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The Elastic Solid 

So far we have studied the kinematics of deformation, the description of the state of stress 
and four basic principles of continuum physics: the principle of conservation of mass 
[Eq. (3.15.2)], the principle of linear momentum [Eq. (4.7.2)], the principle of moment of 
momentum [Eq. (4.4.1)] and the principle of conservation of energy [Eq. (4.14.1)]. All these 
relations are valid for every continuum, indeed no mention was made of any material in the 
derivations. 

These equations are however not sufficient to describe the response of a specific material 
due to a given loading. We know from experience that under the same loading conditions, the 
response of steel is different from that of water. Furthermore, for a given material, it varies 
with different loading conditions. For example, for moderate loadings, the deformation in 
steel caused by the application of loads disappears with the removal of the loads. This aspect 
of the material behavior is known as elasticity. Beyond a certain level of loading, there will 
be permanent deformations, or even fracture exhibiting behavior quite different from that of 
elasticity. In this chapter, we shall study idealized materials which model the elastic behavior 
of real solids. The linear isotropic elastic model will be presented in part A, followed by the 
linear anisotropic elastic model in part B and an incompressible isotropic nonlinear elastic 
model in part C. 

5.1 Mechanical Properties 

We want to establish some appreciation of the mechanical behavior of solid materials. To 
do this, we perform some thought experiments modeled after real laboratory experiments. 

Suppose from a block of material, we cut out a slender cylindrical test specimen of 
cross-sectional areaA. The bar is now statically tensed by an axially applied load P, and the 
elongation AZ, over some axial gage length 1, is measured. A typical plot of tensile force against 
elongation is shown in Fig. 5.1. Within the linear portion OA (sometimes called the propor- 
tional range), if the load is reduced to zero (i.e., unloading), then the line OA is retraced back 
to 0 and the specimen has exhibited an elasticity. Applying a load that is greater than A and 
then unloading, we typically traverse OABC and find that there is a “permanent elongation” 
OC. Reapplication of the load from C indicates elastic behavior with the same slope as OA, 
but with an increased proportional limit. The material is said to have work-hardened. 
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218 The Elastic Solid 

The load-elongation diagram in Fig. 5.1 depends on the cross-section of the specimen and 
the axial gage length 1. In order to have a representation of material behavior which is 
independent of specimen size and variables introduced by the experimental setup, we may plot 
the stress c = PIA, , where A, is the undeformed area of the cross-section versus the axial 
strain E, = AZA as shown in Fig. 5.2. In this way, the test results appear in a form which is not 
dependent on the specimen dimensions. The slope of the line OA will therefore be a material 
coefficient which is called the Young’s modulus (or, modulus of elasticity ) 

(5.1.1) 

The numerical value of E y  for steel is around 207 GPa (30X lo6 psi). This means for a steel 
bar of cross-sectional area 32.3 cm2 (5 in2 )that carries a load of 667,000 N (150,OOO lbs), the 
axial strain is 

667200432.3~ ~ 10-3 
E, = 

207x lo9 

As expected, the strains in the linear elastic range of metals are quite small and we can 
therefore, use infinitesimal strain theory to describe the deformation of metals. 

In the tension test, we can also measure changes in the lateral dimension. If the bar is of 
circular cross section with an initial diameter d , it will remain, under certain conditions 
circular, decreasing in diameter as the tensile load is increased . Letting ~d be the lateral strain 
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(equal to M/d), we find that the ratio -E&= is a constant if the strains are small. We call this 
constant Poisson's ratio and denote it by v. A typical value of v for steel is 0.3. 

So far we have only been considering a single specimen out of the block of material. It is 
conceivable that the modulus of elasticity EY , as well as Poisson's ratio v may depend on the 
orientation of the specimen relative to the block. In this case, the material is said to be 
anisohpic with respect to its elastic properties. Anisotropic properties are usually exhibited 
by materials with a definite internal structure such as wood or a rolled steel plate or composite 
materials. If the specimens, cut at different orientations at a sufficiently small neighborhood, 
show the same stress-strain diagram, we can conclude that the material is isotropic with respect 
to its elastic properties in that neighborhood. 

In addition to a possible dependence on orientation of the elastic properties, we may also 
find that they may vary from one neighborhood to the other. In this case, we call the material 
inhomogeneous. If there is no change in the test results for specimens at different neighbor- 
hoods, we say the material is homogeneous. 

Previously, we stated that the circular cross-section of a bar can remain circular in the 
tension test. This is true when the material is homogeneous and isotropic with respect to its 
elastic properties. 

Other characteristic tests with an elastic material are also possible. In one case, we may be 
interested in the change of volume of a block of material under hydrostatic stress 0 for which 
the stress state is 

T.. = 06.. (5.1.2) 'I 9 
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In a suitable experiment, we measure the relation between a, the applied stress and e, the 
change involume per initial volume (also knownas dilatation, see Eq. (3.10.2)). For an elastic 
material, a linear relation exists for small e and we define the bulk modulus k, as 

(T k = -  (5.1.3) e 

A typical value of k for steel is 138 GPa (20X lo6 psi). 
A torsion experiment yields another elastic constant. For example, we may subject a 

cylindrical steel bar of circular cross-section of radius r to a torsional moment Mt along the 
cylinder axis. The bar has a length I and will twist by an angle 8 upon the application of the 
moment M,. A linear relation between the angle of twist 8 and the applied moment will be 
obtained for small 8. We define a shear modulus p 

(5.1.4) 

where Ip = n r4/2 ( the polar area moment of inertia). A typical value ofp for steel is 76 GPa 
(1 1 x lo6 psi). 

For an anisotropic elastic solid, the values of these material coefficients (or material 
constants) depend on the orientation of the specimen prepared from the block of material. 
Inasmuch as there are infinitely many orientations possible, an important and interesting 
question is how many coefficients are required to define completely the mechanical behavior 
of a particular elastic solid. We shall answer this question in the following section. 

5.2 Linear Elastic Solid 

Within certain limits, the experiments cited in Section 5.1 have the following features in 

(a) The relation between the applied loading and a quantity measuring the deformation is 

(b) The rate of load application does not have an effect. 
(c) Upon removal of the loading, the deformations disappear completely. 
(d) The deformations are very small. 

common: 

linear 

The characteristics (a) through (d) are now used to formulate the constitutive equation of an 
ideal material, the linear elastic or Hookean elastic solid. The constitutive equation relates 
the stress to relevant quantities of deformation. In this case, deformations are small and the 
rate of load application has no effect. We therefore can write 

T = T ( E )  (5.2.1) 
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where T is the Cauchy stress tensor, E is the infinitesimal strain tensor, with T (0) = 0. If in 
addition, the function is to be linear, then we have, in component form 

TI1 = ell11 Ell C1112E12 + e1133 E33 

T12 = e1211 Ell e1212 E12 * a *  c1233 E33 

................................................. (5.2.2a) 

T33 = e3311 Ell e3312 E12 .-- + c3333 E33 

The above nine equations can be written compactly as 

T.. 11 = e. ijki E kl (5.2.2b) 

Since q j  and Eo are components of second-order tensors, from the quotient rule discussed 
in Sect. 2B14, we know that cqki are components of a fourth-order tensor, here known as the 
elasticity tensor. The values of these components with respect to the primed basis e/ and the 
unprimed basis ei are related by the transformation law 

CijL = Qmi Qnj Qrk Q ~ I  cmnn (5.2.3) 

(See Sect. 2B14). If the body is homogeneous, that is, the mechanical properties are the same 
for every particle in the body, then coki  are constants (Le., independent of position). We shall 
be concerned only with homogeneous bodies. 

There are 81 coefficients in Eq. (5.2.2). However, since Ev = Eji , we can always combine 
the sum of two terms such as e1112 E12 + e1121 E21 into one term, ( C l l ~  + e1121 )E12 so that 
(e1112 + C1121) becomes m e  independent coefficient. Equivalently, we can simply take 
C1112 = C1121. Thus, due to the symmetry of strain tensor, we have 

cQki = cijlk (5.2.4) 

Eqs. (5.2.4) reduce the number of independent Coki from 81 to 54. 

We shall consider only the cases where the stress tensor is symmetric, i.e., 
T.. 9 = T.. I" (5.2.5) 

as a consequence, 

e.. qkl - - e.. Iikl (5.2.6) 

Eqs. (5.2.6) further reduce the number of independent coefficient by 18. Thus, we have for 
the general case of a linear elastic body a maximum of 36 material coefficients. 
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Furthermore, we shall assume that the concept of “elasticity” is associated with the 
existence of a stored energy function U(Eu), also known as the strain energy function, which 
is a positive definite’ function of the strain components such that 

(5.2.7) 

With such an assumption, (the motivation for Eq. (5.2.7) is given in Example 5.2.1 ), it can be 
shown (see Example 5.2.2 below) that 

Cukl = ckljj (5.2.8) 

Equations (5.2.8) reduces the number of elastic coefficients from 36 to 21. 

Example 5.2.1 

(a)In the infinitesimal theory of elasticity, both the displacement components and the com- 
ponents of the displacement gradient are assumed to be very small. Show that under these 
assumptions, the rate of deformation tensor D can be approximated by DE/Dt, where E is the 
infinitesimal strain tensor. 
(b) Show that if c;. is given by cj = Cukl EM [ Eq. (5.2.2b)], then the rate of work done Ps by 
the stress components in a body is given by 

DU 
ps = 

where U is the strain energy function defined by Eq. (5.2.7). 

au, auj 
axj ax, Solution. (a) From 2Eu = - + -, we have, 

Since Xi = xj(X1, Xz, X,, t),  we can obtain 

av, av. av, ax, av. ax, -+J=--+I- ax;. ax, ax, axj ax, ax, 
Now, fromx, = X, + u,, where u, are the displacement components, we have 

(5.2.9) 

(ii) 

t By positive definite is meant that the function is zero if and only if all the strain components are zero, otherwise, 
it is always positive. 
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au, ax,,, dum -dmi+-and-=d .+-  axm -- ax, ax, a+ mJ a+ 

dum where - are infinitesimal. Thus, axi 

That is, 

(iii) 

(b) In Section 4.12, we derived the formula for computing the rate of work done by the stress 
components (the stress power ) as 

p = T..D.. (vi) s 4 r l  

Using Eq. (v), we have 

au 
aEij Now if qj = -[Eq. (5.2.7)], then, 

(vii) 

(viii) 

That is, with the assumption given by Eq. (5.2.7 ), the rate at which the strain energy increases 
is completely determined by the rate at which the stress components are doing work and if 
P, is zero then the strain energy remains a constant (Le., stored). This result provides the 
motivation for assuming the existence of apositive definite energy function through Eq. (5.2.7) 
in association with the concept of “elasticity”’. 

Example 5.2.2 

au 
aEij Show that if qj = - for a linearly elastic solid, then 

f We are dealing here with a purely mechanical theory where temperature and entropy play no part in the model. 
However, within the frame work of thermoelastic model, it can be proved that a stored energy function exists 
if the deformation process is either isothermal or isentropic. 
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(a) 
cijkl = cklij 

(b)the strain energy function U is given by 
1 1 u = ~TijEij  = $jklEqEkl 

Solution. (a) Since for linearly elastic solid qj = CijklEkl, therefore 

au Thus, from Eq. (5.2.7), i.e., qj = -,we aEq have 

a2u cijn = aE, aEq 

a2u - a2u Now, since - 
aE, aEij aEij aE, 

therefore, 
c.. = C .. or C.- ijrs  ~ S I J  ijkl = 

(b) From 
au 
aEq 

T.. = - 

i.e., 
dU = Cij&k#ij 

Changing the dummy indices, we obtain 
dU = CkiijEijdEkl 

But, ckld = cijkl, therefore 

dU = Cq&qd& 

Adding Eqs. (v) and (Vii), we obtain 

(5.2.10) 

(5.2.1 1) 

(ii) 

(5.2.12) 

(iii) 
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In the following, we first show that if the material is isotropic, then the number of inde- 
pendent Coefficients reduces to only 2. Later, in Part B, the constitutive equations for 
anisotropic elastic solid involving 13 coefficients (monoclinic elastic solid ) , 9 coefficients 
(orthotropic elastic solid ) and 5 coefficients (transversely isotropic solid), will be discussed. 

PART A Linear Isotropic Elastic Solid 

5.3 Linear Isotropic Elastic Solid 

A material is said to be isotropic if its mechanical properties can be described without 
reference to direction. When this is not true, the material is said to be anisotropic. Many 
structural metals such as steel and aluminum can be regarded as isotropic without appreciable 
error. 

We had, for a linear elastic solid, with respect to the ei basis, 

?j = cijklEkl (9 
and with respect to the ei’ basis, 

T..’= 11 C..’ ykl E kl ’ (ii) 

If the material is isotropic, then the components of the elasticity tensor must remain the same 
regardless of how the rectangular basis are rotated and reflected. That is 

cui1 = cijkl (5.3.1) 

under all orthogonal transformation of basis. A tensor having the same components with 
respect to every orthonormal basis is known as an isotropic tensor. For example, the identity 
tensor I is obviously an isotropic tensor since its components 6~ are the same for any 
Cartesian basis. Indeed, it can be proved (see Prob. 5.1) that except for a scalar multiple, the 
identity tensor is the only isotropic second tensor. From d~ we can form the following three 
independent isotropic fourth-order tensors 

Aijki dij 6kl (5.3.2) 

B.. ilk1 = d .  - ik 6. 11 

H..  yki =6 .  - rl 6. jk 

(5.3.3) 

(5.3.4) 
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It can be shown that any isotropic fourth order tensor can be represented as a linear 
combination of the above three isotropic fourth order tensors (we omit the rather lengthy proof 
here. In part B of this chapter, we shall give the detail reductions of the general to the 
isotropic case). Thus, for an isotropic linearly elastic material, the elasticity tensor Cvkl can 
be written as a linear combination OfAjjkl, BVkl, and Hjjkl. 

we have 
cj = CjjklEkl = l e d j j  + (a + B )  Ejj 

Or, denoting a + /I by 2p , we have 
T.. = A e djj + 2 p  Ejj B 

or, in direct notation 
T = l e 1  + 2 p  E 

(5.3.6a) 

(5.3.6b) 

where e = EM = first scalar invariant of E. In long form, Eqs. (5.3.6) are given by 

Tl1 = A (Ell + E22 + E331 + 2P Ell 

T22 = A (Ell + E22 + E33) + 2P E22 

(5.3.6~) 

(5.3.6d) 

T33 = A (Ell + E22 + E331 + 2 P  E33 (5.3.6e) 

T12 = 2P E12 (5.3.6f) 

T13 = 2 p  E13 (5.3.68) 

TB = 2 p  E= (5.3.6h) 

Equations (5.36) are the constitutive equations for a linear isotropic elastic solid. The two 
material constants A and p are known as Lame’s coefficients, or, Lame’s constants. Since E4 
are dimensionless, A andp are of the same dimension as the stress tensor, force per unit area. 
For a given real material, the values of the Lame’s constants are to be determined from suitable 
experiments. We shall have more to say about this later. 
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Example 5.3.1 

Find the components of stress at a point if the strain matrix is 

[E] = 50 40 0 X10-6 1: ’,” ::I 
and the material is steel with A = 119.2 GPa (17.3 X106 psi) and p = 79.2 GPa 
(1 1.5 X lo6 psi). 

Solution. We use Hooke’s law 7$ = A e d~ + 2 p  E& by first evaluating the dilatation 
e = lOOX The stress components can now be obtained 

T11= 1 e + 2 p  Ell = 1.67 X 

T22 = 1 e + 2 p  E22 = 1.83 X 

T33 = A e + 2 p  E33 = 1.67 X 

T12 = T21= 2 p  E12 = 7.92 X 

Ti3 = T31 = 2 p  E13 = 3.17 X 

TB = T32 = 0 GPa 

GPa 

GPa 

GPa 

GPa 

GPa 

Example 5.3.2 
(a) For an isotropic Hookean material, show that the principal directions of stress and strain 

(b) Find a relation between the principal values of stress and strain 
Solution. (a) Let n1 be an eigenvector of the strain tensor E (i.e., En, = El “1).  Then, by 

coincide. 

Hooke’s law we have 
Tn1=2pEnl+IZeInl=(2pE1+1e)nl  

Therefore, n1 is also an eigenvector of the tensor T. 

(b) Let El, E2, E3 be the eigenvalues of E then e = El + E2 + E3, and from Eq. (5.3.6b), 

T 1 = 2 , ~  El + 1 ( E l  + E 2  + E 3 ) .  

In a similar fashion, 
T2 = 2 p  E2 + A  (El + E2 + E 3 ) .  

T3 = 2 p  E3 + L ( E l +  E2 + E3) .  
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Example 5.3.3 

For an isotropic material 
(a) Find a relation between the first invariants of stress and strain. 
(b) Use the result of part (a) to invert Hooke’s law so that strain is a function of stress 
Solution. (a) By adding Eqs. (5.3.6c,d,e), we have 

T ~ = ( 2 p + 3 1 ) E f i = ( 2 p + 3 3 ) e  (5.3.7) 

(b) We now invert Eq. (5.3.6b) as 

(5.3.8) 

5.4 Young’s Modulus, Poisson’s Ratio, Shear Modulus, and Bulk Modulus 

Equations (5.3.6) express the stress components in terms of the strain components. These 
equations can be inverted, as was done in Example 5.3.3, to give 

T d  1 E.. = - T..  - 
2 p [  3 1 + 2 p  01 

We also have, from Eq. (5.3.7) 
1 

e =  ( 2 p  + 3 i ) T k k  

(5.4.1) 

(5.4.2) 

If the state of stress is such that only one normal stress component is not zero, we call it a 
uniaxial stress state. The uniaxial stress state is a good approximation to the actual state of 
stress in the cylindrical bar used in the tensile test described in Section 5.1. If we take the el 
direction to be axial with T11 #O and all other qj = 0, then Eqs. (5.4.1) give 

(5.4.3) 

(5.4.4) 

E12 = E13 = E23 = 0 (5.4.5) 

The ratio 7’11/&1, corresponding to the ratio d e a  of the tensile test described in 
Section 5.1, is the Young’s modulus or the modulus of elasticity Ey. Thus, from Eq. (5.4.3), 

(5.4.6) 
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The ratio -E22/Ell and -E33/E11, corresponding to the ratio -ed/.za of the same tensile 
test, is the Poisson’s ratio. Thus, from Eq. (5.4.4) 

2 
= 2(2 + p )  

(5.4.7) 

Using Eqs. (5.4.6) and (5.4.7) we write Eq. (5.4.1) in the frequently used engineering form 
1 

Ell = E y  [Til - v (T22 + T33 11 

E22 = E y  [T22 - v (7.33 + T1111 
1 

1 
E33 = - [T33 - v v 1 1 +  7-22 11 

EY 

1 
E12 = @12 

1 
E13 = -T13 2 P  

1 
E23 = GT23 

(5.4.8a) 

(5.4.8b) 

(5.4.8~) 

(5.4.8d) 

(5.4.8e) 

(5.4.83 

Even though there are three material constants in Eq. (5.4.8) , it is important to remember 
that only two of them are independent for the isotropic material. In fact, by eliminating2 from 
Eqs. (5.4.6) and (5.4.7), we have the important relation 

EY (5.4.9) 
= 2(1  + v ) ’  

Using this relation, we can also write Eq. (5.4.1) as 

(5.4.10) 

If the state of stress is such that only one pair of shear stresses is not zero, it is called a 
simple shear stress state. This state of stress may be described by T12 = T21 = t and 
Eq. (5.4.8d) gives 

E - E  =L (5.4.11) 12 - 21 
2 P  

Defining the shear modulus G, as the ratio of the shearing stress t in simple shear to the 
small decrease in angle between elements that are initially in the el and e2 directions, we have 
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t -- = G  
2 E12 

(5.4.12) 

Comparing Eq. (5.4.12) with (5.4.11), we see that the Lame’s constant p is also the shear 
modulus G. 

