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Newtonian Viscous Fluid 

Substances such as water and air are examples of a fluid. Mechanically speaking they are 
different from a piece of steel or concrete in that they are unable to sustain shearing stresses 
without continuously deforming. For example, if water or air is placed between two parallel 
plates with say one of the plates fixed and the other plate applying a shearing stress, it will 
deform indefinitely with time if the shearing stress is not removed. Also, in the presence of 
gravity, the fact that water at rest always conforms to the shape of its container is a demonstra- 
tion of its inability to sustain shearing stress at rest. Based on this notion of fluidity, we define 
a fluid to be a class of idealized materials which, when in rigid body motion(inc1uding the state 
of rest), cannot sustain any shearing stress. Water is also an example of a fluid that is referred 
to as a liquid which undergoes negligible density changes under a wide range of loads, whereas 
air is a fluid that is referred to as a gas which does otherwise. This aspect of behavior is 
generalized into the concept of incompressible and compressible fluids. However, under 
certain conditions (low Mach number flow) air can be treated as incompressible and under 
other conditions (e.g. the propagation of the acoustic waves) water has to be treated as 
compressible. 

In this chapter, we study a special model of fluid, which has the property that the stress 
associated with the motion depends linearly on the instantaneous value of the rate of defor- 
mation. This model of fluid is known as a Newtonian fluid or linearly viscous fluid which has 
been found to describe adequately the mechanical behavior of many real fluids under a wide 
range of situations. However, some fluids, such as polymeric solutions, require a more general 
model won-Newtonian Fluids) for an adequate description. Non-Newtonian fluid models 
will be discussed in Chapter 8. 

6.1 Fluids 

Based on the notion of fluidity discussed in the previous paragraphs, we define a fluid to 
be a class of idealized materials which when in rigid body motions (including the state of rest) 
cannot sustain any shearing stresses. In other words, when a fluid is in a rigid body motion, the 
stress vector on any plane at any point is normal to the plane. That is for any n, 

Tn = An 6) 

348 
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It is easy to show from Eq. (i), that the magnitude of the stress vector L is the same for every 
plane passing through a given point. In fact, let n1 and n2 be normals to any two such planes, 
then we have 

Tnl = Llnl (ii) 

and 
Tn2 = L2n2 

Thus, 
n1 * Tn2-n~- Tnl = (L2-L1)n1 n2 

(iii) 

Since n2-Tnl = nl*TTn2 and T is symmetric, therefore, the left side of Eq. (iv) is zero. 

Thus, 

Since nl and n2 are any two vectors, therefore, 
(L1-&)n1*n2 = 0 

11 = A2 

In other words, on all planes passing through a point, not only are there no shearing stresses 
but also the normal stresses are all the same. We shall denote this normal stress by -p. Thus, 
for a fluid in rigid body motion or at rest 

T = -PI (6.1. la) 

Or, in component form 
T.. = -$.. 
‘I I! (6.1.1b) 

The scalar p is the magnitude of the compressive normal stress and is known as the 
hydrostatic pressure. 

6.2 Compressible and Incompressible Fluids 

What one generally calls a “liquid” such as water or mercury has the property that its density 
essentially remains unchanged under a wide range of pressures. Idealizing this property, we 
define an incompressible fluid to be one for which the density of every particle remains the 
same at all times regardless of the state of stress. That is for an incompressible fluid 

It then follows from the equation of conservation of mass, Eq. (3.15.2b) 

(6.2.1) 

(6.2.2) 
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that 

- = o  avk (6.2.3a) 

or, 
divv = 0 (6.2.3b) 

All incompressible fluids need not have a spatially uniform density (e.g. salt water with 
nonuniform salt concentration with depth may be modeled as a nonhomogeneous fluid). If 
the density is also uniform, it is referred to as a “ homogeneous fluid,” for whichp is constant 
everywhere. 

Substances such as air and vapors which change their density appreciably with pressure are 
often treated as compressible fluids. Of course, it is not hard to see that there are situations 
where water has to be regarded as compressible and air may be regarded as incompressible. 
However, for theoretical studies, it is convenient to regard the incompressible and compres- 
sible fluid as two distinct kinds of fluids. 

6.3 Equations Of Hydrostatics 

The equations of equilibrium are [see Eqs. (4.7.3)] 

where Bi are components of body forces per unit mass. 

With 
T.. = -pd rl i j 9  

Eq. (6.3.1) becomes 

aP - =pBi 
axi 

or, 
Vp =pB 

(6.3.1) 

(6.3.2a) 

(6.3.2b) 

In the case where Bi are components of the weight per unit mass, if we let the positive x3 

B1= 0, B2 = 0, B3 = g (6.3.3) 
axis be pointing vertically downward, we have, 

so that 
(6.3.4a) 
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(6.3.4b) 

(6.3.4~) 

Equations (6.3.4a, b) state thatp is a function 0fx3 alone and Eq. (6.3.4~) gives the pressure 
difference between point 2 and point 1 in the liquid as 

P2-P1=Pgh (6.3.5) 

where h is the depth of point 2 relative to point 1. Thus, the static pressure in the liquid depends 
only on the depth. It is the same for all particles that are on the same horizontal plane within 
the same fluid. 

If the fluid is in a state of rigid body motion (rate of deformation = 0), then cj is still given 
by Eq. (6.1.1), but the right hand side of Eq. (6.3.1) is equal to the accelerationai, so that the 
governing equation is given by 

-- a’ +pBi =pal 
axi 

(6.3.6) 

Example 6.3.1 

A cylindrical body of radius r, length I and weight W is tied by a rope to the bottom of a 
container which is filled with a liquid of densityp (Fig. 6.1). If the density of the body p is less 
than that of the liquid, find the tension in the rope. 

Fig. 6.1 
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Solution. Letp, andpb be the pressure at the upper and the bottom surface of the cylinder. 
Let T be the tension in the rope. Then the equilibrium of the cylindrical body requires that 

p b  (nr )-pu (nr ) -W -T = 0 ( 0  2 2 

That is, 
2 T = nr (pb-pu)- W 

Now, from Eq. (6.3.5) 

P b  -Pu = pgl 

Thus, 
2 T = n r  pgl-W 

(ii) 

(iii) 

(iv) 

We note that the first term on the right hand side of the above equation is the buoyancy force 
which is equal to the weight of the liquid displaced by the body. 

Example 6.3.2 

In Fig. 6.2, the weight W, is supported by the weight WL, via the liquids in the container. 
The area under W, is twice that under WL. Find W, in terms of W ~ , p l , p 2 , A ~ , h  
@2 c p1 and assume no mixing). 

Solution. Using Eq. (6.3.5), we have 

P2 = Pl+Plgh 
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P3 = P2 = Pl+Plgh 

P 4  = P3-P& = P l + @ l - - P 2 k h  

(ii) 

(iii) 

Thus, 

WR=(P4)(AR)=(P1)(AR)+@l-P2)ghAR (iv) 

(4 
i.e., 

WR = & d L + 2 @ l - P 2 k m L  = 2wL -I- 2@1-P2kmL 

Example 6.3.3 

A tank containing a homogeneous fluid moves horizontally to the right with a constant 
acceleration a (Fig. 6.3), (a) find the angle 8 of the inclination of the free surface and (b) find 
the pressure at any point P inside the fluid. 

Fig. 63 

Solution. (a) With a 1  = a, a 2  = a3 = 0, B1 = B2 = 0 and 8 3  = g, the equations of motion, 
Eqs. (6.3.6) become 

( 0  aP Pa = -ax, 

o=--  aP (ii) 

o =  -* +Pg (iii) 

8x2 

ax3 
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From Eq. (ii), p is independent ofx2, from Eq. (i) 

P = - p a l + f ( x 3 )  

and from Eqs. (iii) and (iv) 

Thus, 

i.e., 

The integration constant c can be determined from the fact that on the free surface, the 
pressure is equal to the ambient pressurep,. Let the origin of the coordinate axes (fixed with 
respect to the earth) be located at a point on the free surface at the instant of interest, then 

c =Po 
Thus, the pressure inside the fluid at any point is given by 

P = -Pal+P@3+PO (vi) 

To find the equation for the free surface, we substitutep = po in Eq. (vi) and obtain 

a 
g 

x3 = -x1 

Thus, the free surface is a plane with the angle of inclination given by 

(vii). 

(viii) 

(b) Referring to Fig. 6.3, we have (x3-h) 1x1 = tan 8, thus, x3 = h + xl(a /g) , therefore 

x l a  
P = -Pax1 + P g ( h  +g) + P O  = P g h  + P O  

i.e., the pressure at any point inside the fluid depends only on the depth h of that point from 
the free surface directly above it and the pressure at the free surface. 

Example 6.3.4 

For minor altitude differences, the atmosphere can be assumed to have constant tempera- 
ture. Find the pressure and density distributions for this case. 
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Solution. Let the positive x3-axis be pointing vertically upward, then B = -ge3 so that 

From Eqs. (i) and (ii), we see p is a function 0fx3 only, thus Eq. (iii) becomes 

-pg 
k 3  

(ii) 

(iii) 

Assuming thatp,p and 0 (absolute temperature) are related by the equation of state for ideal 
gas, we have 

p =PRO ( 4  

where R is the gas constant for air. Thus, Eq. (iv) becomes 

Integrating, we get 

lnp = --x3+lnpO, g 
RO 

wherep, is the pressure at the ground ( x 3  = 0), thus, 

and from Eq. (v), if p, is the density at x3 = 0, we have 

(vii) 

(viii) 

(W 

6.4 Newtonian Fluid 

When a shear stress is applied to an elastic solid, it deforms from its initial configuration 
and reaches an equilibrium state with a nonzero shear deformation, the deformation will 
disappear when the shear stress is removed. When a shear stress is applied to a layer of fluid 
(such as water, alcohol, mercury, air etc.) it will deform from its initial configuration and 
eventually reaches a steady state where the fluid continuously deforms with a nonzero rate of 
shear, as long as the stress is applied. When the shear stress is removed, the fluid will simply 
remain at the deformed state, obtained prior to the removal of the force. Thus, the state of 
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shear stress for a fluid in shearing motion is independent of shear deformation, but is 
dependent on the rate of shear. For such fluids, no shear stress is needed to maintain a given 
amount of shear deformation, but a definite amount of shear stress is needed to maintain a 
constant rate of shear of deformation. 

Since the state of stress for a fluid under rigid body motion (including rest) is given by an 
isotropic tensor, therefore in dealing with a fluid in general motion, it is natural to decompose 
the stress tensor into two parts: 

T = -pI+T ' (6.4.la) 

(6.4.lb) 

where the components of T ' depend only on the rate of deformation (i.e., not on deformation) 
in such a way that they are zero when the fluid is under rigid body motion (i.e., zero rate of 
deformation) andp is a scalar whose value is not to depend explicitly on the rate of deforma- 
tion. 

We now define a class of idealized materials called Newtonian fluids as follows: 

I. For every material point, the values of q j '  at any time t depend linearly on the components 
of the rate of deformation tensor 

(6.4.2) 

at that time and not on any other kinematic quantities (such as higher rates of deformation) 
11. The fluid is isotropic with respect to any configuration. 

