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Kinematics of a Continuum 

The branch of mechanics in which materials are treated as continuous is known as 
continuum mechanics. Thus, in this theory, one speaks of an infinitesimal volume of material, 
the totality of which forms a body. One also speaks of a particle in a continuum, meaning, in 
fact an infinitesimal volume of material. This chapter is concerned with the kinematics of such 
particles. 

3.1 Description of Motions of a Continuum 

In particle kinematics, the path line of a particle is described by a vector function of time, 
i.e., 

r =  r(t) ( i d  

where r(t) = x(t)el+y(t)e;?+z(t)e3 is the position vector. In component form, the above equa- 
tion reads: 

x = x(t),  y =y(t) and z = z(t) (ib) 

If there are N particles, there are N pathlines. each is described by one of the equations: 
rn = rn(t), n=1,2..N (ii) 

That is, for the particle number 1, the path line is given by rl(t), for the particle number 2, it 
is given by r2(t), etc. 

For a continuum, there are not only infinitely many particles, but within each and every 
neighborhood of a particle there are infinitely many other particles. Therefore, it is not 
possible to identify particles by assigning each of them a number in the same way as in the 
kinematics of particles. However, it is possible to identify them by the positions they occupy 
at some reference time to. For example, if a particle of a continuum was at the position (1,2,3) 
at the reference time to , the set of coordinates( 1,2,3) can be used to identify this particle. In 
general, therefore, if a particle of a continuum was at the position (X,,X2,X3) at the reference 
time to, the set of coordinate (Xl,X2,X3) can be used to identity this particle. Thus, in general, 

79 



80 Kinematics of a Continuum 

the path lines of every particle in a continuum can be described by a vector equation of the 

Fig. 3.1 

form 

x = x(X,t) with x(X,t,) = X (3.1.1) 

where x = xlel+x2e2+x3e3 is the position vector at time t for the particle P which was at 
X = Xlel+X2e2+X3e3 (see Fig. F3.1). 

In component form, Eq. (3.1.1) takes the form: 

x1 = x1 (x13233,t) 
x2 = x2 (x13233,t) (3.1.2a) 

x3 = x3 (X13233,t) 
or 

xi = xi (XljY233,t) with xi (X1J2J3,t0) = 4 (3.1.2b) 

In Eqs. (3.1.2), the triple (XiJ2J3) serves to identi@ the different particles of the body 
and is known as material coordinates. Equation (3.1.1) or Eqs. (3.1.2) is said to define a 
motion for a continuum; these equations describe the pathline for every particle in the 
continuum. They may also be called the kinematic equations of motion. 

Example 3.1.1 

Consider the motion 
x = X+ kX2 el (9 
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where x = xlel+x2e2+x3e3 is the position vector at time t for a particle which was at 
X = Xlel+X2e,+X3e, at t = 0. Sketch the configuration at time t for a body which at t = 0 
has the shape of a cube of unit sides as shown in Fig. 3.2. 

Solution. In component form, Eq. (i) becomes 
x1 = Xl+ktX2 (iia) 

x2 = x, (iib) 

x3 = x3 (iic) 

Fig. 3.2 

At t = 0, the particle 0 is located at (O,O,O). Thus, for this particle, the material coordinates are 

X1=0, X2=0 and X3=O. 
Substituting these values for X i  in Eq. (ii), we get, for all time t, ( X I ,  x2, x3)  = (O,O,O). In other 
words, this particle remains at (440) at all times. 

Similarly, the material coordinates for the particle A are 

( x 1 3 2 3 3 )  = (1,0,0) 
and the position forA at time t is 

(XlJ2J3) = (1,0,0) 
Thus, the particleA also does not move with time. In fact, since the material coordinates for 
the points along the material line OA are 

(Xl, x2, X3) = (Xl,O,O) 

(x1, x2, x3) = (Xl,O,O) 

Therefore, for them, the positions at time t are 
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so that the whole material line OA is motionless. 
On the other hand, the material coordinates for the material line CB are 

(Xl, x2, X3) = (Xl, LO) 

(x1,x2,x3) = (Xl + kt, 190) 
so that according Eq. (ii) 

In other words, the material line has moved horizontally through a distance of kt (see Fig. 3.2). 
The material coordinates for the material line OC are (XI,  X2, X3) = (O,X2,0), so that for 

the particles along this line (xl,x2,x3) = (H2jY,,O). The fact that xl=ktX2 means that the 
straight material line OC remains a straight line OC 'at timet as shown in Fig. 3.2. The situation 
for the material lineAB is similar. Thus, at time t, the side view of the cube changes from that 
of a square to a parallelogram as shown. Since x3 = X3 at all time for all particles, it is clear 
that all motions are parallel to the plane x 3 = 0. The motion given in this example is known 
as simple shearing motion. 

Example 3.1.2 

Let 
Y1= -XI, Y2 = X2, and Y3 = X 3  

Express the simple shearing motion given in Example 3.1.1 in terms of (Yl, Y2, Y3) 

Solution. Straight forward substitutions give 
XI= -Y1+ktY, 
x2 = Y, 

x3 = Y3. 
These equations, i.e., 

xi = xi(Yl,y2,Y3,t) 

(ii) 

(iii) 

obviously also describe the simple shearing motion just as the equations given in the previous 
example. The triples (Yl,Y2,Y3) are also material coordinates in that they also identify the 
particles in the continuum although they are not the coordinates of the particles at any time. 
This example demonstrates the fact that while the positions of the particles at some reference 
time to can be used as the material coordinates, the material coordinates need not be the 
positions of the particle at any time. However, within this book, all material coordinates will 
be coordinates of the particles at some reference time. 
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Example 3.1.3 

The position at time t, of a particle initially at (Xl,X2,X3), is given by the equations: 

x1 = x, + (XI + X2)t, x2 = x2 + (XI + X&, x3 = x3 

(a) Find the velocity at t=2 for the particle which was at (l,l,O) at the reference time. 

(b) Find the velocity at t=2 for the particle which is at the position (l,l,O) at t = 2. 
Solution. (a) 

(ii) 

Xi -fixed Xi - fixed 

For the particle (Xi,X2,X3) = (l,l,O), the velocity at t = 2 (and any time t) is 

v 1 = 1 + 1 = 2 ,  v 2 = 1 + 1 = 2 ,  v3=0 (iii) 

i.e., 
v = 2el + 2e2 

(b)To calculate the reference position (X1,X2,X3) which was occupied by the particle which 
is at (xI,x~J~) = (l,l,O) at t = 2 , we substitute the value of ( ~ 1 ~ 2 ~ 3 )  = (l,l,O) and t = 2 in 
Eq. (i) and solve for (Xl,X2,X3), Le., 

1 3x1 -k 2x2, 1 = 2 x 1  4- 3x2 (v) 

1 1 Thus, X - -, X2 = -. Substituting these values in Eq. (ii), we obtain 1 - 5  5 
2 2 

V I = ?  v 2 = 3  v3=0 

3.2 

defined in the next chapter) may change with time. We can describe these changes by: 

the material coordinates, (XI,X~,X~>) and time t. In other words, we express 

Material Description and Spatial Description 

When a continuum is in motion, its temperature 0, its velocity v, its stress tensor T (to be 

I. Following the particles, Le., we express 0 ,  v, T as functions of the particles (identified by 

= @(xIA2&3,t) (3.2. la) 

= <XlX2$3,t) (3.2. lb) 

= ex1$2$3$) (3.2.1~) 
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Such a description is known as the material description. Other names for it are: Lagrangian 
description and reference description. 

11. Observing the chan es at fixed locations, i.e., we express, O,v,T etc. as functions of fixed 

= 6(X1t”C2J3,t) (3.2.2a) 

position and time. Thus, ig 

(3.2.2b) 

T = T(XlJ2J3,t) (3.2.2~) 

Such a description is known as a spatial description or Eulerian description. The triple 
( ~ 1 ~ 2 ~ 3 )  locates the fixed position of points in the physical space and is known as the spatial 
coordinates. The spatial coordinates xi of a particle at any time t are related to the material 
coordinatesXi of the particle by Eq. (3.1.2). We note that in this description, what is described 
(or measured) is the change of quantities at a fixed location as a function of time. Spatial 
positions are occupied by different particles at different times. Therefore, the spatial descrip- 
tion does not provide direct information regarding changes in particle properties as they move 
about. The material and spatial descriptions are, of course, related by the motion. That is, if 
the motion is known then, one description can be obtained from the other as illustrated by the 
following example. 

Example 3.2.1 

Given the motion of a continuum to be 
x1= Xl+ktX2, x2 = x2, x3 = x3 

0 = x1+x2 
If the temperature field is given by the spatial description 

(ii) 

(a)find the material description of temperature and (b)obtain the velocity and rate of change 
of temperature for particular material particles and express the answer in both a material and 
a spatial description. 

Solution. (a)Substituting (i) into (ii), we obtain 
0 =x, +(kt+l)x2. (iii) 

(b) Since a particular material particle is designated by a specific X, its velocity will be given 
by 

t Note: the superposed A and the superposed - are used to distinguish different functions for the same 
dependent variable. 
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so that from Eq. (i) 
vl = kX2, v2 = v3=O 

This is the material description of the velocity field. To obtain the spatial description, we make 
use of Eq. (i) again, where we have x2 = X 2 ,  so that 

v1 = ku2, v2 = v3=0 (vi) 

From Eq. (iii), the rate of change of temperature for particular material particles is given by 

= k X 2 = k u 2  (9) Xi - fixed 

(vii) 

We note that even though the given temperature field is independent of time, each particle 
experiences changes of temperature, since it flows from one spatial position to another. 

3.3 Material Derivative 

The time rate of change of a quantity (such as temperature or velocity or stress tensor) of 
a material particle, is known as a material derivative. We shall denote the material derivative 
by DIDt . 

(i)When a material description of the quantity is used, we have 
0 = @(x13233 , t )  (3.3.1) 

Thus, 

(ii) When a spatial description of the quantity is used, we have 

0 = G(XlJ2J3,t) 

(3.3.2) 

(3.3.3) 

where xi, the positiozs of material particles at time t , are related to the material coordinates 
by the motionxi = xj(X132J3,t). Then, 

(i) --- a6 ax1 +--+--+ a63 ax2 a63 ax3 (;:) - - 
xi - fixed ax, at ax2 at ax3 at Xi - fixed 
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ax, ax2 ax3 
at at at where -, -, - are to be obtained with fixed values of the Xi 's. When rectangular 

Cartesian coordinates are used, these are the velocity components vi of the particlexi. Thus, 
the material derivative in rectangular coordinates is 

Do = ao+V1-+V2-+V3- ao ao ao 
Dt at axl ax2 ax3 

(3.3.4a) 

(3.3.4b) 

where it should be emphasized that these equations are for 0 in a spatial description, i.e., 
0 = 6(~1 ,~2 ,~3 , t ) .  Note that if the temperature field is independent of time and if the velocity 
of a particle is perpendicular to VO (i.e, the particle is moving along the path of constant 0) 

then, as expected -=O. 
DO 
Dt 

Note again that Eq. (3.3.4a) is valid only for rectangular Cartesian coordinates, whereas 
Eq. (3.3.4b) has the advantage that it is valid for all coordinate systems. For a specific 
coordinate system, all that is needed is the appropriate expression for the gradient. For 
example, in cylindrical coordinate (r, 8, z), 

v = v,e,+veee+v,e, (3.3.5) 

and from Eq. (2D2.3) 
ao iao ao (3.3.6) 
ar r x Q + a Z F Z  vo = --e,+- 

Thus, 

DO ao ao v e a o  ao (3.3.7) 
~t at ar r az - +v-+--+v - 

In spherical coordinates (r,O,qj) 
v = v, e,+ve Q+V+ e+ 

and from Eq. (2D3.9) 
ao 1 ao 1 ao (VO) =- ( V q e = - -  (VO)  =-- 

r ar r + rsine W 
Thus, 

 DO-^@ ao v e a o  v+ ao +v,-+- +-- Dt at dr r x nine @ 

(3.3.8) 

(3.3.9) 

(3.3.10) 
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Example 3.3.1 

DO 
Dt Use Eq. (3.3.4), obtain - for the motion and temperature field given in the previous 

example. 
Solution. From Example 3.2.1, we have 

v = (b2)el 

and 
O = Xl+X2 

The gradient of O is simply 
VO = el+e2 

Therefore, 

-0 + (kx2)el.(el+e2)=b2 DO 
Df 
-- 

(ii) 

(iii) 

which agrees with the previous example. 

3.4 Acceleration of a Particle in a Continuum 

the material derivative of velocity. If the motion of a continuum is given by Eq. (3.1.1), Le., 
The acceleration of a particle is the rate of change of velocity of the particle. It is therefore 

x = x(X,f)  with x(X,f,) = X 
then the velocity v, at time t, of a particle X is given by 

- Dx '=($)  Xi - fued - D t  
_ -  

and the acceleration a, at time t, of a particle X is given by 
- Dv 

a = ( $ )  Xi - fued - D t  
_ -  

(3.4.1) 

(3.4.2) 

Thus, if the material description of velocity, v(X,t) is known (or is obtained from Eq. (3.4.1), 
then the acceleration is very easily computed, simply taking the partial derivative with respect 
to t i w  of the function v(X,t). On the other hand, if only the spatial description of velocity [i.e., 
v = v(x,t)] is known, the computation of acceleration is not as simple. 
(A)Rectangular Cartesian Coordinates ( ~ 1 ~ 2 ~ 3 ) .  With 

v=vl(Xl&J3,t)el +v2(xl&&)e2 +v3(xlJ2&e3 (3.4.3) 
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we have, since the base vectors e l,e 2, and e 3 do not change with time 

Dv fil f i 2  f i 3  _ -  -- el+- e2+- e3 Dt Dt Dt Dt 

where 
f i i  avi avi avi avi 

- +VI -+v2 -+v3 - Dt at axl ax2 ax3 

i.e, 

Or, in a form valid for all coordinate systems: 
av 
at a = -+(Vv) v 

(3.4.4) 

(3.4.5a) 

(3.4.5b) 

(3.4%) 

In dyadic notation, the above equation is written as 

a = -+v * V v  av - (3.4.5d) 
at 

a 
ax, 

- 
where V = e, -. 

and,[see Eq.(2D2.4)] 

we have, 

[VV] = 

av. 

(3.4.6) 

(3.4.7) 

(3.4.8a) 

(3.4.8b) 



av, av, veav, av, 
a, = -+v,-+- +v - 

at ar r a6 az 

and, [see Eq. (2D3.17)] 

[VV] = 

we have, 

a+=-+v,-+ av+ at av+ dr vgav+ +- rsint? "' (*+v,sin6+v~cos6 W 
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(3.4.8~) 

(3.4.9) 

(3.4.10) 

(3.4.1 la) 

(3.4.1 lb) 

(3.4.1 IC) 

Example 3.4.1 

(a) Find the velocity field associated with the motion of a rigid body rotating with angular 
velocity o = we in Cartesian and in cylindrical coordinates. 