A third stress state, called the hydrostatic stress, is defined by the stress tensor T = 01. In 
this case, Eq. (5.3.7) gives 

3 0  
2 p + 3 A  e =  (5.4.13) 

As mentioned in Section 5.1, the bulk modulus k, is defined as the ratio of the hydrostatic 
normal stress a, to the unit volume change, we have 

(5.4.14) 2 0 2 p + + A  
e 3 3 = r z + - p  k = - =  

From, Eqs. (5.4.6),(5.4.7), (5.4.9) and (5.4.14) we see that the Lame’s constants, the Young’s 
modulus, the shear modulus, the Poisson’s ratio and the bulk modulus are all interrelated. 
Only two of them are independent for a linear, elastic isotropic material. Table 5.1 expresses 
the various elastic constants in terms of two basic pairs. Table 5.2 gives some numerical values 
for some common materials. 
Table 5.1 Conversion of constants for an isotropic elastic material 

A 

P 

k 

EY 

V 

3kv 
1 +v 

VEY 2uv P(EY-*) - A 
(1 +v)( 1-2v) 1 -2v 3P -Er 

P EY 
2( 1 +v) 

P 
3k( 1 - 2 ~ )  
2( 1 +v) P 

V V -- Ey 1 2u 
V 
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Example 5.4.1 

(a) If for a specific material the ratio of the bulk modulus to Young’s modulus is very large, 

(b) Indicate why the material of part(a) can be called incompressible. 
Solution. (a) In terms of Lame’s constants, we have 

find the approximate value of Poisson’s ratio. 

k 

2v - A 
P 1 - 2 v  

Combining these two equation gives 
k -  1 - - 

E y  3 ( 1 - 2 ~ )  

k 1 Therefore, if -+ 00, then Poisson’s ratio v+ -. 
EY 2 

(b) For an arbitrary stress state, the dilatation or unit volume change is given by 

(5.4.15) 

(5.4.16) 

(5.4.17) 

(5.4.18) 

1 
2 If v + -, then e+ 0. That is, the material is incompressible. It has never been observed in real 

material that hydrostatic compression results in an increase of volume, therefore, the upper 
1 limit of Poisson’s ratio is v = -. 2 

5.5 Equations of the Infinitesimal Theory of Elasticity 

In section 4.7, we derived the Cauchy’s equation of motion, to be satisfied by any continuum, 
in the following form 

a q  
axj p ai = p  Bi + - (5.5.1) 

where p is the density, ai the acceleration component, p Bi the component of body force per 
unit volume and qj the Cauchy stress components. All terms in the equation are quantities 
associated with a particle which is currently at the position ( X I ,  x2, x3 ). 
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We shall consider only the case of small motions, that is, motions such that every particle 
More specifically , if 4 denotes the is always in a small neighborhood of the natural state. 

position in the natural state of a typical particle, we assume that 
xi =xi 

and that the magnitude of the components of the displacement gradient aui/aXb is also very 
small. 

Since 

X I  = x, + 241, x ,  = x, + u,, x3 = x3 + u3 (5.5.2) 

therefore, the velocity component 

(5.5.3) au, au, aul + v1-+v2-+v3- ax, ax2 ax3 
xi -fixed 

where vi are the small velocity components associated with the small displacement com- 
ponents. Neglecting the small quantities of higher order, we obtain the velocity component 

VI'" (2) 
xi - fixed 

and the acceleration component 

xi -fixed 

Similar approximations are obtained for the other acceleration components. Thus, 

(ii) 

(5.5.4) 

xi - fixed 

Furthermore, since the differential volume dV is related to the initial volume dVo by the 

(iii) 

equation [See Sect. 3.101 
dV = (1 + E/&)dVo 

therefore, the densities are related by 

P = (1 + % P P O  = ( l - E k k  >Po (5.5.5) 

t We assume the existence of a state, called natural state, in which the body is unstressed 
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Again, neglecting small quantities of higher order, we have 

Thus, one can replace the equations of motion 

with 

a 2 ui aqi 
at2 axj 

po - =p0 Bi + - 

(5.5.6) 

(5.5.7) 

In Eq. (5.5.7) all displacement components are regarded as functions of the spatial coordinates 
and the equations simply state that for infinitesimal motions, there is no need to make the 
distinction between the spatial coordinatesxi and the material coordinatesXj In the following 
sections in part A and B of this chapter, all displacement components will be expressed as 
functions of the spatial coordinates. 

A displacement field ui is said to describe a possible motion in an elastic medium with small 
deformation if it satisfies Eq. (5.5.7). When a displacement field ui = ui (X I ,  x2, x3, t ) is given, 
to make sure that it is a possible motion, we can first compute the strain field Eo from 
Eq. (3.7.10), Le., 

and then the corresponding elastic stress field qi from Eq. 

T- = A e do + 2p Eo 
11 

(5.5.8) 

(5.3.6a), Le., 

(5.5.9) 

The substitution of ui and qj in Eq. (5.5.7) will then verify whether or not the given motion is 
possible. If the motion is found to be possible, the surface tractions, on the boundary of the 
body, needed to maintain the motion are given by Eq. (4.9.1), i.e., 

ti = T.. n. (5.5.10) 

On the other hand, if the boundary conditions are prescribed (e.g., certain boundaries of the 
body must remain fixed at all times and other boundaries must remain traction-free at all times, 
etc.) then, in order that ui be the solution to the problem, it must meet the prescribed conditions 
on the boundary. 

11 I 
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Example 5.5.1 

Combine Eqs. (5.5.7),(5.5.8) and (5.5.9) to obtain the Navier’s equations of motion in terms 
of the displacement components only. 

Solution. From 

qj = 1 e d~ + 2 p  Eo = 1 e d~ + p 

we have 

Now, 
ae de -d.. = - 
axj ax, 

a u j  - a 
axj ax, ax, axj axi 

2 

Therefore, the equation of motion, Eq. (5.5.7), becomes 
2 a U, po-=poBi+(A+p)-+p- a ui de 

at2 ax, axj axj 

2 

In long form, Eqs. (5.5.11) read 

where 

(i) 

(ii) 

(iii) 

(iv) 

(5.5.11) 

(5.5.1 la) 

(5.5.11b) 

(5.5.11~) 
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aui aul au2 au3 
axi ax, ax2 ax3 

e=-=- +-+- 

In invariant form, the Navier equations of motion take the form 

a2u 

at 
po? =poB + (2, +p)Ve + p  divVu 

(5.5.12) 

(5.5.13) 

e = divu (5.5.14) 

5.6 Navier Equations in Cylindrical and Spherical Coordinates 

In cylindrical coordinates, with u,, ue, uz denoting the displacement in (r,O,z) direction, 
Hooke’s law takes the form of [See Sect. 2D2 for components of V’,Vu and divu in 
cylindrical coordinates] 

where 

and the Navier’s equations of motion are: 

(5.6.la) 

(5.6.lb) 

(5.6.1~) 

(5.6.ld) 

(5.6.le) 

(5.6.10 

(5.6.lg) 
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(5.6.2~) 
L J 

In spherical coordinates, with up ug, u9 denoting the displacement components in 
(r, 8, @) direction, Hooke’s law take the form of [See Sect. 2D3 for components of 
V’,Vu and divu in spherical coordinates] 

(5.6.3a) 

(5.6.3b) 

(5.6.3~) au ue cote *+:+--- r 

(5.6.3d) 

where 

(5.6.3f) 

(5.6.38) 

and the Navier’s equations of motion are 
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5.7 Principle of Superposition 

Let uf') and uf2) be two possible displacement fields corresponding to two body force fields 
Bf') and Bf2). Let 7 f )  and 7f )  be the corresponding stress fields. Then 

and ae) 
= p BP) + - 

axj 
a2uj2) 

at2 
Po - 0 1  

(ii) 

Adding the two equations, we get 

It is clear from the linearity of Eqs. (5.5.8) and (5.5.9) that 7f)  + 7f) is the stress field 
corresponding to the displacement field uf') + uf2). Thus, uf') + uf2) is also a possible motion 
under the body force field (Bf') + Bf2)). The corresponding stress fields are given by 
7f)  + 7f) and the surface tractions needed to maintain the total motion are given by 
tf') + tf2). This is the principle of superposition. One application of this principle is that in 
a given problem, we shall often assume that the body force is absent having in mind that its 
effect, if not negligible, can always be obtained separately and then superposed onto the 
solution of vanishing body force. 

5.8 Plane Irrotational Wave 

important elastodynamic problems using the model of linear isotropic elastic material. 
In this section, and in the following three sections, we shall present some simple but 
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Consider the motion 

u1= E sin - 2.n (x1 - c ~ t  ), u2 = 0, u3 = 0 (5.8.1) 

representing an infinite train of sinusoidal plane waves. In this motion, every particle executes 
simple harmonic oscillations of small amplitude E around its natural state, the motion being 
always parallel to the el direction. All particles on a plane perpendicular to el are at the same 
phase of the harmonic motion at any one time [i.e., the same value of (%/l)(x1 - c~ t ) ] .  A 
particle which at timet is at x1 + dxl acquires at t + dt the same phase of motion of the particle 
which is atxl at timet if (xl + dxl ) - c ~ ( t  + dt ) = xl - CL t, i.e.,dxl/dt = CL. Thus CL is known 
as the phase velocity ( the velocity with which the sinusoidal disturbance of wavelength I is 
moving in the el direction). Since the motions of the particles are parallel to the direction of 
the propagation of wave, it is a longitudinal wave. 

1 

We shall now consider if this wave is a possible motion in an elastic medium. 
The strain components corresponding to the ui given in Eq. (5.8.1) are 

(ii) E22 = E23 = E12 = E13 = E33 = 0 

The stress components are (note e = Ell +O + 0 = Ell ) 

(iii) 

Ti2 = Ti3 = Tu = 0 (VI 

Substituting cj and ui into the equations of motion in the absence of body forces, i.e., 

(5.8.2) 

we easily see that the second and third equations of motion are automatically satisfied (0 = 0) 
and the first equation demands that 

or 
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(xl - CL t )  = -(A + )E - cL t )  (vii) 

so that the phase velocity CL is obtained to be 

L + 2p 1’2 
c L =  ( Po ) (5.8.3) 

Thus, we see that with CL given by Eq. (5.8.3), the wave motion considered is a possible one. 
Since for this motion, the components of the rotation tensor 

(viii) 

are zero at all times, it is known as aplane irrotational wave. As a particle oscillates, its volume 
also changes harmonically [the dilatation e = Ell = &(2.n/)cos(2z/l)(xl - CL t ) ] ,  the wave is 
thus also known as a dilatational wave. 

From Eq. (5.8.3), we see that for the plane wave discussed, the phase velocity CL depends 
only on the material properties and not on the wave length 1. Thus any disturbance represented 
by the superposition of any number of one-dimensional plane irrotational wave trains of 
different wavelengths propagates, without changing the form of the disturbance (no longer 
sinusoidal), with the velocity equal to the phase velocity CL. In fact, it can be easily seen [from 
Eq. (5.5.1 l)] that any irrotational disturbance given by 

(5.8.4) 

is a possible motion in the absence of body forces provided that u1 (XI, t ) is a solution of the 
simple wave equation 

u1 = Ul(X1, t ), u2 = u3 = 0 

a2ul a2ul -- 
at2 - c L 2  

ax1 
(5.8.5) 

It can be easily verified that u1= f(s), where s = x1 ?CL t satisfies the above equation for any 
functionf, so that disturbances of any form given byf(s) propagate without changing its form 
with wave speed CL. In other words, the phase velocity is also the rate of advance of a finite 
train of waves, or ,  of any arbitrary disturbance, into an undisturbed region. 

Example 5.8.1 

Consider a displacement field 
2.n 2.n u1 = a sin- (XI - c~ t) +/?cos- (x1 - c~ t )  2.42 = u3 = 0 1 1 

for a material half-space that lies to the right of the plane x1 = 0. 
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(a) Determine a ,/?, and 1 if the applied displacement on the plane x1 = 0 is given by 
u = (bsin wt)el 

(b) Determine a , /?, and 1 if the applied surface traction onxl = 0 is given by t = (dsin @el. 

Solution. The given displacement field is the superposition of two longitudinal elastic waves 
having the same velocity of propagation CL in the positive x1 direction and is therefore a 
possible elastic solution. 
(a) To satisfy the displacement boundary condition, one simply sets 

u l ( O , t ) = b s i n o t  (ii) 

or 

Since this relation must be satisfied for all time t, we have 

B C L  B = O ,  a = - b ,  I = -  w 

and the elastic wave has the form 
0 

u1= -b sin- (xl - CL t). 
CL 

(iii) 

Note that the wavelength is inversely proportional to the forcing frequency w. That is, the 
higher the forcing frequency the smaller the wavelength of the elastic wave. 
(b) To satisfy the traction boundary condition onxl = 0, one requires that 

t = T(-e l )  = - (Tllel + T21e2 + T31e3) = (dsin wt)el (vi) 

that is, at x1 = 0 ,  T11 = -d sin w t , T21 = T31 = 0. For the assumed displacement field 

therefore, 

-d sin w t = (2p + A)[ a - cos-(xl-cLt)-,!I - sin-(xl-c~t)] - (7) 7 (7) 7 x, - 0 

i.e., 
2;rt 2n 2n 
1 1 1 

-&in w t = (2p + A )- [ a cos-c~ t + /? sin -CL t] 

(vii) 

(viii) 

(ix) 

To satisfy this relation for all time t ,  we have 
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and the resulting wave has the form, 

(xii) 

We note, that not only the wavelength but the amplitude of the resulting wave is inversely 
proportional to the forcing frequency. 

5.9 Plane Equivoluminal Wave 

Consider the motion 

(5.9.1) 2n 
1 

u1 = 0 ,  242 = Esin-(xl - c ~ t ) ,  u3 = 0 

This infinite train of plane harmonic wave differs from that discussed in Section 5.8 in that it 
is a transverse wave: the particle motion is parallel to e2 direction, whereas the disturbance is 
propagating in the el direction. 

For this motion, the strain components are 
Ell = E22 = E33 = E13 = Ea = 0 

and 

(9  

(ii) 

and the stress components are 

(iii) 

Substitution of T,j and ui in the equations of motion, neglecting body forces, gives the phase 
velocity CT to be 

C T = =  (5.9.2) 

Since, in this motion, the dilatatione is zero at all times, it is known as an equivoluminal wave. 
It is also called a shear wave. 
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Here again the phase velocity CT is independent of the wavelength 1, so that it again has the 
additional significance of being the wave velocity of a finite train of equivoluminal waves, or 
of any arbitrary equivoluminal disturbance into an undisturbed region. 

The ratio of the two phase velocities CL and CT is 

Since A = 2,u Y / (  1 - 2v), the ratio is found to depend only on v, in fact 

1 1 / 2  
112 

CL 2(1 - v )  
G =  [ l - Z V ]  = [(I+,,,] 

(5.9.3) 

(5.9.4) 

1 
2 ’  For steel with Y = 0.3 , CL/CT = fi6 = 1.87. We note that since Y<- c is always greater 

than CT. 

Example 5.9.1 

Consider a displacement field 
2;rt k u2 = a sin - (XI - c ~ t )  + /? cos-(%l- c ~ t ) ,  1 1 u1= u3 = 0 

for a material half-space that lies to the right of the planex1 = 0 

(a) Determine a , /? and 1 if the applied displacement o n q  = 0 is given by u = (b sin wt)e2 

(b) Determine a , /? and 1 if the applied surface traction onxl=  0 is t = (dsin wt)e2 

Solution. The problem is analogous to that of the previous example. 
(a) Using u2 (0,t) = bsin w t, we have 

k C T  / ? = O .  a = - b ,  I = -  w 
(ii) 

and 

(b) Using t = - T 2 l e  = (dsin w t)e2 gives 

(iii) 

and 
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Example 5.9.2 

Consider the displacement field 
2n 

1 u3 = a cospx~cos-(x~ - c t )  , u2 = u1= 0 

(a) Show that this is an equivoluminal motion. 
(b) From the equation of motion, determine the phase velocity c in terms ofp , 1 ,po and p 
(assuming no body forces). 
(c) This displacement field is used to describe a type of wave guide that is bounded by the plane 
x2 = +h. Find the phase velocity c if these planes are traction free. 

Solution. (a) Since 

au, au2 au3 
ax, ax2 ax3 

divu = - + - + - = 0 + 0 + 0 = 0 (ii) 

thus, there is no change of volume at any time. 

(b) For convenience, let k = - and w = kc = -, then 2Jt 2nC 
1 1 

u3 = a cospx2 cos(kxl - w t), (iii) 

where k is known as the wave number and w is the circular frequency. The only nonzero 
stresses are given by (note: u1 = u2 = 0 ) 

(W au3 
8x1 

T u  = T31= p- = a p k[ - cospx2sin(kxl- w t ) ] ,  

( 4  au3 
ax2 

TB = T32 = p- = app[-sinpx2cos(kxl - w t)], 

The substitution of the stress components into the third equation of motion yields ( the first 
two equations are trivially satisfied) 

a2u, -+-- - cu k2 + P P 2  )(-u3) = P O T  =Po w2(-u3) aT31 aT32 

axl ax2 at 

Therefore, with c; = p/po, 
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Since k = &A, and o = &c/l, therefore 

(vii) 

(viii) 

(c) to satisfy the traction free boundary condition atx;? = +h, we require that 

t = +Te2 = + ( T12el + T22e2 + T3;?e3) = & T32e3 = 0 

therefore, T32L - +h = - & u p  a sinph cos(krl - wt) = 0. In order for this relation to be 
satisfied for all x1 and t, we must have 

2- - 

sinph = 0 ( 4  

Thus, 
n n  p = h ,  n = 0 , 1 , 2  ,... 

Each value of n determines a possible displacement field, and the phase velocity c correspond- 
ing to each mode is given by 

1 - 

c = cr[  ($);? + 1 1 2  
(xii) 

This result indicates that the equivoluminal wave is propagating with a speed c greater than 
the speed of a plane equivoluminal wave CT . Note that whenp = 0 , c = CT as expected. 

Example 5.9.3 

An infinite train of harmonic plane waves propagates in the direction of the unit vector e,. 
Express the displacement field in vector form for (a) a longitudinal wave, (b) a transverse wave. 

Solution. Let x be the position vector of any point on a plane whose normal is e, and whose 
distance from the origin is d (Fig. 5.3). Then x.e, = d. Thus, in order that the particles on 
the plane be at the same phase of the harmonic oscillation at any one time, the argument of 
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sine (or cosine) must be of the form (2z/Z)(x * e, - ct - r ] ) ,  where r] is an arbitrary constant. 

Fig. 53 

a) For longitudinal waves, u is parallel to e,, thus 

u = E sin - (x*e, - c~ t-r] ) e, ( 0  [? I 
In particular, if e, = el, 

u1= E sin - (XI - CL t-r] ) , 1.42 = u3 = 0 (ii) 

(b) For transverse waves, u is perpendicular to e,. Let e, be a unit vector perpendicular to 
e,. Then 

[';. I 
u = E sin - (x-e, - q t - r ]  13 et (iii) 

The plane of e, and e, is known as the plane of polarization. In particular, if e, = el , et = e2, 

then 

[ ?  

2n (iv) u1 = 0, u2 = Esin-(xl - c ~ t - r ] ) ,  u3 = 0 1 

Example 5.9.4 

In Fig. 5.4, all three unit vectors enl ,en2 and ens lie in the x1x2 plane. Express the 
displacement components with respect to the xi coordinates of plane harmonic waves for 
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(a) a transverse wave of amplitude el wavelength 11 polarized in thexl x2 plane and propagating 
in the direction of enl. 

(b) a transverse wave of amplitude c2 wavelength f2 polarized in thexl x2 plane and propagat- 
ing in the direction of en2. 