Following the same arguments made in connection with the isotropic linear elastic material, 
we obtain that for a Newtonian fluid, (also known as linearly viscous fluid, the most general 
form of i"jj' is, with A 

T-' = IAdq + &Do (6.4.3) 

where Iz  and ,u are material constants (different from those of an elastic body) having the 
dimension of (Force)(Time)/(Length) . The stress tensor c j '  is known as the viscous stress 
tensor. Thus, the total stress tensor is 

i"jj = -pdjj+AAdq+&Dq (6.4.4) 

Dll+D22+D33=Dkk, 

rl 

2 

(6.4.5a) 

T22 = -p+IzA+&D22 (6.4.5b) 

T33 = -p+IzA+&D33 (6.4.5~) 
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T12 = @Dl2 

T13 = &O13 

(6.4.5d) 

(6.4.5e) 

T23 = 2uD23 (6.43) 

The scalar p in the above equations is called the pressure. It is a somewhat ambiguous 
terminology. As is seen from the above equations, when Du are nonzero,p is only a part of the 
total compressive normal stress on a plane. It is in general neither the total compressive normal 
stress on a plane (unless the viscous stress components happen to be zero), nor the mean 
normal compressive stress, (see next section). As a fluid theory, it is only necessary to 
remember that the isotropic tensor -pbu is that part of cj which does not depend explicitly 
on the rate of deformation. 

6.5 Interpretation of L and p 

Consider the shear flow given by the velocity field: 
v1 = Vl(X2), v2 = 0, v3 = 0 

For this flow 

D l l =  0 2 2  0 3 3  = 0 1 3  = 0 2 3  = 0 

and 

1 dVl 
Dl2 = 

( 9  

(ii) 

(iii) 

so that 

and 

dVl 
T12 = P- 

h 2  
(6.5.1) 

Thus, p is the proportionality constant relating the shearing stress to the rate of decrease of 
angIe between two mutually perpendicular material lines (see Sect.3.13). It is called the first 
coefficient of viscosity or simply viscosity. From Eq. (6.4.3), we have, for a general velocity 
field. 

1 2 -c{ = (A +-p)A 
3 3 

(6.5.2) 
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2 
3 Thus, (a+-) is the proportionality constant relating the viscous mean normal stress to the 

rate of change of volume. It is known as the coefficient of bulkviscosity. The total mean normal 
stress is given by 

1 * (6.5.3) 

and it is clear that the so-called pressure is in general not the mean normal stress, except when 

either A = 0 or (A+-p) is assumed to be zero. 2 
3 

Example 6.5.1 

Given the following velocity field: 

6) -1 v1 = -c (q+x2), v2 = c (x2-x1), v3 = 0 ,  c = 1 s 

for a Newtonian liquid with viscosity p = 0.982 d a m s  (2.05 X lo-’ lb.s/ft2). For a plane 
whose normal is in the el-direction, (a) find the excess of the total normal compressive stress 
over the pressurep, and (b) find the magnitude of the shearing stress. 

Solution. From 
Ti1 = -p+&D11 (A = 0) (ii) 

we have 

(-T11)-P = -2UD11 

Now, from Eq. (i), 

Therefore 

(b) 

(iii) 

(-Tll)-p = -2(0.982)(-1) = 1.96mPa ( 4  

Tl2 = &D12 = p -+- = -2 c p  = - 1.96 mPa [::: :::I (vi) 

(vii) 

Thus, the magnitude of shearing stress equals 1.96 mPa. 
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6.6 Incompressible Newtonian Fluid 

such a fluid becomes 
For an incompressible fluid, A = Dii = 0 at all times. Thus, the constitutive equation for 

qj = -pSg+@Dq (6.6.1) 

We see from this equation that 

Thus, 
- qi 

P ’ 3  
(6.6.2) 

Therefore, for an incompressible viscous fluid, the pressure has the meaning of the mean 
normal compressive stress. The value of p does not depend explicitly on any kinematic 
quantities; its value is indeterminate as far as the fluid’s mechanical behavior is concerned. In 
other words, since the fluid is incompressible, one can superpose any pressure to the fluid, 
without affecting its mechanical behavior. Thus, the pressure in an incompressible fluid is 
often known constitutively as the “indeterminate pressure”. In any given problem with 
prescribed boundary condition(s) for the pressure, the pressure field is determinate. 

Since 

where vi are the velocity components, the constitutive equations can be written: 

i.e., 

(6.6.4) 

(6.6.4a) 

(6.6.4b) 

(6.6.4~) 

(6.6.4d) 
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(6.6.4e) 

(6.6.40 

6.7 Navier-Stokes Equation For Incompressible Fluids 

Substituting the constitutive equation [Eq. (6.6.4)] into the equation of motion, Eq. (4.7.2) 

and noting that 

2 
ap a vi = --+p- 
axi axlax, 

we obtain the following equations of motion in terms of velocity components 

(6.7.1) 

(6.7.2) 

i.e., 

(6.7.2~) 

Or, in invariant form: 

p -+(Vv)v =pB-Vp+pdiv(Vv) [E ] (6.7.2d) 
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These are known as the Navier-Stokes Equations of motion for incompressible Newtonian 
fluid. There are four unknown functions V I ,  "2, v3 and p in the three equations. The fourth 
equation is supplied by the continuity equation A = 0, Le., 

avl av2 av3 
ax, ax2 ax3 
-+-+- = 0 

or, in invariant form, 
divv = 0 

(6.7.3a) 

(6.7.3b) 

Example 6.7.1 

If all particles have their velocity vectors parallel to a fixed direction, the flow is said to be 
a parallel flow or a uni-directional flow. Show that for parallel flows of an incompressible 
linearly viscous fluid, the total normal compressive stress at any point on any plane parallel 
to and perpendicular to the direction of flow is the pressurep. 

SoZution. Let the direction of the flow be the xl-axis,  then 

"2 = 0, v3 = 0 

and from the equation of continuity, 

Thus, the velocity field for a parallel flow is 
"1 = Vl(X2,X3, t ) ,  "2 = 0, "3 = 0 

For this flow, 
D 1 1 =  0 2 2  = 0 3 3  = 0 

thus, 
Ti1 = T22 = T33 = -p 

Example 6.7.2 

Let z-axis be pointing vertically upward and let 

(9  

(ii) 

h = p+z 
Pg 

(6.7.4) 



362 Navier-Stokes Equation For Incompressible Fluids 

wherep is density and g is gravitational acceleration. The quantity h is known as the piezometric 
head. Show that for a uni-direction flow in any direction, the piezometric head is a constant 
along any direction which is perpendicular to the flow. 

Fig. 6.4 

Solution. Let xl-axis be the direction of flow, then, 

v2 = v3 = 0 (i) 

Thus, from Eqs. (6.7.2 b and c) 
(ii) 

pB2-* = 0 
8x2 

pB3-* = 0 
8x3 

(iii) 

With z-axis pointing upward, the body force per unit mass B is given by: 

B = -ge, (iv) 

( 4  

where e, is the unit vector in the z-direction. Thus, 

8 2  = B - e2 = -g(e, * e2) 
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Let r be the position vector for a particle at x, then 
r = xlel+x2e2+x3e3 

and 
z = e,*r = (ez.e~)w~+(ez.e2)w2+(ez.e3)w3 

Thus, Eq. (vi) can be written 
a 

8x2 
B2 = ---(gr) 

Using Eqs(ii) and (viii), we obtain 

Similar derivation will give 

(vii) 

(viii) 

Thus, for all points on the same plane which is perpendicular to the direction of flow (e.g., 
plane A-A in Fig. 6.4) 

e + z  = constant 
Pg 

(xii) 

Example 6.7.3 

For the uni-directional flow shown in Fig. 6.5, find the pressure at the point A. 
Solution. According to the result of the previous example, the piezometric head of the point 

A and the point B are the same. Thus, 
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where pais the atmospheric pressure. Thus, 

PA = Pa + Pg @B -ZA) = Pa + Pgh cos6 (ii) 

- 
Fig. 6.5 

6.8 Navier-Stokes Equations for Incompressible Fluids in Cylindrical and 
Spherical coordinates 

(A)Cylindrical Coordinates 

equations for an incompressible Newtonian fluid are: [ See Prob. 6.141 
With v,,ve,vz denoting the velocity components in (r,6,z) direction, the Navier-Stokes 

2 
laP+Br av, av, veav, av, ve 

at , a ~  r Par - - + v , ~ + r + v  --- = -- 

(6.8.la) 1 2 2  a2vr a v, a v, lav, 2 ave v, P -+L+-+ ---__ +P ar2 ,.2a62 az2 r ar ,.286 ,.2 

p 3 + B e  +v -+- = - 

[ 
ave ave vedve ave vrve 1 ap 
-+v,-+- at ar r a6 z az r 

(6.8. lb) p a2ve 1 a2ve a2ve +-++-!?] l ave  2 av, 
+p[T+m+g r ar ,.286 ,.2 

av, av, vgav, av, 
at ar r 86 z a ~  pr az 

-+v,-+- +v- =-*+Bz 
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P +- 
P 

The equation of continuity takes the form 

(6.8.1~) 

(6.8.2) 

(B)Spherical Coordinates. With v,,ve,v+ denoting the velocity components in (r, e,$) the 
Navier-Stokes equations for incompressible Newtonian fluid are [see Prob. 6.151 

The equation of continuity takes the form 

(6.8.4) 

6.9 Boundary Conditions 

On a rigid boundary, we shall impose the nom slip condition (also known as the adherence 
condition), i.e., the fluid layer next to a rigid surface moves with that surface, in particular if 
the surface is at rest, the velocity of the fluid at the surface is zero. The nonslip condition is 
well supported by experiments for practically all fluids, including those that do not wet the 
surface (e.g. mercury) and Non-Newtonian fluids ( e.g., most polymeric fluids). 
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6.10 Streamline, Pathline, Streakline, Steady, Unsteady, Laminar and 
Turbulent Flow 

(a) Streamline. 
A streamline at time t is a curve whose tangent at every point has the direction of the 

instantaneous velocity vector of the particle at the point. Experimentally, streamlines on the 
surface of a fluid are often obtained by sprinkling it with reflecting particles and making a 
short-time exposure photograph of the surface. Each reflecting particle produces a short line 
on the photograph approximating the tangent to a streamline. Mathematically, streamlines 
can be obtained from the velocity field v(x,t) as follows: 

Let x = x(s) be the parametric equation for the streamline at time t , which passes through 
a given point %. Then an s can always be chosen such that 

dx 
- = v(4t)  & 

(6.10.la) 

x(0) = x, (6.10. lb) 

Example 6.10.1 

Given the velocity field in dimensionless form’ 

v1 = -, X1 v2 =x2, v3 = 0 
1 +t 

find the streamline which passes through the point (al,a2,a3) at time t 

Solution. From 

4 - x1 
& l+t’ 

we have 
(ii) 

Thus, 
S lnxl-lnal= - 

l + t  
i.e., 

t The example is chosen to demonstrate the differences between streamlines, pathlines and streaklines. The 
velocity field obviously does not correspond to an incompressible fluid. 
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- -  

Similarly, from dX2/& = x2, we have 

(iii) 

Thus, x2 = aFs. Obviously,~~ = a3. 