(b) Using the velocity field of part (a), evaluate the acceleration field. 

Solution. (a) For a rigid body rotation 

v = o x x  ( 9  

In Cartesian coordinates 
v = we3x (xlel+x2e2+x3e3) (ii) 

1.e.. 

v 1 =  -wx2, v2 = 0x1, v3 = 0 (iii) 

In cylindrical coordinates 

v = wezX(re,) = wree (iv) 
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i.e., 

vr = 0, vg = w r, v, = 0 

(b)We can use either Eq. (iii) or Eq. (v) to find the acceleration. 
Using Eq. (iii) and Eq. (3.4.5b), we obtain 

2 a1 = 0+( -wx~) (0 )+ (wx~) ( -w)+ (0 ) (0 )=  --w x1 

a2 = O+ ( --w x&w) + (o X I ) (  0 )  + (O)( 0)  = --w x2 

a3 = 0 

2 

i.e., 
2 a= --w (xlel+x2e2) 

Or, using Eq. (v) and Eqs. (3.4.8), we obtain 

i.e., 
2 a=--w rer (vii) 

We note that (xlel+x2e2) = re, so that (vi) and (vii) are the same. We also note that in this 
example, even though at every spatial point there is no change of velocity with time, for every 
material point, there is a rate of change of velocity due to a change of direction at every point 
as it moves along a circular path giving rise to a centripetal acceleration. 

Example 3.4.2 

Given the velocity field 

X 1  x2 x3 v l = -  y 2 = -  v 3 = -  1 +t 1 +t 1 +t 

(a) Find the acceleration field and (b) find the pathlinexi = xi (4t) 

Solution. (a) With 

xi 
1 +t vi = -, i = 1,2,3 

(ii) 



we have 

av, Xi - = - -  
at ( l+q2  

Also, since 

so that 

therefore, 

avi dii vi Xi v-=v-=-=- laxj J i + t  l + t  (1 + $  

Thus, 
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(iii) 

i.e., 
a = O  (vii) 

We note that in this example, even though at any spatial position (except the origin ), the 
velocity is observed to be changing with time, but the actual velocity of a particular particle is 
a constant, with zero acceleration. 

(b)Since 

xi 
1 +t 

- -  
X - fvred 

therefore, 

so that 

Thus, 

lnul-lnX1=ln( 1 +t) 

i = 1,2,3 
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Similarly, 
x2=X2( l + t )  and x3 = X,(l+t)  (xii) 

3.5 Displacement Field 

The displacement of a particle from position P to position Q is the vector PQ. Thus, the 
displacement vector of a particle, from the reference position to the position at time t ,  is given 
bY 

u=x(X$)-X (3.5.1) 

From the above equation, it is clear that whenever the pathline x(X,t) of a particle is known, 
its displacement field is also known. Thus, the motion of a continuum can be described either 
by the pathlines equation Eq. (3.1.1) or by its displacement vector field as given by Eq. (3.5.1). 

Example 3.5.1 

The position at time t, of a particle initially at (Xl,X2,X3) is given by 

X I =  Xl+(Xl+X2)t, x2 = X2+(Xl+X2)t, x3 = x3 

Find the displacement field. 
Solution. 

u1= x1-X1=(X1+X2)t, u2=x2-x2 = (Xl+XZ)t, u3=x3-X3=0 

(i) 

(ii) 

Example 5.2 

The deformed configuration of a continuum is given by 
1 
2 X l  = -XI, x2 = x2, x3 = x3 

Find the displacement field. 
Solution. The displacement components are: 

1 1 (ii) 
2 2 u1= -x,-x, = --XI, u2 = X,-X,=O, u3 = x3-x3 = 0 

This displacement field represents a uniaxial contruction (the state of confined compression). 
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3.6 Kinematic Equation For Rigid Body Motion 

(a) Rigid body translation: For this motion, the kinematic equation of motion is given by 
x = x + c  (t) (3.6.1) 

where c(0) = 0 .  We note that the displacement vector, u = x-X = c(t) , is independent of X. 
That is, every material point is displaced in an identical manner, with the same magnitude and 
the same direction at time t. 

(b) Rigid body rotation about a fixed point: For this motion, the kinematic equation of 
motion is given by 

x-b = R(t)(X-b) (3.6.2) 

where R(t) is a proper orthogonal tensor (Le., a rotation tensor, see Sect. 2B.10) with R(0) =I, 
and b is a constant vector. We note that the material point X = b is always at the spatial point 
x =  b so that the rotation is about the fixed point x = b. 

If the rotation is about the origin, then b = 0 and x = R(t)X. 

Example 3.6.1 

Show that for motions given by Eq. (3.6.2) there is no change in distance between any pair 

Solution. Consider two material points X(') and X(2) , we have, from Eq. (3.6.2) 

of material points. 

x(~) -x (~ )  = R(t)(X(')-X(2)) (i) 

That is, the material vector AXEX(')-X(~) changes to Ax=x(')-d2) where 
Ax = R(t)AX. (ii) 

Now, the square of the length of Ax is given by 
AX- AX = R(t)AX R(t)AX (iii) 

The right side of the above equation is, according to the definition of transpose of a tensor 
AX.R(t)RT(t)AX. and for an orthogonal tensor, RRT = I, so that 

AX- AX = AX- AX (iv) 
In other words, the length of AX does not change. 

motion is given by 
(c)GeneraZ rigid body motion: The kinematic equation describing a general rigid body 

x = R(t)(X-b)+c(t) (3.6.3) 

where R(t) is a rotation tensor with R(0) = I  and c(t) is a vector with c(0) = b. 
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Equation (3.6.3) states that the motion is described by a translation c(t), of an arbitrary 
chosen material base point X= b plus a rotation R(t). 

Example 3.6.2 

From Eq. (3.6.3) derive the relation between the velocity of a general material point in the 
rigid body with the angular velocity of the body and the velocity of the arbitrary chosen material 
point. 

Solution. Taking the material derivative of Eq. (3.6.3), we obtain 
v = R(X-b)+b(t) 

(X-b) = R T (x-C) 

Now, from Eq. (3.6.3), we have 

(ii) 

Thus 

v = R R  * T  (x-C) + i ( t )  (iii) 

Since RRT = I, lkT+RRT = 0, so that lkT is antisymmetric which is equivalent to a dual 
(or axial) vector o [see Sect. 2B161, thus, 

v = OX(X-c) + i ( t )  (iv) 

If we measure the position vector r for the general material point from the position at time 
t of the chosen material base point, Le., r = (x-c), then 

v = o x r  + i(t) (v) 

3.7 Infinitesimal Deformations 

There are many important engineering problems which involves structural members or 
machine parts, for which the displacement of every material point is very small (mathemati- 
cally infinitesimal) under design loadings. In this section, we derive the tensor which 
characterizes the deformation of such bodies. 

Consider a body, having a particular configuration at some reference time to , changes to 
another configuration at time t. Referring to Fig. 3.3, a typical material point P undergoes a 
displacement u, so that it arrives at the position 

x = X+u(&t) 6 )  

A neighboring point Q at X+dX arrives at x+dx which is related to X+dX by: 
x+dx = X+dX+u(X+&Q) (ii) 

Subtracting Eq. (i) from Eq. (ii), we obtain 
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[Vu] = 

- - 
au, au, au, 
ax, ax, ax, 
au2 au2 au2 
ax, ax, ax, 
au, au3 a ~ ,  
ax, ax, ax, 

--- 

(3.7.lb) - - - 

--- 

- d 
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Fig. 3.4 

Solution. (a) For the material line OA, X2 = 0 ,  therefore, u l  = u2 = ug = 0 .  That is, the 
line is not displaced. For the material CB,X2 = 1, u1 = k , the line is displaced by k units to 
the right. For the material line OC and AB, u1 = kx;, the lines become parabolic in shape. 
Thus, the deformed shape is given by OAB 'C ' in Fig. 3.4. 
(b) For the material point C , the matrix of the displacement gradient is 

0 u c x 2  0 O U C O  
[Vu] = 1 0 01 = [o 0 0] (ii) 

0 0 0 Xz=l 0 0 0  

Therefore, from Eq. (3.7.la) 
dx(')=d~(l)+ ( V u ) d l ) = a l e l  + O = a l e l  (iii) 

cix(2) =d2)+ ( ~ u ) d ~ ( ~ ) = d ~ ~ e ~ + ~ x ~ ~ e ~  = d ~ ~ ( e 2 + ~ c e ~ )  (iv) 

(c) From Eqs. (iii) and (iv), we have I ~ X ( ~ ) I  = dx,, Id.'2>[ = dx, (1+4k2)~ ,  thus, 

( 4  x<l) (2) 

1 dx(2) I 
~- I d  1 - 1  and I d x = ( 1 + 4 k 2 ) ' ~ )  
I a(1) I 

and 

2k (vi) - dx(l) . dx(2) case= - 
I ~ x ( ~ ) I  I ~ x ( ~ ) I  (1+4k2)" 

If k is very small, we have the case of small deformations and by the binomial theorem, we 
have , keeping only the first power of k, 
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and 
cose=2k 

if y denote the decrease in angle, then 
n cose=cos(-- y )  =siny=2k 2 

That is, for small k, 
y = 2 k  

(vii) 

(viii) 

We can write Eq. (3.7.la), i.e., dx = dX+(Vu)dX as 

dx = FdX (3.7.2) 

where 
F = I+Vu (3.7.3) 

To find the relationship between ds, the length of dx and dS, the length of dX, we take the dot 
product of Eq. (3.7.2) with itself 

dx-dx = FdX-FdX = dX*FTFdX (3.7.4a) 

(3.7.4b) 

If F is an orthogonal tensor, then FTF = I, and 

(a3)2 = (dS)2 
Thus, an orthogonal F corresponds to a rigid body motion (translation and/or rotation). 

Now, from Eq. (3.7.3), 

F ~ F  = ( I + v ~ ~ ( I + v ~ )  = ~ + v u + ( v u ) ~ + ( v U f v U  (3.7.5) 

In this section, we shall consider only cases where the components of the displacement vector 
as well as their partial derivatives are all very small (mathematically, infinitesimal ) so that the 
absolute value of every component of ( V U ) ~ V U  is a small quantity of higher order than those 
of the components of Vu. For such a case, the above equation becomes: 
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2 ax, ax, 

2 ax, ax, 
- 1 K a U 2  -+- 

FTF = I+Vu+(Vu)* I + 2E (3.7.6) 

-+- ax, ax, 
'au, aU3* 

ax, ax, -+- 

where 
1 T (3.7.7) E = - [(Vu) +Vu ] = symmetric part of Vu 2 

From Eq. (3.7.4b) and (3.7.6), it is clear that the tensor E characterizes the changes of lengths 
in the continuum undergoing small deformations. This tensor E is known as the infinitesimal 
strain tensor. 

Consider two material elements a(') and d2). Due to motion, they become 
dx(') and dx(,) at timet with dx@) = Fa(,) and dx(,) = Fcd2).  Taking the dot product of 
dx(l) and dd2), we obtain 

dx(l) . dx(2) = . F*F&(~) (3.7.8) 

Thus, using Eq. (3.7.6), we have the important equation 
dx(l).dx(2) = .fi(2)+,&1).&#&2) (3.7.9) 

This equation will be used in the next section to establish the meanings of the components of 
the infinitesimal strain tensor E. 

The components of the infinitesimal strain tensor E can be obtained easily from the 
components of the gradient of u given in Chapter 2. We have 

(a) In rectangular coordinates: 

'["'+%] 2 ax, ax, 
' a ~ ,  ' 

8x2 

2 ax, ax, 

- -[-+-I 1 au2 au3 

(3.7. loa) 

(3.7.10b) 

(B) In cylindrical coordinates: 
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[El = 

(c) In spherical coordnates: 

[El = 

(3.7.11) 

(3.7.12) 

3.8 Geometrical Meaning of the Components of the Infinitesimal Strain Tensor 

(a)Diugonal ekments of E 

Consider the single material element a(’) = = dX = (dS)n , where n is a unit vector 
and dS is the length of dx. Let dr denote the deformed length of dx”), i.e., ds = Id.”) I. 
Then, Eq. (3.7.9) gives 

( d ~ ) ~ - ( d S ) ~  = 2(~lS)~n*En 

Now, for small deformation ( u ! ~ ) ~ - ( d S ) ~  = (ds+dS)(ds-dS) = ZS(dr-dS) .  Thus 

-- - n.En = Erin (no sum on n )  ds -dS 
dS 

(3.8.1) 

This equation states that the unit elongation (i.e., the increase in length per unit original 
length ) for the element which was in the direction n, is given by n.En. In particular, if the 
element was in the el direction in the reference state, then n = el, and Ell = el-Eel so that 

Ell is the unit elongation for an element originally in the xl-direction. Similarly, 

E22 is the unit elongation for an element originally in thex2-direction and 

E33 is the unit elongation for an element originally in the xg-direction. 
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These components (the diagonal elements of the tensor E ) are also known as the normal 
strains. 

(b)i?ze ofldiagonal elements: 

Let = dSlm and = dSp,  where m and n are unit vectors perpendicular to 
each other. Then Eq. (3.7.9) gives 

(dsl)(ds2)cosO = 2(dSl)(dS2)m-En 

where 0 is the angle between dx(') and dd2). If we let 8 = (j?h)-y, then y will measure the 
small decrease in angle between and 

2 

known as the shear strain. Since 
7.c cos(--y) = siny 

and for small strain 

4 ds2 siny = y, -=1, --= 1 
dS1 dS2 

therefore, 
y = 2m.En (3.8.2) 

If the elements were in the direction of el and e2, then m.En = E12 so that according to 
Eq. (3.8.2): 

2E12 gives the decrease in angle between two elements initially in the x1 and x;! directions. 
Similarly, 

2E13 gives the decrease in angle between two elements initially in the x1 and x3 directions, 
and 

2EB gives the decrease in angle between two elements initially in thex2 and x3 directions. 

Example 3.8.1 

Given the displacement components 
2 4 u1= kX2 and u2 = u3 = 0, k = 10- 

(a) Obtain the infinitesimal strain tensor E. 
(b)Using the strain tensor E, find the unit elongation for the material elements 

= &2e2, which were at the point C(O,l,O) of Fig. 3.4 (which is 
reproduced here for convenience). Also, find the decrease in angle between these two 
elements. 
(c) Compare the results with those of Example 3.7.1. 