(c) a longitudinal wave of amplitude c3 wavelength 13 propagating in the direction of en3 

Solution. Using the results of Example 5.9.3, we have, (a) 
enl = sinale1 - cosalez , 

Thus, 

x-e, = xlsinal - x2cosa1, etl = k(cosale1 + sinale2) (i) 1 

ul  = cos a1 el  sin[2dl1 (XI sinal - x2cosal - CTt-Vl)] 
u2 = sin a1 e1 sin[%/fl (XI sinal - x2c0sal - CTt-Vl)] (ii) 

u3 = 0 

(b) 
en2 = sin a 2  el + cos a 2  e2, x-e,, = x1 sina2 + x2 corn;?, ef2 = +(cosa2 el - sina2 e2 ) (iii) 2 

- 

Fig. 5.4 

u1 = cos a2 ~2 sin[2;rt/l2 (xl sina2 + x2cosa2 - cTt-72 )] 

u2 = -sin a 2  ~2 sin[h/Z2 (x1 s i n q  + x2cosa2 - cTt-V2 )] 

u3 = 0 

en3 = sin a3 el + cos a3 e;?, re , ,  = x1 sina3 + x2 C O S ~ ~  

u1 = sin a3 c3 sin[&/13 (xl sina3 + ~ 2 ~ 0 ~ 3  - CL t-73 )] 

(iv) 

( 4  

( 4  3 
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u2 = cos a3 e3 sin[2~/13 (XI sina3 + ~ 2 ~ 0 ~ 3  - CL t-73 )] 

u3 = 0 

(vi) 

5.10 Reflection of Plane Elastic Waves. 

In Fig. 5.5, the planex2 = 0 is the free boundary of an elastic medium, occupying the lower 
half-space x2 20. We wish to study how an incident plane wave is reflected by the boundary. 
Consider an incident transverse wave of wavelength 11, polarized in the plane of incidence with 
an incident angle a1, (see Fig. 5.5). Sincex2 = 0 is a free boundary, the surface traction on the 
plane is zero at all times. Thus, the boundary will generate reflection waves in such a way that 
when they are superposed on the incident wave, the stress vector on the boundary vanishes at 
all times. 

Let us superpose on the incident transverse wave two reflection waves (see Fig. 5 . 9 ,  one 
transverse, the other longitudinal, both oscillating in the plane of incidence. The reason for 
superposing not only a reflected transverse wave but also a longitudinal one is that if only one 
is superposed, the stress-free condition on the boundary in general cannot be met, as will 
become obvious in the following derivation. 

Fig. 5.5 

Let ui denote the displacement components of the superposition of the three waves, then 
from the results of Example 5.9.4, we have 

u1 = cos a1 e1 sin p1 + cos a2 e2 sin p2 + sin a3 ~3 sin p3 

u2 = sin a1 e1 sin 9 1  - sin a2 e2 sin 972 + cos a3 e3 sin p3 

u3 = 0 

( 0  

where 
2n 

2n (ii) 

p1= - (XI sinal  - x2 cosa1- cTt  - 71 ) 

p2 = - (xl sina2 +x2cosa2 - c T t  - 72) 

11 

12 
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2 n  p ~ = - ( ~ ~ ~ i n a ~ + x ~ c o s a ~ - c ~ t  -73)  
13 

On the free boundary (x2 = 0), where n = -e;?, the condition t = 0 leads to 
Te2 = 0 (iii) 

Using Hooke’s law, and noting that u3 = 0 and u2 does not depend on x3, we easily see that 
the condition T32 = 0 is automatically satisfied. The other two conditions, in terms of displace- 
ment components, are 

au, au2 
ax2 axl 
- + - = O  on x2=0  

au2 aul 
ax2 axl 

(13.+2p)-+13.-=0 on x 2 = 0  

Performing the required differentiation, we obtain from Eqs. (v) and (vi) 
E1 2 2 E 2  2 2 E 3  (vii) 
- (sin a1 - cos a1 )cos p1 + - (cos a2 - sin a 2  )cos p2 + - (sin2a3 )cos p3 =O 
11 12 13 

E 1  E2 E 3  2 (viii) 
-psin2al coy1  + -p  sin2a2 cos p2 - - (13. + 2pcos a3 )cos p3 = 0 
11 L2 13 

Since these equations are to be satisfied on x2 = 0 for whatever values of x1 and t, we must 
have 

cospl = cosp2 = cosp3 on x2 = 0 (W 
so that they drop out from Eq. (vii) and (viii). Thus, at 

x2=0, p l = p 2 + 2 p n = p 3 + 2 q n  
wherepandq are integers, Le., 

2 n  2 n  - (XI sinal - cTt  - 71) = - (XI sin a 2  - c T t  - 72 ’) 
11 12 

2 n  -- - (XI sin a3 - CL t - 73 ‘) 
L3 

where 72 ’ = 72-(fp 12) and 73 ’ = 73-(*p L3) 

Equation (x) can be satisfied for whatever values of XI and t only if 
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sinal sina2 sina3 -- -- 
11 12 13 

and 

Thus, 

where 

’11 - ’12 - ’13 I 

11 12 13 
-_ - - -  

(xii) 

(xiii) 

1/2 

CT 

a1 = a2 (xvi) 

n sina3 = sin a1 (xvii) 

‘121=’11, n’13I=’11 (xviii) 

That is, the reflected transverse wave has the same wavelength as that of the incident transverse 
wave and the angle of reflection is the same as the incident angle, the longitudinal wave has a 
different wavelength and a different reflection angle depending on the so-called “refraction 
index n.” 

With cos pi dropped out, and in view of Eqs. (xiv) to (xviii) , the boundary conditions (vii) 
and (viii) now become 

2 2 (xix) 

(=) 

2 2 ~1 (sin a1 - cos a l ) + ~ 2  (cos a1 - sin a1 ) + ~3 n sin 2 a3 = 0 

61 (p sin2al) + E ~ O L  s in2a l )  - ~ 3 n  (2,u cos2a3 + A >  = o 
These two equations uniquely determine the amplitudes of the reflected waves in terms of the 
incident amplitude ( which is arbitrary ). In fact 

n sin 4 a1 

cos%, + n2 sin 2 al sin 2 a3 

cos 2 a1 - n sin 2 a1 sin 2 a3 

cos%, + n2 sin 2 a1 sin 2 a3 

E 3  = E 1  

2 2 

E2 = E 1  

(xxii) 
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Thus, the problem of the reflection of a transverse wave polarized in the plane of incidence is 
solved. We mention that if the incident transverse wave is polarized normal to the plane of 
incidence, no longitudinal component occurs. Also, when an incident longitudinal wave is 
reflected, in addition to the regularly reflected longitudinal wave, there is also a transverse 
wave polarized in the plane of incidence. 

Equation (xvii) is analogous to Snell’s law in optics, except here we have reflection instead 
of refraction. If sinal>n, then sin a p  1 and there is no longitudinal reflected wave but rather, 
waves of a more complicated nature will be generated. The angle a1 = sin-% is called the 
critical angle. 

5.1 1 Vibration of an Infinite Plate 

Consider an infinite plate bounded by the planes X I =  0 and X I =  1. These plane faces may 

The presence of these two boundaries indicates the possibility of a vibration ( a standing 
have either a prescribed motion or a prescribed surface traction. 

wave). We begin by assuming the vibration to be of the form 

u1= u1 (x1 , t ) ,  u2 = u3 = 0 (5.1 1.1) 

and, just as for longitudinal waves, the displacement must satisfy the equation 

a2ul - a2u, 
c L - y - -  

ax, at2 

A steady-state vibration solution to this equation is of the form 

(5.11.2) 

u1= (AcosLxl + B s i n L x l ) ( C c o s c L A t + D s i n c L L t )  (5.11.3) 

where the constant A, B, C, D, and il are determined by the boundary conditions. This 
vibration mode is sometimes termed a thickness stretch vibration because the plate is being 
stretched through its thickness. It is analogous to acoustic vibration of organ pipes and to the 
longitudinal vibration of slender rods. 

Another vibration mode can be obtained by assuming the displacement field 

u2 = u2 (x, ,t ), u, = u3 = 0 (5.11.4) 

In this case, the displacement field must satisfy the equation 

(5.11.5) 

and the solution is of the same form as in the previous case. This vibration is termed 
thickness-shear and it is analogous to the vibrating string. 
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Example 5.11.1 

(a) Find the thickness -stretch vibration of a plate, where the left face (XI = 0) is subjected 
to a forced displacement u = (acos wt)el and the right face (x l  = I ) is fixed. 

(b) Determine the values of w that give resonance. 
Solution. (a) Using Eq. (5.11.3) and the first boundary condition, we have 

a cos wt = ul(0, t )  = ACcos CL A t + ADsin c~ A t 

Therefore 
w A C = a ,  A=- ,  D = O  
CL 

The second boundary condition gives 
w l  w l  
CL CL 

0 = u1 (I$) = ( a  cos - + BC sin-) cos w t 

Therefore 
01 BC = -a cot - 
CL 

(0 

(ii) 

(iii) 

and the vibration is given by 

(v) w 

CL 

(b) Resonance is indicated by unbounded displacements. This occurs for forcing frequencies 
corresponding to tan w l / q  = 0, that is, when t 

n n c L  

1 , n = 1,2,3 .... w = -  

Example 5.11.2 

(a) Find the thickness-shear vibration of an infinite plate which has an applied surface 
traction t = -@cowt)e2 on the plane x1= 0 and is fixed at the plane x1 = I. 

t These values of frequencies correspond to the natural free vibration frequencies with both faces fuced. 



Vibration of an Infinite Plate 253 

(b) Determine the resonance frequencies. 

stress forces a vibration of the form 
Solution. The traction on x1 = 0 determines the stress T12Ll=0 = /?cow t. This shearing 

U 2  = (ACOdXl BSiIdXl)(CCOSCTl t -k DSiIlCTl t). 

Using Hooke's law, we have 

or, 

Thus, 

i! cos ot  = BCcos c+ t + A BD sin cT'l t 
P 

The boundary condition at x1 =I gives 

Thus, 

BCT 01 AC = --tan- 
CT 

and 

(b) Resonance occurs for 
W l  tan- = 00 
C T  

or 
nncT 

W = -  , n = 1,3,5 .... 2 

(9  

(ii) 

(vii) 

We remark that these values of w correspond to free vibration natural frequencies with one 
face traction-free and one face fixed. 
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5.12 Simple Extension 

In this section and the following several sections, we shall present some examples of 
elastostatic problems. We begin by considering the problem of simple extension. Again, in 
all these problems, we assume small deformations so that there is no need to make a distinction 
between the spatial coordinates and the material coordinates in the equations of motion and 
in the boundary conditions. 

A cylindrical elastic bar of arbitrary cross-section (Fig. 5.6) is under the action of equal and 
opposite normal tractionadistributed uniformly at its end faces. Its lateral surface is free from 
any surface traction and body forces are assumed to be absent. 

Fig. 5.6 

Intuitively, one expects that the state of stress at any point will depend neither on the length 
of the bar nor on its lateral dimension. In other words, the state of stress in the bar is expected 
to be the same everywhere. Guided by the boundary conditions that on the planesxl = 0 and 
x1= I T11= B ,T21= T31 = 0 and on the planes x2 = a constant and tangent to the lateral 
surface, T12 = T22 = T32 = 0, it seems reasonable to assume that for the whole bar 

(5.12.1) 

We now proceed to show that this state of stress is indeed the solution to our problem. We 
need to show that (i) all the equations of equilibrium are satisfied (ii) all the boundary 
conditions are satisfied and (iii) there exists a displacement field which corresponds to the 
assumed stress field. 

(i) Since the stress components are all constants (either a or zero ), it is obvious that in the 
absence of body forces, the equations of equilibrium aT/axj = 0 are identically satisfied. 

(ii)The boundary condition on each of the end faces is obviously satisfied. On the lateral 
cylindrical surface, 

Ti1 = a, T22 = Ta = Ti2 = Ti3 = Tu = 0 

n = Oel + n2e2 + n3e3 (0  
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- 
P - 0 0  A 

0 0 0  

and 
t = Tn = nz(Te2) + n3(Te3) = n2(O) + n3(O) = 0 (ii) 

Thus, the traction-free condition on the whole lateral surface is satisfied. 
(iii) From Hooke's law, the strain components are obtained to be 

1 (I 
Ell  = - [Til - V (T22 + T33 11 = E y  

EY 

(5.12.2a) 

(5.12.2b) 

(5.12.2~) 

E12 = E13 = E23 = 0 (5.12.2d) 

These strain components are constants, therefore, the equations of compatibility are automat- 
ically satisfied. In fact it is easily verified that the following single-valued continuous 
displacement field corresponds to the strain field of Eq. (5.12.2) 

(5.12.3) 

Thus, we have completed the solution of the problem of simple extension (a>O ) or compres- 
sion ( ( IcO) .  We note that Eq. (5.12.3) is the unique solution to Eqs. (5.12.2) if rigid body 
displacement fields (translation and rotation) are excluded. 

If the constant cross-sectional area of the bar is A, the surface traction (I on either end face 
gives rise to a resultant force of magnitude 

P = a A  (5.12.4) 

passing through the centroid of the area A. Thus, in terms of P and A, the stress components 
in the bar are 

[TI = (5.12.5) 

Since the matrix is diagonal, we know from Chapter 2, that the principal stresses are 
PIA , 0 , 0. Thus, the maximum normal stress is 

(5.12.6) P 
Kn)rnax = 2 
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It acts on normal cross-sectional planes, and the maximum shearing stress is 

(5.12.7) 

and it acts on planes making 45’ with the normal cross-sectional plane. 
Al 
1 Let the undeformed length of the bar be 1 and let Al be its elongation. Then Ell = - and 

from Eqs. (5.12.2a) and (5.12.4), we have 

(5.12.8) 

Also, if d is the undeformed length of a line in the transverse direction, its elongation Ad is 
given by 

(5.12.9) 

The minus sign indicates the expected contraction of the lateral dimension for a bar under 
tension. 

In reality, when a bar is pulled, the exact nature of the distribution of surface traction is 
often not known, only the resultant force is known. The question naturally arises under what 
conditions can an elasticity solution such as the one we just obtained for simple extension be 
applicable to real problems. The answer to the question is given by the so-called St. Venant’s 
Principle which can be stated as follows: 

Ifsome distribution of forces acting on aportion of the surface of body zk replaced by a different 
distribution of forces acting on the same portion of the body, then the effects of the two different 
dzktritwtions on the parts of the body sufsiciently far removed form the region of application of the 
forces are essentially the same, provided that the two distribution of forces have the same resultant 
force and the same resultant couple. 

The validity of the principle can be demonstrated in specific instances and a number of 
sufficient conditions have been established. We state only that in most cases the principle has 
been proven to be in close agreement with experiments. 

By invoking Saint-Venant’s principle, we now regard the solution we just obtained for 
“simple extension” to be valid at least in most part of a slender bar, provided the resultant 
force on either end passes through the centroid of the cross-sectional area. 

Example 5.12.1 

A steel circular bar, 2 ft (0.61 m) long, 1 in. (2.54 cm) radius, is pulled by equal and opposite 
axial forces P at its ends. Find the maximum normal and shear stresses if P = 10,000 Ibs 
(44.5 kN). E y  = 30X lo6 psi (207 GPa.) and v = 0.3. 
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Solution. The maximum normal stress is 

(Tn)mm = 2 p = * lo Oo0 - - 3180 psi. (21.9 Mpa.) 

The maximum shearing stress is 

Ks)max = 2 3180 - - 1590 psi. (1 1.0 Mpa.) 

and the total elongation is 

N=-- ‘I - (109000)(2x 12) = 2 . 5 4 ~  1O-3 in. (64.5 pm.) 
AEY z (30x lo6) 

The diameter will contract by an amount 

-M = -d ’ p = (0‘3)(109000)(2) = 0.636x 1O-4 in. (1.61 pm.) 
EYA (30x 106)(z) 

Example 5.12.2 

Fig. 5.7 

A composite bar, formed by welding two slender bars of equal length and equal cross-sec- 
tional area, is loaded by an axial force P as shown in Fig. 5.7. If Young’s moduli of the two 
portions are Ef.” and E?), find how the applied force is distributed between the two halves. 

Solution. Taking the whole bar as a free body, the equation of static equilibrium requires 
that 
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P = P1 - P2 

Statics alone does not determine the distribution of the load (a statically indeterminate 
problem), so we must consider the deformation induced by the load P. In this problem, there 
is no net elongation of the composite bar, therefore 

PI1 P21 +-- 
A&) 

(ii) 

Combining Eqs. (i) and (ii), we obtain 

(iii) 

If in particular, Young’s moduli are Ef’) = 207 GPa (steel) and Ef2) = 69 GPa.(aluminum), 
then 

P -P 
1 + (lip/&)) ’ p2 = 1 + (&)/I#)) P I =  

3P -P 
4 4 P1= -, P2 = - 

5.13 Torsion of a Circular Cylinder 

Let us consider the elastic deformation of a cylindrical bar of circular cross-section (of 
radiusa and length I), twisted by equal and opposite end momentsM, (see Fig. 5.8). We choose 
thexl axis to coincide with axis of the cylinder and the left and right faces to correspond to the 
plane x1= 0 and x1 = 1 respectively 

By the symmetry of the problem, it is reasonable to assume that the motion of each 
cross-sectional plane induced by the end moments is a rigid body rotation about the x1 axis. 
This motion is similar to that of a stack of coins in which each coin is rotated by a slightly 
different angle than the previous coin. It is the purpose of this section to demonstrate that for 
a circular cross-section, this assumption of the deformation leads to an exact solution within 
the linear theory of elasticity. 

Denoting the small rotation angle by 6, we evaluate the associated displacement field as 
u = (eel)  x r = (6el)X(x,el + x2e2 + x3e3 ) = 6 (x2 e3 - x3 e2)  (5.13.la) 

or, 

where 6 = 8 (xl ) 
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Fig. 5.8 

Corresponding to this displacement field are the nonzero strains 
1 ae 

E12 = E21 = --~3- 2 axl (5.13.2a) 

E13 = E31 = - 1 ~2 - ae (5.13.2b) 
2 axl 

The nonzero stress components are , from Hooke’s law 

(5.13.3a) a6 
T12 = T2l = -P x3 ax, 

(5.13.3b) 

To determine if this is a possible state of stress in the absence of body forces, we check the 
equilibrium equations aTv/dxi = 0. The first equation is identically satisfied, whereas from 
the second and third equations we have 

ae 
T13 = T31 = P x 2 z  

(5.13.4a) 
d X l  

(5.13.4b) 

PI = O  

+PX2 [$] = o  

- P 3  
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Thus, 

- constant. (5.13.5) 

Interpreted physically, we satisfy equilibrium if the increment in angular rotation (i.e, twist per 
unit length) is a constant. Now that the displacement field has been shown to generate a 
possible stress field, we must determine the surface tractions that correspond to the stress field. 

On the lateral surface (see Fig. 5.9 ) we have a unit normal vector n = (l/a)(x2e2 + ~3%). 
Therefore, the surface traction on the lateral surface 

[t] = [TI [n] = a  1 [T31 T21 0 o o 0 1 F] =:[ ; 1 (5.13.6) 

- = e ' =  d e  
dXl 

0 T12 T13 x2 T12 + x3 Tu 

Substituting from Eqs. (5.13.3) and (5.13.5), we have 

t = cf (-x2x3 8 ' + x2x3 8 ')el = 0 (5.13.7) 

Thus, in agreement with the fact that the bar is twisted by end moments only, the lateral surface 
is traction free. 

a 

Fig. 5.9 

On the facexl= 1, we have a unit normal n = el and a surface traction 

t = Tel = Tz1e2 + T31e3 (5.13.8) 

This distribution of surface traction on the end face gives rise to the following resultant 
(Fig. 5.10) 
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R1=$T11dA=O (5.13.9a) 

R ~ = J T ~ ~ & =  - p 0 ' J x 3 d ~ = 0  (5.13.9b) 

~ ~ = J ~ ~ ~ d ~ = p e r J ~ ~ d ~ = o  (5.13.9~) 

(5.13.9d) 

(5.13.9e) 

where 'p = x a4/2 is the polar moment of inertia of the cross-sectional area. We also note that 
Jx2 dA = Jx# = 0 because the area is symmetrical with respect to the axes. 