(ii) Pathline 
A pathline is the path traversed by a fluid particle. To photograph a pathline, it is 

necessary to use long time exposure of a reflecting particle. Mathematically, the pathline of 
a particle which was at X at time to can be obtained from the velocity field v(x,t) as follows: 
Let x = x(t) be the pathline, then 

dx 
dt - = v(qt) (6.10.2a) 

X(t0) = x (6.10.2b) 

Example 6.10.2 

For the velocity field of the previous example, find the pathline for a particle which was at 

Solution From 
(x1$2$3) at time to 

we have 

Thus, 

i.e., 

hl x1 - 
dt l+t’  

lnul-lnX1 = In(l+t)-ln(l+t,), 

(ii) 

(iii) 

(iv) 1 +t x1 = XI- 
1 +to 
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Similarly from ctc;! /a2 = x2, we have 

thus 

x2 = x.I--to 

and obviously, x3  = X 3  

(iii)Streakline 

passed through x, at t < t .  

has the material coordinates given by X = X(x,, t); this same particle is then at 
x = x (X(x, , t), t )  at time t. Thus, the streakline at time t is given by 

x = x(X(s, t) , t)  for fixed t and variable z (6.10.3) 

A streakline through a fixed point x, is the line at time t formed by all the particles which 

Let X = X(x, t )  denote the inverse of x = x(X, t) ,  then the particle which was at x, at time t, 

Example 6.10.3 

Given the dimensionless velocity field 

X1 
1 +t v1 = -, v2 = x2, v3 = 0 

find the streakline formed by the particles which passed through the spatial position 

Solution. The pathline equations for this velocity field was obtained in Example 6.10.2 to 
(a1 9 a 2  9 a 3 ) .  

be 

From which we obtain the inverse equations 

1 +to , x, = x .  -f+f 0, x 3  = x 3  
l l + t  

x, = x  

Thus, the particle which passes through a l ,  a 2 ,  a 3  at time t is given by 

l+to , X 2 = a s  --t+t, , X 3 = a 3  x1= Q 1 1 + ,  

(ii) 

(iii) 
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Substituting Eq. (iv) into Eq. (ii), we obtain the parametric equations for the streakline to be 
1 +t t-7 

l+t 
X I =  al- , x2 = a;?e , x3 = a3 

Example 6.10.4 

Given the two dimensional problem 
v, = k q ,  v2 = 0 

Obtain (a) the streamline passing through the point (al,a2 ) 

(b) the pathline for the particle (X1,X2) and 

(c) the streakline for the particles which passed through the point (a1,az ) 

Solution. (a) From Eq. (i), we have 

thus, 
x 2 = a 2 ,  x l = a l + k a p ,  OIS<OJ 

This is obviously a straight line parallel to the x1 axis. 

(b) from (i) , we have 

thus, 
x 2 = x 2 ,  x 1 = x , + k X 2 t ,  O I t < @ J  

Again, this is a straight line parallel to the x1 axis. 

(c) From the results of (b), we have 
x, = x ,  - kqt,  x2 = x2 

therefore, 
Xl = a1 - k a 2 t ,  X2 = a2 

Substituting Eq. (vii) into Eq. (v), we obtain 
x l = a l + k a 2 ( t - t ) ,  x 2 = a 2 ,  -@J I t  <t 

(ii) 

(iii) 

(vi) 

(vii) 

(viii) 
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Again, this is a straight line parallel to the x1 axis. 

(iv)Steady and Unsteady Flow 
A flow is called steady if at every fixed location nothing changes with time. Otherwise, the 

flow is called unsteady. It is important to note, however that in a steady flow, the velocity, 
acceleration, temperature etc. of a given fluid particle in general changes with time. In other 
words, let Y be any dependent variable, then in a steady flow, (aY /at),-f,,d = 0, but 
DY /Dt is in general not zero. For example, the steady flow given by the velocity field 

v1 = X I ,  v2 = "2, v3 = 0 ( 0  

has an acceleration field given by 

av, av, avl avl 
at axl ax2 ax3 

a1 = -+VI-+V~-+V~- = =O+x1(1)+0+0 = X I  
(ii) 

av2 av2 av2 av2 (iii) 
a2 = -+vl-+v2-+~3- = = O + o + ( - ~ q ( - l ) + O  = ~ 2  

at axl ax2 ax3 

a3 = 0 (iv) 

We note that for steady flow the pathlines coincide with the streamlines and streaklines. 
(v) Laminar and Turbulent Flow 

A laminar flow is a very orderly flow in which the fluid particles move in smooth layers, or 
laminae, sliding over particles in adjacent laminae without mixing with them. Such flow are 
generally realized at slow speed. For the case of water flowing through a tube of circular 
cross-section, it was found by Reynolds who observed the thin filaments of dye in the tube, 
that when the dimensionless parameter NR (now known as Reynolds number) defined by 

Vrn Pd (6.10.3) 

[where v,,, is the average velocity in the pipe, d the diameter of the pipe, andp andp the density 
and viscosity of the fluid], is less than a certain value (approximately 2100), the thin filament 
of dye was maintained intact throughout the tube, forming straight lines parallel to the axis of 
the tube. Any accidental disturbances were rapidly obliterated. As the Reynolds number is 
increased the flow becomes increasingly sensitive to small perturbations until a stage is reached 
wherein the dye filament broke and diffused through the flowing water. This phenomenon of 
irregular intermingling of fluid particle in the flow is termed turbulent. In the case of pipe 
flow, the upper limit of the Reynolds number, beyond which the flow is turbulent, is indeter- 
minate. Depending on the experimental setup and the initial quietness of fluid, this upper 
limit can be as high as 100,000. 

NR = -ji- 
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In the following sections, we restrict ourselves to the study of laminar flows only. It is 
therefore to be understood that the solutions to be presented are valid only within certain 
limits of some parameter (such as Reynolds number) governing the stability of the flow. 

In the following sections, we shall present some examples of laminar flows of an incompres- 
sible Newtonian fluid. 

6.11 Plane Couette Flow 

The steady unidirectional flow, under zero pressure gradient in the flow direction, of an 
incompressible viscous fluid between two horizontal plates of infinite extent, one fixed and 
the other moving in its own plane with a constant velocity v, is known as the plane Couette 
flow (Fig. 6.6). 

Letxl be the direction of the flow. Thenv2 = v3 = 0. It follows from the continuity equation 
that v1 can not depend onxl. Let ~1x2 plane be the plane of flow, then the velocity field for 
the plane Couette flow is of the form 

v1 = v(x2), v2 = 0, v3 = 0 (9  

From the Navier-Stokes equation and the boundary conditions v(0) = 0 and v(d) = v,, it 

V&2 (6.11.1) 

can be shown (we leave it as an exercise ) that 

v(x2) = - d 

Fig. 6.6 
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6.12 Plane-Poiseuille Flow 

The plane Poiseuille flow is the two-dimensional steady unidirectional flow between two 
fixed plates of infinite extent. Let x1 be the direction of flow, x2 be perpendicular to the 
boundary plates and the flow be unbounded in the x3 direction. Then the velocity field is of 
the following form: 

V I =  v(x2), v2 = 0 and v3=O 

Let us first consider the case where gravity is neglected. We shall show later that the 
presence of gravity does not at all affect the flow field, it only modifies the pressure field. 

Fig. 6.7 

In the absence of body forces, the Navier-Stokes equations, Eqs. (6.7.2) yield: 

(6.12.la) 

(6.12.lb) 

(6.12.1~) 

Equations (6.12.lb) and (6.12.1~) state that p does not depend 011x2 andx3 If we differentiate 
Eq. (6.12.la) with respect toxl, and noting that the right hand side is a function ofx2 only, we 
obtain 

Thus, 
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4 = a constant 4 
(ii) 

i.e., in plane Poiseuille flow, the pressure gradient is a constant along the flow direction. This 
pressure gradient is the driving force for the flow. Let 

(6.12.2) 

so that a positive a corresponds to the case where the pressure decreases along the flow 
direction, then Eq. (6.12.la) becomes 

d2v (iii) 
-a = p ~  

h 2  

Integrating, one gets 
dv 

P-= -m + 4 2 c  

and 

pv = --+cx2+D 2 
Referring to Fig. 6.7, the boundary conditions are: 

v( -b)  = v(+b)  = 0 

thus, the solution is: 
a 2 2  v ( x ~ )  = -(b - ~ 2 )  2P 

(6.12.3) 

Thus, the velocity profile is a parabola, with a maximum velocity at the mid-channel given by 

a 2  
2P vmax = -b (6.12.4) 

The flow volume per unit time per unit width passing any cross-section can be obtained by 
integration: 

The average velocity is 

(6.12.5) 

(6.12.6) 
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We shall now prove that in the presence of gravity and independent of the inclination of 

Let k be a unit vector pointing upward in the vertical direction, then the body force is: 
the channel, the Poiseuille flow always has the velocity profile given by Eq. (6.12.3). 

B = -gk (6.12.7) 

and the components of the body force in the xl, x2 and x3 directions are: 

B1= -gel*k B2 = -ge2-k B3 = -ge3-k ( 4  

Let rbe the position vector of a fluid particle and let y be its vertical coordinate. Then 
r = xlel+x2e2+x3e3 

and 
y = r-k = xl(el.k)+x2(e2-k)+q(q.k) 

Now, using Eq. (vii) we can write the body force components Eq. (v) as follows: 

Thus, the Navier-Stokes equations can be written 

( 4  

(vii) 

(viii) 

(6.12.8a) 

(6.12.8b) 

(6.12.8~) 

These equations are the same as Eqs. (6.12.1) except that the pressure p is replaced by 
p +PO. From these equations, one clearly will obtain the same parabolic velocity profile, except 
that the driving force in this case is the gradient of p + p ~  in the flow direction , instead of 
simply the gradient ofp. We note that [p /@g) + y] has been defined in Example 6.7.2 as the 
piezometric head. We can also say that the driving force is the gradient of the piezometric head 
and the piezometric head is a constant along any direction perpendicular to the flow. 

6.13 Hagen-Poiseuille Flow 

The so-called Hagen-Poiseuille flow is a steady unidirectional axisymmetric flow in a 
circular cylinder. Thus, we look for the velocity field in cylindrical coordinates in the following 
form 

v, = 0, ve = 0, V, = v(r) (0 
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The velocity field given by Eq. (i) obviously satisfies the equation of continuity: 
i a  1 avo avz -(rvr)+-+- = 0 rar r az 

(ii) 

for any v(r). 

Fig. 6.8 

In the absence of body forces, the Navier-Stokes equations, in cylindrical coordinates for the 
velocity field of Eq. (i) are : 

O= - * (6.13.la) 
ar 

O= -= aP (6.13.lb) 

ap i d  m, o=--+p az [ r h (  - r- ,,3 (6.13. IC) 

From Eqs. (6.13.la) and (6.13.lb), we see thatp depends only onz and from Eq. (6.13.lc), we 
have 

thus, dp/a!z is a constant. Let 

then 
--=-(-) a I d  dv 

P rdr dr 

(6.13.2) 

(ii) 
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Thus, 
dv ar b _ -  
dr - -2u+y 

and 
2 

v = --+b IW+C ar 
4P 

(iii) 

Since v must be bounded in the flow region, the integration constant b must be zero. Now, the 
nonslip condition on the cylindrical wall demands that 

d v = O  at r = -  2 

where d is the diameter of the pipe, thus 

&[&j P 16 

and 

(6.13.3) 

The above equation states that the velocity over the cross- section is distributed in the form of 
a paraboloid of revolution. 

The maximum velocity is (at r = 0) 
ad2 (6.13.4) - 

Vmax - - 16P 

The mean velocity V is 

- v = -  J v & = - - -  a d 2  Vmax 
(nd2/4) A 32p-  2 

and the volume rate of flow Q is 

where 
a = -dp/dz 

(6.13.5) 

(6.13.6a) 

(6.13.6b) 

As in the case of plane Poiseuille flow, if the effect of gravity is included, the velocity profile 
in the pipe remains the same as that given by Eq. (6.13.3), however, the driving force now is 
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the gradient of (p +pgv) where y is the vertical height measured from some reference datum, 
and the piezometric 'head (p/pg+y) is a constant along any direction perpendicular to the 
flow. [see Example 6.7.21. 

6.14 Plane Couette Flow of Two Layers of Incompressible Fluids 

Let the viscosity and the density of the top layer bepl  andpl and those of the bottom layer 
bep2 andp2. Let x1 be the direction of flow and letx2 = 0 be the interface. We look for steady 
unidirectional flows of the two layers between the infinite plates x2 = +bl andx2 = -b2. The 
platex2 = -b2 is fixed and the platex2 = +bl  is moving on its own plane with velocity v,. The 
pressure gradient in the flow direction is assumed to be zero. (Fig. 6.9). 