= a l e l  and 

Solution. (a) We have 
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0 ucx2 0 
[Vu] = 1 0 01 

0 0 0  
(ii) 

Therefore 

(iii) 
kx2 0 

[E] =   VU]^ = b 2  : :] 

Fig. 3.4 (repeated) 

(b) At the point C , X2= 1, therefore 

[E] = E g !] (iv) 

For the element a(') = dXlel, the unit elongation is Ell, which is zero. For the element 
a(2] = dX2e2, the unit elongation is E22 which is also zero. The decrease in angle between 
these elements is given by 2E12, which is equal to 2k, Le., 2 X  lO-4  radians. 
(c) In Example 3.7.1, we found that 

~dx(l)~-~a(l)~ 

I a(') I 
I d  x(2) I - la(2)1 = (1+4k2)v2-1 = 1+22-1  = 2 2 ( = 0 )  (v) = 0, 

and siny = 2k=2x l O - 4  so that y = 2x lO-4. 

J a(2) J 

We see that the results of this example is accurate up to the order of k. 



102 Kinematics of a Continuum 

[E]=k 

Example 3.8.2 

Given the displacement field 

( 9  2 2 2  u1= k (Xl+X2) ,  u2 = k(XI-Xz), ug = 0 ; k=10-4 

(a)Find the unit elongation and the change of angle for the two material elements 
= &le1 and = &2e2 that emanate from a particle designated by X = e1-e~ .  

(b)Find the deformed position of these two elements 
Solution. (a) We evaluate [Vu] at (Xl, X2, X,) = (1, - 1 , O )  as 

and 

0 2 0 (iii) 
2 0 ° 1  0 0 0  

2 -2 0 
[Vu] = k k  

2 01 0 0 0  
(ii) 

(b) From Eq. (3.7.la) 

[dx‘l’] = [dx‘l’] + [VU][dx(1)] = 

and similarly 

[dd2’] = [a(2)] + [Vu] [a‘2’] = &2 (v) 

The deformed position of these elements is sketched in Fig. 3.5. Note from the diagram that 
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Fig. 3.5 

(vi) 2k =1 --- 
a 1 ( 1  + k) - 1 + kL-% a = tana = 

and 

/j = tan@ = - =2 -2k - (vii) 
a 2  

Thus, as previously obtained, there is no change of angle between a(1] and d2). 

Example 3.8.3 

A unit cube, with edges parallel to the coordinates axes, is given a displacement field 

u1= Mi, ~2 = ~3 = 0, k = 10- 4 (i) 

Find the increase in length of the diagonalAB (see Fig. 3.6) (a) by using the infinitesimal strain 
tensor E and (b) by geometry 

Solution. (a) The strain tensor is easily obtained to be 
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k O O  

[E1 = b ; ;] 
Since the diagonal AB was originally in the direction n = -(el+e2), its unit elongation is 

given by 

(ii) 

\Iz 
2 

E,, = n-En = [dZ/2,\12/2,0] 0 0 0 dZ/2 = 5 (no sum onn) (iii) r : :][TI k 

SinceAB = a, 
AAB = (!)a (iv) 

(b) Geometrically, 

AB'-AB = [1+(1+k)2~*-\12 

AAB = dZ[(1+k+k2/2)"-1] (v) 

or, 

To take advantage of the smallness of k, we expand the first term in the right hand side of 
Eq. (v) as 

1 k2 k ( l + k + y  k2) = 1+- 2 (  k+-  2 )  +....= 1+- 2 (vi) 

Therefore, in agreement with Part (a), Eq. (iv), 

AAB = o(;) (vii) 

Fig3.6 
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Eli 4 2 1  + lE11 E131 + 

E21 E22 E31 E33 

3.9 Principal Strain 

Since the strain tensor E is symmetric, therefore, (see Section 2B.18) there exists at least 
three mutually perpendicular directions n1,n2,n3 with respect to which the matrix of E is 
diagonal. That is 

E22 Ea1 
E32 E33 

(3.9.1) 

Geometrically, this means that infinitesimal line elements in the directions of nl,n2,n3 remain 
mutually perpendicular after deformation. These directions are known as the principal 
directions of strain. The unit elongation along the principal direction (i.e., E1&2&3) are the 
eigenvalues of E , or principal strains, they include the maximum and the minimum normal 
strains among all directions emanating from the particle. For a given E, the principal strains 
are to be found from the characteristic equation of E, Le., 

n3-IlI.2+I$-13 = 0 (3.9.2) 

where 

I2 = 

(3.9.3a) 

(3.9.3b) 

(3.9.3c) 

The coefficients I&, and 13 are called the principal scalar invariants of the strain tensor. 

3.1 0 Dilatation 

The first scalar invariant of the infinitesimal strain tensor has a simple geometric meaning. 
For a specific deformation, consider the three material lines that emanate from a single point 
P and are in the principal directions. These lines define a rectangular parallelepiped whose 
sides have been elongated from the initial dimension 

dS1,dS2 and dS3 

to 
dSI(l+El), dS2(1+E2) and dS3(l+E3) 

where E 4 2  and E3 are the principal strains. Hence the change A(dV) in this material volume 
dVis 

A(dl/) = (ds1) (ds2>(ds3> ( 1 +El 1 +E21 ( 1 +E3) - (dsi) (dS2) (dS3) 
= (dV)(E1+E2+E3) + higher order terms in the Eis. 
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Thus, for small deformation 

e = - -  A(dV) - E1+E2+E3 = Eli+E22+E33 
dV 

This unit volume change is known as dilatation. Note also that 

In cylindrical coordinates, 
au, laue U ,  au, 

e = -+-+-+- 
ar r d e  r az 

In spherical coordinates, 

3.1 1 The Infinitesimal Rotation Tensor 

Equation (3.7.1), i.e., dx = dX + (Vu)&, can be written 
dx = dX+(E+Q)dX 

(3.10.1) 

(3.10.2a) 

(3.10.2b) 

(3.10.2~) 

(3.1 1.1) 

where Q , the antisymmetric part of Vu, is known as the infinitesimal rotation tensor. We 
see that the change of direction for dX in general comes from two sources, the infinitesimal 
deformation tensor E and the infinitesimal rotation tensor Q. However, for any dX which is 
in the direction of an eigenvector of E, there is no change of direction due to E, only that due 
to 9. Therefore, the tensor Q represents the infinitesimal rotation of the triad of the 
eigenvectors of E. It can be described by a vector f'l in the sense that 

e X d X = P d X  

where (see Section 2B.16) 

P = ~32e1+ ~13e2+ ~~21e-3 

(3.11.2) 

(3.1 1.3) 

Thus, 5232,5213,5221 are the infinitesimal angles of rotation about el, e2, and eg-axes, of the 
triad of material elements which are in the principal direction of E. 

3.12 Time Rate of Change of a Material Element 

Let us consider a material element dx emanating from a material point X located at x at 
timet. We wish to compute (D/Dt)dx, the rate of change of length and direction of the material 
element dx . From x = x(X,t), we have 
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- - 
avl av, av, 
ax, ax2 ax3 

[VV] = - - - 
ax, ax2 ax3 
av3 aV3 aV3 

ax, ax2 ax3 

--- 

av2 av2 av2 

--- 

- - 

Taking the material derivative of Eq. (i), we obtain 

(3.12.5) 

(&)dx= (&)x(X+dX,t)-(&)x(Xf) 

Now, 

(ii) 

(3.12.1) 
I 

where <Kt) and v(x,t) are the material and the spatial description of the velocity of the 
particle X , therefore Eq. (ii) becomes 

- (iii) (&) dx = .?X+dX,t)-.?X,t) = v(x+dx,t)-v(x,t) 
- 

Thus, from the definition (see Section 2C3.1) of the gradient of a vector function, we have 

(E) dx = (Vxv/\>dx 

and 
- (E) dx = (Vxv)dx 

(3.12.2) 

(3.12.3) 

In Eq. (3.12.2) the subscript X in(Vx$ emphasizes that (Vx$ is the gradient I of the material 
description of the velocity field v and in Eq. (3.12.3) the subscript x in (Vxv) emphasizes that 
(V& is the gradient of the spatial description of v. 

In the following, the spatial description of the velosity function will be used exclusively so 
that the notation (Vv) wiZZ be understood to mean (Vxv). Thus we write Eq. (3.12.3) simply as 

(& ) dx = (Vv)dx (3.12.4) 
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3.13 The Rate of Deformation Tensor 

part as follows: 
The velocity gradient (Vv) can be decomposed into a symmetric part and an antisymmetric 

(3.13.1) (Vv) = D + W 

where D is the symmetric part, i.e., 
1 
2 D = -[(VV)+(VV)~] 

and W is the antisymmetric part, i.e., 

w = z[(Vv)-(Vv) 1 T ] 

(3.13.2) 

(3.13.3) 

The symmetric tensor D is known as the rate of deformation tensor and the antisymmetric 
tensor W is known as the spin tensor. The reason for these names will be apparent soon. 

With respect to rectangular Cartesian coordinates, the components of D and W are given 
by: 

[Dl = 

[wl= 

av, 

- -+- 
2 ax, ax, ax, 

(3.13.4) 

(3.13.5) 

With respect to cylindrical and spherical coordinates the matrices take the form given in 

We now show that the rate of change of length of dx is described by the tensor D whereas 

Let dx = clsn , where n is a unit vector, then 

Eq. (3.7.11) and Eq. (3.7.12). 

the rate of rotation of dx is described by the tensor W. 

dx-dx = ( 0  

Taking the material derivatives of the above equation gives 
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D D 
2dX*-(dx) = %-(&j) Dt Dt 

(ii) 

Now, from Eq. (3.12.4) and (3.13.1) 
D (iii) 
Dt dx*-(dx) = dx-(Vv)dx = dx-Ddx + dx-Wdx 

and by the definition of transpose of a tensor and the fact that W is an antisymmetric tensor 
(Le., W = -W ),we have T 

dx. Wdx = dx. WTdx = -dx- Wdx (iv) 

Thus, 
dx-Wdx = 0 

Therefore, 

Equation (ii) then gives 

&jF = dx.Ddx 

With dx = drsn , Eq. (3.13.6a) can also be written: 

( no sum on n ) 

(3.13.6a) 

(3.13.6b) 

Eq. (3.13.6b) states that for a material element in the direction of n, its rate of extension 
(i.e., rate of change of length per unit length ) is given by Dnn(no sum on n). The rate of 
extension is also known as stretching. In particular 

Dll  = rate of extension for an element which is in the el direction 

0 2 2  = rate of extension for an element which is in the e2 direction and 

D33 =rate of extension for an element which is in the e3 direction 

We note that since vdt gives the infinitesimal displacement undergone by a particle during the 
time interval dt , the interpretation just given can be inferred from those for the infinitesimal 
strain components. Thus, we obviously will have the following results: [see also Prob. 3.45(b)]: 

n 2 Dl2 = rate of decrease of angle (from -) of two elements in el and e2 directions 2 

2 D13 = rate of decrease of angle (from *) of two elements in el and e3 directions and 
2 
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n 
2 D u  = rate of decrease of angle (from -) of two elements in e2 and e3 directions. 2 

These rates of decrease of angle are also known as the rates of shear, or shearings. 

of volume per unit volume (see also Prob. 3.46). That is, 
Also, the first scalar invariant of the rate of deformation tensor D gives the rate of change 

Or, in terms of the velocity components, we have 

(3.13.7a) 

(3.13.7b) 

Since D is symmetric, we also have the result that there always exists three mutually 
perpendicular directions (eigenvectors of D) along which the stretchings (eigenvalues of D) 
include a maximum and a minimum value among all differential elements extending from a 
material point. 

Example 3.13.1 

Given the velocity field: 

v1=  ku;! v2 = "3 = 0 

(a) Find the rate of deformation and spin tensor. 
(b) Determine the rate of extension of the material elements: 

ds dx@) = (&)el, dd2) = (dsz)e2, and dx = 73-(e1+2e2) 

(c) Find the maximum and minimum rates of extension. 
Solution. (a) The matrix of the velocity gradient is 

so that 

(ii) 

(iii) 
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and 

(b) The material element d#is currently in the el-direction and therefore its rate of extension 
is equal to Dll = 0. Similarly, the rate of extension of dJ2) is equal to 0 2 2  = 0. For the 

element dx= (&)n, where n = 

(c) From the characteristic equation 

ID-AI1 = -A(,12-k2/4) = 0 (vii) 

we determine the eigenvalues of the tensor D as A = 0, ? k/2, therefore, k/2 is the maximum 

and -k/2 is the minimum rate of extension. The eigenvectors n1 = - (el+e2) and (3 
(e1-e2) give the directions of the elements having the maximum and the minimum 

3.14 The Spin Tensor and the Angular Velocity Vector 

a vector o in the sense that for any vector a 
In section 2B.16 of Chapter 2, it was shown that an antisymmetric tensor W is equivalent to 

Wa = o x a  (3.14.1) 

The vector o is called the dual vector or axial vector of the tensor W and is related to the three 
nonzero components of W by the relation: 

= -(W23el+W31e2+W12e3) (3.14.2) 

Now, since the spin tensor W is an antisymmetric tensor (by definition, the antisymmetric 

Wdx = oxdx (3.14.3) 

part of Vv), therefore 
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and 
(3.14.4) -- Ddx - (Vv)dx = (D+W)dx = Ddx+oxdx 

Dt 

We have already seen in the previous section that W does not contribute to the rate of change 
of length of the material vector dx . Thus, Eq. (3.14.3) shows that its effect on dx is simply to 
rotate it (without changing its length) with an angular velocity o. 

It should be noted however, that the rate of deformation tensor D also contributes to the 
rate of change in direction of dxas well so that in general, most material vectors dx rotate with 
an angular velocity different from o (while changing their lengths). Indeed, it can be proven 
that in general, only the three material vectors which are in the principal direction of D do 
rotate with the angular velocity o, (while changing their length). (see Prob. 3.47) 

We also note that in fluid mechanics literature, 2W is called the vorticity tensor. 

3.15 Equation of Conservation of Mass 

densityp may change, but its total masspdVwil1 remain unchanged. That is, 
If we follow an infinitesimal volume of material through its motion, its volume dV and 

D 
p l / )  = 0 

i.e., 

Using Eq. (3.13.7), we obtain 

Or, in invariant form, 

p diw+@ = 0 Dt 

where in spatial description, 

DP aP - = -+v.vp 
Dt at 

(3.15.1) 

(3.15.2a) 

(3.15.2b) 

(3.15.3) 

Equation (3.15.2) is the equation of conservation of mass, also known as the equation of 
continuity. 

In Cartesian coordinates, Eq. (3.15.2b) reads: 
(3.15.4) 
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In cylindrical coordinates, it reads: 

(3.15.5) 

In spherical coordinates it reads: 

For an incompressible material, the material derivative of the density is zero, and the mass 
conservation of equation reduces to simply: 

diw = 0 

or, in Cartesian coordinates 
av, av2 av3 
ax, ax2 ax3 
-+-+- = 0. 

in cylindrical coordinates 
av, lave  V, av, 
ar r r az 
-+-+-+- = 0. 

and in spherical coordinates 

av, lave 2v, 1 av$ vecote -+-+-+ +- = 0. ar r d e  r rs inew r 

Example 3.15.1 

For the velocity field of Example 3.4.2, 

vi = (l+t> 
find the density of a material particle as a function of time. 

