbed and the mode remains the
same. This fact can also be seen from Tables 1 and 2 where, for the modes 4 and 6 in the case of
the simply supported plate, and 4 and 7 in the case of the cantilever plate, the frequency also
remains invariant.
An interesting conclusion could be deduced from Tables 1 and 2. It can be observed that all the

frequencies of the 2-dof-plate system, higher than the second are increased because of the effect
that the addition of the 2-dof system exerts on the plate. This fact could be understand from the
well known results due to Rayleigh [8], synthesized by Dowell [2] in the following statement: ‘‘If a
spring–mass combination (which by itself has a rigid body as well as an elastic degree of freedom)
is added to another system, the frequencies originally higher than the basic spring–mass frequency
are increased, those originally lower are decreased, and a new frequency appears between the
originally pair of frequencies nearest the spring–spring frequency’’. This result could be applied
for this case since the 2-dof may be viewed as two systems of 1-dof (obviously coupled) of
frequencies lower than the original system (bare plate). So the net effect is to raise the resultant
frequencies of the combined system.
With regards to the selection of the number of modes assumed for the displacement amplitude,

Eq. (4), we must clarify that in the case of the simply supported plate, the number of modes were
six. This fact is properly justified in the sense that, if one considers a major number of modes, the
changes in all the frequency values are always within the 0.05% of the presented values (Table 1).
So adding more modes in the calculations produces no significative modification in the
frequencies values but increases the computational time and effort instead. The same is observed
in the case of the cantilever plate case where also six modes of the bare plate have been used.
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Appendix A

The normal mode shape functions used for the calculations are, for simply supported plate,

fijðx; yÞ ¼ sin
ipx

a

� �
sin

jpy

b

� �
; (A.1)
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and for the cantilever plate,

fijðx; yÞ ¼ FiðxÞCjðyÞ; (A.2)

where FiðxÞ and CjðyÞ are beam functions which satisfy clamped–free boundary conditions and
free–free conditions, respectively, and are defined as

FiðzÞ ¼ miðcosh aiz� cos aizÞ � niðsinh aiz� sin aizÞ ði ¼ 1; 2; 3; . . .Þ; (A.3)

where z ¼ x=a;

mi ¼
cosh ai þ cos ai

sinh ai sin ai

; ni ¼
sinh ai � sin ai

sinh ai sin ai

; (A.4)

and ai are the roots of

cosh ai cos ai ¼ �1: (A.5)

The first three roots of Eq. (A.5) are a1 ¼ 1:875; a2 ¼ 4:694 and a3 ¼ 7:854:
For the free–free function CjðZÞ (Z ¼ y=b), we have ðj ¼ 3; 4; 5 . . .Þ

C1ðZÞ ¼ 1; C2ðZÞ ¼
ffiffiffi
3

p
ð2Z� 1Þ; (A.6)

CjðZÞ ¼ xjðcosh bjZþ cos bjZÞ � wjðsinh biZþ sin bjZÞ; (A.7)

xj ¼
cosh bj � cos bj

sinh bj sin bj

; wj ¼
sinh bj þ sin bj

sinh bj sin bj

; (A.8)

and bj ðjX3Þ are the roots of

cosh bj cos bj ¼ 1 (A.9)

where b3 ¼ 4:730; b4 ¼ 7:853 and b5 ¼ 10:995:
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