Let the velocity distribution in the top layer be 

= v(')(x2), vp = = 0 ( 9  

and that in the bottom layer be 

.p = v'2'(x2), $1 = .$2) = 0 (ii) 

the equation of continuity is clearly satisfied for each layer. The Navier-Stokes equations give: 

For layer 1, 

For layer 2, 

(6.14. la) 

(6.14. lb) 

(6.14.1~ ) 

(6.14.2a) 

(6.14.2b) 

(6.14.2~) 
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Fig. 6.9 

From Eqs. (6.14. l), 

v(') =Ap2+B1 and p(') = -pgx2+C1 

From Eqs. (6.14.2), 

v ( ~ )  = Ag2+B2 and p(2)  = -p2gx2+C2 

Since the bottom plate is fixed 

v ( ~ )  = 0 at x2 = -b2 

and we have 
B2 = A2b2 

(iii) 

Since the top plate is moving with v, to the right, therefore dl) = v,at x2 = +bl and we have 
B1= vo-Albl (vii) 

At the interface x2 = 0, we must have v(l)  = d2) so that there is no slipping at the fluid 
interface. Therefore, 

B1= B2 (viii) 

Furthermore, from Newton's third law, we have, on x2 = 0, the stress vectors on the two 
layers are related by 

tc_l> = -p2> (W 
e2 +e, 
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In terms of stress tensors, we have T(%2 = T(2)q .  That is 

4;) = 42 4Y = 42 7%) = 7%) 

In other words, these stress components must be continuous across the fluid interface. Since 

(xii) 

the condition 49 = fig gives 

PIA1 = P A 2  (xiii) 

Note that this condition means that the slope of the velocity profile is not continuous at 

fiy = - p ( ” + * l & )  = -p(l) (xiv) 

x2 = 0. Also 

so that 49 = 49 at x2 = 0 gives C1= C2 = po, the pressure at the interface. Since l$) = 0 
and 7$? = 0, the condition @ = 49 is clearly satisfied. From Eqs. (vi,vii,viii,xiii), we obtain 

and 

Thus, the velocity distributions are 

(xvii) 

(xviii) 

(6.14.3a) 

and 
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v p  = @1x2+Plb2)vo vy) = v p  = 0 (6.14.3b) 

Note that in the case of b2 = 0, vi1) = (v0/b&2, which is the case of plane Couette flow 

@2bl +P 1b2) ' 

of a single fluid. 

6.15 Couette Flow 

The laminar steady two-dimensional flow of an incompressible Newtonian fluid between 
two coaxial infinitely long cylinders caused by the rotation of either one or both cylinders with 
constant angular velocities is known as Couette flow. 

For this flow, we look for the velocity field in the following form in cylindrical coordinates 

V ,  = 0, vg = v(r), V ,  = 0 (9  

This velocity field obviously satisfies the equation of continuity [Eq. (6.8.2)] for any v(r). 
In the absence of body forces and taking into account the rotational symmetry of the flow 

(i.e., nothing depends one), we have, from the second Navier Stokes-equation of motion, Eq. 
(6.8.lb), for the two-dimensional flow, 

d2v ldv  v ---+--- = 0 
dr2 r* r2 

(6.15.1) 

Fig. 6.10 
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It is easily verified that v =rand v = I/r satisfy the above equation. Thus, the general solution 

B (6.15.2) 
v =Ar+- r 

is 

where A and B are arbitrary constants 

their respective angular velocities. Then 
Let r1  and r2 denote the radii of the inner and outer cylinders, respectively, 521 and 522 

and 
B 

r2522 = A r 2 + -  
r2  

from which the constants A and B can be obtained to be 

5 2 2 4  - 52 1r: r w 1 -  Q2) 
A =  2 2 , B =  2 2 

r2-r1 r2  -'1 

so that 

and 
v, = v, = 0 

The shearing stress at the walls is equal to 

(ii) 

(iii) 

(iv) 

(6.15.3) 

It can be obtained (see Prob. 6.27) that the torque per unit length which must be applied to 
the cylinders ( equal and opposite for the two cylinders ) to maintain the flow is given by 

6.16 Flow Near an Oscillating Plate 

Let us consider the following unsteady parallel flow near an oscillating plate: 

(6.15.5) 
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v1 = v(x2,t), v2 = 0, v3 = 0 (9  

Omitting body forces and assuming a constant pressure field, the only nontrivial Navier-Stokes 
equation is 

av a2v 
P z = P T  

ax2 

v = ae ~x2cos(of-/3x2+&) 

p = w  

v = acos(wt+&) 

It can be easily verified that 
- 

satisfies the above equation if 

From Eq. (6.16.2a), the fluid velccity at x;? = 0 is 

(6.16.1) 

(6.16.2a) 

(6.16.2b) 

(6.16.3) 

Fig. 6.11 

Thus, the solution Eq. (6.16.2) represents the velocity field of an infinite extent of liquid lying 
in the region x 2 1 0  and bounded by a plate at x2 = 0 which executes simple harmonic 
oscillations of amplitude a and circular frequency o. It represents a transverse wave of 

wavelength 2.z propagating inward from the boundary with a phase velocity but with 
rapidly diminishing amplitude ( the falling off within a wavelength being in the ratio 
e-% = 11535). Thus, we see that the influence of viscosity extends only to a short distance 
from the plate performing rapid oscillation of small amplitude a. 

0 

7 
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6.1 7 

a continuum was derived in Chapter 4, Section 4.12 to be given by 

Dissipation Functions for Newtonian Fluids 

The rate of work done P by the stress vectors and the body forces on a material particle of 

(6.17.1) 

where dVis the volume of the material particle. In Eq. (6.17.1), the first term in the right side 
is the rate of change of the kinetic energy (ICE.) and the second term P, dVis the rate of work 
done to change the volume and shape of the “particle” of volume dV. Per unit volume, this 
rate is denoted by P, and is known as the stress working or stress power. 

In this section, we shall compute the stress power for a Newtonian fluid. 
(A) Incompressible Newtonian Fluid. 

We have, 
T.. = -pS..+T..’ 

4 rl 4 ’ 
thus 

Since the fluid is incompressible, avi/axi = 0, therefore, 

(9 

(6.17.2) 

(ii) 

i.e., 

P, = &(D:1+D;2+D&+W:,+ W:3+ Wk)  (6.17.3) 

This is the work per unit volume per unit time done to change the shape and this part of the 
work accumulates with time regardless of how DQ vary with time (P, is always positive and is 
zero only for rigid body motions). Thus, the function 

ainc = a ( D : l + ~ ~ 2 + D ~ 3 + W ~ 2 + W ~ 3 + W ; ~ )  = &DQDO (6.17.4) 

is known as the dissipation function for an incompressible Newtonian fluid. It represents the 
rate at which work is converted into heat. 
(B) Newtonian Compressible Fluid 

avi 
axi 

For this case, we have, with A denoting - 
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avi 2 
axj T.- = -pA+AA +Q,inC c -PA+@ 

(6.17.5) 

where 
@ = A(Dll+D22+D33)2+@inc (6.17.6a) 

is the dissipation function for a compressible fluid.We leave it as an exercise [see Prob. 6.391 
to show that the dissipation function Q, can be written 

2 
@ = (A+-p 3 >(Dl l+D22+D33)’+$/4 [(Dll-D22)2+(D11-D33>2+(D22-D33)21 

+4/4(D?2+&+&) (6.17.6b) 

Example 6.17.1 

For the simple shearing flow with 
v1 = k q ,  v2 = 0, v3 = 0 

Find the rate at which work is converted into heat if the liquid inside of the plates is water with 
p = 2X 1b.s. /ft2(0.958 mPa.s), and k = 1 s-’. 

Solution Since the only nonzero component of the rate of deformation tensor is 
k 

Dl2 = 5 
Thus, from Eq. (6.17.4), 

-5  ft-lb 3N.m [or, 0.958 X 10- 3 1  - 

(ft)3 s m s  
2 

Q,inc =: 4/40:, = pk = 2 X 10 

Thus, in one second, per cubic feet of water, the heat generated by viscosities 
B.T.U. [or, 0.958X joule per cubic meter per second 1. 

(ii) 

is 2.5X10-8 

6.18 Energy Equation For a Newtonian Fluid 

In Section 4.14 of chapter 4, we derived the energy equation for a continuum to be 

(6.18.1) 

where u is the internal energy per unit mass, p is density, qi is the component of heat flux 
vector, qs is the heat supply due to external sources. 
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If the only heat flow taking place is that due to conduction governed by Fourier’s law 
q = -KVO, where 0 is the temperature, then Eq. (6.18.1) becomes, assuming a constant 
coefficient of thermoconductivity K 

DU avi a2e (6.18.2) 
+K- P g t =  q~$ axjaxj 

For an incompressible Newtonian fluid, if it is assumed that the internal energy per unit 
mass is given by cO, where c is the specific heat per unit mass, then Eq. (6.18.2) becomes 

(6.18.3) 

where from Eq. (6.17.4) , QinC = ~ ( D : 1 + D ~ 2 + D ~ 3 + 2 0 : 2 + ~ : ~ + ~ ~ 3 ) ,  representing the 
heat generated through viscous forces. 

There are many situations in which the heat generated through viscous action is very small 
compared with that arising from the heat conduction from the boundaries, in which case, Eq. 
(6.18.3) simplifies to 

DO - a20  (6.18.4) --a- 

DO a2e 
Dt axjaxj 

PC- = @jnc+K- 

Dt axjaxj 

where a = K / ~ C  = thermal diffusivity. 

Example 6.18.1 

A fluid is at rest between two plates of infinite dimension. If the lower plate is kept at 
constant temperature 0, and the upper plate at O,, find the steady-state temperature 
distribution. Neglect the heat generated through viscous action. 

Solution. The steady-state distribution is governed by the Laplace equation 

Fig. 6.12 
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&I a2e a 2 0  
ax ay az2 
+2+- = 0 

which in this problem reduces to 

-- - 0  d 2 0  

dY2 

Thus, 

and 
0 = cfl+c, 

(0  

(ii) 

(iii) 

Using the boundary condition 0 = 0, at y = 0 and 0 = 0, at y = d,  the constants of in- 
tegration are determined to be 

0, -0, c1=- d 
c, = 0, 

d 0  It is noted here that when the values of 0 are prescribed on the plates, the values of - on 

the plates are completely determined. In fact, - = (0 , -0 l ) /d .  This serves to illustrate 
dY 

d 0  
dv 

that, in steady-state heat conduction problem (governed by the Laplace equation) it is in 
general not possible to prescribe both the values of 0 and the normal derivatives of 0 at the 
same points of the complete boundary unless they happen to be consistent with each other. 

Example 6.18.2 

The plane Couette flow is given by the following velocity distribution: 
v 1  = ky, v2 = 0, v3 = 0 (0 

If the temperature at the lower plate is kept at 0, and that at the upper plate at Gll, find the 
steady- state temperature distribution. 

Solution. We seek a temperature distribution that depends only on y. From Eq. (6.18.3) , 
we have, since 0 1 2  = k/2 

(ii) 



Thus, 
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(iii) 

which gives 

where C1 and C2 are constants of integration. Now at y = 0, 0 = 01 and at y = d, 0 = O,, 
therefore, 

c, = 0, cl=-+ @u & -- 01 and d a d  
The temperature distribution is therefore given by 

= - y  pk2 2 + (%-@I - ~ pk2d 
2Jc d 2Jc 

6.1 9 Vorticity Vector 

We recall from Chapter 3, Section 3.13 and 14 that the antisymmetric part of the velocity 
gradient (Vv) is defined as the spin tensor W .  Being antisymmetric, the tensor W is equivalent 
to a vector o in the sense that Wx = o X x (see Sect. 2B16). In fact, 

o = -(W23el+W31e2+W12e3). 