Solution. From the mass conservation equation 

(3.15.7) 

(3.15.7a) 

(3.15.7b) 

(3.15.7~) 

Thus, 
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from which we obtain 

Po 
P = -  

(1+t13 
(iii) 

3.1 6 Compatibility Conditions for Infinitesimal Strain Components 

When any three displacement functions u1, u2, and u3 are given, one can always determine 

the six strain components in any region where the partial derivatives - exist. On the other 

hand, when the six strain components (El1,,!?22,,!?33,,!?12,,!?13,,!?2-3) are arbitrarily prescribed in 
some region, in general, there may not exist three displacement functions (u, ,u~,u~),  satisfying 
the six equations 

aui 
axi 

au1 -- ax, - Ell 

(3.16.1) 

(3.16.2) 

au3 (3.16.3) 
- = E33 
ax3 

For example, if we let 

E11 = X:, E22 = E33 E12 = E13 = E 3  = 0 

au1 au2 
ax1 8x2 

then, from Eq. (3.16.1) - = X$ and from Eq. (3.16.2), - = 0, so that 

(3.16.4) 

(3.16.5) 

(3.16.6) 

(ii) 
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(iii) 

wheref and g are arbitrary integration functions. Now, since El, = 0, we must have, from 
Eq. (3.16.4) 

au, aU2  

ax, ax, 
-+- = 0 

Using Eqs. (ii) and (iii), we get from Eq. (iv) 

Since the second or third term cannot have terms of the form X,X,, the above equation can 
never be satisfied. In other words, there is no displacement field corresponding to this given 
E& That is, the given six strain components are not compatible with the three displacement- 
strain equations. 

We now state the following theorem: If Eij(X,,X2,X3) are continuous functions having 
continuous second partial derivatives in a simply connected region, then the necessary and 
sufficient conditions for the existence of single-valued continuous solutions ~1,242 and u3 of 
the six equation Eq. (3.16.1) to Eq. (3.16.6) are 

a2E,, a2E,, a2E,, 
+-= 2- ax; ax: axlax2 

a2E,, d2E33 a2ED +-=2- ax: ax; ax2ax3 

a 2 ~ 1 1  a -a~z aE31 ~ 2 ]  +-+- -=+ ax2ax3 ax, ax, ax, ax3 

a 2 ~ 3 3  a - a ~ , ,  aE23 a%,] +-+- --=+ axlax, ax3 ax3 ax, ax, 

(3.16.7) 

(3.16.8) 

(3.16.9) 

(3.16.10) 

(3.16.1 1) 

(3.16.12) 
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These six equations are known as the equations of compatibility (or integrability condi- 

That these conditions are necessary can be easily proved as follows: 
tions). 

From 

-- au2 "l - Ell and - = E22 
ax1 ax2 

we get 

a2Ell a3u1 a 2 ~ 2 2  a3u2 

ax; ax;axl ax: ax:ax2 
and - = - - -- (ii) 

Now, since the left-hand sides of the above equations are, by postulate, continuous, therefore, 
the right-hand sides are continuous, and so the order of the differentiation is immaterial, so 
that 

Thus, from Eqs. (iii) and Eq. (3.16.4) 

(iii) 

The other five conditions can be similarly established. We omit the proof that the condi- 
tions are also sufficient (under the conditions stated in the theorem). In Example 3.16.3 below, 
we shall give an instance where the conditions are not sufficient for a region which is not 
simply-connected. (A region of space is said to be simply-connected if every closed curve drawn 
in the region can be shrunk to a point, by continuous deformation, without passing out of the 
boundaries of the region. For example, the solid prismatical bar represented in Fig. 3.7 is 
simply-connected whereas, the prismatical tube represented in Fig. 3.8 is not simply-con- 
nected). 

It is worth noting the following two special cases of strain components where the com- 
patibility conditions need not be considered because they are obviously satisfied: 
(1)The strain components are obtained from given displacement components. 
(2)The strain components are linear functions of coordinates. 

Example 3.16.1 

Will the strain components obtained from the displacements 
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be compatible? 

exists!) 
Solution. Yes. There is no need to check, because the displacement u is given (and therefore 

Does the following strain field: 

[El = 

represent a compatible strain field? 

Example 3.16.2 

Solution. Since each term of the compatibility equations involves second derivatives of the 
strain components with respect to the coordinates, the above strain tensor with each com- 
ponent a linear function ofX1. X2. X3 will obviously satisfy them. The given strain components 
are obviously continuous functions having continuous second derivatives (in fact continuous 
derivatives of all orders) in any bounded region. Thus, the existence of single valued con- 
tinuous displacement field in any bounded simply-connected region is ensured by the theorem 
stated above. In fact, it can be easily verified that 

u1= Xl+XZ, 2 2  u2 = 2XlX2+X1, 2 u3 = x3 2 (ii) 

(to which of course, can be added any rigid body displacements) which is a single-valued 
continuous displacement field in any bounded region, including multiply-connected region. 

Example 16.3 

For the following strain field 

does there exist single-valued continuous displacement fields for (a) the cylindrical body with 
the normal cross-section shown in Fig. 3.7 and (b) for the body with the normal cross-section 
shown in Fig. 3.8 and with the origin of the axis inside the hole of the cross-section. 

Solution. Out of the six compatibility conditions, only the first one needs to be checked, the 
others are automatically satisfied. Now, 

(ii) 
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aE12 - (x;+X;)-x1(2&) - x;-x: 
ax1 (x;+xy <x:+xy 

2- - - 

and 

-- - 0  d2E22 

ax: 
Thus, the equation 

(iii) 

is satisfied, and the existence of solution is assured. In fact it can be easily verified that for the 
given E+ 

x2 ( 4  
Xl  

u1 = arctan-, u2 = 0, u3 = 0 

Fig. 3.7 Fig. 3.8 

(to which, of course, any rigid body displacement field can be added). Now arctan X2/X1 is a 
multiple-valued function, having infinitely many values corresponding to a point (Xl,X2,X3). 
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For example, for the point (Xi,X2,X3) = ( l,O,O), arctan X2 /X 1 = 0, &, k, etc. It can be 
made a single-valued function by the restriction O,iarctaIX2/X1<8,+2n for any 8,. For a 
simply-connected region as that shown in Fig. 3.7, a 8, can be chosen so that such a restriction 
makes Eq. (vi) a single-valued continuous displacement for the region. But for the body shown 
in Fig. 3.8, the function ul = arctanX;?/Xl, under the same restriction is discontinuous along 
the line 8 = 8, in the body ( in fact, u1 jumps by the value of & in crossing the line). Thus, 
for this so-called doubly-connected region, there does not exist single-valued continuous ul 
corresponding to the given Eq, even though the compatibility equations are satisfied. 

3.1 7 Compatibility Conditions For Rate Of Deformation 

When any three velocity functions v1,v2, and v3 are given, one can always determine the six 
rate of deformation components in any region where the partial derivatives avi/axj exist. On 
the other hand, when the six components Dq are arbitrarily prescribed in some region, in 
general, there does not exist any velocity field v i ,  satisfymg the six equations 

(3.17.1) 

The compatibility conditions for the rate of deformation components are simiIar to those 
of the infinitesimal strain components [Eqs. (3.16.7-12)], Le., 

(3.17.2a) 

(3.17.2b) 

(3.17.2~) 

etc. It should be emphasized that if one deals directly with differentiable velocity functions 
~ i ( ~ 1 ~ 2 ~ 3 , t ) ,  (as is often the case in fluid mechanics), the question of compatibility does not 
arise. 
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[F] = 

3.18 Deformation Gradient 

We recall that the general motion of a continuum is described by 
x=x(x, t) (3.18.1) 

where x is the spatial position at time t, of a material particle with a material coordinate X 
A material element dX at the reference configuration is transformed, through motion, into a 
material element dx at time t. The relation between dX and dx is given by 

dx = x(x+ax, t)-x(X, t) = (V x)dX (3.18.2) 

axl axl axl 
ax, ax, ax, 
ax, ax, ax2 
ax, ax, ax, 
ax, ax3 ax, 
ax, ax, ax, 

- - -  

- - - 

- - -  
- - 

i.e., 
dx = FdX 

where the tensor 
F =  Vx 

(3.18.3) 

(3.18.4) 

is called the deformation gradient at X. The notation Vx is an abbreviation for the notation 
V g  where the subscript X indicates that the gradient is with respect to X for the function 
x(X, t). We note that with x = X + u , where u is the displacement vector, 

F = I + V u  (3.18.5) 

Example 3.18.1 

Given the following motion: 

X I =  XI+* t, x, = x,-x,t-x, t, x3 = x,+x,t-x, t (0  

where both xi and Xi are rectangular Cartesian coordinates. Find the deformation gradient 
a t t  = Oandatt = 1. 

Solution. For rectangular Cartesian coordinates, - - 

Thus, from Eq. (i) and (ii), 

IF1 = 

1+2X,t 0 0 
0 l - t  -t 
0 t l-t 

(ii) 

(iii) 
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From Eq. (iii) we have at t = 0, F = I, and dx = dx. 
At t = 1, for all elements 

1+2xl 0 
[F] = 0 '11 

1 0  

3.19 Local Rigid Body Displacements 

In Section 3.6, we discussed the case where the entire body undergoes rigid body displace- 
ments from the configuration at a reference time to to that at a particular time t. For a body 
in a general motion, however, it is possible that the body as a whole undergoes deformations 
while some (infinitesimally) small volumes of material inside the body undergo rigid body 
displacements. For example, for the motion given in the last example, at t = 1 and XI = 0, 

[F]= 0 0-1 ( 9  [: : 3 
It is easily to verify that the above F is a rotation tensor R (Le., FFT = I and det F = + 1). 
Thus, all infinitesimal material volumes with material coordinates (O,X2&3) undergo a rigid 
body displacement from the reference position to the position at t = 1. 

3.20 Finite Deformation 

Deformations at a material point X of a body are characterized by changes of distances 
between any pair of material points within the small neighborhood of X. Since, through 
motion, a material element dx becomes dx = Fdx, whatever deformation there may be at X, 
is embodied in the deformation gradient F. We have already seen that if F is a proper 
orthogonal tensor, then there is no deformation at X. In the following, we first consider the 
case where the deformation gradient F is a symmetric tensor before going to more general 
cases. 

We shall use the notation U for a deformation gradient F that is symmetric. Thus, for a 
symmetric deformation gradient, we write 

dx = udx (3.20.1) 

In this case, the material within a small neighborhood of X is said to be in a state of pure 
stretch deformation (from the reference configuration). Of course, Eq. (3.20.1) includes the 
special case where the motion is homogeneous, i.e., x = UX, (U = constant tensor) in which 
case the entire body is in a state of pure stretch. 
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Since U is real and symmetric, there exists three mutually perpendicular directions, with 
respect to which, the matrix of U is diagonal. Thus, if el,e;?,e3 are these principal directions, 
with eigenvalues 111, &,113, then, for dl) = dXle1, Eq. (3.20.1) gives dx(l) = rlldXle1, i.e., 

d#) = Al(jx(l) (3.20.2a) 

Similarly, for = dX2q and = aX3e3, we have 

dX@) = (3.20.2b) 

dd3) = A d 3 )  (3.20.2~) 

We see that along each of these three directions, the deformed element is in the same direction 
as the undeformed element. If the eigenvalues are distinct, these will be the only elements 
which do not change their directions. The ratio of the deformed length to the original length 
is called the stretch, i.e., 

ldxl 
ldxl Stretch (3.20.3) 

Thus, the eigenvalues of U are the principal stretches; they include the maximum and the 
minimum stretches. 

Example 3.20.1 

Given that at time t , 
X i  = 3x1 
x2 = 4x* 

x3 = x3 

Referring to Fig. 3.9, find the stretches for the following material line (a)OP (b)OQ and (c)OB. 

[F] = 1 i !] 
which is a symmetric matrix and is independent of Xi (Le., the same for all material points). 
Thus, the given deformation is a homogeneous pure stretch deformation. The eigenvectors 
are obviously (see Sect. 2B.17, Example 2B17.2) el,e2,e3 with corresponding eigenvalues, 3,4 
and 1. Thus: 

(a)At the deformed state, the line OP triples its original length and remains parallel to the 
x1 -axis, Le., stretch ~ 1 1 1  = 3. 

Solution. The matrix of the deformation gradient for this given motion is 
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(b)At the deformed state, the line OQ quadruple its original length and remains parallel to 
thex2- axis; stretch =12 = 4. 

(c)The line OB has an original length of 1.414. In the deformed state, it has a length of 5, 
thus, the stretch is 5/1.414. Originally, the line OB makes an angle of 45O with thexl -axis; in 
the deformed state, it makes an angle of tan-l(4/3). In other words, the material line OB 
changes its direction from OB to OB (see Fig. 3.9). 

Fig. 3.9 

Example 3.20.2 

For a material sphere with center at X and described by ldXl = E, under a symmetric 

Solution. Let el, e% e3 be the principal directions for U, then with respect (el, e2, e3 ) a 
deformation gradient U, what does the sphere become after the deformation? 

material element dX can be written 

dX = dXlel+dX2e2+dX3e3 (i) 

In the deformed state, this material vector becomes 
dx = dulel+du2e2+du3e3 (ii) 

Since F is diagonal, with diagonal element 11, 12, L3, therefore dx=FdX gives 

&1= Wfl ,  du2 = n s 2 ,  dug = n g 3 ,  (iii) 

thus, the sphere : 

( d ~ l ) ~ + ( d ~ 2 ) ~ + ( d ~ 3 ) ~  = E2 (iv) 
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becomes 

(VI 2 (2)2+(2)2+(q = E  2 

This is the equation of an ellipsoid with its axis parallel to the eigenvectors of U. (see Fig. 3.10). 

Fig. 3.10 

3.21 Polar Decomposition Theorem 

In the previous two sections, we considered two special deformation gradients F a proper 
orthogonal F (denoted by R) describing rigid body displacements and a symmetric F (denoted 
by U ) describing pure stretch deformation tensor. It can be shown that for any real tensor F 
with a nonzero determinant (Le., F-'exists ), one can always decompose it into the product of 
a proper orthogonal tensor and a symmetric tensor. That is 

F = RU (3.21.1) 

Of, 
F = V R  (3.21.2) 

In the above two equations, U andV are positive definite symmetric tensors and R (the same 
in both equations) is a proper orthogonal tensor. Eqs. (3.21.1) and (3.21.2) are known as the 
polar decomposition theorem. The decomposition is unique in that there is only one R, one U 
and one V for the above equations. The proof of this theorem consists of two steps : (1) 
Establishing a procedure which always enables one to obtain a symmetric tensor U and a 
proper orthogonal tensor R (or a symmetric tensor V and a proper orthogonal tensor R) which 
satisfies Eq. (3.21.1) (or, Eq. (3.21.2)) and (2) proving that the U, V and R so obtained are 
unique. The procedures for obtaining the tensors U, V, and R for a given F will be 
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demonstrated in Example 3.22.1 and 3.23.1. The proof of the uniqueness of the decomposi- 
tions will be given in Example 3.22.2. 