~ l =  J (x2~31 - x 3  T~~ )a = p  e 1 J & + xg )& = p  e 1 'p 
M2 = M3 = 0 

Fig. 5.10 

The resultant force system on the facexl = 0 will similarly give rise to a counter-balancing 
couple -,uB ' $. Therefore, the resultant force system on either end face is a twisting couple 
MI = M, and it induces a twist per unit length given by 

(5.13.10) 
Mt e l = -  

p!D 

This indicates that we can, as indicated in Section 5.1, determine the shear modulus from a 
simple torsion experiment. 
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In terms of the twisting couple Mt, the stress tensor becomes 

[TI = 

0 -  

-4 x3 
IP  

'P - 

Mtx3 M t x 2  

IP  
0 

'- 0 :I 0 

(5.13.11) 

In reality, when a bar is twisted the exact distribution of the applied forces is rarely, if ever 
known. Invoking St. Venant's principle, we conclude that as long as the resultants of the 
applied forces on the two ends of a slender bar are equal and opposite couples of strength 
Mt, the state of stress inside the bar is given by Eq. (5.13.11). 

Example 5.13.1 

For a circular bar of radius a in torsion (a) find the magnitude and location of the greatest 
normal and shearing stresses throughout the bar; (b) find the principal direction at the position 
x2 = 0 ,  x3 = a. 

Solution. (a) We first evaluate the principal stresses as a function of position by solving the 
characteristic equation 

A - A  - ( x 2 + x 3 ) = 0  [:I2 
Thus, the principal values at any point are 

1 = 0  and (ii) 

where r is the distance from the axis of the bar. 
In this case, the magnitude of the maximum shearing and normal stress at any point are 

equal and are proportional to the distancer. Therefore, the greatest shearing and normal stress 
both occur on the boundary, r = a with 

(5.13.12) 

(b) For the principal value 1 = Mt a/Ip at the boundary points ( X I ,  0, a) the eigenvector 
equation becomes 

(iii) 
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Mta Mta  (iv) 
'p 'P 

( 4  Mt a 
'p 

nl - -n2 = 0 -- 

n3 = 0 -- 

Therefore, the eigenvector is given by n = (\IZ/2)(el - e2 ). This normal determines a plane 
perpendicular to the lateral face which makes a 45O angle with thexl-axis. Frequently, a crack 
along a helix inclined at 45' to the axis of a circular cylinder under torsion is observed. This 
is especially true for brittle materials such as cast iron. 

Example 5.13.2 

In Fig. 5.11, a twisting torque Mt is applied to the rigid disc A. Find the twisting moments 
transmitted to the circular shafts on either side of the disc. 

Fig. 5.11 

Solution. Let M1 be the twisting moment transmitted to the left shaft and M2 that to the 
right shaft. Then, the equilibrium of the disc demands that 

M1 + M2 = Mt ( 9  
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In addition, because the disc is assumed to be rigid, the angle of twist of the left and right shaft 
must be equal: 

(ii) 

Thus, 
Mil  1 = M212 (iii) 

From Eqs. (i) and (iii), we then obtain 

Example 5.13.3 

Consider the angle of twist for a circular cylinder under torsion to be a function of x1 and 
time t, i.e., 8 = 8 ( X I ,  t ). 

(a) Determine the differential equation that 8 must satisfy for it to be a possible solution in 
the absence of body forces. What are the boundary conditions that 8 must satisfy (b) if the 
plane x1 = 0 is a fixed end; (c) if the plane x1= 0 is a free end. 

Solution. (a) From the displacements 

u1 = 0, u2 = -e(xl, t)x3, u3 = q x , ,  t )x2 

and 
Ti1 = T22 = T33 = T u  = 0 

The second and third equations of motion give 

a2 e a2 e 
ax: at 

-px3-= -p 0 3  x 

(iia) 

(iib) 

(iic) 

(iiia) 

a2 e a2 e 
P X 2 7  = P O X 2 7  

ax1 at 
(iiib) 



Therefore, 8 (XI , t ) must satisfy the equation 

2 a% a2e 
axl at2 

c T T = -  

where CT = w. 
(b) At the fixed end X I =  0, there is no displacement, therefore, 

e (0, t ) = o 
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(iv) 

(c) At the traction-free end x1 = 0, t = -Tel = 0. Thus, T21 lXl=o = 0 ,  T31 lXl=o = 0, there- 
fore, 

ae - (O, t )  = 0 
ax1 

Example 5.13.4 

A cylindrical bar of square cross-section (see Fig. 5.12 ) is twisted by end moments. Show 
that the displacement field of the torsion of the circular bar does not give a correct solution to 
this problem. 

Solution. The displacement field for the torsion of circular cylinders has already been shown 
to generate an equilibrium stress field. We therefore check if the surface traction of the lateral 
surface vanishes. The unit vector on the plane x3 = a is e3, so that the surface traction for the 
stress tensor of Eq. (5.13.1) is given by 

'P 
Similarly, there will be surface tractions in the el direction on the remainder of the lateral 
surface. Thus, the previously assumed displacement field must be altered. To obtain the actual 
solution for twisting by end moments only, we must somehow remove these axial surface 
tractions. As will be seen in the next section, this will cause the cross-sectional planes to warp. 
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Fig. 5.12 

5.14 Torsion of a Noncircular Cylinder 

For cross-sections other than circular, the simple displacement field of Section 5.13 will not 
satisfy the tractionless lateral surface boundary condition (see Example 5.13.4). We will show 
that in order to satisfy this boundary condition, the cross-sections will not remain plane. 

We begin by assuming a displacement field that still rotates each cross-section by a small 
angle 0, but in addition there may be a displacement in the axial direction. This warping of 
the cross-sectional plane will be defined by u1  = p(x2  , x3  ). Our displacement field now has 
the form 

(5.14.1) u1 = P(X2 9 x3 ) Y u 2  = -3 o h  1, 
The associated nonzero strains and stresses are given by 

u3  = x2 e@, ) 

aP (5.14.2a) T12 = T21 = 2 p  E12 = - p x 3 0 '  + p  ~ 

8x2 

T 1 3 =  T 3 1 = 2 p E 1 3 = / 1 ~ 2 0 ' + ~ -  aP (5.14.2b) 

The second and third equilibrium equations are still satisfied if 8 ' = constant. However, 

* + * = 0  (5.14.3) 

ax3 

the first equilibrium equation requires that 
2 2 

ax; ax3 

Therefore, the displacement field of Eq. (5.14.1) will generate a possible state of stress if ~p 
satisfies Eq. (5.14.3). Now, we compute the traction on the lateral surface. Since the bar is 



The Elastic Solid 267 

cylindrical, the unit normal to the lateral surface has the form n = n2e2 + n3e3 and the 
associated surface traction is given by 

t = Tn = [ p 8 ' ( - ~ x 3  + n 3 ~ 2 )  + p (*n2 ax2 + *n3) ax3 ] el 

= [ p 8 I(-n2x3 -k n3x2) +p(vp)*nlel  (9  

We require that the lateral surface be traction-free, i.e., t = 0, so that on the boundary the 
function p must satisfy the condition 

(5.14.4) 

Equations(5.14.3) and (5.14.4) define a well-known boundary-value problemt which is 
known to admit an exact solution for the function p. Here, we will only consider the torsion of 
an elliptic cross-section by demonstrating that 

= A x ~ x ~  (5.14.5) 

-- d p  - ( v p > - n  = 8 I (n2x3 - n 3 x 2 )  
dn 

gives the correct solution. 
Taking A as a constant, this choice of p obviously satisfy the equilibrium equation [Eq. 

(5.14.3)]. To check the boundary condition we begin by defining the elliptic boundary by the 
equation 

The unit normal vector is given by 

and the boundary condition of Eq. (5.14.4) becomes 
2 2  a2x3=8Ix2x3(b  - a  ) 

Substituting our choice of p into this equation, we find that 

A = 8 '  [x] b a  
a + b  

(ii) 

(iii) 

(5.14.6) 

t It is known as a Neumann problem 
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BecauseA does turn out to be a constant, we have satisfied both Eq. (5.14.3) and (5.14.4). 
Substituting the value of (p into Eq. (5.14.2), we obtain the associated stresses 

This distribution of stress gives a surface traction on the end face, X I  = I 

= T21e2 4- T31?3 

and the following resultant force system 
R I = R ~ = R ~ = M ~ = M ~ = O  

(5.14.7a) 

(5.14.7b) 

(vii) 

Denoting MI = Mt and recalling that for an ellipse I33 = n a3 b/4 and 122 = n b3 a/4,  we 

a2 + b2 (5.14.8) 
3 3 

9 '  = 
na b p 

obtain 

Similarly the resultant on the other end face x1 = 0 will give rise to a counterbalancing 

In terms of the twisting moment, the stress tensor becomes 
couple. 

na b 

(5.14.9) 
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Example 5.14.1 

For an elliptic cylindrical bar in torsion, (a) find the magnitude of the maximum normal and 
shearing stress at any point of the bar, and (b) find the ratio of the maximum shearing stresses 
at the extremities of the elliptic minor and major axes. 

Solution. As in Example 5.13.1, we first solve the characteristic equation 

The principal values are 
1/2 

A = O ,  and A=?zp+$] 
which determines the maximum normal and shearing stresses: 

(b) Supposing that b>a, we have at the end of the minor axis (x2 = a, x3 = 0), 

and at the end of major axis ( x ~  = 0 ,  x3 = b ) 

(ii) 

(5.14.10) 

(iii) 

The ratio of the maximum stresses is therefore b/a and the greater stress occurs at the end of 
the minor axis. 

5.15 Pure Bending of a Beam 

A beam is a bar acted on by forces or couples in an axial plane, which chiefly cause bending 
of the bar. When a beam or portion of a beam is acted on by end couples only, it is said to be 
in pure bending or simple bending. We shall consider the case of cylindrical bar of arbitrary 
cross-section that is in pure bending. 

Figure 5.13 shows a bar of uniform cross-section. We choose thexl axis to pass through the 
cross-sectional centroids and letxl = 0 andxl = I correspond to the left- and right-hand faces 
of the bar. 
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For the pure bending problem, we seek the state of stress that corresponds to a tractionless 
lateral surface and some distribution of normal surface tractions on the end faces that is 
statically equivalent to bending couples MR = M2e2 + M3e3 and ML = -MR (note that the 
MI component is absent because MI is a twisting couple ). Guided by the state of stress 
associated with simple extension, we tentatively assume that T11 is the only nonzero stress 
component and that it is an arbitrary function of x1. 

Fig. 5.13 

To satisfy equilibrium, we require 

(9  -- - 0  aT11 

ax1 

Le., T11 = T11 (x2, x3 ). The corresponding strains are 

(iia) 

(iib) 

Since we have begun with an assumption on the state of stress, we must check whether these 
strains are compatible. Substituting the strains into the compatibility equations [Eq. ( 3.16.7- 
12) we obtain 

1 V 
Ell = - 7'11, E22 = E33 = -- Til, 

EY EY 

E12 = E13 = E23 = 0 

(iii) - 0  - 0 ,  -- - 0 ,  -- d2T11 -- a2Tll a2T11 
ax; ax: ax3ax2 

which can be satisfied only if T11 is at most a linear function of the form 

T11= a + B x 2  + y x 3  (iv) 



The Elastic Solid 271 

Now that we have a possible stress distribution, let us consider the nature of the boundary 
tractions. As is the case with simple extension, the lateral surface is obviously traction-free. 
On the end face X I =  1 ,  we have a surface traction 

t = Tel = T11 el (v) 

(vi) 

which gives a resultant force system 

R1= S T11 dA = a s dA + s x 2 d A  + y s x 3  dA = a A  

R 2  = R 3  = 0 (vii) 

M I =  0 (viii) 

where A is the cross-sectional area, 122,133, and 123 are the moments and product of inertia of 
the cross-sectional area. On the facexl = 0, the resultant force system is equal and opposite 
to that given above. 

we will set a = 0 to make R 1 =  0 so that there is no axial forces acting at the end faces. 
We now assume, without any loss in generality, that we have chosen the x2 and x3 axis to 
coincide with the principal axes of the cross-sectional area (e.g., along lines of symmetry) so 
that 123 = 0. In this case, from Eqs. (ix) and (x), we have /? = -&/I33 and y = M2/I22 so that 
the stress distribution for the cylindrical bar is given by 

(5.15.1) 

and all other qj = 0. 

simplicity we let M 3  = 0. The corresponding strains are 
To investigate the nature of the deformation that is induced by bending moments, for 

(5.15.2a) 

E12 = E13 = E23 = 0 (5.15.2b) 

These equations can be integrated (we are assured that this is possible since the strains are 
compatible) to give the following displacement field: 
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x1 x3 -a3 x2 + a 2 ~ 3  + a4 u1= - M2 
EY I22 

(5.15.3a) 

(5.15.3b) 

M2 
[XI  2 - v (x2 2 2  - x3)] -a2xl + alx2 + a6 u3 = -- (5.15.3~) 

*Y I22 

where ai are constants of integration. In fact, a4, as, a6 define an overall rigid body 
translation of the bar and a1, a2, a3 being constant parts of the antisymmetric part of the 
displacement gradient, define an overall small rigid body rotation. For convenience, we let all 
the ai = 0 [ note that this corresponds to requiring u = 0 and (Vu>” = 0 at the origin 1. The 
displacements are therefore, 

u3 = -- M2 [x? - v (x; - x;)] 
E Y  I22 

(5.15.4a) 

(5.15.4b) 

Considering the cross-sectional planexl = constant, we note that the displacement perpen- 
dicular to the plane is given by 

(5.15.5) 

Since u1 is a linear function ofx3, the cross-sectional plane remains plane and is rotated about 
thex;! axis (see Fig. 5.14) by an angle 

(5.15.6) 

In addition, consider the displacement of the material that is initially along the x1 axis 
(x2 =x3 = 0)  

M 2 4  
u1= u2 = 0 ,  u3 = -- 

2EY I22 

(5.15.7) 

The displacement of this material element ( often called the neutral axis or neutral fiber ) is 
frequently used to define the deflection of the beam. Note that since 

(5.15.8) 
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the cross-sectional planes remain perpendicular to the neutral axis. This is a result of the 
absence of shearing stress in pure bending. 

Fig. 5.14 

Example 5.15.1 

Figure 5.15 shows the right end face of a rectangular beam of width 15 cm and height 20 cm. 
The beam is subjected to pure bending couples at its ends. The right-hand couple is given as 
M = 7clcIoe2 Nm. Find the greatest normal and shearing stresses throughout the beam. 

Solution. We have 

M F 3  (0 
I22 

TI1 = - 

and the remaining stress components vanish. Therefore, at any point 
M g 3  (ii) 

(G)max = - 
I22 

and 
M2 x3 (iii) 

( u l l a x  = u,, 
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Fig. 5.15 

The greatest value will be at the boundary, i.e., x3 = 10-lm. To obtain a numerical answer, 
we have 

122=-(15X10-2)(20X10 1 - 2 3  ) = 10 -4 m 4 
12 

and the greatest stresses are 

(7000>(10-1> 
= 7x 106 pa. 

1 0 - ~  
(Tn)max = 

( T ~ ) ~ ~  = 3 . 5 ~  lo6 Pa 

Example 5.15.2 

For the beam of Example 5.15.1, if the right end couple is M = 7000 (e2 + e3)Nm and the 

Solution. We have 
left end couple is equal and opposite, find the maximum normal stress. 

-4 4 -4 4 133 = 0.563X10 m , 122 = 10 m 

M2x3 M3x2 - (70x3 - 124x2)x 106Pa 
T11 = I 22 - - I33 - 

The maximum normal stress occurs at x2 = -7.5 X 1O-2 m and x3 = 10-1 m with 

T11 = 16.3 MPa 
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5.16 Plane Strain 

If the deformation of a cylindrical body is such that there is no axial components of the 
displacement and that the other components do not depend on the axial coordinate, then the 
body is said to be in a state of plane strain. Such a state of strain exists for example in a 
cylindrical body whose end faces are prevented from moving axially and whose lateral surface 
are acted on by loads that are independent of the axial position and without axial components. 

Letting the e3 direction correspond to the cylindrical axis, we have 
u1= Ul (Xi ,x2), U2 = 4 (xi ,X2), 4 = 0 (5.16.1) 

The strain components corresponding to this displacement field are: 

(5.16.2a) 

E13 = E3 = E33 = 0 (5.16.2b) 

and the nonzero stress components are T11, T12, T22, T33, where 

T33 = v 1 1 +  T22 1 (5.16.3) 

This last equation is obtained from the Hooke's law, Eq. (5.4.8~) and the fact that E33 = 0 for 
the plane strain problem. 

Considering a static stress field with no body forces, the equilibrium equations reduce to 

+-- - 0. aT,, aT12 
ax, ax2 

+-- - 0  aT,, aT22 
ax, ax2 

(5.16.4a) 

(5.16.4b) 

(5.16.4~) 

Because T33 = T33 (XI , x2 ), the third equation is trivially satisfied. It can be easily verified 
that for any arbitrary scalar function p, if we compute the stress components from the following 
equations 

(5.16.5) 

then the first two equations are automatically satisfied. However, not all stress components 
obtained this way are acceptable as a possible solution because the strain components derived 
from them may not be compatible; that is, there may not exist displacement components which 
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correspond to the strain components. To ensure the compatibility of the strain components, 
we obtain the strain components in terms of p from Hooke’s law Eqs. (5.4.8) [and using 
Eq. (5.16.3)] - 

L E l l = - [ ( l - v  1 2 ) T ~ ~ - Y ( ~ + Y ) T ~ ] = - [ ( ~ - Y ~ ) ~ - Y ( ~ + ~ ) ~ ]  1 (5.16.6a) 

EY EY ax; ax1 

2 2 E 2 2 = - [ ( 1 - ~  1 2 ) T 2 2 - ~ ( 1 + ~ ) T 1 1 ] = - [ ( 1 - ~ ~ ) ~ - ~ ( 1  1 + Y ) % ]  (5.16.6b) 

EY EY ax1 8x2 

& (5.16.6~) 
1 1 

+ )axl ax, E12 = - (1 + Y ) T 1 2  =- - 
EY EY 

and substitute them into the compatibility equations, Eqs. (3.16.7) to (3.16.12). For plane 
strain problems, the only compatibility equation that is not automatically satisfied is 

Thus, we obtain the following equation governing the scalar function Q: 

i.e., 

(5.16.7) 

(5.16.8) 

Any function p which satisfies Eq. (5.16.8) generates a possible elastic solution. In par- 
ticular, any third degree polynomial (generating a linear stress and strain field ) may be utilized. 
The stress function p defined by Eqs. (5.16.5) and satisfying Eq. (516.8)’ is called the Airy 
Stress Function. 

We can also obtain from the Hooke’s law [Eq. (5.16.6)], the compatibility equation 
[Eq. (5.16.7)] and the equations of equilibrium [Eqs. (5.16.4)] the following : [See Prob. 5.771 [< + <] (TI1 + T2,) = 0 (5.16.9) 

ax, ax2 

which may also be written as 

V2 (T11 + T22 ) = 0 (5.16.10) 



where 

a2 a2 
ax: ax; 

v =-+- 
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(iiic) 

Example 5.16.1 

Consider the Airy stress function 

(a) Obtain the stresses for the state of plane strain; 
(b )  If the stresses of part(a) are  those inside a rectangular bar bounded by 
x1 = 0 ,  x1 = 1 ,  x2 = &(h/2 ) and x3 = +(b/2 ), find the surface tractions on the boundaries 

(c) If the boundary surfacesx3 = + (b/2 ) are traction-free, find the solution. 

Solution. (a) From Eq. (5.16.5) 
TI1 = 8x2 9 T22 = 0 7 T33 v8x2 (iia) 

Ti2 = Ti3 = T23 = 0 (iib) 

that is, 

[ T ] = r :  0 0 v8x2 x 1 
(b) On the facexl = 0 ,  t = T (-el) = -8x2el 

(iic) 

(iiia) 

On the facexl = 1 ,  t = T (el) = px2el (iiib) 

On the facesx2 = &(h/2), t = T (&e2) = 0 (iiic) 

On the facesx3 = +(b/2), t = T (+e3) = +vpx2 e3 (iiid) 

We note that the surface normal stress on the side faces x3 = &(b/2)are required toprevent 
them from moving in thex3 direction. 