Since (see Eq. (3.14.4), 

D (6.19.1) -(dx) = (Vv)dx = Ddx+Wdx = Ddx+oxdx Dt 

the vector o is the angular velocity vector of that part of the motion, representing the rigid 
body rotation in the infinitesimal neighborhood of a material point. Further, o is the angular 
velocity vector of the principal axes of D, which we show below: 

Let dx be a material element in the direction of the unit vector n at time t., i.e., 

dx 
ds 

n = -  

where a3 is the length of dx Now 

n = - -  -- - (”) - ( k d x )  ---$[g(ds)]dx 
Dt Dt ds 

(6.19.2) 

But, from Eq. (3.13.6) of Chapter 3, we have 
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1 D  
a5Dt -(&) = n*Dn 

Using Eq. (6.19.1) and (ii) ,Eq. (i) becomes 
D 

-N = (D+w)~~-(n*Dn)n Dt 

Now, if n is an eigenvector of D, then 
Dn =An 

and 
n*Dn = 1 

and Eq. (6.19.3) becomes 
D -n = Wn = o x n  Dt 

(ii) 

(6.19.3) 

(6.19.4) 

(6.19.5) 

(6.19.6) 

which is the desired result. 
Eq. (6.19.6) and Eq. (6.19.1) state that the material elements which are in the principal 

directions of D rotate with angular velocity o while at the same time changing their lengths. 
In rectangular Cartesian coordinates, 

o = - 1 [ ---1 aV3 av2 el+- 1 [ ---) avl av3 e2+- 1 [ ---I av2 avl e3 
2 ax2 ax3 2 ax3 ax, 2 ax, ax2 

(6.19.7) 

Conventionally, the factor of 1/2 is dropped and one defines the so-called vorticity vector 5 
as 

The tensor 2W is known as the vorticity tensor. 
It can be easily seen that in indicia1 notation, the Cartesian components of 5 are 

and in invariant notation, 
5 = curl v 

In cylindrical coordinates (r,O,z) 

(6.19.9) 

(6.19.10) 
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In spherical coordinates (r,e,p) 

Example 6.19.1 

Find the vorticity vector for the simple shearing flow: 
v1 = "r;?, v2 = v3 = 0 

Solution. We have 

and 

That is, 

av2 avl 
53 = G-G = -k 

f = - k  e3 (ii) 

We see that the angular velocity vector ( = f / 2) is normal to thexl x2 plane and the minus 
sign simply means that the spinning is clockwise looking from the positive side of x3. 

Example 6.19.2 

Find the distribution of the vorticity vector in the Couette flow discussed in Section 6.15. 
Solution. With v, = v, = 0 and vg = Ar+(B /r) .  It is obvious that the only nonzero vorticity 

From Eq. (6.19.11), 
component is in the z direction. 

Now, 

Thus, 

-(we) d = -(Ar d 2  +B) = 2Ar dr dr 
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6.20 Irrotational Flow 

If the vorticity vector ( or equivalently, vorticity tensor) corresponding to a velocity field, is 
zero in some region and for some time interval, the flow is called irrotational in that region 
and in that time interval. 

Let ~ ( x l ,  x2, x3, t )  be a scalar function and let the velocity components be derived from Q 
by the following equation: 

i.e., 

(6.20.1) 

(6.20.2) 

Then the vorticity component 
2 2 av av 

ax2 ax3 ax3ax2 ax2ax3 
5 - 3-2 = -x+* = 0 

and similarly 

52 = c3 = 0 

That is, a scalar function p(xl,  x2, x3, t )  defines an irrotational flow field through the 
Eq. (6.20.2). Obviously, not all arbitrary functions Q will give rise to velocity fields that are 
physically possible. For one thing, the equation of continuity, expressing the principle of 
conservation of mass, must be satisfied. For an incompressible fluid, the equation of continuity 
reads 

avi (6.20.3) -- - 0  axi 

Thus, combining Eq. (6.20.2) with Eq. (6.20.3), we obtain the Laplacian equation for Q, 

dxjaxj 
(6.20.4a) 2 

d = O  

Le., 

(6.20.4b) 
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In the next two sections, we shall discuss the conditions under which irrotational flows are 
dynamically possible for an inviscid and viscous fluid. 

6.21 Irrotational Flow of an Inviscid Incompressible Fluid of Homogeneous 
Density 

An inviscid fluid is defined by 
T.. = -pd.. 

'I Y (6.21.1) 

obtained by setting the viscosityp = 0 in the constitutive equation for Newtonianviscous fluid. 

The equations of motion for an inviscid fluid are 

or 
Dv 
Dt 

p- = -Vp+pB 

(6.21.2a) 

(6.2 1.2b) 

Equations (6.21.2) are known as the Euler's equation of motion. We now show that irrotational 
flows are always dynamically possible for an inviscid, incompressible fluid with homogeneous 
density provided that the body forces acting are derivable from a potential S2 by the formulas: 

aa 
I axi 

B.  = -- (6.2 1.3) 

For example , in the case of gravity force, with x3 axis pointing vertically upward, 

Q =&y3 (6.2 1.4) 

so that 
B1= 0, B2 = 0, B3 = -g (6.21.5) 

Using Eq. (6.21.3), and noting thatp = constant for a homogeneous fluid. Eq. (6.21.2) can 

(6.21.6) 

be written as 

at 'axj ax, 0 P 
avi av. -a E + g  

For an irrotational flow 

so that 
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2 2 3  where v2 = vl+v2+v3 is the square of the speed. Therefore Eq. (6.21.6) becomes 
" 

Thus 

--+-+-+S2 aP v2 P =f(t) 
at 2 P 

wheref(t) is an arbitrary function oft. 

If the flow is also steady then we have 
2 

" E  -+ +S2 = constant. 2 P  

(ii) 

(6.21.7) 

(6.21.8) 

(6.21.9) 

Equation (6.21.8) and the special case (6.21.9) are known as the Bernoulli's equations. In 
addition to being a very useful formula in problems where the effect of viscosity can be 
neglected, the above derivation of the formula shows that irrotational flows are always 
dynamically possible under the conditions stated earlier. For whatever function p, so long as 
vi = -- and V p = 0, the dynamic equations of motion can always be integrated to give 

Bernoulli's equation from which the pressure distribution is obtained, corresponding to which 
the equations of motion are satisfied. 

a(P 2 
axi 

Example 6.21.1 

3 2  Given (p =x -3xy . 
(a) Show that p satisfies the Laplace equation. 
(b) Find the irrotational velocity field. 
(c) Find the pressure distribution for an incompressible homogeneous fluid, if at (0,O.O) 
p = p o  and SZ =gz. 

(d) If the plane y = 0 is a solid boundary, find the tangential component of velocity on the 
plane. 

Solution. (a) We have 
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therefore, 

aP 
ax, (b) From vi = --, we have 

(c) We have, at (O,O,O),vl = 0, v2 = 0, v3 = 0, p =po,  and Q = 0 

therefore, from the Bernoulli’s equation, [Eq. (6.21.9)] 

we have 

and 

or 

Y +  1 2  E + Q = C  
2 P  

c=po 
P 

p =p,-5[9(y 2 --x 2 2  ) +3&c2y2]-pgz 

(ii) 

(iii) 

(vii) 

2 (d) On the plane y = 0, V I =  -3x and v2 = 0. Now, v2 = 0 means that the normal com- 
ponents of velocity are zero on the plane, which is what it should be if y = 0 is a solid fixed 
boundary. Since v1 = -3x , the tangential components of velocity are not zero on the 
plane, that is, the fluid slips on the boundary. In inviscid theory, consistent with the assumption 
of zero viscosity, the slipping of fluid on a solid boundary is allowed. More discussion on this 
point will be given in the next section. 

2 

Example 6.21.2 

A liquid is being drained through a small opening as shown. Neglect viscosity and assume 
that the falling of the free surface is so slow that the flow can be treated as a steady one. Find 
the exit speed of the liquid jet as a function of h. 
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Solution. For a point on the free surface such as the point A, p = po, v = 0 and z = h. 
Therefore, from Eq. (6.21.9) 

1 2  E Po (9 
Y + +gz=-+gh 
2 P  P 

At a point on the exit jet, such as the point B, z = 0 andp = po. Thus, 

1 2 Po Po (ii) 
2 P P  
Y +-=-+gh 

from which 
V = *  (iii) 

This is the well known Torricelli’s formula. 

Fig. 6.13 

6.22 

equations: 

Irrotational Flows as Solutions of Navier-Stokes Equation 

For an incompressible Newtonian fluid, the equations of motion are the Navier-Stokes 

2 
av, av, l a p  p a vi (6.22.1) -+v- = -- +- +B, at laxj paxi paxjaxj 

For irrotational flows 
v. = -- aP (6.22.2) 

I ax, 
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so that 

-=--!!e =-P a a2 
a2 ( 1 axi axjaxj 

a vi 
axjaxj axjaxj axi 

2 

2 
But, from Eq. (6.20.4) * = 0. Therefore, the terms involving viscosity in the Navier- 

Stokes equation drop out in the case of irrotational flows so that the equations take the same 
form as the Euler’s equation for an inviscid fluid. Thus, if the viscous fluid has homogeneous 
density and if the body forces are conservative ( Le., Bi = --), the results of the last sections 

show that irrotational flows are dynamically possible also for a viscous fluid. However, in any 
physical problems, there are always solid boundaries. A viscous fluid adheres to the boundary 
so that both the tangential and the normal components of the fluid velocity at the boundary 
should be those of the boundary. This means that both velocity components at the boundary 
are to be prescribed. For example, ify = 0 is a solid boundary at rest, then on the boundary, 
the tangential components, v, =v, = 0, and the normal components v,, = 0. For irrotational 
flow, the conditions to be prescribed for Q on the boundary are p = constant aty = 0 ( so that 
v, = v, = 0) and * = 0 at y = 0. But it is known‘(e.g., see Example 6.18.1, or from the 

potential theory) that in general there does not exist solution of the Laplace equation satisfying 
both the conditions Q = constant and Vp-n = !!e = 0 on the complete boundaries. There- 

fore, unless the motion of solid boundaries happens to be consistent with the requirements of 
irrotationality, vorticity will be generated on the boundary and diffuse into the flow field 
according to vorticity equations to be derived in the next section. However, in certain 
problems under suitable conditions, the vorticity generated by the solid boundaries is confined 
to a thin layer of fluid in the vicinity of the boundary so that outside of the layer the flow is 
irrotational if it originated from a state of irrotationality. We shall have more to say about this 
in the next two sections. 

ayiaxj 

as2 
ax, 

aY 

an 

Example 6.22.1 

For the Couette flow between two coaxial infinitely long cylinders, how should the ratio of 
the angular velocities of the two cylinders be, so that the viscous fluid will be having irrotational 
flow? 

Solution. From Example 19.2 of Section 6.19, the only nonzero vorticity component in the 
Couette flow is 

where Szi denotes the angular velocities.If S22r&s21rf = 0, the flow is irrotational. Thus, 
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2 

‘2 

Q2 rl 
q = T  

(ii) 

It should be noted that even though the viscous terms drop out from the Navier-Stokes 
equations in the case of irrotational flows, it does not mean that there is no viscous dissipation 
in an irrotational flow of a viscous fluid. In fact, so long as there is one nonzero rate of 
deformation component, there is viscous dissipation [given by Eq. (6.17.4)] and the rate of 
work done to maintain the irrotational flow exactly compensates the viscous dissipations. 