For any material element dX at X, the deformation gradient transforms it (Le., dx) into a 
vector dx 

(3.21.3) 

Now, UdX describes a pure stretch deformation (Section 3.20) in which there are three 
mutually perpendicular directions (the eigenvectors of U) along which the material element 
dX stretches (i.e., becomes longer or shorter ) but does not rotate. Figure 3.10 depicts the 
effect of U on a spherical volume (dX( = constant ; the spherical volume at X becomes an 
ellipsoid at x. (See Example 3.20.2 ) The effect of R in R(U dX ) is then simply to rotate this 
ellipsoid through a rigid body rotation.(See Fig. 3.11) 

dx = F dX = RU dX 

Fig. 3.11 

Similarly, the effect of the same deformation gradient can be viewed as a rigid body rotation 
(described R) of the sphere followed by a pure stretch of the sphere resulting in the same 
ellipsoid as described in the last paragraph. 

From the polar decomposition theorem, F = RU = VR, it follows immediately that 

u = R ~ V R  (3.21.4) 

Example 3.21.1 

Show that if the eigenvector of U is n, then the eigenvector for V is Rn: the eigenvalues for 

Solution. Let n be an eigenvector for U with eigenvalue 1, then 
both U and V are the same 
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Un = An. 

so that 
Run = A R n  

Since RU = VR = F, therefore, from Eq. (ii), we have 
V(Rn) = A(Rn)  

Thus, Rn is an eigenvector of V with eigenvalue A. 

3.22 Calculation of the Stretch Tensors From the Deformation Gradient 

From a given F, we have F = R U, thus, 

F ~ F  = (RU)~(RU) = U ~ R ~ R U  = uTu 

u2 = F ~ F  

That is, 

(0 

(ii) 

(iii) 

(3.22.1) 

From which the positive definite symmetric tensor U can be calculated as (See Examples 
below). 

U = (F T F) 1/2 (3.22.2) 

Once U is obtained, R can be obtained from the equation 

R=FU-l 

therefore, [note that U is symmetric], 

( F U - ~ ) ~ F U - ~  = I 

R ~ R  = I 

Thus, from Eq. (3.22.3), 

(3.22.3) 

(ii) 

(iii) 

Eq. (iii) states that the tensor R obtained from Eq. (3.22.3) is indeed an orthogonal tensor. 
The left stretch tensor V can be obtained from 

v = F R ~  = R U R ~  (3.22.4) 
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- 
ax, axl axl 
ax, ax, ax, 
ax, ax, ax, 
ax, ax, ax, 
ax3 ax, ax, 
ax, ax, ax, 

--- 

--- 

--- 

- 

Example 3.22.1 

Given 
x, =x,, x, = -3x3, x, = 2x2 (0 

Find (a) the deformation gradient F, (b) the right stretch tensor U, and (c) the rotation tensor 
R and (d) the left stretch tensor V. 

Solution. (a) 

PI = = 1 H -3 
0 0 1 0  

0 21 [. 0 -3 = 0 - 3  0 0 2  
[U2] = [FIT[F1 = 

Thus, the positive definite tensor U is given by 

[U]= H i] 
;: :] 
0 0  9 

[R]=[F][U-l]= 

[VI=[FI[RIT= 0 0 -3 0 0 1 = 0 3 0 [: : I] [: :1 I] [: I :] 
We can also obtain V from 

mi1 - T D ~ T W T ~ T D ~ T  

(ii) 

(iii) 

,- 1'1 LnJLuJLnJ 

In this example, the calculation of [U ] and [R] are simple because FTF happens to be 
diagonal. If not, one can first diagonalize it to obtain [ U ] and [ U I-' as diagonal matrices 
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with respect to the principal axes of F*F. After that, one then uses the transformation law 
discussed in Chapter 2 to obtain the matrices with respect to the ei basis. (See Example 3.23.1 
below). 

Example 3.22.2 
(a) Show that if F = RIUl = R2U2, then R1= R2 and U1 = U2 

(b) Show that if F = RU = VR’, then R = R ’  

Solution. (a) From R l U l =  R2U2 ,we have (R1UT) = (R2U2)* 

Thus, UlRT = UzRZ, so that UIRT(RIU1) = U2RzR2U2 

In other words, U l  = U; . Since both U1 and U2 are positive definite, therefore 

u1= u2 = u 
and from R1U = RzU, it follows, 

R1= R2 = R 
(b) Since 

thus, 
, - I  

F = RU = R’(R VR!) 
, -I  

Noting that (R VR ’) is symmetric, from the result of part (a), we have 

R = R  

From the decomposition theorem we see that what is responsible for the deformation of a 
volume of material in a continuum in general motion is the stretch tensor, either U (the right 
stretch tensor ) or V ( the left stretch tensor ). Obviously, U2 and V2 also characterize the 
deformation, as are many other tensors related to them. In the following sections, we discuss 
those tensors which have been commonly used to describe finite deformations for a continuum. 

3.23 Right Cauchy-Green Deformation Tensor 

Let 

c = u2 (3.23.1) 
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where U is the right stretch tensor. The tensor C is known as the right Cauchy-Green 
deformation tensor (also known as the Green's deformation tensor). We note that if there is 
no deformation, U = C = I. 

Using Eq. (3.22.1), we have 

c = F ~ F  (3.23.2) 

The components of C have very simple geometric meanings which are described below. 

Consider two material elements dx(') = Fa(')  and dA2) = Fa(*) , we have 

dx(l) . dx(2) = ~ d ~ ( 1 )  . ~ d ~ ( 2 )  = a ( 1 )  . F T F ~ x ( ~ )  (3.23.3) 

i.e., 
dX(l) .dx(2) = . m(2) (3.23.4) 

Thus, if dx = dsn, is the deformed vector of the material element dX = dSe1 then Eq. 
(3.23.4) gives 

= (dS)2el*Cel for = = dSe1 

That is 

for a material element dX = dSe, 
(3.23.5a) 

similarly, 
(3.23.5b) 

a material element dX = dSe2 

2 
C33 = (2) for a material element dX = dSe3 

(3.23.5~) 

By considering two material elements = dSle1 and = dS2e2 which deform 
into dx(l) = dslm and dx@) = dsln where m and n are unit vectors having an angle of /3 
between them, then Eq. (3.23.4) gives 

&l&~coSg = dSldS2el .Ce2 (3.23.6) 

That is 

c12 = - ds2cos(dx(1),dA2)) for = dSlel and = dS2e2 dS1 dS2 (3.23.6a) 

Similarly 
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(3.23.6b) 
C13 = ~ c o s ( d # ) , d ~ ( ~ ) )  A1 A3 for = dSle1 and = dS3e3 

and 

c -  23- dS2dS3 A2 ds3cos(dx’2),dx’3)) for = dS2e2 and = dS3e3 (3.23.6~) 

Example 3.23.1 

Given 
x1=X1+2x2, x2=x2,  x3=x3 

(a) Obtain C 
(b) Obtain the principal values of C and the corresponding principal directions 

(c) Obtain the matrix of U and U - h t h  respect to the principal directions 

(d) Obtain the matrix of U and U-’with respect to the ei basis 

(e) Obtain the matrix of R with respect to the ei basis 

Solution. (a) From Eq. (i), we obtain, 

[F] = [a a 3 
Thus, 

[C] = [FIT[F] = 

The eigenvalues of C and their corresponding eigenvectors are easily found to be 

(ii) 

(iii) 

C1= 5.828, n1 = ( - 2.i13) [el + 2.414e21 = [0.3827e1 + 0.9238e21 

C2= 0.1716, n2 = [ - [el - 0.4142qI = [0.9238e1 - 0.3827e21 (iv) 

C3 = 1 ,  n3 = e3 
(b) The matrix of C with respect to the principal axis of C is 

5.828 0 
[C] = [ 0.10716 !] 



Kinematics of a Continuum 131 

(c) The matrix of U and U-' with respect to the principal axis of C are given by 
m E B 0  2.414 0 

[VIni = [ : !] = [ 8 0.40142 !] 
0.4142 0 0 

[U-'Ini = [ 8 2.40143 y ]  

(d) The matrix of U and U-' with respect to ei axes is given by 

0.3827 0.9238 

= p.7070 2.121 01 
0 0 1  

0.3827 0.9238 0 0.4142 0 
0.9238 -0.3827 01 [ 8 2.y4 

0 0 1  
2.121 -0.7070 

0 1  

? :] 
0 0 1  1 2.121 -0.707 0 

-0.707 0.707 0 = 
0 0 1  

0.3827 0.9238 0 
0.9238 -0.3827 0 

0 0 1  

0.707 0.707 0 
-0.707 0.707 0 

0 0 1  

( 4  

(vii) 

Using the same procedure as that used in the above example, one can obtain that in general, 
for 

[F] = a 3 (3.23.7) 



- - 

1 -  k O  2 

1 0 

0 0 (l+-) k2 112 

2 k -112 k [ R ] = ( l + q )  -- 
2 

4 - - 

Example 3.23.2 

Consider the simple shear deformation given by 

x1 = x, + k x 2 ,  x2 = x2, x3 = x, (0  

(a) What is the stretch for an element which was in the direction of el 

(b) What is the stretch for an element which was in the direction of e2 

(c) What is the stretch for an element which was in the direction of el + e2 

(d) In the deformed configuration, what is the angle between the two elements which were in 
thedirectionsof el and e2 

(3.23.8) 

Fig. 3.12 

Solution. 

[F] = k a !] (ii) 



Kinematics of a Continuum 133 

[C]= k 1 0  0 1 0  = [: :] [: : :] 
(a) for dX = dSle1, h/dS = 1 

(iii) 

(b) for dX = dS2e2, a3 /dS=d 1 + k2 [e.g. OB ' = =OB] 

(c) for dX = (dS/n)(e l+  e2) = dSe1 , 

thus, for this material element 

. -  

k2 = l + k + -  2 0 
. J  

k2 a3 /dS = 1 + k + 7 
(d) For dX = dSle1 and dX = dS2e2 

dS1 dS2 k 
[e.g. C ~ S A O B  = 71 

( l+k ) 
cos(dx(l), dx(2)) = - - c12 = a31 a32 

Example 3.23.3 

Show that (a) the eigenvectors of U and C are the same and (b) an element which was 
in the principal direction n of C becomes, in the deformed state, an element in the direction 
of Rn. 

Solution. (a) Since Un = In, therefore U2n = IUn = 12n 
i.e., 

2 C n = I  n 

Thus, n is also an eigenvector of C with A2 as its eigenvalue. 
(b) If dX = dSn where n is a principal direction of U and C , then UdX = dSUn = dSAn so 
that 

dx = FdX = RUdX = MS(Rn) 
That is, the deformed vector is in the direction of Rn . 
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3.24 Lagrangian Strain Tensor 

Let 
1 E* = -(C-I) 2 

(3.24.1) 

where C is the right Cauchy-Green deformation tensor and I is the identity tensor. The tensor 
E* is known as the Lagrangian Finite Strain tensor. We note that if there is no deformation, 
C = IandE* = 0. 

From Eq. (3.23.4) , we have 

dx(1).dx(2)-dX(1) = dX(1).(C-I)dX(2) 

i.e., 

dx(l) . dx(2) . = 2dX(l) . (3.24.2) 

For a material element dX = dSe1, deforming into dx = h n ,  where n is a unit vector, Eq. 
(3.24.2) gives 

h2-dS2 el.E el = 
2dS2 

Thus, 

for dX = dSel h2-dS2 E;1 = 
US2 

Similarly, 

E22 = h2-ds2 for dX = dSe2 

E33 = h2-ds2 for dX = dSe3 

2dS2 

2dS2 

(3.24.3) 

(3.24.3a) 

(3.24.3b) 

(3.24.3~) 

We note that for infinitesimal deformations, Eq~(3.24.3) reduces to Eq. (3.8.1) 

By considering two material elements = dSlel and d2) = dS2e2, deforming into 
dx(') = dqm and dx(2) = &2n, where m and n are unit vectors, then Eq(3.25.2) gives 

(3.24.4) 

We note that for infinitesimal deformations, Eq. (3.24.4) reduces to Eq. (3.8.2). 
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The meanings for 2E;3 and 2E; can be established in a similar fashion. 

We can also express the components of E * in terms of the displacement components. From 
Eq. (3.24.1), Eq. (3.23.2) and Eq. (3.18.5), we obtain immediately 

E* = -[Vu+(Vu) 1 T 1  ]+-(VU)~(VU) (3.24.5a) 
2 2 

in component form, 
* 1 [ aui a ~ " )  1 au,au, 

11 2 axj axi 2 ax, axj E.. = -  -+d +- 

and in long form, 

(3.24.5 b) 

(3.24.6a) 

Other components can be similarly written down. 

of the infinitesimal deformation tensor. 
We note that for small values of displacement gradients these equations reduce to those 

Example 3.24.1 

For the simple shear deformation 
X l  = x, + k x 2 ,  x2 = x,, x3 = x3 

(a) Compute the Lagrangian Strain tensor [E*] 
(b) Referring to Fig. 3.12, by a simple geometrical consideration, find the deformed length for 
the element OB in Fig. 3.12. 

(c) Compare the results of (b) with E;2 

2E* = C-I that 
Solution. (a) Using the [C] obtained in Example 3.23.2, we easily obtain from the equation 
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- 
k 

k k2 
2 2  

0 0 0  

0 5 0  

_ -  [E*] = 

k2 
2 (c) E;2 = -. Thus 

( A Y ) ~ - ( A S ) ~  - - 
2(AS)2 2 

Thus, As = AS m, this result is the same as that of (b). We note that if k is small then 
As = AS to the first order of k 

Example 3.24.2 

Consider the displacement components corresponding to a uniaxial strain field: 

u1= k x 1 ,  u2 = u3 = 0 (i) 
I \ - .  . _  . .... e... - -8  . . . .̂ . . . ( a )  calculate botn tne mite Laeraneian strain tensor E and the intinitesima~ strain tensnr E 

AY 
AS 

(b) Use the finite strain tensor E;1 and the infinitesimal strain tensor Ell to calculate - for 

the element AX = ASel. 

AY 
As (c) For an element AX = el + e2), calculate -from both the finite strain tensor E* and 

the infinitesimal strain tensor E. 
Solution. (a) 

[Vu] = 

Thus, the infinitesimal strain tensor gives 

[E] = [Vuf = 

0 0 0 = [VUlS 
k o l  0 0 0  

0 0 0 =[Vu] 
0 0 0  *““I 

(ii) 

(iii) 
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and 

k2 
2 

2 2 
-(As) = k + -9 therefore k2 

(b) Based on E;1= k + -, 
2 2(AS)2 

(As)2 = [l + 2k + k2] (AS)2, As = (1 + k )  AS. 