(c) In order to obtain the solution for the case where the side faces x3 = &(b/2) are traction 
-free (and therefore have non zero ug), it is necessary to remove the normal stresses from these 
side faces. Let us consider the following state of stress 
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[TI = r" 0 0 ; ]  (iv) 

0 0 -vBx2 

This state of stress is obviously a possible state of stress because it clearly satisfies the equations 
of equilibrium in the absence of body forces and the stress components, being linear inx2, give 
rise to strain components that are also linear inx2 so that the compatibility conditions are also 
satisfied. Superposing this state of stress to that of part (a) , that is, adding Eq. (iic) and Eq. 
(iv) we obtain 

We note that this is the exact solution for pure bending of the bar with couple vectors parallel 
to the direction of e3. 

In this example, we have easily obtained, from the plane strain solution where the side faces 
x3 = 2 (b/2 ) of the rectangular bar are prevented from moving normally, the state of stress 
for the same rectangular bar where the side faces are traction-free, by simply removing the 
component T33 of the plane strain solution. This is possible for this problem because the T33 
obtained in the plane strain solution of part (a) happens to be a linear function of the 
coordinates. 

Example 5.16.2 

Consider the state of stress given by 

[ T ] = F "  0" 1 (9  
0 0 G(Xl,X;!) 

Show that the most general form of G(x1, x2 ) which gives rise to a possible state of stress in 
the absence of body force is 

G(xl,x2) =axl+/3x2+y.  (ii) 

Solution. The strain components are 
(iiia) 
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E12 = E13 = E u  = 0 (iiic) 

From the compatibility equations, Eqs. (3.16.8), (3.16.9) and (3.16.7), we have 

ax, ax2 - 0  (iv> 
d2G -0, -- 0 ,  -- d2G d2G 

ax: ax: 
-= 

Thus, G(xl $2 ) = a x1 + /I x2 + y. In the absence of body forces, the equations of equilibrium 
are obviously satisfied. 

Example 5.16.3 

3 Consider the stress function p = a x1 x2 + /I x1 x2 

(a) Is this an allowable stress function? 
(b) Determine the associated stresses for the plane strain case. 
(c) Determine a and /I in order to solve the plane strain problem of a cantilever beam with 
end load P (Fig. 5.16). 

Fig. 5.16 

(d) If the faces x3 = %b/2 are traction-free, are the stress components given in (b) still valid 
for this case if we simply remove T33 from them ? 

Solution. (a) Yes, because the stress function satisfies Eq. (5.16.8) exactly. 
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(b) The stress components are 

i.e., for the plane strain problem 

6 axlxZ -8-3 ax2 I ]  
0 0 -6 v 0 ~ 1 x 2  

(c) On the boundaries, x2 = +h/2, the tractions are 

But, we wish the lateral surface (x2 = ?h/2 ) to be traction-free, therefore 

3 h2 
4 

B =  --a 

On the boundaryxl = 0, 
2 t =  -Tel=(/?+3ax2)e2 

(ii) 

This shearing traction can be made equipollent to an applied load Pe2 by setting 

- ~ = p J d ~ + 3 a S x $ d ~ = p ~ + 3 a ~  

whereA = b h and I = b h3/12. Substituting forb, we have 

P = a  (zbh 3 3 -;) b h  = [q] a 

Therefore, a = 2P/bh3’B = -3P12bh and the stresses are 

In order that the state of plane strdin is achieved, it is necessary to have normal tractions 
acting on the side faces x3 = +b/2. The tractions are in fact t = f T33e3 = &6 v a x1 x2 e2. 

(d) Since T33 is not a linear function of the coordinates x1 andxz, from example 5.16.2, we 
see that we cannot simply remove T33 from the plane strain solution to arrive at a the stress 
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state for the beam where the side faces x3 = +b/2 are traction free. However, if b is very very 
small, then it seems reasonable to expect that the application of -T33 on these side face alone 
will result in a state of stress inside the body which is essentially given by 

0 0  0 

0 0 -T33 
[.]=I 0 0 1 (iv) 

(Indeed it can be proved that the errors incurred in this equation approach zero with the second 
power of b as b approaches zero). Thus, the state of stress obtained in part (b), with T33 taken 
to be zero, is the state of stress inside a thin beam under the same external loading as that in 
the plane strain case. Such a state of stress is known as the state of plane stress where the stress 
matrix given by 

[TI = T12 T22 0 (5.16.11) 

V 

r1 11 
The strain field corresponding to the plane stress state is given by 

E 1 1 
- - [Til - v T22 I, E22 = - [T22 - v T11 I, E33 = -- v 1 1 +  T22) 

l1 - E y  EY EY 

(5.16.12) 1 
E12 = - (1 + Y ) T12, E13 = Eu=O 

EY 

5.17 Plane Strain Problem in Polar Coordinates 

In Polar coordinates, the strain components in plane strain problem are, [with 
T, = y (T, + 7&dI, 

1 2 E , = - [ ( l  - V  ) T , - v ( ~ + v ) T M ]  
EY 

1 2 E @ = - [ [ ( l  - - Y  ) T @ - v ( l  +Y)T,] 
EY 

(5.17.1) 

The equations of equilibrium are [see Eqs. (4.8.1)], (noting that there is no z dependence). 

(5.17.2a) 
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(5.17.2b) 

The third equation is automatically satisfied, because Td = T, = 0 and T, is not a function 
of z. 

It can be easily verified that the equations of equilibrium Eq. (5.17.2a) are identically 
satisfied if 

(5.17.3a) 

(5.17.3b) 

(5.17.3~) 

where (p is the Airy stress function. In Section 5.16, we see that in order to satisfy the 
compatibility conditions, the Cartesian stress components T11 + T22 must satisfy 
Eq. (5.16.9), Le., [< + <] (T11 + T22) = 0 

axl ax2 
(5.17.4 ) 

To derive the equivalent expression in cylindrical coordinates, we note that T11 + T22 is the 
first scalar invariant of the stress tensor. Therefore 

(5. 17.5) 

Also, the Laplacian operator V2 = (d2/axl + a2/ax$ ) takes the following form in polar 
coordinates 

a2 1 a 1 a2 v2 = - + - + -- 
ar2 rar r2 ae2 

Thus, the function (p must satisfy the biharmonic equation 

(5.17.6) 

If (p is a function of r only, we have, 



and 

The general solution of this equation is [See Prob. 5.781 

y~ = A  1nr + Br21nr + Cr2 + D 

The stress field corresponding to this stress function is 
A 
r 

T, = 3 + B(1+ 21nr) + 2C 

The Elastic Solid 283 

(5.17.7) 

(5.17.8) 

(5.17.9) 

(5.17.10a) 

(5.17.10b) Tee= - ~ + B ( 3 + 2 l n r ) + 2 C  

Td = 0 (5.17.10~) 

A 
r 

and the strain components are: 

E rr =-[ EY =+(l-3v-4v2)B r2 + 2 (1-v-2v2)B1nr +2(1-v-2v2)C (5.17.1 la) 1 
E d = O  (5.17.1 IC) 

Since 

(5.17.12a) 

(5.17.12b) 

the displacement components can be obtained by integrating the above equations. They are 
[See Prob. 5.791, (ignoring the terms that represent rigid body displacements) 

- v - 2 v2 >r In r u r=- [ -  QLLY-M - B (1 + v >r + EY r 

+ ~ ( 1  - v  - 2v2)r] (5.17.13a) 
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(5.17.13b) 

5.1 8 Thick-walled Circular Cylinder under Internal and External Pressure 

Consider a circular cylinder subjected to the action of an internal pressurepi and an external 

T, = -pi at r = a (5.18.la) 

pressure po. The boundary conditions for the plane strain problem are: 

T,= -po atr  = b (5.18.lb) 

These boundary conditions can be easily shown to be satisfied by the following stress field 

(5.18.2) A A 
r r 

T,=z+2C,  Tee= - y + 2 C ,  Td=O 

These components of stress are taken from Eq. (5.17.10) with B = 0 and represent therefore, 
a possible state of stress for the plane strain problem, where T, = v (T, + Tee). We note that 

if B is not taken to be zero, then 249 = - ( 1-v2) which is not acceptable because if we start 

from a point at 8 =O, trace a circuit around the origin and return to the same point, 8 becomes 
2n and the displacement at the point takes on a different value. Now applying the boundary 
conditions given in Eqs. (5.18.1), we find that 

4Br 8 
EY 

2 2  b2/r2) - 1 
(b  / a  ) - 1 

(b2/r2) + 1 
(b  /U ) - 1 

1 - (a / r  ) 
1 - (a2/b2) 

1 + (a2/r2)  
1 - (a2/b2) 

T rr = -p.(  ' 2 2  -Po 

Ti= Pi 2 2 -Po 

(5.18.3a) 

(5.18.3b) 

Td = 0 (5.18.3~) 

We note that if only the internal pressure pi is acting, T, is always a compressive stress and 
Tee is always a tensile stress. 

The above stress components together with T, = v (T, + Tee) constitute the exact plane 
strain solution for the cylinder whose axial end faces are fixed. 

As discussed in the last section, the state of stress given by Eqs. (5.18.3) above and with 
T, = 0, can also be regarded as an approximation to the problem of a cylinder which is very 
thin in the axial direction, under the action of internal and external pressure with traction-free 
end faces. However, the strain field is not given by Eq. (5.17.11 ), which is for the plane strain 
case. For the plane stress case, 



The Elastic S o l i  285 

1 1 E, = -( T, - v Tm), Em = -(Tee - v T,) 
EY EY (5.18.4b) 

(5.18.4~) 

Example 5.18.1 

Consider a thick-wall cylinder subjected to the action of external pressurep, only. If the 

Solution. From Eqs. (5.18.3), we have 
outer radius is much much larger than the inner radius. What is the stress field? 

1 - (a2/r2) 
1-(a2/b2) 

1 + (a2/r2> 
1 - (a2/b2) 

T,= -Po 

Tm =-Po 

Td = 0 
When b is much much larger than a, these become 

T,= - Po[l-(a 2 /r  2) 1 (5.18.5a) 

T& =-pop + (a2/r2>1 (5.18.5b) 

Td = 0 (5.18.5~) 

5.19 Pure Bending of a Curved Beam 

Fig. 5.17 shows a curved beam whose boundary surfaces are given by r = a,r = b, 
8 = +a and z = &h/2. The boundary surface r = a J = b and z = ?h/2 are traction-free. 
Assuming the dimension h isvery small compared with the other dimensions., we wish to obtain 
a plane stress solution for this curved beam under the action of equal and opposite bending 
couples acting on the faces 8 = &a. 
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, 
Fig. 5.17 

In the following we shall show that the state of stresses given in Eqs. (5.17.10) together with 
Tz = 0 can be used to give the desired solution. The stress components are: 

A 
r 

-A 
r 

(5.19.la) Tm = -z + B(1+ 2 ln r )  + 2C 

(5.19.lb) Tee = 7 + B(3 + 2 ln r )  + 2C 

Td = 0 (5.19.1~) 

Since the surfaces r = a and r = b are traction-free, the constants A, B and C must satisfy 

O = y + B ( l  +21na)+2C (5.19.2a) A 
a 

A 
b 

(5.19.2b) 0 = 3 + B(1+ 21nb) + 2C 

On the face 8 = a, there is a distribution of normal stress Tee given by Eq. (5.19.lb ). Let us 
compute the resultant of this distribution of the normal stresses: 

b 
(5.19.3) 1: R = s T& dr = h - + B(r+2rln r ) + 2Cr 

a [:' 
In view of Eqs. (5.19.2 ), we have 

R = O  
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That is, the resultant of the distribution of normal stresses must be a couple. Let the moment 
of this couple per unit width be Mas shown in Fig. 5.17, then 

b 
- M = $  Tmrdr 

a 

i.e., 
b (5.19.4a) -M = -A ln- + B(b2 - a2)  + B(b21nb - a21na) + C(b2 - a’)] [ a  

In view of Eqs. (5.19.2), Eq. (5.19.4) can also be written as [see Prob. 5.801 

(5.19.4b) b 
[ a  

-M = -A ln- - B(b21nb - a21na ) - C (b2 - a2)] 

Equations (5.19.2a) (5.19.2b) and (5.19.4) are three equations for the three constants A,B 

(5.19.5a) 

and C. We obtain, 

A = --a 4 M 2 2  b ln- b B = --(b 2 M 2  - a  2 ) 
N a N 

C = M[b2 - a2 + 2(b2 In b - a 2 h a  )] (5.19.5b) 
N 

where 

(5.19.5~) b 2  N = (b2 - a2)2 - 4a2b2 (1.;) 

Thus 

T,= -? ( y l n !  + b 

4M -a2b2 In b + b21n 1: + a21ng + b2 - a 
T w =  -7 [F r a b r 

(5.19.6a) 

(5.19.6b) 

Td = 0 (5.19.6~) 

5.20 Stress Concentration due to a Small Circular Hole in a Plate under Tension 

Fig. 5.18 shows a plate with a small circular hole of radius a subjected to the actions of 
uniform tensile stress of magnitude o on the faces perpendicular to the x direction. Let us 
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consider the region between two concentric circles: r = a and r = b. The surface r = a is 
traction-free, i.e., 

T,=O, Td=O a t r=a .  ( 0  

Fig. 5.18 

If b is much larger than a, then the effect of the small hole will be negligible on points lying on 
the surface r = b so that the state of stress at r = b as a/b+O will be that due to the uniaxial 
tensile stress 0 in the absence of the hole. In Cartesian coordinates, this state of stress is 
T11 = 0 with all other stress components zero. In cylindrical coordinates this same state of 
stress has the following nonzero stress components 

( T u  ( T U  U (5.20.1) T, = - + -cos 28, Tee = - - -cos 28, Td = -- sin 28 2 2  2 2  2 

Thus, the stress vector acting on the surface r = b has the r-component and 8-component 
given by 

( T U  (5.20.2a) T, = - + -COS 28 2 2  

and 

Td = -- U sin 28 (5.20.2b) 
2 

Therefore, the solution to the problem at hand can be obtained as follows: Find the elastos- 
tatically possible equilibrium plane stress field which satisfies the boundary conditions: (i) at 
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r = b (> >a)  , T, is given by Eq. (5.20.2a) and Td is given by Eq. (5.20.2b) and (ii) at r = a 
T, = Td = 0. 

First, we shall demonstrate that the stress field generated from the Airy stress function in 
the form of p =f(r) cos 2 8, can be used to give a stress field which satisfies the boundary 
conditions 

(7 U cos28, T d =  --sin28 a t r = b ,  T , = -  2 2 
(5.20.3a) 

a t r = a ,  T,=O, T d = O  (5.20.3b) 

Then, to this stress field, we will superpose the stress field 

(5.20.4) 

which is the solution for a hollow cylinder with a very thick wall (i.e.,b/a+W), acted on by a 
uniform radial traction -on the outer surfacer=b only [see Eqs. (5.18.5) in Example 5.18.11. 

In this way, the boundary conditions Eqs. (5.20.2) can be satisfied.. 

U 

2 

Substituting 
p = f ( r )  COS 2 8 (5.20.5) 

into the equation governing the Airy's stress function, Eq. (5.17.6), Le., 

we obtain that the function f(r) must satisfy ;he following equation 

The general solution for this equation is [see Prob. 5.811 
1 
r 

f(r> = A  r2 + ~r~ + C? + D 

Thus, 
1 

r 
p = (A r2 + BP + C? + D) cos20 

and the corresponding stress components are [see Eqs. (5.17.3)] 

r r  

(5.20.6) 

(5.20.7) 

(5.20.8) 

(5.20.9a) 
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Tm= (5.20.9b) 
r 

(5.20.9~) ) 
2 6C 20 Td = (2A + 6Br -4 +y sin28 

r r  

Using Eqs. (5.20.9), the boundary conditions (5.20.3) become 

6C 40 u 2 A + - + - = - -  
b4 b2 2 

6C 40 
a a  

U+,+,=O 

2 6C 20 2A+6Ba - ? - i = O  
a a  

(5.20. loa) 

(5.20. lob) 

(5.20.10~) 

(5.20.1Od) 

U 0 As b+co , Eq. (5.20.10a) becomes 2A = -- , so that A = -- , Eq. (5.20.10b) becomes 

6B b2 = 0 so thatB = 0 and Eqs. (5.20.10 c) and (d) become 
2 4 

u 6C 40 
2 a4 a2 

--+ - + - = o  

- 0  u 6C 20 
2 a4 a2 

--- -- -- 

Thus, 
2 

(5.20.11) a 4 
U a A = - - ,  4 B = O ,  C = - - - ,  4 D = - ~  2 

Substituting these values into Eqs. (5.20.9) and superpose them onto the stress field given 
in Eq. (5.20.4), we obtain 

(5.20.12a) 

(5.20.12b) 
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Putting r = a in these equations, we find that 

T,=O, Td=O, T ~ = o - ~ u c o s ~ ~  (5.20.13) 

n 3n We see therefore, at 6 = - (point m in Fig. 5. 18) and at 6 = - (point n in Fig. 5.18), 2 2 
Tm = 3a. This is the maximum tensile stress which is three times the uniform stress u applied 
at the ends of the plate. This is referred to as a stress concentration. 

5.21 Hollow Sphere Subjected to Internal and External Pressure 

Let the internal and external radii of the hollow sphere be denoted by ai and a, respectively 
and let the internal pressure bepi and the external pressure bep, , both pressures are assumed 
to be uniform. With respect to the spherical coordinates (r, 6 ,  p), it is clear that due to the 
spherical symmetry of the geometry and the loading that each particle of the elastic sphere will 
experience only a radial displacement whose magnitude depends only on r, that is, 

U, = u(r), ug = 0 ,  u$ = 0 (5.21.1) 

substituting Eq. (5.21.1) into the Navier equation of equilibrium in spherical coordinates, Eqs. 
(5.6.4) in the absence of body forces, we obtain 

where, see Eq. (5.6.38) 
du 2.u 
dr r 

e = - + -  

Thus, 

(1+2p) -  -+- = o  :(: 7)  
The general solution of the above equation is 

u = A r + ~  B 
r 

(5.21.2a) 

(5.21.2b) 

(5.21.3) 

(5.21.4) 

The stress components corresponding to this displacement field can be obtained from Eqs. 
(5.6.3), with e = 3A : 

du w 
3 T' = k + 2p- = (31 + $)A - 

r dr 

Tm = TM =Le  + *= (31 + 2 p  )A + 2P B 
r r 

(5.21.5a) 

(5.21.5b) 
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Tr$ = TN = T,@ = 0 

To determine the constants A and B, we use the boundary conditions: 
Tm = -pi at r = ai 

T, = -po at r = a, 

i.e., 

Thus, 

and the stress components become 

(5.2 1 Sc) 

(5.21.6a) 

(5.21.6b) 

(5.21.7a) 

(5.2 1.7b) 

(5.21.8) 

(5.21 .sa) 

(5.21.9b) 

We note that the stresses are not dependent on the elastic properties. 
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- -  r - -  
Tl1 cllll e1122 e1133 e1123 e1113 e1112 
T22 e1122 e2222 e2233 e2223 e2213 e1222 
T33 - - e1133 e2233 e3333 c2333 e1333 e1233 
T23 c1123 c2223 e2333 c2313 c1223 

T31 c1113 e2213 e1333 e2313 c1313 e1213 
T12 e1112 e1222 c1233 c1223 e1213 c1212 - -  L A -  

Part B Linear Anisotropic Elastic Solid 

- 
Ell 

E22 

E33 (5.22.1) 
=23 

=31 
2E12 - 

- 
Ell 
E22 
E33 
=23 
=31 
=12 - 

- 
Tl1 
T22 
T33 
T23 

T12 
T31 

- 
or 

- - 

e11 c12 c13 c14 c15 c16 
c12 c22 e24 c25 c26 
c13 e23 c33 c34 c35 
c14 

e15 c25 c35 c4.5 CS.5 c56 
c16 c26 e36 c56 I 

- -  
El 
E2  
E 3  
E4 
E5 
E6 - -  

c11 c12 c13 c14 c15 c16 
c12 c22 c23 c24 e25 cZ6 
c13 c33 c34 c35 c36 
c14 e24 e34 c44 c45 c46 
c15 c35 c45 cSS c56 
c16 c26 c36 c46 c56 e66 

(5.22.2) 

(5.22.3a) 

We note that Eq. (5.22.3a) can also be written in indicia1 notation 

T. = C..E. (5.22.3b) 
I ‘I I 

However, it must be emphasized that Cg are not components of a second order tensor and 
Tj are not those of a vector. 
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The matrix C is known as the stiffness matrix for the elastic solid. In the notation of 
Eq. (5.22.3), the strain energy U is given by 

-, 
El 
E2 
E3 

E5 
E4 

E6 - 

1 cll c12 c13 c14 c15 c16 
12 c 2 2  c23 c 2 4  c25  c26 

(5.22.4) 

We require that the strain energy U be a positive definite function of the strain components. 
That is, it is zero if and only if all strain components are zero and otherwise it is positive. Thus, 
the stiffness matrix is said to be a positive definite matrix which has among its properties : (1) 
All diagonal elements are positive, Le., Cii > 0 (no sum on i )' (2) the determinant of C is 
positive, i.e. detC > 0, and (3) its inverse S = C-' exists and is also symmetric and positive 
definite. (See Example 5.22.1). The matrix S ( the inverse of C ) is known as the compliance 
matrix. 