6.23 Vorticity Transport Equation for Incompressible Viscous Fluid with a 
Constant Density 

In this section, we derive the equation governing the vorticity vector for an incompressible 
homogeneous viscous fluid. First, we assume that the body force is derivable from a potential 
$2, i.e., Bi = --. Now, withp = constant and Bi = --, the Navier-Stokes equation can 

be written 

as2 as2 
axi axi 

2 avi avi a vi 
at laxj ax, ( P ) axjaxj 

-+v- = -d E+Q +y- (6.23.1) 

wherev = p/p is called the kinematicviscosity. If we operate on Eq. (6.23.1) by the differential 
operator E 

a 
mnl ax,, - [Le, taking the curl of both sides of Eq. (6.23.1)j. We have, since 

and 

(ii). 

(6.23.2) 

(iii) 

The Navier-Stokers equation therefore, takes the form 
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avm 
ax,, We now show that the third term on the left-hand side is equal to - 4 n .  

From Eq. (6.19.9), we have 

Thus, 

But it can be easily verified that for any A;j, ~ ~ , , i A ~ & j ;  = 0, thus 

and since Emn ; j i  = (dmpdnj-dmldnp)[see Prob. 2A7] 

(vii) 

avn 
axn where we have used the equation of continuity - = 0. Therefore, we have 

which can be written in the following invariant form: 

(6.23.4b) 

L3 = (VVX +vv% Dt 

where 

(6.23.5) 



398 Vorticity Transport Equation for Incompressible Viscous Fluid with a Constant Density 

Example 6.23.1 

Reduce, from Eq. (6.23.5) the vorticity transport equation for the case of two-dimensional 
flow. 

Solutions. Let the velocity field be: 

Then 

becomes 
(iii) 

That is, the angular velocity vector( 5 / 2) is perpendicular to the plane of flow as expected. 
Now, 

Thus, Eq. ( 

where 

23.5) reduces to the scalar .quation 

053 - = YV253 Dt 
(6.23.6) 

~a a a 2 a' a' 
-=-+vl-+v2- and V =-+- 
~t at ax, ax2 ax; ax; 
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Example 6.23.2 

The velocity field for the plane Poiseuille flow is given by 

v,  = c [: --x2 2] , v2 = 0. v3 = 0 

(a) Find the vorticity components. 
(b) Verify that Eq. (6.23.6) is satisfied. 

Solution. The only nonzero vorticity component is 

(b) We have, letting = 5 

05 = g+v1-+v2- at ac = 0 + (VI) (0) + 0 = 0 Dt at ax, ax2 

and 

v2c = i ' +4 ] (2CX2)  ax, ax2 = 0 

0 )  

(ii) 

so that Eq. (6.23.6) is satisfied. 

6.24 Concept of a Boundary Layer 

In this section we shall describe, qualitatively, the concept of viscous boundary layer by 
means of an analogy. In Example 6.23.1, we derived the vorticity equation for two-dimensional 
flow of an incompressible viscous fluid to be the following: 

De 
Dt 
- = YV2t (6.24.1) 

where 5 is the only nonzero vorticity component for the two-dimensional flow and Y is 
kinematic viscosity ( Y =PI'@). 

In Section 6.18 we saw that, if the heat generated through viscous dissipation is neglected, 
the equation governing the temperature distribution in the flow field due to heat conduction 
through the boundaries of a hot body is given by [Eq. (6.18.4)] 

Do (6.24.2) - = 
Dt 
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where 0 is temperature and a, the thermal diffusivity, is related to conductivity K,  densityp 
and specific heat pei unit mass c by the formulas a = K / ~ c .  

Suppose now we have the problem of a uniform stream flowing past a hot body whose 
temperature in general varies along the boundary. Let the temperature at large distance from 
the body be Om, then defining 0' = 0-0, , we have 

(6.24.3) 

with 0' = 0 at x2+y2+ 00. On the other hand, the distribution of vorticity around the body is 
governed by 

0 5  - = YV25 Dt 
(6.24.4) 

with 5 = 0 at x2+y2+ 00, where the variation of 5, being due to vorticity generated on the solid 
boundary and diffusing into the field, is much the same as the variation of temperature, being 
due to heat diffusing from the hot body into the field. 

Fig. 6.14 

Now, it is intuitively clear that in the case of the temperature distribution, the influence of the 
hot temperature of the body in the field depends on the speed of the stream. At very low speed, 
conduction dominates over the convection of heat so that its influence will extend deep into 
the fluid in all directions as shown by the curve C1 in Fig. 6.14, whereas at high speed, the heat 
is convected away by the fluid so rapidly that the region affected by the hot body will be 
confined to a thin layer in the immediate neighborhood of the body and a tail of heated fluid 
behind it, as is shown by the curve C2 in Fig. 6.14. 
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Analogously, the influence of viscosity, which is responsible for the generation of vorticity 
on the boundary, depends on the speed r / ,  far upstream. At low speed, the influence will be 
deep into the field in all directions so that essentially the whole flow field is having vorticity. 
On the other hand, at high speed, the effect of viscosity is confined in a thin layer ( known as 
a boundary layer) near the body and behind it. Outside of the layer, the flow is essentially 
irrotational. This concept enables one to solve a fluid flow problem by dividing the flow region 
into an irrotational external flow region and aviscous boundary layer. Such a method simplifies 
considerably the complexity of the mathematical problem involving the full Navier-Stokes 
equations. We shall not go into the methods of solution and of the matching of the regions as 
they belong to the boundary layer theory. 

6.25 Compressible Newtonian Fluid 

For a compressible fluid, to be consistent with the state of stress corresponding to the state 
of rest and also to be consistent with the definition that p is not to depend explicitly on any 
kinematic quantities when in motion, we shall regard p as having the same value as the 
thermodynamic equilibrium pressure. Therefore, for a particular density p and temperature 
0, the pressure is determined by the equilibrium equation of state 

P = P @ , 0 )  (6.25.1) 

For example, for an ideal gasp = Rp0 .  Thus 
T- 1J = -p@,o)dij+AAdij+&Dij 

Since 

2 
3 3 - -p + ( A  +-p)A Tii _ -  

(6.25.2) 

(6.25.3) 

it is clear that the “ pressure” p in this case does not have the meaning of mean normal 
compressive stress. It does have the meaning if 

2 k = A+-p = 0 
3 

which is known to be true for monatomic gases. 
2 Written in terms ofp and k = A+-p, the constitutive equation reads 3 

(6.25.4) 

(6.25.5) 

With c, given by the above equation, the equations of motion become ( assuming constantp 
and k ) 

(6.25.6) 



402 Energy Equation in Terms of Enthalpy 

Equations (6.25.1) and (6.25.6) are four equations for six unknowns VI, v2, v3,p, p, 0; the fifth 
equation is given by the equation of continuity 

and the sixth equation is supplied by the energy equation 

(6.25.7) 

(6.25.8) 

where qj is given by Eq. (6.25.5) and the dependence of the internal energy u onp and 0 is 
assumed to be the same as when the fluid is in the equilibrium state, for example, for ideal gas 

u = c,o (6.25.9) 

where c, is the specific heat at constant volume. 

In general, we have 
u = u@,0)  (6.25.10) 

Equations (6.25.1),(6.25.6),(6.25.7),(6.25.8), and (6.25.10) form a system of seven scalar equa- 
tions for the seven unknowns VI, v2, vg,p, p, 0, and u. 

6.26 Energy Equation in Terms of Enthalpy 

Enthalpy per unit mass is defined as 

P h = u + -  
P 

(6.26.1) 

where u is the internal energy per unit mass,p the pressure,p the density. 

Let h, = h+v2/2, (h, is known as the stagnation enthalpy). We shall show that in terms of 
h,, the energy equation becomes (neglecting body forces) 

Dh, ap a 
~t at axj 

p- = -+-(qj vj-qj) 

where is the viscous stress tensor, qi the heat flux vector. First, by definition, 

(6.26.2) 

(6.26.3). 

From the energy equation [Eq. (6.18.1)], with qs = 0, we have 
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Also, we have 

and the equation of motion ( in the absence of body forces) 

Thus, 

Noting that 

and 

we have, 

or, 

which is Equation (6.26.2). 

(ii) 

(6.26.5) 

(6.26.6) 

(iii) 

(iv) 

(6.26.7) 

Show that for steady flow of an inviscid non-heat conducting fluid, if the flow originates 

(a) h+(v2/2) = constant, and 
(b) if the fluid is an ideal gas then 

from a homogeneous state, then 
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2 (6.26.8) 
P + c  = constant. 

y-1P 2 

where y = cp/cv, the ratio of specific heat under constant pressure and constant volume. 

Solution. (a) Since the flow is steady, therefore, apht  = 0. Since the fluid is inviscid and 
non-heat conducting, therefore q, I =  0 and qi = 0. Thus, the energy equation (6.26.2) reduces 
to 

-- - 0  DhO 
Dt 

In other words, h, is a constant for each particle. But since the flow originates from a 
homogeneous state, therefore 

2 2 
V E  v h, = h+- = +u+- = constant 2 P  2 

in the whole flow field. 
(b) For an ideal gasp = PRO, u = c,O , and R = cp-cv, therefore 

where 
C y = P  
CV 

and 
2 

ho 'p (y -1 )  E Y +c= 2 constant 

(6.26.9) 

(6.26.10) 

(6.26.11) 

(6.26.12) 

6.27 Acoustic Wave 

The propagation of sound can be approximated by considering the propagation of in- 
finitesimal disturbances in a compressible inviscid fluid. For an inviscid fluid, neglecting body 
forces, the equations of motion are 

avi avi 1 ap (6.27.1) -+v- = -- 
at laxj pax, 

Let us suppose that the fluid is initially at rest with 

vi = 0, P =Po, P = P o  (6.27.2) 
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Now suppose that the fluid is perturbed from rest such that 
vi = vli(q t), p =po+pI(~ ,  t), p =po+p ‘(x, t) (6.27.3) 

Substituting Eq. (6.27.3) into Eq. (6.27.1), 

Since we assumed infinitesimal disturbances, the terms vj’(avi’/axj) andp’lp, are negligible 
and the equations of motion now take the linearized form 

-- avil - -- 1 apf (6.27.4) 
at p0 axi 

In a similar manner, we consider the mass conservation equation 

and obtain the linearized equation 

(ii) 

(6.27.5) 

Differentiating Eq. (6.27.4) with respect to xiand Eq. (6.27.5) with respect to t, we 
eliminate the velocity to obtain 

(6.27.6) 

We further assume that the flow is barotropic, i.e., the pressure depends explicitly on density 
only, so that the pressurep = p@). Expandingp@) in a Taylor series about the rest value of 
pressure po, we have 

P =Po+ (5) @-Po)+... 
P O  

Neglecting higher-order terms 
2 p’ = CGp’ 

where 

c;=  (z) 
P O  

(6.27.7) 

(6.27.8) 

(6.27.9) 
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Thus, for a barotropic fluid 

and 

(6.27.10) 

(6.27.11) 

These equations are exactly analogous (for one- dimensional waves) to the elastic wave 
equations of Chapter 5. Thus, we conclude that the pressure and density disturbances will 
propagate with a speed c, = m. We call c, the speed of sound at stagnation, the local 
speed of sound is defined to be 6 (6.27.12) 

40 C =  

When the isentropic relation ofpandp is used, Le., 

P =BpY 

where y = cdcv ( ratio of specific heats) andp is a constant 

so that the speed of sound is 
c = Vyptp 

(6.27.13) 

(iii) 

(6.27.14) 

Example 6.27.1 

(a) Write an expression for a harmonic plane acoustic wave propagating in the el direction. 
(b) Find the velocity disturbance V I .  