Based on E11 = k, ~ As-As - - k, therefore 
AS 

As = (1 + k ) A S  (vi) 

We see both the finite and the infinitesimal strain tensor components lead to the same answer 
whether k is large or small. 

1 
(c) Let el' = @el + e2) then, 

1 E;; = 5[l,l,O] 

- 
k2 k + -  0 0 2 

(vii) 

k k2 
2 4  As)2-(As)2 = - + -, from which we find As = d 1 + k + k2/2 AS.This result is easily 

confirmed by the geometry in Fig. 3.12 for any value of k. On the other hand, the infinitesimal 

Thus, ( 
2(W2 

strain component 
k O O  1 

0 0 0  0 

Ell ' 1  =5[1,1,0] [o 0 01 [ 11 = 5 

k 
2 

&-AS - from which we find As = (1 + -) AS. Thus, -- - As 2' 
conclude that this result is acceptable only if k is very small. 

unit elongation (Le., change of length per unit length ) is inadequate. 

From Fig 3.12, we can easily 

This example demonstrates clearly that in the case of finite deformations, the concept of 
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3.25 Left Cauchy-Green Deformation Tensor 

Let 

B = V 2  (3.25.1) 

whereV is the left stretch tensor. The tensor B is known as the left Cauchy-Green deformation 
tensor (also known as the Finger deformation tensor). We note that if there is no deforma- 
tion, V = B = I. 

Since F = VR , and R'R = I, it is easily verified that 

B = F F ~  (3.25.2) 

Thus, one can calculate B directly from the deformation gradient F. 
Substituting F = RU in Eq. (3.25.2) ,we obtain the relation between B and C as follows: 

B = RCRT and C = RTBR (3.25.3) 

We also note that if n is an eigenvector of C with eigenvalue A, then Rn is an eigenvector 

The components of B have simple geometric meanings which are described below: 
of B with the same eigenvalue 1. 

Consider a material element dX = dSn, where n = RTel, R being the rotation tensor 
associated with the deformation gradient F. Then from Eq. (3.23.4) , we have 

ds2 = dS2n. Cn = dS2RTel * CRTel = dS2e1 * (CR T T  ) R T el = dS2el - RCRTel (3.25.4) 

That is 

h2 = dS2el.Bel for dX = dS(RTel), (3.25.5) 

That is 
(3.25.5a) 

for a material element dX = dS(RTel) 

similarly, 
2 

B22 = ($) for a material element dX = dS(RTe2) 

T 
B33 = - for a material element dX = dS(R e3) (2)' 

(3.25.5b) 

(3.25.5~) 



Kinematics of a Continuum 139 

By considering two material elements = dS1(RTel) and d2) = dS2(RTe2) which 

deform into dJ1) = h l m  and dd2) = a3211 where m and n are unit vectors having an angle 
ofp between them, then Eq. (3.23.4) gives 

a3&2c0$3 = dS1dS;(RTel) -C(R*e2) = dS1 dS2el .Be2 

That is 

B12 = ___ h2cos(dxl,dx2) for = dS1(RTel) and d2) = dS2(RTe2) 
dSldS2 

Similarly 

B13 = aqig h1 h3cos(d~1,dx3) for dxc') = dSl(RTel) and dxc3) = dS3(RTe3) 

and 
ha3 

Bw = dS2dS3 3cos(dx2,dx3) for = dS2(RTe2) and d3) = dS3(RTe3) 

(3.25.6) 

(3.25.6a) 

(3.25.6b) 

(3.25.6~) 

We can also express the components of B in terms of the displacement components. 
Using Eq. (3.18.5), we have 

B = F F ~  = ( I + V ~ ) ( I + V ~ ~  = ~+[vu+(vu)~~+(vu)(vu)T (3.25.7a) 

and in component form, 

(3.25.n) 

1 
2 We note that for small displacement gradients,-(Bg - dq) reduces to 2 E g  of Eq. (3.7.10a). 

Example 3.25.1 

For the simple shear deformation 

x1 = x, + kx2,  x2 = x2, x3 = x3 

(a) Obtain the left Cauchy-Green deformation tensor. 

(b) Calculate RTel and RTq 



- - 
2 k2 112 k k -112 

(1 + 4)- $1 +TI 0 
2 2 

[RI = --(1 k + -) k -112 (1 + 5 ) -  0 

0 0 1 

2 4  

- - 

Fig. 3.13 

(c) Referring to Fig. 3.13, OE was an element in the direction of RTe2. After deformation, it 
becomes OE ', which obviously has the same length as OE. Thus, from geometry, the stretch 
for this element is unity. This checks with the value of B22 which is also unity. 

(ii) 
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3.26 Eulerian Strain Tensor 

Let 
(3.26.1) 

where B = FFT, then the tensor e* is known as the Eulerian Strain Tensor. We note that if 
there if no deformation, then B-' = I and e* = 0. 

The geometric meaning of the components of e* and B-' are described below: 
From 

dx = FdX 

we have 

dX = F-ldx 

(3.26.2) 

(3.26.3) 

where F-lis the inverse of F. In rectangular Cartesian coordinates, Eq. (3.26.3) reads 

a. = FT1&. (3.26.4) 
1 V I  

Thus, 
axi 
axj 
- (3.26.5) 

where Xi = X i ( ~ 1 ~ 2 ~ 3 , t )  is the inverse function of xi = ~i(X1,X,,X3,t). 

In other words, when rectangular Cartesian coordinates are used for both the reference and 
the current configuration, 

(3.26.6) 
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Thus, if we consider a material element, which at time t is in the direction of 
el ,i.e., dx = &el and which at the reference time is dX = dSn, where n is a unit vector, then 
Eq. (3.26.7) and Eq. (3.26.8) give: 
For dx = &el 

and 

(A2 - dS2) 
dS2 

e;l= 

Similar meanings hold for the other diagonal elements of B-' and e*. 

ing to a(') = dSp and 
(3.26.7) and Eq. (3.26.8) give 

By considering two material elements ddl) = &le1 and dd2) = &2e2 at time t correspond- 
= dS2m at the reference time, n and m are unit vectors, Eq. 

Similar meanings hold for the other off-diagonal elements of B-l and e *. 

We can also express B-l and e*in terms of the displacement components: 
From u = x-X, we can write 

= X-u(x1C93,t) (3.26.9a) 

(3.26.9b) 

where we have used the spatial description of the displacement field because we intend to 
differentiate this equation with respect to the spatial coordinates xi. Thus, 
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(3.26.10a) 

or, 
F-' = I-V,u (3.26.10b) 

Thus , (dropping the subscript x from V, u ) 
B-' = (F - 1  T F -1 = (I-V,U)~(I--V,U) = ~ - ~ v ~ ~ + ~ v , ~ ~ ~ ~ + ~ v , ~ ~ ~ ~ v , ~ ~  (3-26-11) 

and 

In component form, Eq. (3.26.12a) is 

and in long form, 

e;l = au, ax, - '[ 2 [%I2+ ax, [$I2+ [2]] 

(3.26.12a) 

(3.26.12b) 

(3.26.13a) 

The other components can be similarly written down. We note that for infinitesimal defor- 

mation, -=- Eq. (3.26.12) reduces to Eq. (3.7.10a). aUi aUi 

axj axj' 

Example 3.26.1 

For the simple shear deformation 

x ,  = x, + kx,, x, = x,, x3 = x3 

(a) Find B-' and e*. 

(b) Use the geometry in Fig. 3.13 to discuss the meaning of ell and e22. 

Solution. (a) 
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[e*] = -[I-B-l] 1 = 
2 

L 

- l T  -1 [B-l] = [F 3 [F ] = 

- 
k 0 - 0  2 

- k - -k2 
2 2  

0 0 1  
- 

(ii) 

(iii) 

1 0  0 1 

(b) Since e;l= 0, an element which is in el direction in the deformed state (such as B 'C ') 

had the same length in the undeformed state (BC in Fig. 3.13). Also since e;2 = --, an 

element which is in the e2 direction in the deformed state (such as AH ' ) had a length AH 
given by the equation 

k2 
2 

(AH ')2-(AH)2 = 2(AH r )2 (v) 

from which one obtains 

AH = (AH ')m 
This result checks with the geometry in Fig. 3.13. 

3.27 Compatibility Conditions for Components of Finite Deformation Tensor 

Whenever the three pathline equations (or equivalently, the three displacement functions) 
are given, one can always obtain the six components of e* or C or B or E* etc. by differentiation. 
On the other hand, if the six components of e* etc. are given, there exist three displacement 
functions corresponding to the given strain components only when compatibility conditions 
for the components are satisfied. This is because in general, it is not possible to solve for three 
unknown functions from six differential equations. The compatibility conditions can in 
principle be obtained by the elimination of the three displacement components ui from the six 
equations relating strain components with the displacement components such as 
Eqs. (3.26.12b) by partial differentiation and elimination as was done for the infinitesimal 
components (Section 3.16) The procedure is very lengthy and will be omitted. Only the 
conditions for ed* are given below with the super * dropped for convenience: 
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a2eh a 2 e,, a2eh a2eh 
+----- 

ax, ax, ax, ax,, ax, ax, ax, ax, 

] = O  

(3.27.1) 

We note that for infinitesimal deformation, Eq. (3.27.1) reduces to 

- 0  (3.27.2) 2 2 a elm a 2 e h  a2eh a e k n  +-- 
ax, ax, ax, ax, ax, ax, ax, ax, 

which are the same as those given in Sect. 3.16. 

3.28 Change of Area due to Deformation 

Consider two material elements 
rectangular area formed by dX(l) and 

= dSle1 and d2) = dS2e2 emanating from X.. The 
at the reference time to is given by 

dA, = X = dS1 dS2 e3 = &,e3 (3.28.1) 

where dA, is the magnitude of the undeformed area and e3 is normal to the area. At time 
t , deforms into ddl) = and deforms into dd2) = and the area is 

dA = x = dS1 dS2 Fel XFe2 = dA, Fel X Fez (3.28.2) 

Thus, the orientation of the deformed area is normal to Fel and Fez. Let this direction be 
denoted by the unit vector n, i.e., 

dA=dAn (3.28.3) 

then, 
dA n = dA, (Fel x Fe2) 

From the above equation, it is clear that 

Fel dAn = Fez - dAn = 0 

and 

(ii) 
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Fe3 * dA = dA, (Fe3 - Fel x Fe2) 

Recall that for any vectors a, b, and c, 

a bX c = determinant whose rows are components of a, b, and c. Therefore 

(iii) 

Fe3-Fel X Fez = det F (iv) 

Eq. (iii) becomes 

Fe3 dAn = dA, det F 

Using the definition of transpose of a tensor, Eqs. (ii) become 
T T e l - F  n = e 2 . F  n = O  

and Eq. (v) becomes 

Thus, FTn is in the direction of e3, so that 

T F n = - (det F) e3 dA 

Therefore, 
-1 T dA n = dA, (det F) (F ) e3 

(vii) 

(vii) 

(3.28.4) 

-1 T Equation (3.28.4) states that the deformed area has a normal in the direction of (F 
with a magnitude given by 

) e3 and 

-1 T (3.28.5) 

In deriving Eq. (3.28.4), we have chosen the initial area to be the rectangular area formed by 
the Cartesian base vectors el and e2, it can be shown that the formula remains valid for any 
material area except that e3 be replaced by the normal vector of the undeformed area no. That 
is in general, 

dA n = &I, (det F) (F-l)T no (3.28.6) 

dA=dA,(detF) I(F 1 e31 

3.29 Change of Volume due to Deformation 

Consider three material elements 

dxc') = &el, = dS2e2 and = dS3e3, 
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emanating from X.. The rectangular volume formed by 
time to is given by 

d2) and d3) at the reference 

(3.29.1) 

deforms into dJ2)  = and 

dVo = dS1 dS2 dS3 

At time t ,  dl) deforms into dx(') = 

 deforms into = and the volume is 

dV = Fa( ' )  x = dS1 dS2 dS3 (Fel *Fez X F q  ) 
= dVo (Fel .Fez X F q  ) (3.29.2) 

That is, 
dV = (det F)dVo 

Since C = FTF and B = FFT, therefore 

detC = detB = (detF)2 

Thus, Eq. (3.29.3) can also be written as 
d V =  m d V o  = w d V o  

(3.29.3) 

(3.29.4) 

(3.29.5) 

We note that for an incompressible material, dV = dVo , so that 

detF = detC = detB = 1 (3.29.6) 

We note also that due to Eq. (3.29.3), the conservation of mass equation can be written as: 

P O  

p=detF (3.29.7) 

Example 3.29.1 

Consider the deformation given by 

x1= n1x1 9 x2 = 4 3 x 3  9 x3 = n,x, ( 0  

(a)Find the deformed volume of the unit cube shown in Fig. 3.14. 
(b)Find the deformed area of OABC. 
(c) Find the rotation tensor and the axial vector of the antisymmetric part of the rotation tensor. 
Solution. (a) From Eq. (i), 
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A1 0 0 
[FI = [; f2 -21 

Thus, 
detF = AI  A2A3 (ii) 

Since det F is a constant, from the equation 
dV=(detF )dVo 

we have, with AVO = 1, 
AV= A.iA2A.3 (iii) 

- - t o  0 

(A1&A3) 0 0 -L 5 
1 0 -  0 

A2 - - 

[-!I = 11:2] (iv) 
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0 0 -5 0 ' 0  

0 A2 0 I o:L 
23 

AA n = AI A2 e2 

Thus, the area OABC, which was of unit area and having a normal in the direction of -e3 
becomes an area whose normal is in the direction of e2 and with a magnitude of A, Az. 

= o o - 1  1: : :J 

L 

[R] = [F][U]-' = 

L J 

i ,  0 0 1  [+ O 

L J 

It is easily verified that R corresponds to a 9$ rotation about the el, which is the axial 

vector of the antisymmetric part of R 

3.30 Components of Deformation Tensors in other Coordinates 

The deformation gradient F transforms a differential material element dX in the reference 
configuration into a material element dx in the current configuration in accordance with the 
equation 

dx = FdX (3.30.1) 

where 

x = x(x1&2&3,t) 
describes the motion. If the same rectangular coordinate system is used for both the reference 
and the current configurations, then since the set of base vectors (el,e2,eg) is the same at every 
point, we have 

ei-dx = ei.F(dX,,,e,,,) = dX,,,(ei-Fe,,,) = Fi,,,dXm (i 1 

(ii) 
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Thus 

i.e., 

ax, ax, ax, 

ax, ax, ax, - -  

- 

(3.30.2) 

(3.30.3) 

We have already used this matrix for computing the components of F in a few examples above. 
The situation is more complicated if the base vectors at the reference configuration are 
different from those at the current configuration. Such situations arise not only in the case 
where different coordinate systems are used for the two configuration ( for example, a 
rectangular coordinate system for the reference and a cylindrical coordinates for the current 
configuration, see (B) below) , but also in cases where the same curvilinear coordinates are 
used for the two configurations. The following are examples. 
(A) Cylindrical coordinate system for both the reference and the current configuration 

Let 

be the pathline equations. We shall show in the following that 

and 

Feoz = (E) e, + (g) e8 + (2) ez 

(3.30.4a) 

(3.30.4b) 

(3.30.4~) 

(3.30.5a) 

(3.30.5b) 
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(3.303) 

where e,i denotes base vectors at the reference position and ei those at the current position. 