As already mentioned in the beginning of this chapter, the assumption of the existence of 
a strain energy function is motivated by the concept of elasticity which implies that all strain 
states of an elastic body requires positive work to be done on it and the work is completely 
used to increase the strain energy of the body. 

Example 5.22.1 

Show that (a) Cii > 0 (no sum on i ) (b) the determinant of C is positive (c) the inverse 
of C is symmetric and (d) the inverse is positive definite, (e) the submatrices 

etc. are positive definite. 
Solution. (a) Consider the case where only El is nonzero, all other Ei = 0, then the strain 

energy is U = -C11E:1. Since U > 0 , therefore C11 > 0. Similarly if we consider the case 

where E2 is nonzero, all other Ei = 0, then U = -C22E$2 and C22 > 0 etc. 

1 
2 

1 
2 

t An obvious consequence of these restrictions is that in uniaxial loading, a positive strain gives rise to a positive 
stress and vice versa. 
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(b) Since the diagonal elements are positive, the eigenvalues of C are all positive. Thus, the 
determinant of C is positive (and nonzero) and the inverse of C exists. 

(c) FromCC-' = I, (CC 

Now, C = CT, therefore C-' = (CT)-' = (C-l)T and C-l is symmetric. 
(d) Since C is positive definite, therefore, a .C a > 0 for any nonzero a. Let b = Ca and 
consider b C-' b. We have 

b-C-lb = Ca-C-'Ca = Caea = a-Ca > 0 

-1 T - I T  T - I  i - 1 T -  T - 1  ) = I, thus, (C ) C - , .e., (C ) - (C ) . 

(e) Consider the case where only El and E2 are not zero, then from Eq. (5.22.4) 

That is, the sub-matrix is indeed positive definite. We note that since the inverse of this 

is also positive definite. Now submatrix is positive definite therefore, the submatrix 

9 

where 

A1 = c11 c22 - 6 2  

Since both Clland Sllare positive, therefore Cll C22 - C'42 > 0. 

Similarly, the positive definiteness of the submatrix 

can be proved by considering the case where only E2 and E3 are nonzero and the positive 
definiteness of the matrix 

can be proved by considering the case where only El, E2 and E3 are nonzero , etc. 

Thus, we see that the determinant of C and of all submatrices whose diagonal elements 
are diagonal elements of C are all positive definite, and similarly the determinant of S and 
of all submatrices whose diagonal elements are diagonal elements of S are all positive 
definite. 
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5.23 Plane of Material Symmetry 

Let S1 be a plane whose normal is in the direction of el. The transformation 

el' = - e l ,  e2' = e2, e3' = e3 (5.23. la) 

describes a reflection with respect to the plane S1. This transformation can be more con- 
veniently represented by the tensor Q in the equation 

ei' = Qei (5.23.1 b) 

where 

(5.23. IC) 

If the constitutive relations for a material, written with respect to the {ei} basis, remain the 
same under the transformation [Q1], then we say that the plane S1 is a plane of material 
symmetry for that material. For a linearly elastic material, material symmetry with respect to 
the S1 plane requires that the components of cijk[ in the equation 

be exactly the same as C& in the equation 

(5.23.2) 

(5.23.3) 

under the transformation Eq. (5.23.1). When this is the case, restrictions are imposed on the 
components of the elasticity tensor, thereby reducing the number of independent components. 
Let us first demonstrate this kind of reduction with a simpler example, relating the thermal 
strain with the rise in temperature. 

Example 5.23.1 

Consider a homogeneous continuum undergoing a uniform temperature change 
A8 = 8 - 8,. Let the relation between the thermal strain e4 and A8 be given by 

ed = -ad(A8) (i) 

where au is the thermal expansion coefficient tensor. 

(a) If the plane S1 defined in Eq. (5.23.1) is a plane of symmetry for the thermal expansion 
property of the material, what restrictions must be placed on the components of a0 ? 

(b) If the planes S2 and S3 whose normals are in the direction of e2 and respectively are also 
planes of symmetry, what are the additional restrictions? In this case, the material is said to 
be orthotropic with respect to thermal expansion. 
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(c) If every plane perpendicular to the S3 plane is a plane of symmetry, what are the additional 
restrictions? In this case, the material is said to be transversely isotropic with respect to 
thermal expansion. 

Solution. (a) Using the transformation law [See Eq. (2B.13.lc)l 

[a 1 ' = [QITb 1 [Ql 
we obtain, with Q1 from Eq. (5.23.1~) 

r all 

all a12 a13 -1 0 0 

a31 a32 a33 0 0 1 
a21 a22 [ 0 1 0 

-a31 a32 a33 

The requirement that [a ] ' = [a ] results in the restriction that 

(ii) 

(iii) 

a12 = -a12 = 0, ( ~ 2 ~  = -a21 = 0, a13 = -a13 = 0, a31 = -a31 = 0 (iv) 

Thus, only five coefficients are needed to describe the thermo-expansion behavior if there is 
one plane of symmetry: 

[ a ]  = [a] '  = 0 a22 a23 [":' a:2 a:j 

(b) Corresponding to the S2 plane, [Q2] = -"1 :] 
0 0 1  

Thus, from Eq. (ii) and (vi) 

[ a ] '  = 

The requirements that [a ] ' = [a ] results in 

(vii) 

a23 = a32 = 0 (viii) 

Thus, only three coefficients are needed to describe the thermal expansion behavior if there 
are two mutually orthogonal planes of symmetry, i.e., 
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If the S3 plane is also a plane of symmetry, then with 

1 0  0 
[Q31 = [o 1 O]  

0 0 -1 

one obtains from Eq. (ii) and (x) that 

so that no further reduction takes place. That is, the symmetry with respect to S1 and S2 planes 
automatically ensures the symmetry with respect to the S3 plane. 

(c) All planes that are perpendicular to the S3 plane have their normals parallel to the plane 
formed by el and e2. Let el’ denote the normal to the Sp plane which makes an angle ofp with 

the el axis and --B with the e2 axis, then with respect to the following set of prime basis: 3r 

2 

el’ = coSg el + siq3e2 

e2’ = -si$ el + coSge2 

e3’ = e3 

the transformation law Eq. (ii) gives 

a j = O  

a33 = a33 

(xii) 

(xiiia) 

(xiiib) 

(xiiic) 

(xiiid) 

(xiiie) 

(xiiif) 
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In obtaining the above equations, we have made use of the fact that e l ,  e2, e3 are planes of 
symmetry so that a12 = a21 = a13 = a31 = a23 = a32 = 0. Now, in addition, since any Sp 
plane is a plane of symmetry, therefore, [see part (a)] 

a12' = 0 (xi4 

so that from Eq. (xiiib) 

a11 = a22 

Thus, only two coefficients are needed to describe the thermal expansion behavior of the a 
transversely isotropic material. 

Finally, if the material is also transversely isotropic with el as its axis of symmetry, then 

a22 = a33 (4 
so that 

all = a22 = a33 (xvii) 

and the material is isotropic with respect to thermal expansion with only one coefficient for 
its description. 

5.24 Constitutive Equation for a Monoclinic Anisotropic Linearly Elastic Solid. 

If a linearly elastic solid has one plane of material symmetry, it is called a monoclinic 
material. We shall demonstrate that for such a material there are 13 independent elasticity 
coefficients. 

Let el be normal to the plane of material symmetry Si .  Then by definition, under the change 
of basis 

el '= -el ,  e2' = e2, 5' = e3 (5.24.1a) 

the components of the fourth order elasticity tensor remain unchanged, i.e., 

cokl = cijkl (9  

NOW, = Qmi Q,i Qd Qsl Cmn, [Sect. 2B141, therefore 

cdkl  = Qmi Qnj Qr~c Qsl C m m  

where 

(ii) 

(5.24. lb) 

i.e., Qll = -1, Q22 = Q33 = 1, and all other Qq = 0. Thus, 
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- 
Tl1 
T22 
T33 

T23 
T31 
T12 - 

C1112 = Qii Qii Qii Qz C1112+0+0-. = (-1)(-1)(-1)(+1) C1112 = -C1112 ( 3  

so that 
c1112 = 0 (5.24.2a) 

Indeed, one can easily see that all Cukl with an odd number of the subscript 1 are all zero. 
That is, among the 21 independent coefficients, the following eight (8) are zero 

~1112=c1113=c1222=c1223=c1233=c1322=c1323=c1333 = (5.24.3) 

and the constitutive equations involve 13 nonzero independent coefficients. Thus, the stress 
strain laws for a monoclinic elastic solid having the ~ 2 . ~ 3  plane as the plane of symmetry, are: 

- - 

TI1 = cllll Ell + c1122 E22 (5.24.4a) 

T22 = C1122Ell + c2222 E22 C2U3 E33 2c2223 E23 (5.24.4b) 

T33 = c1133 Ell + c2233 E22 + c3333 E33 + 2c2333 E23. (5.24.4~) 

T23 = C1123Ell + c2223E22 + c2333 E33 + 2c2323 E23 (5.24.4d) 

c1133 E33 + 2c1123 E23 

i C I =  

T31 = 2c1213 E12 + 2c1313 E13 

TI2 = 2c1212 E l2  2c1213 E13 

- 
c11 c l 2  c13 c14 0 0 
c12 c22 c23 c24 
c13 c23 c33 c34 0 0 
C14 C24 c, c, 0 0 
0 0 0 0 css c56 
0 0 0 0 C56 c, 

- 

or 

cllll c1122 c1133 c1123 
c1122 c2222 c2233 c2223 
c1133 c2233 c3333 c2333 

c1123 c2223 c2333 c2323 
0 0 0 0 c1313 c1213 
0 0 0 c1213 c1212 

Ell 
E22 
E33 
=23 

=31 
E 1 2  

(5.24.4e) 

(5.24.4f) 

(5.24.5) 

(5.24.6) 
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The coefficients in the stiffness matrix C must satisfy the conditions [See Sect. 5.221 that each 
diagonal element Cii > O(no sumoni) fori = 1,2 .... 6 and the determinant of every submatrix 
whose diagonal elements are diagonal elements of the matrix C is positive definite [See 
Example 522.11. 

5.25 Constitutive Equations for an Orthotropic Linearly Elastic Solid. 

If a linearly elastic solid has two mutually perpendicular planes of symmetry, say S1 plane 
with unit normal el and S2 plane with unit normal e2, then automatically, the S3 plane with a 
normal in the direction of e3, is also a plane of material symmetry [see Example 5.25.1 below]. 
The material is called an orthotropic material. 

For this solid, the coefficient cgk[ now must be invariant with respect to the transformation 
given by Eq. (5.24.1) above as well as the following transformation 

el’ = el, e2 ’ = -e2, e3’ = 4. (5.25.1) 

Thus, all those CQkl which appear in Eq. (5.24.5) and which have an odd number of the subscript 
2 must also be zero. For example 

= QII Qll Q22Q33Cll23 + 0 + 0 . a .  = (-1)(-l)(-l)(+l)cll23 = -C1123 ( 9  

That is, in addition to Eqs. (5.24.3), we also have 

c1123 = c2223 = c2333 = c1213 = (5.25.2) 

Therefore, there are now only 9 independent coefficients and the constitutive equations 
become: 

Tll = cllll Ell c1122 E22 + c1133 E33 (5.25.3a) 

T22 = C1122Ell + c2222 E22 + c2233 E33 

T33 = C1133Ell -I- c2233 E22 -k c3333 E33- 

(5.25.3b) 

(5.25.3~) 

T12 = 2c1212 E12 (5.25.3d) 

T31 = 2c1313 E31 (5.25.3e) 

T u  = 2C2323 E a  (5.25.3f) 
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and in contracted notation, the stiffness matrix is 

[CI = 

IC11 c 1 2  c 1 3  0 0 0 

c 1 3  c 2 3  c 3 3  0 0 0 
c 1 2  c 2 2  c 2 3  0 0 0 

0 0 o c , o  0 
0 0 0 o c 5 5 0  
0 0 0 0 oc ,  

Ell 
E22 

E33 
E23 

E 1 2  
E31 

where again each diagonal element Cii > 0 (no sum on i ) for i = 1,2 .... 6 and 

and 

d e t r '  "'1 > O ,  de,[ c 2 2  c 2 3  ] > o  
c 1 2  c 2 2  c 2 3  c 3 3  

Example 5.25.1 

(a) Show that all the components Cukl remain the same under the transformation 

-1 0 0 

(b) Let 
-1 0 0 1 0 0  1 0  0 

0 0 1  0 0 1  
[Qil = [ 0 1 01, [Q21 = 1 -1 01, [QJ = 1 0 0 1 -1 O ]  

(5.25.4) 

(5.25.5) 
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Verify that [QJ[Qd = -[I1 [Q31. 

Solution. (a) With 

the equation 

becomes 

Q.. = -6.. 
'I 'I 

- 1 0 0  1 0  0 
0 1 0  0 - 1 0 =  0 - l o = -  

[Q21 = [ 0 0 ll[o 0 j [: : :] i :  :] 
0 0 -1 

[Qil[Q21 = -[I1 [Q31 
From the results of (a) and (b) , we see that if thex-plane and the y-plane are planes of material 
symmetry, then the z-plane is also a plane of symmetry. 

5.26 Constitutive Equation for a Transversely Isotropic Linearly Elastic Material 

If there exists a plane, say S3 plane, such that every plane perpendicular to it, is a plane of 
material symmetry, then the material is called a transversely isotropic material. The S3 plane 
is called the plane of isotropy and its normal direction e3 is the axis of transverse isotropy. 
Clearly, a transversely isotropic material is also orthotropic. 

Let Sp represent a plane whose normal el' is parallel to the S3 plane and which makes an 
angle ofg with the el axis which lies in the S3 plane. Then, for every angle /I, the plane S,g is, 
by definition, a plane of symmetry. Thus, if C& are components of the tensor C with respect 
to the basis ei 'given below: 

el' = c o g  el + siMe2 
e2' = -si$ el + coge2 (5.26.1) 

e3' = e3 
then, from Eq. (5.24.3), we must have 

CIi13= CIiB = C&2= ~ 1 j 3 3  = o 
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~1 i12  = C1&,= C&3= C1;,= O (ib) 

We now show that the condition given in Eq. (ia) are automatically satisfied for every and 
therefore do not lead to any further restrictions on cukf whereas the conditions given in 
Eq. (ib) do lead to additional restrictions, in addition to those restricted by orthotropy. 

Since 

Q13 = Q31= Q23 = Q32 = 0 (ii) 

therefore, 
3 

Ciii3 = 8111213 Ciiii + Q h l Z z i Q ~  C1122 +QZiQiiQi3 C2211 

+ QLQ3iQ33 Cii33 + QLQiiQw Cmi  + QLQ2iQa C1212+ QiiQ&Qi3 C1221 

+ QziQiiQi3 C2121+ QziQLQa C2112+.--=0+0+--=0 (iii) 

That is, Cii13 = 0 is automatically satisfied together with 

CliXJ = cl!322= Clj33 = 0 

On the other hand, since Q33 = 1, we have 

This requirement leads to 
cos p sin /3 (c1313 - C2323) = 0 

That is, 

c1313 = c2323 

Similarly, the equation C&3 = 0 leads to [See Prob. 5.851 

c1133 = c2233 

(vi) 

(5.26.2) 

(5.26.3) 

Also, from C1;12=0, we obtain 

i.e., 
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- - 
Cllll  c1122 c1133 0 

c1133 c1133 c3333 0 
0 0 0 c1313 0 0 

0 c1313 0 
0 0 0 0 0 (1~2)(~1111-C1122) 

IC1122 Clll l  c1133 0 0 

- 

-cos2~ ~ ~ ~ ~ ~ + s i n ~ / 1 ~ 2 2 2 2  + (c0s~/?-sin~~)~~122+2(cos~/?--sin~/?)~1212 = o (viii) 

Similarly, we can obtain from the equation [see Prob. 5.86) ] C& = 0 

-sin2/3 cll1l+cos2~~2222 - (cos2/3-sin 2 ~)~1122-2(cos 2 B-sin 2 ~ ) ~ 1 2 1 2  = o (ix) 

- 
Ell 
E22 

E23 

z 1 2  

E33 

2E31 

- 

The addition of Eq. (viii) and Eq. (ix) gives 

Cllll = c2222 

(5.26.6) 

(5.26.4) 

- -  
7-11 
7.22 
T33 
Tu 

T12 
T31 

- -  

and Eq. (ix) then gives 

-7 

c11 c12 c13 0 0 
c12 c11 c13 0 0 0 
c13 c13 c33 0 0 
0 0 o c , o  0 
0 0 0 o c ,  0 
0 0 0 0 0 (1/2)(C11-Cq 

- 

1 (5.26.5) 
c1212 = 5(C1111-C1122) 

Thus, the number of independent coefficients reduces to 5 and we have for a transversely 
isotropic elastic solid with the axis of symmetry in the e3 direction the following stress strain 
laws 

and in contracted notation, the stiffness matrix is 

In the above reduction of the elastic coefficients, we demanded that every S’ plane be a 
plane of material symmetry so that Eqs. (i) must be satisfied for all /?. Equivalently, we can 
demand that the elastic coefficients C& be the same as Cokl for all B and achieve the same 
reductions. 

The elements of the stiffness matrix satisfy the conditions: 

c11 >O,c33 >o,c, >o,c11  - c12 > o  (5.26.7a) 
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(5.26.7b) 

and 

=C&3 - 2C&3 - 2C& - &2>0. (5.26.7~) 

We note also that the stiffness matrix for transverse isotropy has also been written in the 
following form: 

E22 1 
E33 1 (5.26.8) 
E23 

where we note that there are five constants A, ,UT, PL, a and B. 

5.27 Constitutive Equation for Isotropic Linearly Elastic Solids 

The stress strain equations given in the last section is for a transversely isotropic elastic solid 
whose axis of transverse isotropy is in the e3 direction. If, in addition, el is also an axis of 
transverse isotropy, then clearly we have 

c2222 = c3333 (C22 = C33) 6)  

c1122 = c1133 (c12 = c13) (ii) 

(c.l = (c11;c12)) 
c1313 = c1212 

(iii) 

and the stress strain law is 
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where 

The el 

5.28 

m 

7.11 
T22 
7-33 
T23 

T12 
T31 

0 0 

0 0 

712 c12 c11 0 0 0 

711 c12 c12 O 

712 c11 c12 0 

0 0 0  (c11-c12] 0 

(Cll-cl2) 
2 0 0 0  0 

0 0 0  0 0 
(Cl l412)  

2 

E22 "111 
z 2 3  E33 I (5.27.1) 

Engineering Constants for Isotropic Elastic Solids. 