(c) Compare avi/at to the neglected vjavi / axp 

(a) Referring to the section on elastic waves, we have 
Solution. In the following ,p,  p, v1 denote the disturbances, that is, we will drop the primes. 

p = Esin [ -cd)] 

(b) Using Eq. (6.27.4), we have 
(ii) 



Therefore, the velocity disturbance 
v l  = -in E [ ~ l - c d ) ]  

POCO 

is exactly the same form as the pressure wave. 
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(iii) 

(c) For the one-dimensional case, we have the following ratio of amplitudes 

dVl 

at 

Thus, the approximation is best when the disturbance has a velocity that is much smaller than 
the speed of sound. 

Example 6.27.2 

Two fluids have a plane interface at X I =  0. Consider a plane acoustic wave that is normally 
incident on the interface and determine the amplitudes of the reflected and transmitted waves. 

Solution. Let the fluid properties to the left of the interface (x,<O) be denoted by pl,cl, 
and to the right (x1>0) by p2,q. 

Now, let the incident pressure wave propagate to the right, as given by 

This pressure wave results in a reflected wave 

and a transmitted wave 
2.n 
IT 

pT = E sin-(xl-c2t) ( ~ 1 1 0 )  

(ii) 

(iii) 

We must now consider the conditions on the boundary x1 = 0. First, the total pressure must 
be the same, so that 

or, 
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This equation will be satisfied for all time if 

and 
E - E  = E  
I R T  (vii) 

In addition, we require the normal velocity be continuous at all time on x1 = 0, so that 

, is also continuous. Thus, by using Eq. (6.27.4), (2) x1 = 0 

(viii) 

x1 = 0 x1 = 0 x1 = 0 

Substituting for the pressure, we obtain 

Combining Eqs. (vi) (vii) and (ix) we obtain 

ET = ( l+(p1c1 2 ,  / p s 2 )  

Note that for the special caseplcl= ~ $ 2 ,  

E T =  EI and ER = 0 (xii) 

This productpc is referred to as the “fluid impedance”. This result shows that if the impedances 
match, there is no reflection. 

6.28 Irrotational, Barotropic Flows of Inviscid Compressible Fluid 

Consider an irrotational flow field given by 

(6.28.1) 



To satisfy the mass conservation principle, we must have 

In terms of (p this equation becomes 
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(6.28.2) 

The equations of motion for an inviscid fluid are the Euler equations 

+ B, -+v- = -- avi av, 
at laxj pax, 

(6.28.3) 

(6.28.4) 

We assume that the flow is barotropic, that is, the pressure is an explicit function of density 
only (such as in isentropic or isothermal flow). Thus, in a barotropic flow, 

P = p @ >  and P = P@> (6.28.5) 

Now, 
(6.28.6) 

Therefore, for barotropic flows of an inviscid fluid under conservative body forces (Le., 
Bi = --), the equations of motion can be written asz 

axi 

(6.28.7) ij (J9.Q) av, avi 
at laxj 

--+v-=-- 

Comparing Eq. (6.28.7) with (6.21.6), we see immediately that under the conditions stated, 
irrotational flows are again always dynamically possible. In fact, the integration of Eq. (6.28.7) 
(in exactly the same way as was done in Section 6.21) gives the following Bernoulli equation 

2 
-*+J@+",sz at P 2 =f(t) 

which for steady flow, becomes 

J&+?+, = constant 
P 2  

(6.28.8) 

(6.28.10) 

For most problems in gas dynamics, the body force is small compared with other forces and 
often neglected. We then have 

(6.28.11) J@+< = constant P 2  
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Example 6.28.1 

Show that for steady isentropic irrotational flows of an inviscid compressible fluid (body 
force neglected) 

Y P + ~  = constant y-1P 2 

Solution. For an isentropic flow 

P = SPY, dP = SYPY% 
so that 

Thus, the Bernoulli equation [Eq. (6.28.1 l ) ]  becomes 
2 

-+c = constant 
y-1P 2 

(ii) 

(iii) 

We note that this is the same result as that obtained in Example 26.1, Eq. (6.26.8), by the use 
of the energy equation. In other words, under the conditions stated (inviscid, non-heat 
conducting, initial homogeneous state), the Bernoulli equation and the energy equation are 
the same. 

Example 6.28.2 

Let po denote the pressure at zero speed (called stagnation pressure .) Show that for 
isentropic steady flow (p/py = constant ) of an ideal gas, 

Y 4 Y  - 1) 
Po = P [ 1 + i ( Y  - 1) (:) 2] 

where c is the local speed of sound. 
Solution. Since (see the previous example) 

2 
Y P + c  = constant 
y-1P 2 

therefore, 

(6.28.12) 

(9  

(ii) 



2 Now, c = y p / p  

Since 

therefore, from (iii) 

Thus, 
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(iii) 

(iv) 

For small Mach number M ,  (Le., v/c< -= l), we can use the binomial expansion to obtain from 
the above equation 

P 

Noting that 

we have, from (vi) 

p o = p + -  g 2 [  v 1+- :(:)2 - +... 1 
For small Mach number M, the above equation is approximately 

Po = p + p  

(vii) 

(viii) 

which is the same as that for an incompressible fluid. In other words, for steady isentropic 
flow, the fluid may be considered as incompressible if the Mach number is small (say < 0.3.) 
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Example 6.28.3 

For steady, barotropic irrotational flow, derive the equation for the velocity potential 9. 

Solution. For steady flow, the equation of continuity is, with vi = -ap/axi, 

Neglect body forces. 

and the equation of motion is 

Let c2 dp/ dp (the local sound speed), then 

Substituting Eq. (iii) into Eq. (i), we obtain 
,. 

In long form, Eq. (v) reads 

6.29 One-Dimensional Flow of a Compressible Fluid 

In this section, we discuss some internal flow problems of a compressible fluid. The fluid 
will be assumed to be an ideal gas. The flow will be assumed to be one-dimensional in the 
sense that the pressure, temperature, density, velocity, etc. are uniform over any cross-section 
of the channel or duct in which the fluid is flowing. The flow will also be assumed to be steady 
and adiabatic. 
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In steady flow, the rate of mass flow is constant for all cross-sections. WithA denoting the 

pAv = C (a constant) (6.29.1) 

To see the effect of area variation on the flow, we take the total derivative of Eq. (6.29.1), Le., 

variable cross-sectional area, p the density and v the velocity, we have 

dp(Av)+p(dA)v+pA(dv) = 0 
Dividing the above equation bypAv, we obtain 

a3 dv 
P A v  +-+- = 0 

Thus, 
-= dA -4-& 
A P v  

Now, for barotropic flow of an ideal gas , we have [see Eq. (6.28.1 l)] 
L 

.+J@ = constant 2 P  

Thus, 

vdv+@ = vdv+x@ = 0 
P pdp 

But -4) = c (the speed of sound), thus, 

Combining Eqs. (i) and (iii), we get 

A c2 v 

i.e., 

(6.29.2) 

(0 

(6.29.3) 

(ii) 

(iii) 

(6.29.4) 

Eq. (6.29.4) is sometimes known as Hugoniot equation. From this equation, we see that for 
subsonic flows ( M <  l), an increase in area produces a decrease in velocity, just as in the case 
of an incompressible fluid. On the other hand, for supersonic flows (M> l), an increase in area 
produces an increase in velocity. Furthermore, the critical velocity (M=1)  can only be 
obtained at the smallest cross-sectional area where dA = 0. 
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We now study the flow in a converging nozzle and the flow in a converging-diverging nozzle, 
using one-dimensional assumptions. 
(i) Flow in a Converging Nozzle 

p , and the densitypl remain essentially unchanged) into a region of pressurep 

(2) gives 

Let us consider the adiabatic flow of anideal gas from a large tank (inside which the pressure 
R' 1 

Application of the energy equation, using the conditions inside the tank and at the section 

2 ( 9  
2 y - 1  P2 y-1 P1 
-+- v2 Y p2 -=  o+-- Y p1 

wherep2, p2, and v2 are pressure, density, and velocity at section (2). Thus 

Fig. 6.15 

(ii) v = - (  2 2Y p1 p2 ) 

k]+= E) 
2 y-1 P1 P2 

For adiabatic flow, 
(iii) 

Therefore, 



Newtonian Viscous Fluid 415 

Computing the rate of mass flow d d d t ,  we have 

Thus, 

or 
(6.29.6) 

For given p , p 

and whenp = p  , dm/dt  is also zero. 

and A2 we see dm / dt depends only onp2. Whenp2 = 0, dm/ dt is zero 
1 1' 

2 1  

Figure 6.16 shows the curve of dm / d t  versusp2/p1, according to Eq. (6.29.6). It can be 
easily established that (dm / dt),, occurs at 

and at this pressure p2, 

(6.29.7) 

(6.29.8) 
= speed of sound at section(2) 
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Fig. 6.16 

The pressurep2 given by Eq. (6.29.8) is known as the critical pressurep The pressurep2 at 

section (2) can never be less thanp, ( which depends only onpl) because otherwise the flow 
will become supersonic at section (2) which is impossible in view of the conclusion reached 
earlier that to have M = 1, dA must be zero, and to have M> 1, dA must be increasing(diver- 
gent nozzle). Thus, for the case of a convergent nozzle, p, can never be less that pR, the 
pressure surrounding the exit jet. When pR 1 p, , p, = pR , and whenp < p , p2 = p,. In 
other words, the relation between dm /dt andp /pl is given as, for pR 2 p, 

C’ 

R c  

R 

( y + l ) /  112 (6.29.9) 
e dt = A 2 [ 5  @Ply2 [ kI2lY- k] 1 
e =A2[y-1 2r pp,I ”[[&) - (2) 1 = constant 

and for pRSp, 

2 4 - 1 )  (y+l)/(y-1) 1/ 2 (6.29.10) 

dt Y + l  

Figure 6.17 shows this relationship. 
(ii) Flow in a Convergent-Diverging Nozzle 

For a compressible fluid from a large supply tank, in order to increase the speed, a 
converging nozzle is needed. From (i), we have seen that the maximum attainable Mach 
number is unity in a converging passage. We have also concluded at the beginning of this 
section that in order to have the Mach number larger than unity, the cross-sectional area must 
increase in the direction of flow. Thus, in order to make supersonic flow possible from a supply 
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Fig. 6.17 

tank, the fluid must flow in a converging- diverging nozzle as shown in Fig. 6.18. The flow in 
the converging part of the nozzle is always subsonic regardless of the receiver pressure 
pR( <p,). The flow in the diverging passage is subsonic for certain range ofpR/pl ( see curves 
a and b in Fig. 6.18). There is a value ofpR at which the flow at the throat is sonic, the flow 
corresponding to this case is known as choked flow (curve c). Further reductions ofpR cannot 
affect the condition at the throat and produces no change in flow rate. There is one receiver 
pressurepR for which the flow can expand isentropically topR (the solid curve e. ) 

If the receiver pressurepR is between c and e, such as d, the flow following the throat for a 
short distance will be supersonic. This is then followed by a discontinuity' in pressure 
(compression shock) and flow becomes subsonic for the remaining distance to the exit. If the 
receiver pressure is below that indicated by e in the figure, a series of expansion waves and 
oblique shock waves occur outside the nozzle. 

i That is, the increase in pressure takes place in a very short distance 
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Fig. 6.18 
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PROBLEMS 

Fig.PG.1 

Fig.P6.3 

Fig.P6.4 
Fig.P6.2 

6.1. In Fig.P6.1, the gate AB is rectangular, 60 cm wide and 4 m long. The gate is hinged at the 
upper edgeA. Neglect the weight of the gate, find the reactional force at B. Take the specific 
weight of water to be 9800 N/ m3 (62.4 lb/ft3) 
6.2. The gateAB in Fig.P6.2 is 5 m long and 3 m wide. Neglect the weight of the gate, compute 
the water level h for which the gate will start to fall. 
63. The liquids in the U-tube shown in Fig.P6.3 is in equilibrium. Find h2 as a function of 
pl, p2, p3, hl and h3 The liquids are immiscible. 