Substituting 
dx = drer + rd 9% + &ez and dX = droeor + r& 9,ed + &,eoz (iv) 

in the equation dx = FdX , we obtain 
dr = &,( e, - Fe,,) + r& 9, (e, - Fe, e) + &,( e, - Fe,,) ( 4  

rd 9 = &,( % * Fe,,) + r& 9, ( % - Fed) + &,(% * Fe,,) (4 
etc. Thus, 

These equations are equivalent to Eqs. (3.30.4). 
The matrix 

(3.30.6a) ar e, .Fee, = - 
azlo 

% .FeoZ - azo -- rag (3.30.6b) 

(3.30.6~) az 
a20 

e, -Fe,, = - 

(3.30.7) 

is based on two sets of bases, one at the reference configuration ( e,, , e&, e,, ) and the other 
the current configuration ( e, ,Q ,ez ). The components in this matrix is called the two point 
components of the tensor F with respect to ( e, ,% ,e, ) and ( e,, , e&, e,, ). 

By using the definition of transpose of a tensor, one can easily establish Eqs. (3.30.5 ) from 
Eq. (3.30.4). [see Prob. 3.731 

The components of the left Cauchy-Green tensor, with respect to the basis at the spatial 
position x can be obtained as follows. From the definition B = FFT, and by using Eqs. (3.30.4) 
and (3.30.5 ) we obtain 
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T B, = e, -Be, = e, -FF e, 

Similarly, 
T Bd = e, -Bee = e, -FF ee 

= (z) (g) + (s) ($5) + (E) (E) 

(vii) 

(viii) 

Other components can be obtained in the same way [see Prob. 3.741. We list all the com- 
ponents below: 

(3.30.8a) 

(3.30.8b) 

(3.30.8~) 

(3.30.8d) 

(3.30.8e) 

(3.30.8f) 

The components of B-' can be obtained either by inverting the tensor B or by inverting the 
pathline equations. Let 

ro = ro(r, %Go, eo = U r ,  8J,t), 20 = zo(r, 6J,O (W 

be the inverse of Eq. (iii). Then from the equation dX = F-ldx , one can obtain 
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(3.30.8g) 

(3.30.8h) 

(3.30%) 

(3.30.8j) 

(3.303%) 

(3.30.81) 

The components of the right Cauchy-Green tensor C, with respect to the basis at the 
reference position X can be obtained as follows. From the definition C = FTF , and by using 
Eqs. (3.30.4) and (3.30.5 ) we obtain 

CrJ0 = e,, - C e,, = e,, F Fe,, T 

= ( g ) e o r . F  T e , +  ( g ) e o , - F T e , +  ( : )e , , -F T e ,  

= (E) + (gj2+ (E) 2 2 

Similarly, 
T Cro~o = e,, * C  e& = e,, . F  Fed 

= (s) (E) + (2) (g) + (s) (E) 
Other components can be obtained in the same way [see Prob. 3.751. We list all the com- 
ponents below: 

2 2 2 

era,= (2:) + (5) + (z) 
( )'+ ( L E ) ' +  (2%) 2 

ce,e, = - 
rodeo roaeo roaeo 

(3.30.9a) 

(3.30.9b) 
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2 2 (3.30.9~) 
% o =  (E) + (E) 

c.,e,= (E) (2) + (E) (s) + (g) (2) 
= v o =  (E) (E) + (x) (3 + (E) (E) 

(3-30.9d) 

rae rae 

c.,e,= (E) (2) + (c) (s) + (E) (&) (3.30.90 

(3.30.9e) 

Again, the components of C-’ can be obtained by using the equation dX = F-ldx and Eq. 
(ix). We list here two of the six components. The other four components can be easily written 
down following the patterns of these two equations. 

(3.30.98) 

(3.30.9h) 

(B) Cylindrical coordinates (r,8,z ) for the current configuration and rectangular Cartesian 
coordinates (X,Y,Z) for the reference configuration. 

Let 
r = r(X,Y,Z,t) 8 = e(X,Y,Z,t) z = z(X,Y,Z,t) (xii) 

describe the motions. Then using the same procedure as described for the case where one 
single cylindrical coordinate is used, it can be derived that [see Prob.3.761. 

ar rae az 
ax ax ax Fex = --ef + - + +z (3.30.10a) 

(3.30. lob) 

The matrix 
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lax aY az I 
(3.30.1 1) 

gives the two point components of F with respect to the two sets of bases, one at the reference 
configuration, the other at the current configuration. 

The components of the left Cauchy-Green deformation tensor B with respect to the basis 
at the current configuration are given by [see Prob.3.771 

B = -  IT (:;)2 + -  (:;)2 + -  (:;)2 

2 2 
Bm= (%j2+ (s) + (s) 

(3.30.12a) 

(3.30.12b) 

(3.30.12~) 

B - - - + - - + -  (a r )  (rae) (ar)  (,as) (ar )  (rae) 

B r ~ =  ax ax ay ay az az 

r e -  ax ax aY ay az Z? (3.30.12d) 

(2%) (”) + (”) (”) + (”) (”) (3.30.12e) 

(3.30.120 

Again, the components of B-I can be obtained by using the equation dX = F-ldx and the 
inverse of Eq. (xii). We list here two of the six components. The other four components can 
be easily written down following the patterns of these two equations. 

B;;1= (!$2+ M2+ (5) 2 

ax ax aY ay az az 
Biil= (%) (a) + (z) (a) + (z) (a) 

(3.30.128) 

(3.30.12h) 

The components of the right Cauchy-Green deformation tensor C with respect to the basis 
at the reference configuration are given by : [see Prob. 3.781 

ax ax C, = (3.30.13a) 
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- - 
ar dr ar 
ar0 roaO, r0sin0,W, 
rae r a9 r ae 

roaO, rosine&b, a', 
rsin0W rsin0W nine* 

ar, roaeo r0sin0,~, 

- - 

[F] = - 

- - 

2 

2 

ra0 ra0 
c f l= (s) (5) + (z) (z) + (5) (%) 

cYz= (5) (%) + (F) (z) + (%) (s) ra0 rae  

(3.30.14) 

( e i ) ,  ('oil 

The components of C-' can be obtained as: 
2 

c&= ($)2+ ($q2+ (%) 
ax aY ax ay + - ax ay 

c+ (z) (z) + (a) (a) ( a z )  (z) 

(3.30.13b) 

(3.30.13d) 

(3.30.13e) 

(3.30.130 

(3.30.13g) 

(3.30.13h) 

and the other four components can be easily written down following the patterns of these two 
equation. 
(C) Spherical coordinate system for both the reference and the current configuration 

Let 
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(3.30.15a) 

(3.30.15b) 

(3.30.15d) 

(3.30.15g) 

etc. 
The components of C are: 

(3.30.16a) 

(3.30.16b) 

(3.30.16~) 

(3.30.16d) 
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The components of C-’ can be written: 

(3.30.168) 

etc. 

3.31 Current Configuration as the Reference Configuration 

Let x ’ be the position at time t of a material point which is at the spatial position x at 
time t , then the kinematic equations of motion ( the pathline equations) take the form of 

x ’  = % ‘ ( x , t ) ,  with x = % ’ ( x , t )  (3.31.1) 

Equations (3.31.1) describe the motion using the current configuration as the reference 
configuration. The subscript t in x, ’ indicates that the current timet is the reference time and 
as such in addition to x and t, it is also a function oft. 

Example 3.31.1 

Given the velocity field 
V I  = ku2, v2 = v3 = 0 

Find the pathline equations using the current configuration as the reference configuration. 
Solution. Letx‘l(% z), x ’ ~ ( x ,  t), x’~(x, t) be the position at time z then 

dx2’ d ~ 3 ’  (ii) 
- - 0  -- -h2’, d X I ’  

d t  d t  d t  

The second and the third equation state that both x’2 andx’3 are constants. Since they must 
be x2 and x3 at time t, therefore, 

x2’ = x2, x3’ = x3 

Now from the first equation, since x‘2 = x2, we have 
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so that 
(ii) 

When the current configuration is used as the reference, it is customary also to denote 
tensors based on such a reference with a subscript t , e.g., 

F, = V, x, ’ (relative deformation gradient ) 

C, = FTF, (relative right Cauchy-Green Tensor) 

Bt = F,FT (relative left Cauchy-Green Tensor) 

etc. All the formulas derived earlier, based on a fixed reference configuration, can be easily 
rewritten for the case where the current configuration is used as the reference. For example, 
let (r I, 8 ’, z ’,t ) denote the cylindrical coordinates for the position x ’ at time t for a material 
point which is at (r ,8, z) at time t Le., 

r ’  = r ’ ( r , O , z , t ) ,  8 ’  = O ’ ( r , O , z , t ) ,  z ’ = Z  ’ ( r ,  8 , z , t )  
then, with respect to the current bases ( e,, eo, e,) 

r ’a8‘ 

(3.3 1. Id) 

(3.3 l.le) 

(3.31.10 

(3.3 1. la) 

(3.31.lb) 

(3.31.1~) 

We will have more to say about relative deformation tensors in Chapter 8 where we shall 
discuss the constitutive equations for Non-Newtonian fluids. 
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PROBLEMS 
3.1. Consider the motion 

x 1 = k t + X 1  
x2 = x, 
x3 = x3 

where the material coordinates Xi designate the position of a particle at t = 0. 

(a) Determine the velocity and acceleration of a particle in both a material and spatial 
description. 
(b) If in a spatial description, there is a temperature field 8 = Rrl, find the material derivative 
D WDt. 
(c) Do part (b) if the temperature field is given by 8 = aU,. 
3.2. Consider the motion 

x1 = x ,  

x3 =x3 

x2 = kx;t2 + x, 

where Xi are the material coordinates. 

(a) At t = 0 the comers of a unit square are at A(O,O,O),B(O,l,O), C(l,l,O) and D(l,O,O). 
Determine the position ofA, B, C, D at t = 1, and sketch the new shape of the square. 
(b) Find the velocity v and the acceleration Dv/Dt in a material description. 
(c) Show that the spatial velocity field is given by 

2 v1= v3 = 0, v2 = &It. 
33. Consider the motion 

X l  = kx;t2 + x, 
x2 = kx2t + x, 
x3 =x3 

(a)At t = 0, the corners of a unit square are at A(O,O,O),B(O,l,O), C(l,l,O), and D(l,O,O). 
Sketch the deformed shape of the square at t = 2. 
(b) Obtain the spatial description of the velocity field. 
(c) Obtain the spatial description of the acceleration field. 
3.4. Consider the motion 

x1 = (k + X1)t + x, 
x2 = x, 
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x3 = x3 

(a) For this motion, repeat part (a) of the previous problem. 
(b) Find the velocity and acceleration as a function of time of a particle that is initially at the 
origin. 
(c)Find the velocity and acceleration as a function of time of the particles that are passing 
through the origin. 
3.5. The position at time t of a particle initially at (X,,X2,X3) is given by 

2 2  x , = X 1 - W 2 t ,  x 2 = X z - X $ ,  x 3 = x 3  

(a) Sketch the deformed shape, at time t = 1 of the material line OA which was a straight line 
at t = 0 with 0 at (O,O,O) andA at (O,l,O). 
(b) Find the velocity at t = 2, of the particle which is at (1,3,1) at t = 0. 

(c) Find the velocity of a particle which is at (1,3,1) at t = 2. 
3.6. The position at time t of a particle initially at (Xi,X2,X3 ), is given by 

x1 = x, + (X,  + X2)t, x2 = x2 + (XI + X2)t, x3 = x3 

(a) Find the velocity at t = 2 for the particle which was at (l,l,O) at the reference time. 
(b) Find the velocity at t = 2 for the particle which is at the position (l,l,O) at t = 2. 
3.7. Consider the motion 

XI, x2 = x2, x3 = x3 
l + t  x ,  = - 1 + to 

(a) Show that reference time is t = to. 

(b) Find the velocity field in spatial coordinates. 
(c) Show that the velocity field is identical to that of the following motion 

x1 = (1 + tyr,,  x2 = x2, x3 = x3. 

x 1 = X , + X $ ,  x z = X 2 + X 2 t ,  x 3 = x 3  

3.8. The position at time t of a particle initially at (Xi,X2,X3) is given by 
2 2  

(a) For the particle which was initially at (l,l,O) ,what are its positions in the following instants 
oftime:t = 0,t = 1,t = 2. 
(b) Find the initial position for a particle which is at (1,3,2) at t = 2. 
(c) Find the acceleration at t = 2 of the particle which was initially at (1,3,2). 
(d) Find the acceleration of a particle which is at (1,3,2) at t = 2. 
3.9. (a)Show that the velocity field 
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X i  
V i  = - l + t  

corresponds to the motion 
xj =%(l + t) 

(b) Find the acceleration of this motion in the material description. 
3.10. Given the two-dimensional velocity field 

v, = -5, vy = 2.x 
(a) Obtain the acceleration field. 
(b) Obtain the pathline equations. 
3.11. Given the two-dimensional velocity field 

v,=kr,  v y =  -Icy 
(a) Obtain the acceleration field. 
(b) Obtain the pathline equations. 
3.12. Given the two-dimensional velocity field, 

2 2  v, = x  -y , vy = -2wy 

Obtain the acceleration field. 
3.13. In a spatial description the equation to evaluate the acceleration 

Dv - av + (Vv)v Dt at 

is nonlinear. That is, if we consider two velocity fields v A and v B, then 
A + B  a A + a B  #a 

where aA and aB denote respectively the acceleration fields corresponding to the velocity fields 
8 and ? each existing alone, aA + denotes the acceleration field corresponding to the 
combined velocity field 8 + $. Verify this inequality for the velocity fields 

4 = -2w2el+ &le2 

P = h 2 e l  - k l e 2  

x 1 =  x, 

x3 =x3 

3.14. Consider the motion 

x2 = X2 + (sin nt)(sin nX1) 
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(a) At t = 0 a material filament coincides with the straight line that extends from (O,O,O) to 
(1,0,0). Sketch the deformed shape of this filament at t = 112, t = 1, and t = 3 / 2. 