Since the stiffness matrix is positive definite, the stress-strain law given in Eq. (5.27.1) can 
be inverted to give the strain components in terms of the stress components. They can be 
written in the following form 

1 v v  - - 0  0 0 E E E  
v 1  v -- - - 0  0 0 E E  E 

0 0 0  v v 1  
E E E  

- -- 

-- -- 

1 0 0 0 , O O  

1 0 0 0 0 5 0  

0 0 0 0 0 ,  1 

(5.28.1) 
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where as we already know from Section 5.4, E is Young’s modulust, v is the Poisson’s ratio 
and G is the shear modulus and 

E (5.28.2) 
2(1 + v) G= 

The compliance matrix is positive definite, therefore the diagonal elements are all positive, 

E >O, G > O  (5.28.3a) 
thus 

and 
1 v  - _- -- 

3 2 1  2 
- 2~ - 3~ ) = ~ ( 1  - 2 ~ ) ( 1  + V) > O  (5.28.3~) 

E 
det -- 

v v 1  
E E E  

-- _- - 

- 
i.e., 

1 
2 

V<- 

Thus, 
1 -1 < v < -  2 

(5.28.3d) 

(5.28.4) 

5.29 Engineering Constants for Transversely Isotropic Elastic Solid 

For a transversely isotropic elastic solid, the symmetric stiffness matrix with five inde- 
pendent coefficients can be inverted to give a symmetric compliance matrix with also five 
independent constants. The compliance matrix is 

~ ~~~ 

t To simplify the notation, we drop the subscript Y from E. 
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- 
t11 
T22 

T33 
T23 
T31 

T12 - 

(5.29.1) 

The relations between Cd and the engineering constants can be obtained to be [See Prob. 5.881 

and 

c11 - c12 
= G12 2 

where 

From Eq. (5.29.2)’ it can be obtained easily (See Prob. 5.89) 

El 
G12 = 2(1 + v21) 

According to this Eq. (5.29.1)’ if T33 is the only nonzero stress component, then 

v31T33 
-v31 E33 

T33 
E3 E3 

E33 = - , Ell = E22 = -- = 

(5.29.2b) 

(5.29.2~) 

(5.29.2d) 

(5.29.3) 

Thus, E3 is the Young’s modulus in the e3 direction (the direction of the axis of transverse 
isotropy), ~ 3 1  is the Poisson’s ratio for the transverse train in the X I  or x2 direction when 
stressed in the x3 direction. 
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If T11 is the only nonzero stress component, then 

and if T22 is the only nonzero stress component, then 

Thus, El is the Young’s modulus in the el and e2 directions @e., in the plane of isotropy), 
v21 is the Poisson’s ratio for the transverse train in the x2 direction when stressed in the xl 
direction or transverse strain in the x1 direction when stressed in the x2 direction (i.e., 
Poisson’s ratio in the plane of isotropy, v12 = 9 1 )  and ~ 1 3  is the Poisson’s ratio for the 
transverse strain in the e3 direction (the axis of transverse isotropy) when stressed in a direction 
in the plane of isotropy. We note that since the compliance matrix is symmetric, therefore 

v13 - v31 

El E3 
(5.29.4) 

T u  T13 T12 

G13 G13 G12 
From 2Eu = -, 2E31 = - and 2E12 = -, it is clear that G12 is the shear modulus 

in the plane of transverse isotropy and G13 is the shear modulus in planes perpendicular to 
the plane of transverse isotropy. 

Since the comdiance matrix is positive definite, therefore, the diagonal elements are 
positive definite. -That is, 

El 

Also, 

i.e., 

det 

det 

2 -1<v21<1 

1 v31 - -- 
El E3 

E3 E3 
v31 1 -- - 

(5.29.5) 

(5.29.6) 
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- - 
Ell 
E22 
E33 - 
m23 

- 

m31 

i E 1 2  - 

i.e., 

Also, 

det 

v12 -- 
El 

El 

v13 -- 

0 

0 

1 v21 v31 - ---- 
El El E3 

- 
t11 
7-22 

T33 
T23 
=31 
7.12 - 

v21 1 v31 -- - -- 
El El E3 

El El E3 

v13 v13 1 -- -- - 

= L [ 1  - 2 ~ ] v 2 1 v : 1  - 2@].:1- VZ1] 2 

$E3 

Since 1 + vzl > O ,  therefore, 

(5.29.7) 

(vi) 

(5.28.9) 

5.30 Engineering Constants for Orthotropic Elastic Solid 

For an orthotropic elastic solid, the symmetric stiffness matrix with nine independent 
coefficients can be inverted to give a symmetric compliance matrix with also nine independent 
constants. The compliance matrix is 

v21 

1 

v23 

-- 
E2 

E2 

E2 

- 

-- 

0 

0 

0 

v31 -- 
E3 

E3 

E3 

v32 

1 

-- 

- 

0 

0 

0 

0 0 0  

0 0 0  

0 0 0  

- l o o  
G23 

1 0 - 0  
G31 

1 0 0 -  
G12 

(5.30.1) 

The meanings of the constants in the compliance matrix can be obtained in the same way as 
in the previous section for the transversely isotropic solid. We have, E l ,  E2 and E3 are 
Young’s moduli in the e l ,  e2 ,q directions respectively, G n  , G31 and G12 are shear moduli 
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in t h e x ~ 3 ,  “1x3 andxlx2 plane respectively and vu is Poisson’s ratio for transverse strain in the 
j-direction when stressed in the i-th direction. 

The relationships between Cu and the engineering constants are given by 

- v23 v32 v21 i- v31 v23 v31 v21 v32 
(5.30.2a) 

E2 E3 A 
9 c23= 

E2 E3 A E2E3A ’ c12 = 

v32 v12 v31 1 - v12 v21 
’ c33= ElE2A (5.30.2b) 

El E3 A 
c, = 

- v13 v31 
ElE3A ’ = 

where 

We note also that the compliance matrix is symmetric so that 
v12 v21 v13 - v31 - v32 

El E2’ El-% E2 E3 
_-  -- 

(5.30.2d) 

(5.30.3) 

Using the same procedures as in the previous sections we can establish the restrictions for the 
engineering constants: 

(5.30.4a) El >0, E2 >O, E3 >O, G u  >O, G31 >O, G12 >O 

(5.30.4b) 

(5.30.4~) 

(5.30.4d) 

Also, 

- v12 v21 - v23 v32 - v31 v13 - v21 v32 v13 ’ 0  (5.30.4e) 

5.31 Engineering Constants for a Monoclinic Elastic Solid 

For a monoclinic elastic solid, the symmetric stiffness matrix with thirteen independent 
coefficients can be inverted to give a symmetric compliance matrix with also thirteen inde- 
pendent constants. The compliance matrix for the case where the el plane is the plane of 
symmetry can be written: 
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- - 
Ell 
E22 
E33 - 

m31 

- 
m23 

- 2512  - 

- 
1 v21 v31 '141 - 

El E2 E3 G4 

El E2 E3 G4 

El E2 E3 G4 

El E2 E3 G4 

-- "12 - 1 v32 '142 

v13 v23 1 - 

- '114 724 

1 p65 0 0 0 o - -  
G5 G6 
p56 1 0 0 0 o - -  
G5 G6 - 

v12 - v21 v13 - 2 -=- v23 v32 
El E2' El E3' E2 E3' 

-- 

If only T11 is nonzero, then the strain-stress law gives 

and if only T22 is nonzero, then 

(5.3 1.1) 

(5.31.2a) 

(5.3 1.2b) 

(ii) 

etc. Thus, El , E2 and E3 are Young's modulus in thexl ,x2 andxg direction respectively and 
again, vu is Poisson7s ratio for transverse strain in the j-direction when stressed in the 
i-direction. We note also, for the monoclinic elastic solid with el plane as its plane of symmetry, 
a uniaxial stress in the xl direction, or x2 direction, produces a shear strain in the ~ 2 x 3  plane 
also, with vu as the coupling coefficients. 

If only T12 = T21 are nonzero, then, 

T12 
T12 = 2G6E12 and %31= p 6 5 -  

G6 

and if only Ti3 = T31 are nonzero, then, 

(iii) 
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Thus G6 is the shear modulus in the plane of x1 x2 and G5 is the shear modulus in the plane 
of x3. Note also that the shear stresses in the X I  x2 plane produce shear strain in the x1 x3 
plane and vice versa with pg representing the coupling coefficients. 

Finally if only T u  = T32 are nonzero, 

We see that G4 is the shear modulus in the plane of ~ 2 x 3  plane , and the shear stresses in this 
plane produces normal strains in the three coordinate directions, with qii representing normal 
stress-shear stress coupling. 

Obviously, due to the positive definiteness of the compliance matrix, all the Young’s moduli 
and the shear moduli are positive. Other restrictions regarding the engineering constants can 
be obtained in the same way as in the previous section. 

Part C Constitutive Equation for Isotropic Elastic Solid Under Large Deformation 

5.32 Change of Frame 

In classical mechanics, an observer is defined as a rigid body with a clock. In the theory of 
continuum mechanics, an observer is often referred to as a frame. One then speaks of “a change 
of frame” to mean the transformation between the pair { x,t} in one frame to the pair { x*,t’ } 
of a different frame, where x is the position vector of a material point as observed by the 
un-starred frame and x * is that observed by the starred frame and t and ta are times in the two 
frames. Since the two frames are rigid bodies, the most general change of frame is given by 
[See Section 3.61 

X* = c(t ) + Q(t)( x-%) (5.32. la) 

t* = t-a (5.32. lb) 

where c (t) represents the relative displacement of the base point q, Q(t) is a time-dependent 
orthogonal tensor, representing a rotation and possibly reflection also (the reflection is 
included to allow for the observers to use different handed coordinate systems), a is a constant. 

It is important to note that a change of frame is different from a change of coordinate system. 
Each frame can perform any number of coordinate transformations within itself, whereas a 
transformation between two frames is given by Eqs. (5.32). 
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The distance between two material points is called a frame-indifferent (or objective) scalar 
because it is the same for any two observers. On the other hand, the speed of a material point 
obviously depends on the observers as the observers in general move relative to each other. 
The speed is therefore not frame indifferent (non-objective). We see therefore, that while a 
scalar is by definition coordinate-invariant, it is not necessarily frame-indifferent (or frame- 
invariant). 

The position vector and the velocity vector of a material point are obviously dependent on 
the observer. They are examples of vectors that are not frame indifferent. On the other hand, 
the vector connecting two material points, and the relative velocity of two material points are 
examples of frame indifferent vectors. 

Let the position vector of two material points be XI, x2 in the unstarred frame and x;, x; 
in the starred frame, then we have from Eq. (5.32.1a) 

= c+Q(t)(xi-%) (0 

Thus, 

x;-x; = Q(~)(xI-x~) 

or, 

b' = Q(t)b 

where b and b* denote the same vector connecting the two material points. 

(ii) 

(5.32.2) 

(5.32.3) 

Let T be a tensor which transforms a frame-indifferent vector b into a frame-indifferent 

c = Tb (iiia) 

vector c , i.e., 

let T * be the same tensor as observed by the starred- frame, then 
c* = T*b* (iiib) 

Now since c' = Qc, b' = Qb, therefore, 

C'=QC = QTb = QTQTb* (iv) 

i.e., 

Thus, 
T*b*= QTQTb* 

T * = Q T Q ~  

Summarizing the above, we define that, in a change of frame, 

(5.32.4) 
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8 a = a  for indifferent (or objective ) scalar (5.32.5a) 

b* = Q(t)b for indifferent (or objective ) vector (5.32.5b) 

(5.32.5~) T * = Q(t)TQT(t) for indifferent (or objective ) tensor 

Example 5.32.1 

Show (a) dx is an objective vector (b) ds is an objective scalar 
Solution. From Eq. (5.32.1) 

X*=C(t) + Q(t) (x-q)  

we have 

x * + ~ x *  = c(t) +Q(t)(X+dx-%) 

therefore 

dx* = Q(t)dx 

so that dx is an objective vector 
(b) From Eq. (5.32.6), 

8' ds = dX**dx* = Q(t)dx.Q(t)dx=dx.QTQdx = dx-dx = 

that is, ds is an objective scalar. 

(9  

(ii) 

(5.32.6) 

(iii) 

Example 5.32.2 

Show that in a change of frame, (a) the velocity vector v transforms in accordance with the 

v* = Q(t) v + Q(t)(x-%) + b(t) (5.32.7) 

(b)the velocity gradient transform in accordance with the following equation and is also not 
objective 

v*V* = Q ( v ~ ) Q ~  + Q Q ~  (5.32.8) 

following equation and is therefore not objective 

Solution. (a) From Eqs. (5.32.1) 

x*=c(t) + Q(t) (x-q)  
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t* = t--a (ii) 

therefore, 

- c(t) + Q(x-%) + Q V  dx* dx* - 
dt* dt 

That is 

V* = Q(t) v + c(t) + Q(t)(x-%) 

(iii) 

This is not the transformation law for an objective vector. Therefore the velocity vector is 
non-objective as expected. 
(b) From the result of part (a), we have 

v*(x * +dx *) = Q(t)v(x+dx)+ c(t) +Q(t)(x+dx-q) (v) 

and 

v*(x *) =Q(t)v(x) + c(t) +Q(t)(x-q) 

Subtraction of the above two equations then gives 

(V*v*)dx* = Q(t)(Vv)dx + Q(t)dx 

But dx* = Qdx, therefore 

[(V*v*)Q - Q(Vv) - Q(t)]dx = 0 

Thus, 

v*v* = Q ( v ~ ) Q ~  + Q Q ~  

(vii) 

(viii) 

(W 

Example 5.32.3 

Show that in a change of frame, the deformation gradient F transforms according to the 

F * = Q(t)F (5.32.9) 

equation 

Solution. We have, for the starred frame 

dx* =F*dX* 

and for the unstarred frame 
dx= FdX (ii) 
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In a change of frame, dx and dx* are related by Eq. (5.32.6), Le., 

dx* = Q(t)dx 

therefore, using Eqs. (i) and (iii), we have 

Q(t)dx = F*dX* 

Using Eq. (ii), the above equation becomes 

Q(t)FdX = F*dX* 

(iii) 

Now, both dX and dX* denote the same material element at the fixed reference time to, 
therefore, without loss of generality, we can take Q(t,) = I ,  so that 

dX=dX* (vi) 

Thus, 

Q(t)F = F* 

which is Eq. (5.32.9). 

(vii) 

Example 5.32.4 

Derive the transformation law for (a) the right Cauchy-Green deformation tensor and (b) 

Solution. 
the left Cauchy-Green deformation tensor 

(a)The right Cauchy-Green tensor C is related to the deformation gradient F by the equation 
C = F ~ F  (5.32.10) 

Thus, from the result of the last example, we have 

T T  T 
C*=F* F*=[Q(t)FITQ(t)F = =F Q QF=FTF 

i.e, in a change of frame 

c *=c (5.32.11) 

That is, the right Cauchy-Green deformation tensor is not frame-indifferent (or, it is non-ob- 
jective ). 
(b) The left Cauchy-Green tensor B is related to the deformation gradient F by the equation 

B = F F ~  (5.32.12) 
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Thus, from the result of the last example, we have 
* T * -  T T  (ii) B *=F F - Q(t)F[Q(t)FIT =Q(t)FF Q (t) 

i.e, in a change of frame 

B * = Q ( ~ ) B Q ~ ( ~ )  (5.32.13) 

Thus, the left Cauchy-Green deformation tensor is frame-indifferent (Le., it is objective). 

We note that it can be easily proved that the inverse of an objective tensor is also objective 
and that the identity tensor is obviously objective. Thus both the left Cauchy Green deforma- 

1 tion tensor B and the Eulerianstrain tensor e = -(I-B-l) are objective, while the right Cauchy 2 
1 

Green deformation tensor C and the Lagrangian strain tensor E = -(C-I) are non-objective. 2 

We note also that the material time derivative of an objective tensor is in general non-ob- 
jective. 

5.33 Constitutive Equation for an Elastic Medium under Large Deformation. 

As in the case of infinitesimal theory for an elastic body, the constitutive equation relates 
the state of stress to the state of deformation. However, in the case of finite deformation, there 
are different finite deformation tensors (left Cauchy-Green tensor B, right Cauchy-Green 
tensor C , Lagrangian strain tensor E, etc. ,) and different stress tensors (Cauchy stress tensor 
and the two Piola-Kirchhoff stress tensors) defined in Chapter 3 and Chapter 4 respectively. 
It is not immediately clear what stress tensor is to be related to what deformation tensor. For 
example, if one assumes that 

T = T(C) ( 9  

where T is the Cauchy stress tensor, and C is the right Cauchy-Green tensor, then it can be 
shown [see Example 5.33.1 below] that this is not an acceptable form of constitutive equation 
because the law will not be frame-indifferent. On the other hand if one assumes 

T=T(B) (ii) 

then, this law is acceptable in that it is independent of observers, but it is limited to isotropic 
material only (See Example 5.33.3). 

The requirement that a constitutive equation must be invariant under the transformation 
Eq. (5.32.1) (Le., in a change of frame), is known as the principle of material frame indif- 
ference. In applying this principle, we shall insist that force and therefore, the Cauchy stress 
tensor be frame-indifferent. That is in a change of frame 

T * = Q T Q ~  (5.33.1) 
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Example 5.33.1 

Assume that for some elastic medium, the Cauchy stress T is proportional to the right 
Cauchy-Green tensor C .  Show that this assumption does not result in a frame-indifferent 
constitutive equation and is therefore not acceptable. 

Solution. The assumption states that, 

for the starred frame: T * = a C *  ( 0  

and for the un-starred frame: T = a C  (ii) 

where we note that since the same material is considered by the two frames, therefore the 
proportional constant must be the same. Now, 

T * = QTQ * [See Eq. (5.33.1)] and C * = C [See Eq. (5.32.11)] 
therefore, from Eq. (i) 

QTQ * = a~ (iii) 

so that from Eq. (ii) for all Q(t) 

T = QTQ*. 

The only T for the above equation to be true is T = I. Thus, the law is not acceptable. 
More generally, if we assume the Cauchy stress to be a function of the right Cauchy Green 

tensor, then for the starred frame T * = f(C *), and for the un-starred frame, T = f(C),  where 
again, f is the same function for both frames because it is for the same material. In a change 
of frame, 

Q T Q ~  = ( 9  

That is, again 

Q T Q ~ = T  

So that Eq. (i) is not acceptable. 

Example 5.33.2 

If we assume that the second Piola-Kirchhoff stress tensor is a function of the right 
Cauchy-Green deformation tensor C. Show that it is an acceptable constitutive equation. 

Solution. We have, according to the assumption 
r= qc) (5.33.2a) 
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and 
I 

T *  =f(C*) (5.33.2b) 

where we demand that both frames (the unstarred and the starred) have the same function f 
for the same material. Now, in a change of frame, the deformation gradient F and the Cauchy 
stress tensor T transform in accordance with the following equation: 

F * = QF and T * = QTQT (5.33.3) 

Thus, the second Piola-Kirchhoff stress tensor transforms as [See Prob.5.981 

- -  
T *=T 

Therefore, in a change of frame, the equation 

T* = f(C *) 

T= f (C) 
transforms into 

(5.33.4) 

(5.33.5a) 

(5.33.5b) 

which shows that the assumption is acceptable. In fact, it can be shown that Eq. (5.33.5) is the 
most general constitutive equation for an anisotropic elastic solid [See Prob. 5.1001. 

Example 5.32.3 

If we assume that the Cauchy stress T is a function of the left Cauchy Green tensor B , is it 

Solution. For the starred frame, 
an acceptable constitutive law? 

T * = ~ ( B * )  (5.33.6a) 

and for the un-starred frame, 

T = f ( B )  (5.33.6b) 

where we note both frames have the same function f .  In a change of frame, (see 
Example 5.32.4, Eq. (5.32.13)), 

T*=QTQTand B*=QBQT 
Thus, 

(5.33.7) 

That is 
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QP)Q~=~QBQ*) (5.33.8) 

Thus, in order that Eq. (5.32.6) be acceptable as a constitutive law, it must satisfy the condition 
given by Eq. (5.32.8). Now, in matrix form, the equation 

T = f(B) (5.33.6b) 

becomes 

[TI = [f([Bl>l 

and the equation 

Q T Q ~  = ~QBQ') 

becomes 

[Q1[TIIQIT = ~f(~QlPI~QI*)l  

(5.33.9) 

(5.33.10) 

(5.33.1 1) 

Now, if we view the above two matrix equations, Eqs. (5.33.9) and (5.33.11), as those cor- 
responding to a change of rectangular Cartesian basis, then we come to the conclusion that 
the constitutive equation given by Eq. (5.33.6) describes an isotropic material because both 
Eqs. (5.33.9) and (5.33.11) have the same function f. 