6.4. Referring to Fig.P6.4, (a) Find the buoyancy force on the cylinder and (b) find the resultant 
force on the cylindrical surface due to the water pressure. The centroid of a semi-circular area 
is 4d3n from the diameter, where r is the radius. 
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Fig.P6.5 Fig.P6.6 

6.5. A glass of water moves vertically upward with a constant acceleration a. Find the pressure 
at a point whose depth from the surface of the water is h. 
6.6. A glass of water moves with a constant acceleration a in the direction shown in Fig.P6.5. 
Find the pressure at the point A. Take the atmospheric pressure to bep,. 

6.7. The slender U-tube shown in Fig.P6.6 is moving horizontally to the right with an accelera- 
tion a. Determine the relation between a, 1 and h. 
6.8. A liquid in a container rotates with a constant angular velocity w about a vertical axis. Find 
the shape of the liquid surface. 
6.9. The slender U-tube rotates with an angular velocity w about the vertical axis shown in 
Fig.P6.7. Find the relation between dh( = hl - h2 ),w, rl and r2. 

Fig. P6.7 
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6.10. In astrophysical applications, an atmosphere having the relation between the density p 
and pressure p given by 

wherep, and po are some reference pressure and density, is known as a polytropic atmos- 
phere. Find the distribution of pressure and density in a polytropic atmosphere. 
6.11. For a steady parallel flow of an incompressible linearly viscous fluid, if we take the flow 
direction to be e3, 

(a) show that the velocity field is of the form 
v1 = 0, v2 = 0, and v3 = v(x1,xZ) 

(b) If v(xl, x2) = ky2,  find the total normal stress on the plane whose normal is in the direction 
of e2 + e3, in terms of the viscosityp and pressurep 

(c) On what planes are the total normal stresses given by the so-called “pressure”? 
6.12. Given the following velocity field (in 4 s )  for a Newtonian incompressible fluid with a 
viscosity p = 0.96 mPa: 

2 2  
v1 = X l  - x2, v2 = -2x1x2, v3 = 0. 

At the point (1,2,1)m and on the plane whose normal is in the direction of el, 

(a) find the excess of the total normal compressive stress over the pressurep, 
(b) find the magnitude of the shearing stress. 
6.13. Do Problem 6.12 except that the plane has a normal in the direction of 3e1 + 4e2. 

6.14. Use the results of Sect. 2D2, Chapter 2 and the constitutive equations for the Newtonian 
viscous fluid, verify Eqs. (6.8.1). 
6.15. Use the results of Sect.2D3,Chapter 2 and the constitutive equations for the Newtonian 
viscous fluid, verify Eqs. (6.8.3). 
6.16. Show that for a steady flow, the streamline containing apoint Pcoincides with the pathline 
for a particle which passes through the point P at some time t. 
6.17. For the two dimensional velocity field 

(a) Find the streamline at time t, which passes through the spatial point ( al,a2) 

(a) find the pathline for the particle which was at (Xl, X2) at t = 0. 

(c) Find the streakline at time t, formed by the particles which passed through the spatial 
position (al, a2)  at time z ~ t .  
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6.18. Do Prob. 6.17 for the following two dimensional velocity field 

6.19. Do Prob. 6.17 for the following velocity field in polar coordinates (r, 8 ) 
"1 = wx2, v2 = -wx1 

6.20. Do Prob. 6.17 for the following velocity field in polar coordinates (r, 8 ) 

6.21. From the Navier-Stokes equations, obtain Eq. (6.11.1) for the velocity distribution of the 
plane Couette flow. 
6.22. For the plane Couette flow (see Section 6.11), if, in addition to the movement of the 
upper plate, there is also an applied negative pressure gradient -, aP obtain the velocity 

ax1 
distribution. Also obtain the volume flow rate per unit width. 
6.23. Obtain the steady uni-directional flow of an incompressible viscous fluid layer of uniform 
depth d flowing down an inclined plane which makes an angle 8 with the horizontal. 

6.24. A layer of water (pg = 62.4 lb/ ft3 ) flows down an inclined plane ( 8 = 300) with a uniform 
thickness of 0.1 ft. Assuming the flow to be laminar, what is the pressure at any point on the 
inclined plane. Take the atmospheric pressure to be zero. 
6.25. Two layers of liquids with viscosities ,q and p2, density p1 and p2, respectively, and 
with equal depths b, flow steadily between two fixed horizontal parallel plates. Find the 
velocity distribution for this steady uni-directional flow. 
6.26. For the Hagen-Poiseuille flow in an inclined pipe, from the equations of motion show 
that if x1 is the direction of flow, then (a) the piezometric head depends only on x1 ,Le., 
h = h ( q )  and (b) (dhlxl) = a constant. 

6.27. Verify the equation for the torque per unit length for the Couette flow, Eq. (6.15.5). 
6.28. Consider the flow of an incompressible viscous fluid through the annular space be- 
tween two concentric horizontal cylinders. The radii are a and 6. (a) Find the flow field if 
there is no variation of pressure in the axial direction and if the inner and the outer cylinders 
have axial velocities v, and vb respectively and (b) find the flow field if there is a pressure 
gradient in the axial direction and both cylinders are fixed. 
6.29. Show that for the velocity field 

v1 = V O J ) ,  "2 = v3 = 0 
the Navier-Stokes equations, with p B  = 0, reduces to 
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630. Referring to Problem 6.29, consider a pipe having an elliptic cross section given by 
y / a  + z2/b2 = 1. Assuming that 2 2  

v = A L + $ ]  + B ,  
L J 

findA and B. 
631. Referring to Problem 6.29, consider an equilateral triangular cross-section defined by 
the planesz + b / ( 2 G )  = 0, z + f l y  - b / G  = 0, z - G y  - b / G  = 0. Assuming 

v=A(.+-) b ( . + f l y - & )  ( ~ - 6 Y - n )  b + B ,  2 G  
findA and B. 
632. For the steady-state, time dependent parallel flow of water (density p = 10 Kg/ m3 , 
viscosity p = 10 -3 Ns/m ) near an oscillating plate, calculate the wave length for w = 2cps. 
633. The space between two concentric spherical shell is filled with an incompressible 
Newtonian fluid. The inner shell (radius ri) is fixed; the outer shell (radius ro) rotates with an 
angular velocity SZ about a diameter. Find the velocity distribution. Assume the flow to be 
laminar without secondary flow. 
634. Consider the following velocity field in cylindrical coordinates: 

2 

V, = v(r), ve = V, = 0. 

(a) Show that v(r) = -, where A is a constant so that the equation of conservation of mass is 

satisfied. 
(b) If the rate of mass flow through a circular cylindrical surface of radius r and unit length is 
Q,,,, determine the constant A in terms of Q,,,. 

635. Given the following velocity field in cylindrical coordinates 

A 
pr  

v, = v(r, e), ve = 0, v, = 0 
(a) Show from the continuity equation that 

v, = m 
r 

(b) In the absence of body forces, show that 

& + 4 f + & + k = O  P and 
d O2 

P = + +  f @+c 
r 2r2 

where k and C are constants. 
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636. Determine the temperature distribution for the flow of Prob. 6.22 due to viscous 
dissipation when both plates are maintained at the same fixed temperature 0,. Assume 
constant physical properties. 
637. Determine the temperature distribution in the plane Poiseuille flow where the bottom 
plate is kept at a constant temperature 01 and the top plate at 02. Include the heat generated 
by viscous dissipation. 
638. Determine the temperature distribution in the laminar flow between two coaxial 
cylinders (Couette flow) if the temperatures at the inner and the outer cylinders are kept at 
the same fixed temperature 0,. 

639. Show that the dissipation function for a compressible fluid can be written as that given 
in Eq. (6.17.6b). 
6.40. Given the velocity field of a linearly viscous fluid 

V I =  k q ,  v2 = - k q ,  v3 = 0 
(a) Show that the velocity field is irrotational. 
(b) Find the stress tensor. 
(c) Find the acceleration field. 
(d) Show that the velocity field satisfies the Navier-Stokes equations by finding the pressure 
distribution directly from the equations. Neglect body forces. Take p = po at the origin. 

(e) Use the Bernoulli equation to find the pressure distribution. 
( f )  Find the rate of dissipation of mechanical energy into heat. 
(g) Ifx;! = 0 is a fixed boundary, what condition is not satisfied by the velocity field? 

6.41. Do Problem 6.40 for the following velocity field: 
2 2  v1 = k(x1 - x2),  "2 = -uCx1x2, v3 = 0 

6.42. Obtain the vorticity components for the plane Poiseuille flow. 
6.43. Obtain the vorticity components for the Hagen-Poiseuille flow. 
6.44. For two-dimensional flow of an incompressible fluid, we can express the velocity 
components in terms of a scalar function W (known as the Lagrange stream function ) by the 
relation 

(a) Show that the equation of conservation of mass is automatically satisfied for any $~(xy) 
which has continuous second partial derivatives. 
(b) Show that for two-dimensional flow of an incompressible fluid, ly = constants are stream- 
lines, where 1// is the Lagrange stream function. 
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(c) If the velocity field is irrotational, then vi = -a(p /ax,, where (p is known as the velocity 
potential. Show that the curves of constant velocity potential (p = constant and the stream line 
ly = constant are orthogonal to each other. 
(d) Obtain the only nonzero vorticity component in terms of ly. 

Fig. P6.8 

6.45. Show that 
2 

U 
V = b Y  ( 1 - 1 1 )  

x +Y 
represents a two-dimensional irrotational flow of an inviscid fluid. Sketch the stream lines 
in the regionx + y 2 u 

6.46. Referring to Fig.Pti.8, compute the maximum possible flow of water. Take the atmos- 
pheric pressure to be 93.1 kPa, the specific weight of water 9800 N/m3, and the vapor pressure 
17.2 kPa. Assume the fluid to be inviscid. Find the length I for this rate of discharge. 

6.47. Water flows upward through a vertical pipeline which tapers from 25.4 cm to 15.2 cm 
diameter in a distance of 1.83 m. If the pressure at the beginning and end of the constriction 
are 207 kPa and 172 kPa respectively. What is the flow rate? Assume the fluid to be inviscid. 
6.48. Verify that the equation of conservation of mass is automatically satisfied if the velocity 
components in cylindrical coordinates are given by 

2 2 2  

v = -  * v * = -  = ve=O 
r praz’  pr dr ’ 

where the densityp is a constant and q is any function of r and z having continuous second 
partial derivatives. 
6.49. Derive Eq. (6.25.6). 
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6.50. Show that for a one-dimensional, steady, adiabatic flow of an ideal gas, the ratio of 
temperature 01/02 at sections (1) and (2) is given by 

where y is the ratio of specific heat, M I  and M2 are local Mach numbers at section 1 and 2 
respectively. 
6.51. Show that for a compressible fluid in isothermal flow with no external work, 

dML dv - 2- -- 
M2 

where M is the Mach number. (Assume perfect gas.) 
6.52. Show that for a perfect gas flowing through a constant area duct at constant temperature 
conditions. 

6.53. For the flow of a compressible inviscid fluid around a thin body in a uniform stream of 
speed Vm in the X I -  direction, we let the velocity potential be 

(P = -V,(x1+ (Pd, 
where p1 is assumed to be very small. Show that for steady flow the equation governing polis, 
withM, = V,/c, 

- 0. (l-M:)-+-+-- a2(P, a2(P1 a2(P1 

ax: ax; ax3 