(b) Find the velocity and acceleration in a material and a spatial description. 
3.15. Consider the following velocity and temperature fields: 

(a) Determine the velocity at several positions and indicate the general nature of this velocity 
field. What do the isotherms look like? 
(b) At the point A(l,l,O), determine the acceleration and the material derivative of the 
temperature field. 
3.16. Do the previous problem for the temperature and velocity fields: 

3.17. Consider the motion x = X + Xlkel and let 

tion. 

(a) Find the deformed elements dx(l) and d ~ ( ~ ) .  
(b) Evaluate the stretches of these elements, dsl / dS1 and ds 2 / dS2, and the change in the 
angle between them. 

(c)Do part (b) fork = 1 and k = 

(d) Compare the results of part(c) to that predicted by the small strain tensor E. 
3.18. The motion of a continuum from initial position X to current position xis given by 

x = (I + B)X 
where I is the identity tensor and B is a tensor whose components Bu are constants and small 
compared to unity. If the components of x are xi and those of X are Xi, find 

(a) the components of the displacement vector u, and 
(b) the small strain tensor E. 
3.19. At time t ,  the position of a particle initially at (Xl,X2,X3) is defined by 

= (dS 1 / a ) ( e l  + e2) and 
= (dS2 / a)( -el + e2) be differential material elements in the undeformed configura- 

where k = 
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(a) Find the components of the strain tensor. 
(b) Find the unit elongation of an element initially in the direction of el + e2. 

3.20. Consider the displacement field 

ul=k(2%f+X1X2), u2=A&, u3=O, 

where k = 

(a) Find the unit elongations and the change of angle for two material elements 

(b) Find the deformed shape of these two elements. 
3.21. For the displacement field of Example 3.8.3, determine the increase in length for the 
diagonal element of the cube in the direction of el + e2 + e3 (a) by using the strain tensor and 
(b) by geometry. 
3.22. With reference to a rectangular Cartesian coordinate system, the state of strain at a point 
is given by the matrix 

= dX1el and = dX2e2 that emanate from a particle designated by X = el + e2. 

[E] = 3 4 -1 X L -: 1 
L J 

(a) What is the unit elongation in the direction 2el + 2e2 + eg? 

(b) What is the change of angle between two perpendicular lines (in the undeformed state) 
emanating from the point and in the directions of 2el + 2e2 + e3 and 3el - 6e3? 

3.23. Do the previous problem for (a) the unit elongation in the direction 3el - 4e2, (b) the 
change in angle between two elements in the direction 3el - 4e3 and 4el + 3e3. 

3.24. (a)For Prob.3.22, determine the principal scalar invariants of the strain tensor. 
(b) Show that the following matrix 

cannot represent the same state of strain of Prob.3.22. 
3.25. For the displacement field 

2 u1= kX1, ~2 = kX2X3, ~3 = k(2XiX3 + Xf), k = 

find the maximum unit elongation for an element that is initially at (1,0,0). 
3.26. Given the matrix of an infinitesimal strain field 
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[El = 0 -k2X2 0 
0 0 - k 6 2  O I  

klX2 0 

(a) Find the location of the particle that does not undergo any volume change. 
(b) What should be the relation between kl and k2 be such that no element changes volume? 

3.27. The displacement components for a body are 
2 

u1 = k(X; + X2>, u2 = k(4X3 - X I ) ,  u3 = 0, k = 

(a) Find the strain tensor. 
(b) Find the change of length per unit length for an element which was at (1,2,1) and in the 
direction of el + e2. 

(c) What is the maximum unit elongation at the same point (1,2,1)? 
(d) What is the change of volume for the unit cube with a corner at the origin and with three 
of its edges along the positive coordinate axes. 
3.28. For any motion the mass of a particle (material volume) remains constant. Consider the 
mass to be a product of its volume times its mass density and show that (a)for infinitesimal 
deformationp(1 + EM) = p,, wherep, denotes the initial density and p the current density. 
(b) Use the smallness of EM to show that the current density is given by 

P = Po(1 - EWO 
3.29. True or false: At any point in a body, there always exist two mutually perpendicular 
material elements which do not suffer any change of angle in an arbitrary small deformation 
of the body. Give reasons. 
330. Given the following strain components at a point in a continuum: 

Ell = E12 = E22 = k, E33 = 3k, El, = E23 = 0 k>O 
Does there exist a material element at the point which decreases in length under the defor- 
mation? Explain your answer. 
331. The unit elongations at a certain point on the surface of a body are measured experimen- 
tally by means of strain gages that are arranged 45' apart (called the 45' strain rosette ) in the 
directions el, (fl/2)(e1 + e2) and e2. If these unit elongations are designated by a,b,c 
respectively, what are the strain components E1l,E22,El2. 

332. (a) Do Problem 3.31 if the measured strains are 200x 
respectively. 
(b) If E33 = E32 = E31 = 0, find the principal strains and directions of part (a). 

(c) How will the result of part (b) be altered if E33 f O? 

50x lOOx 
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333. Repeat Problem 3.32 except that a = b = c = lOOOX 

334. The unit elongations at a certain point on the surface of a body are measured experimen- 
tally by means of strain gages that are arranged 6$ apart (called the 60' strain rosette ) in 

the directions el,  -(el + f i e 2 ) ,  and -(-el  + f i e 2 ) .  If these elongations are designated by 

a,b,c respectively, what are the strain components E1@22&? 

335. Do Problem 3.34 if the strain rosette measurements give a = 2X 

1 1 
2 2 

b = 1 X 

c = 1.5x lo-! 
336. Do Problem 3.35 except that a = b = c = 2000X 

337. For the velocity field, v = (kwz)el 

(a) Find the rate of deformation and spin tensors. 
(b) Find the rate of extensions of a material element dx = (&)n where 

n = (CZ/2) (e l+  e2) at x = 5el + 3e2. 

338. For the velocity field 

find the rates of extension for the following material elements: dx(') = &le1 and 
dd2) = (&2/CZ)(el + e2) at the origin at time t = 1. 

339. (a) Find the rate of deformation and spin tensors for the velocity field 
v = (cos t )  (sin zxl)e2. 

(b) For the velocity field of part (a), find the rates of extension of the elements 
dx@) = (&)el, 

3.40. Show that the following velocity components correspond to a rigid body motion: 

= (&2)e2, dd3) = &3/\1Z(e1 + e2) at the origin at t = 0. 

v1 = x2 - x3, v2 = -x1 + x3, "3 = x1 - x2 

3.41. For the velocity field of Prob.3.15 
(a) Find the rate of deformation and spin tensors. 
(b) Find the rate of extension of a radial material line element. 
3.42. Given the two-dimensional velocity field in cylindrical coordinates 

4 
r v * = o ,  v g = 2 r + -  

(a) Find the acceleration at r = 2. 

(b) Find the rate of deformation tensor at r = 2. 
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3.43. Given the velocity field in spherical coordinates 
B v, = 0, vg = 0, v+ = (A' + 7) sine 

(a) Find the acceleration field. 

(b) Find the rate of deformation field. 

3.44. A motion is said to be irrotational if the spin tensor vanishes. Show that the velocity 
field of Prob.3.16 describes an irrotational motion. 

3.45. (a) Let dd') = (dsl)n, and dd2) = (ds2)m be two material elements that emanate from 

a particle P which at present has a rate of deformation D. Consider (D/Dt)(dX(').d2)) and 
show that 

De cosO-(sinO)- = 2m.Dn. Dt 
where 8 is the angle between m and n. 

(b) Consider the special cases (i) dx(') = dd2) and (ii) 8 = n/2. Show that the above expression 
reduces to the results of Section 3.13. 
3.46. Let el, e2, and D1, D2,D3 be the principal directions and values of the rate of 
deformation tensor D. Further, let 

dx(l) = (hl)el, c ~ x ( ~ )  = (~2 )e2 ,  dx(3) = (&3)e3 
b e  t h r e e  mater ia l  l ine elements.  Consider the  mater ia l  derivative 
(D/Dt)[dx(l) - ( d 2 ) X  dd39 J and show that 

D(dV) = D 1 + D 2 + D 3  
dV Dt 

where the infinitesimal volume dV = (dsi)(ds2)(ds3). 

3.47. Consider a material element dx = dsn 
(a) Show that 

(b) Show that if n is an eigenvector of D then 
(D/Dt)(n) = Dn + Wn-(n-Dn)n 

Dn - = Wn = o x n  
Dt 

where o is the axial vector of W. 
3.48. Given the following velocity field 

2 

v2 = -x1q , 
v1 = k(x2-2) x3, 
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v3 = b1x3 7 

for an incompressible fluid, determine k such that the equation of mass conservation is 
satisfied. 
3.49. Given the velocity field in cylindrical coordinates 

vr =&,e), ve = 0, v, = 0 
For an incompressible material, from the conservation of mass principle, obtain the most 
general form of the functionf (r, e). 
3.50. An incompressible fluid undergoes a two-dimensional motion with 

kcose 
Vr = 7 

find ve if ve = 0 at 8 = 0. 

3.51. Are the fluid motions described in (a) Prob.3.15 and (b) Prob.3.16 incompressible? 
3.52. In a spatial description, the density of an incompressible fluid is given byp = ku2. Find 
the permissible form for the velocity field with v3 = 0, so that the conservation of mass 
equation is satisfied. 
3.53. Consider the velocity field 

(a) Find the density if it is independent of spatial position, i.e.,p = p(t). 

(b) Find the density if it is a functionxl alone. 

3.54. Given the velocity field 
v = x l t e l  +x2te2, 

determine how the fluid density varies with time, if in a spatial description it is a function of 
time only. 
3.55. Check whether or not the following distribution of the state 
compatibility conditions: 

L 

where k = 

3.56. Check whether or not the following distribution of the state 
compatibility conditions: 

of strain satisfies the 

of strain satisfies the 
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[E] = k 

where k = 

3.57. Does the displacement field 
3 u1= sinXl, u2 = X,X,, u3 = ~ 0 ~ x 3  

correspond to a compatible strain field? 
3.58. Given the strain field 

E12 = E21 = kXiX2 

where k = 

(a) Check the equations of compatibility for this strain field. 
(b) By attempting to integrate the strain field, show that there does not exist a continuous 
displacement field for this strain field. 
3.59. The strain components are given by 

and all other Eq = 0. 

V 
E22 = E33 = -$(x2J3) 

E12 = E13 = E23 7 0 

Show that for the strains to be compatible f(X2J3) must be linear. 

3.60. In cylindrical coordinates (r ,8, z ), consider a differential volume bounded by the three 
pairs of faces r = r,, r = r, + dr; 8 = e,, 8 = 8, + d 8; z = z,, z = z, + dz. The rate at which 
mass is flowing into the volume across the face r =ro is given by @v,)(rJO)(dz) and similar 
expressions for other faces. By demanding that the net rate of inflow of mass must be equal 
to the rate of increase of mass inside the volume, obtain the equation of conservation of mass 
in cylindrical coordinates as that given in Eq.(3.15.5). 
3.61. Given the following deformation in rectangular Cartesian coordinates 

x1= 3x3 

x2 = -x, 
x3 = - 2 x 2  

Determine (a) the deformation gradient F, (b) the right Cauchy-Green deformation tensor 
C, (c) the left Cauchy-Green deformation tensor B, (d) the rotation tensor R, (e) the Lagran- 
gian strain tensor, ( f )  the Euler strain tensor, (g) ratio of deformed volume to the initial 
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volume, (h) the deformed area (magnitude and its normal) for the area whose normal was in 
the direction of e2 and whose magnitude was unity in the undeformed state. 

3.62. Do Prob. 3.61 for the following deformation 
X I =  2 x 2  

x2 = 3x3 

~3 = Xi 
3.63. Do Prob. 3.61 for the following deformation 

x ,  =x ,  
x2 = 3x3 
x3 = - 2 x 2  

x 1 =  2 x 2  

x2 = -x, 
x3 = 3x3 

x 1 = X 1 + 3 X 2 ,  x 2 = x 2 ,  x 3 = x 3  

3.64. Do Prob. 3.61 for the following deformation 

3.65. Given 

Obtain 

(a)F 9 c * 

(b) the eigenvalues and eigenvectors of C . 
(c) the matrix of U and U-' using the eigenvectors of C as basis. 

(d) the matrix of U and U-' with respect to the ei basis. 

(d) the rotation tensor R with respect to the ei basis. 

You may check your results with the formulas given in the next problem. 
3.66. Verify that with respect to rectangular Cartesian base vectors, the right stretch tensor 
U and the rotation tensor R for the simple shear deformation 

x ,  = x, + k x 2 ,  x2 = x,, x3 = x3 

are given by 
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P I  = [: -2 '3 f 0 

0 0 1  

3.67. Let dxc') = dSIN(l) and dxc2) = dS2N(2) be two material elements at a point P. Show 
that if 8 denotes the angle between their respective deformed elements ddl) and dd2), then 

3.68. Given the following right Cauchy-Green deformation tensor at a point 

[e] = 1 0 4 o.J 0 

(a) Find the stretch for the material elements which were in the direction of el, e2 and e3 
directions. 
(b) Find the stretch for the material element which was in the direction of el + e2 

(c) Find cos8, where 8 is the angle between ddl) and dd2). 
3.69. Show that for any tensor A(Xl,X2,X3) 

a aA 
-detA = (detA)(A-l)ni 2 a x ,  

3.70. Given 
r = r o ,  8 = 8 , + k z , ,  Z=Z, 

where (r , 8  , z) and (r, ,e, , z,) are cylindrical coordinates for the current and reference 
configuration respectively. 
(a) Obtain the components of the left Cauchy-Green tensor B with respect to the basis at the 
current configuration. 
(b) Obtain the components of the right Cauchy-Green tensor C with respect to the basis at 
the reference configuration. 
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3.71. Given 
Y 
a r = ( 2 a ~  +b~l’~ ,  e = -, z = z 

where (r , 8  , z) is cylindrical coordinates for the current configuration and (X, Y, 2) are 
rectangular Cartesian coordinates for the reference configuration. 
(a) Calculate the change of volume. 
(b) Obtain the components of the left Cauchy-Green tensor B with respect to the basis at the 
current configuration. 
3.72. Given 

r = f ( r n ,  O=g(Y), z=h(Z)  
where (r , 8 ,  z) and (X, Y, 2) are cylindrical coordinates and rectangular Cartesian coor- 
dinates for the current and reference configuration, respectively. Obtain the components of 
the right Cauchy-Green tensor C with respect to the basis at the reference configuration 
3.73. From Eqs.(3.30.4a), obtain Eq~(3.30.5). 
3.74. Verify Eq.(3.30.8b) and (3.30.8d). 
3.75. Verify Eq.( 3.30.9b) and (3.30.9d). 
3.76. Derive Eq~(3.30.10). 
3.77. Using Eq~(3.30.10) derive Eqs.(3.30.12a) and (3.30.12d). 
3.78. Verify Eqs. ( 3.30.13 a) and (3.30.13d). 