We note that the special case 
T=aB (5.32.12) 

where a is a constant, is called a Hookean Solid. 

5.34 

From the above example, we see that the assumption that T is a function of B alone leads 
to the constitutive equation for an isotropic elastic medium under large deformation. 

A function such as the function f, which satisfies the condition Eq. (5.33.8) is called an 
isotropic function. Thus for an isotropic elastic solid, the Cauchy stress tensor is an isotropic 
function of the left Cauchy-Green tensor B. 

It can be proved that in three dimensional space, the most general isotropic function f(B) 
can be represented by the following equation 

f(B)=aoI + a1B + a2B2 (5.34.1) 

where a,, a1 and a2 are scalar functions of the scalar invariants of the tensor B, so that the 
general constitutive equation for an isotropic elastic solid under large deformation is given by 

Constitutive Equation for an Isotropic Elastic Medium 

T =a,I + a1 B + a2B 2 (5.34.2) 
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Since a tensor satisfies its own characteristic equation [See Example 5.34.1 below], there- 
fore we have 

B3-Z1B2 + Z2B - Z31 = 0 (5.34.3) 

or, 
2 B = Z1B - Z2I + 13 B-l 

Substituting Eq. (5.34.4) into Eq. (5.34.2), we obtain 

T =poi + p l ~  + p 2 ~ - l  

(5.34.4) 

(5.34.5) 

where po , p1 and p;! and p2 are scalar functions of the scalar invariants of B. This is the 
alternate form of the constitutive equation for an isotropic elastic solid under large deforma- 
tions. 

Example 5.34.1 

Derive the Cayley-Hamilton Theorem, Eq. (5.34.3). 
Solution. Since B is real and symmetric, there always exists three eigenvalues correspond- 

ing to three mutually perpendicular eigenvector directions.[See Section 2B 181. The 
eigenvalues Ai satisfies the characteristic equation 

(5.34.6) A; - ZIA," + 1 2 4  - Z3 = 0 i = 1,2,3 

The above three equations can be written in a matrix form as 

o 0 i 3  r1 o 0 j 2  rl o 01 0 0 A3 0 0 A3 0 0 A3 
(5.34.7) 0 A2 0 -rl 0 A2 0 +r2 0 A2 0 - z 3 = o  

Now, the matrix in this equation is the matrix for the tensor B using its eigenvectors as the 
Cartesian rectangular basis. Thus, Eq. (5.34.7) has the invariant form 

B3-ZlB2 + Z2B - Z31 = 0 (5.34.8) 

Equation (5.34.2) or equivalently, Eq. (5.34.5) is the most general constitutive equation for 

If the material is incompressible, then the constitutive equation is indeterminate to an 
an isotropic elastic solid under large deformation. 

arbitrary hydrostatic pressure and the constitutive equation becomes 

T = - p I + p l B + p z B - l  (5.34.9) 
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- 
1 - 0 0  

1 0 7 0  
A2 

0 0 5  
A2 

1 

- 

If the functions p1 and p2 are derived from a potential functionA of the invariants I1 and 
12 such that 

dA dA p 1 = 2 c a n d  p2= -2-, 
a12 

then the constitutive equation becomes 

aA dA -1 T =  - P I  + 2-B - 2-B 
811 812 

(5.34.10) 

(5.34.11) 

and the solid is known as an incompressible hyperelastic isotropic solid. 

5.35 Simple Extension of an Incompressible Isotropic Elastic Solid 

A rectangular bar is pulled in the x1 direction. At equilibrium, the ratio of the deformed 
length to the undeformed length (ie., the stretch) is A1 in the x1 direction and A2 in the 
transverse direction. Thus, the equilibrium configuration is given by 

xi  = ~1x1, x2 = 12x2, x3 = ~ 2 x 3 ,  A; = 1 (5.35.1) 

where the condition A1 A; = 1 describes the isochoric condition (Le., no change in volume ). 

The left Cauchy-Green deformation tensor B and its inverse are given by 

PI = 

From the constitutive equation 

we have 

0 A$ 0 1 [B-l] = 

A; 0 0 

0 0 A$] 

2 1 
T22 = T33 = -P + P1A2 + P2-2 

A2 

(5.35.2) 

(5.35.3) 

(i) 

(ii) 
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Since these stress components are constants, therefore the equations of equilibrium are clearly 
satisfied. Also, from the boundary conditions that on the surfacex;! = b , T22 = 0 and on the 
surfacex3 = c , T33 = 0 ,  we obtain 

T22 = T33 = 0 (5.35.4) 

everywhere in the bar. From these equations, we obtain ( noting that A& = 1 ) 

(5.35.5) 

Thus, the normal stress Tll needed to stretch the bar (which is laterally unconfined) in the 
x1 direction is given by 

P2 
T11= (G+) (P1 -q) (5.35.6) 

5.36 Simple Shear of an Incompressible Isotropic Elastic Rectangular Block 

The state of simple shear deformation is defined by the following equations relating the 
spatial coordinates xi to the material coordinates Xi : 

X I  = Xi + KX2, ~2 = X2, ~3 = X3 (5.36.1) 

The deformed configuration of the rectangular block is shown in plane view in Fig. 5.19, where 
one sees that the constant K is the amount of shear 
The left Cauchy-Green tensor B and its inverse are given by 

r l  

(5.36.2) 
1 + K 2  K 0 

0 0 1  

(5.36.3) 

The scalar invariants are 
2 I2  = 3 + K2, Il = 3 + K2, I3 = 1 (5.36.4) 

Thus, from Eq. (5.34.9), we have 

( 0  

(ii) T33= - P + P 1 + P 2 ,  T12 = K(P1 - P2 >, Ti3 = T23 = 0 
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Let 
p =  -p+'P1+'P2 (iii) 

then 
T11= -P + plK2 T22 = -P + p2K 2 T33 = -P (5.36.5a) 

(5.36.5b) T12 = K('Pl - 'P2 ) T13 = T23 = 0 

where 9 1  and (p2 are function of K 2 .  

Fig5  19 

The stress components are constants, therefore, the equations of equilibrium are clearly 
satisfied. 

If X3 = constant plane is free of stress, then 

P = O  (iv) 

so that 
2 (5.36.6) 

where (91 - p2 ) is sometimes called the generalized shear modulus in the particular undis- 
torted state used as reference. It is an even function of K ,  the amount of shear. The surface 
traction needed to maintain this simple shear state of deformation are as follows: 

Tl, = PlK 9 T22 = 'P2K2, T33 = 0 TI2 = K(P1 - 'P2 ) 
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2 On the top face in the Fig. 5.19, there is a normal stress (p2K ) and a shear stress, 
(K(pl - p2)). On the bottom face, an equal and opposite surface traction to that on the top 
face is acting. On the right face, which at equilibrium is no longer perpendicular to the x1 axis, 
but has a unit normal given by 

(el - Ke2) (5.36.7) 

( 1 + K2)ll2 
n =  

therefore, the surface traction on this deformed surface is given by 

t = Tn = 773$P2Kel+ K (P1- (1 + K2)P2 )e2 1 (5.36.8) 

Thus, the normal stress on this surface is 

[Pl - (2+K2>P2 1 (5.36.9) K2 T =ton=  -- 
1+K2 

n 

we1 + e2) and the shear stress on this same surface is, with eT = 

(5.36.10) 

We see from the above equation that, in addition to shear stresses, normal stresses are needed 
to maintain the simple shear state of deformation. 

We also note that 

7-11-T22 = m12 

This is a universal relation, independent of the coefficients pi of the material. 

(5.36.1 1) 

5.37 Bending of a Incompressible Rectangular Bar. 

can be described by the following equations 
It is easy to see that the deformation of a rectangular bar into a curved bar shown in Fig. 5.20 

1 (5.37.1) r = (2a x + e = CY, z = Z ,  a = -  
C 

where (X,Y,Z) are Cartesian material coordinates and (r, 8 ,  z ) are cylindrical spatial coor- 
dinates. Indeed, the boundary plane X = -a and X = a deform into cylindrical surfaces 
r1 = 4- and r2 = 4-p and the boundary planes Y = k b  deform into the 
planes 8 = kcb . 
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Fig.5.20 

The left Cauchy-Green tensor B corresponding to this deformation field can be calculated 
using Eqs. (3.30.12): [Note 13 = a c = 11 

a2/2 o o a2/r2 o o 

[i-[ : c y  j=[ : r2:2d 

(5.37.2) 

The inverse of B can be obtained to be 

r2/a2 o r2/a2 o o 
P3-7 = 0 1/(c2r2) 0 (5.37.3) [ 0 0 :]=I: a7:] 

The scalar invariants of B are 

z1=,+ ,+1=12,  a2 r2 1 3 = 1  (5.37.4) 
r a  

We shall use the constitutive equation for a hyperelastic solid for this problem. Thus, from 
Eq. (5.34.1 l), we have 

T m = - p + - - - -  2a2aA 2r2aA (5.37.5a) 
r2 ar, a2 ar2 
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22aA 2 aA 
ar, c2r2ar2 

ai, ai2 

Tm=-p+2cr---  

aA aA T , = - p + 2 - - 2 -  

(5.37.5b) 

(5.373) 

Td = T, = T,e = 0 (5.37.5d) 

The equations of equilibrium are 
aT, T,- Tee + = O  ar r 

-- - 0  aTz 
az 

(5.37.6a) 

(5.37.6b) 

(5.37.6~) 

From Eq. (5.37.6b) and (5.37.6c), we have, sinceA(ll(r), I2(r)) is function of r only, 

P = PW (5.37.7) 

Since 

Thus, from Eq. (5.37.6a), we have 

dT, dA = 
dr dr 

and 
T, = A(r) + K 

Furthermore, Eq. (5.37.6a) and Eq. (5.37.8) give 

dT, d d 
dr dr dr Tm = F + T, = -(rT,) = -[rA(r)] f K 

The boundary conditions are : 
Atr=rl,T,=O andat r=r2,T,=O 

Thus, 
A(r1) + K =  0 ,  A(r2) + K =  0 

(ii) 

(5.37.8) 

(5.37.9) 

(5.37.10) 

(iii) 
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so that 

But, 

where 

aL r“ 
r2 a 

1 = I2 = - + 2 + 

therefore 
2 a 

- $1 = ,2(. 1 2  - 4) 

which leads to 
2 a = rl r2 

(vii) 

(viii) 

(5.37.1 1) 

The normal force on the end plane 8 = +cb is given by (see Eq. (5.37.9) and (i)) 

‘2 

rT&dr = [rA(r) + Kr]  = rl[A(rl)+K] -r2 [A(r2) + K ]  = 0 (5.37.12) 
‘1 ‘1 

Thus, at the end plane, there is a flexural couple. Let M denotes the flexural couple per unit 
width, then 

(5.37.14) 
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We note that with z = 2, the bar is in a plane strain state. 

5.38 Torsion and Tension of an Incompressible Solid Cylinder 

Consider the following equilibrium configuration for a circular cylinder 
r = A I R ,  8 = O + Z U ,  z = A 3 Z  1 3 3  = 1 (5.38.1) 

where (r ,  8, z ) are the spatial coordinates and (R,O,Z)are the material coordinates for a 
material point, A1 and A3 are stretches for elements which were in the radial and axial direc- 
tions. 

The left Cauchy-Green tensor B and its inverse can be obtained from Eq. (3.30.8) as 

PI = 

L; 0 
0 Al+r K r K A 3  , 
0 2 2 2  r K A 3  AS I1 

[B-l] = -Kr 1 0 -  
A; 

0 -Kr A ! + A I K r  2 2 2  

The scalar invariants of B are 

2 2 2  2 Il = 2A?+ ?K2 + A ;  = + r K + 1 3 ,  
3 

Now, from the constitutive equation T = -PI + (PI B + (p2B-l, we obtain 

2 P 2  P 1  
T,= -p + ( ~ l A 1  +- = -p +-+ P$. 3 2; A3 

(5.38.2) 

(5.38.3a) 

(5.38.3b) 

(5.38.4a) 

(5.38.4d) 
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(5.38.4e) 

The equations of equilibrium are: 
aT, T,- T', + = O  ar r 

-- - 0  aT, 
az 

(5.38.5a) 

(5.38.5b) 

(5.38.5~) 

Noting that 11 and 12 ( and therefore 
second and the third equations of equilibrium, 

and pz), are functions of r only, we obtain, from the 

That is,p is a function of r only. Thus, 

P = P ( 4  

From the first equation of equilibrium, we have 

dT, r- dr = -(T, - T,) 

The total normal force N on a cross sectional plane is given by 
' 0  

N = s T,brdr 
0 

(5.38.6) 

(ii) 

(5.38.7) 

To evaluate the integral, we first need to eliminatep from the equation for Tu. This can be 
done in the following way: 

With 
T,=-p+t,, T , = - p + t , ,  T ' ,=-p+t ' ,  (5.38.8) 

we have 
2T, = -2p + 2t, = (T,-t,) + (TM-TM) + 2t ,  

= T, + T, + Zt, - t, - tee (iii) 

Now, in view of Eq. (ii), we have 
dT, I d  2 (iv) 

2T, = 2T, + I + 2tu - t, - tee = -(r T,) + 2tu - t, - tee dr r dr 
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Thus, from Eq. (5.38.7), 
‘0 ‘0 

2 N = nr T,] + x s(2rz-z,-zm) rdr 
0 0  

With TATo) = 0, we have 

‘0 

N = x s(2zz-z,-tm) rdr 
0 

From Eqs. (5.38.4) and (5.38.8), we have 

- K2r2 (91-2) 

Thus, 

(5.38.9) 

‘0 

3 0  

‘0 

0 

Since r = 11 R , therefore, 

1 rdr = AfRdR = -RdR 
A3 

Thus, 

‘p2 

Similarly, the twisting moment can be obtained to be 

RO 

2 n K  (5.38.12) M = i r T e , 2 n r d r =  
‘0 

0 

(5.38.10) 

(vii) 

(5.38.11) 

In Eqs. (5.38.1 1) and (5.38.12) ‘p1 and ‘p2 are functions of11 and 12 and are therefore functions 
of R (see Eq. (5.38.3). 
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If the angle of twist K is very small, then 11 and 12 and therefore (01 and 9 2  may be regarded 
as independent of R and the integrals can be integrated to give 

and 

+ O(K2)  9 2  

(5.38.18) 

(5.38.19) 

We see therefore, that if the bar is prevented from extension or contraction (i.e., 23 = 1 ), 
then twisting of the bar with a K approaching zero, gives rise to a small axial force N which 
approaches zero with K2. On the other hand if the bar is free from axial force (i.e., N = 0), then 
as K approaches zero, there is an axial stretch A3 such that (A3 -1) approaches zero with K 2 .  
Thus, when a circular bar is twisted with an infinitesimal angle of twist, the axial stretch is 
negligible as was assumed earlier in the infinitesimal theory. 

From Eqs. (5.38.18) and (5.38.19), we can obtain 

(5.38.20) 

Equation (5.38.20) is known as “Rivlin’s Universal relation”. This equation gives, for small 
twisting angle, the torsional stiffness as a function of A3 , the stretch in the axial direction. We 
see, therefore, that the torsional stiffness can be obtained from a simple-extension experiment 
which measures N as a function of the axial stretch A3 . 
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PROBLEMS 
5.1. Show that the null vector is the only isotropic vector. 
(Hint: Assume that a is an isotropic vector, and use a simple change of basis to equate the 
primed and the unprimed components) 
5.2. Show that the most general isotropic second-order tensor is of the form a I, where a is a 
scalar and I is the identity tensor. 
53. Show that for an anisotropic linear elastic material, the principal directions of stress and 
strain are usually not coincident. 
5.4. If the Lame constants for a material are 

A = 119.2 GPa (17.3 x lo6 psi), ,u = 79.2 GPa (1 1.5 X lo6 psi), 
find Young’s modulus, Poisson’s ratio, and the bulk modulus. 
5.5. Given Young’s modulus E y  = 103 GPa and Poisson’s ratio v = 0.34, find the Lame 
constants A andp. Also find the bulk modulus. 
5.6. Given Young’s modulus E y  = 193 GPa and shear modulus p = 76 GPa, find Poisson’s 
ratio v, Lame’s constant A and the bulk modulus k 
5.7. If the components of strain at a point of structural steel are 

Ell  = 36X E22 = 40X E33 = 2% 

E12 = 12X E u  = 0 ,  E13 = 30X 
find the stress components, A = 119.2 GPa(17.3 x lo6 psi), ,u = 79.2 GPa (11.5~10~ psi). 
5.8. Do Problem 5.7 if the strain components are 

Ell  = lOOX E22 = -5Ox E33 = 2 0 0 ~  

E12 = - l00X loW6, E23 = 0 ,  E13 = 0 
5.9. (a) If the state of stress at a point of structural steel is 

[TI = 42 -2 0 MPa [,,, : pi] 
what are the strain components? E y  = 207 GPa , p = 79.2 GPa, v = 0.30 

(b) Suppose that a five centimeter cube of structural steel has a constant state of stress given 
in part (a). Determine the total change in volume induced by this stress field. 
5.10. (a) For the constant stress field below, find the strain components 
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(b) Suppose that a sphere of 5 cm radius is under the influence of this stress field, what will be 
the change in volume of the sphere? Use the elastic constants of Prob.5.9. 
5.11. Show that for an incompressible material (v = 1/2 ) that 

(a) 

(b) Hooke’s law becomes 
1 
3 T = 2 , ~  E + -(TM ) I 

5.12. Given a functionf(a , b) = ab  and a motion 
x l = X i + k ( X i + X 2 )  
~2 = X2 + k (Xi - X2 ), 

where k = 

(a) Show thatf(X1 , X 2 )  = f (x l  , x 2 ) .  

(b) Show that 

af(x1 > x2 ) 2: N X l  7 x2 ) 
8x1 8x1 

and 

5.13. Do the previous problem forf(a , b) = a2 + b2 
5.14. Given the following displacement field 

2 2  u1 = kX3X2,  u2 =kX3X1,  u3 = k(Xl - X 2 ) ,  k = 

(a) Find the corresponding stress components. 
(b) In the absence of body forces, is the state of stress a possible equilibrium stress field? 
5.15. Repeat Problem 5.14, except that the displacement components are 

u1= kX2X3, u2 = kX1X3, u3 = kX1X2, k = 

5.16. Repeat Problem 5.14, except that the displacement components are: 

u1= -kX3X2, u2 = kX1X3, u3 = k sinX2, k = 

1 
3 5.17. Calculate the ratio of q / c ~  for Poisson’s ratio equal to - ,0.49,0.499 
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5.18. Assume an arbitrary displacement field that depends only on the field variable x2 and 
time t, determine what differential equations the displacement field must satisfy in order to 
be a possible motion (with zero body force). 
5.19. Consider a linear elastic medium. Assume the following form for the displacement field 

u1 = E [sin/?(x3 - ct ) + a sinp (x3 + ct )] , u2 = u3 = 0 

(a) What is the nature of this elastic wave (longitudinal, transverse, direction of propagation)? 
(b) Find the associated strains, stresses and determine under what conditions the equations of 
motion are satisfied with zero body force. 
(c) Suppose that there is a boundary atxg = 0 that is traction-free. Under what conditions will 
the above motion satisfy this boundary condition for all time? 
(d) Suppose that there is a boundary atx3 = I that is also traction-free. What further conditions 
will be imposed on the above motion to satisfy this boundary condition for all time? 
5.20. Do the previous problem if the boundaryx3 = 0 is fixed (no motion) andx3 = I is still 
traction-free. 
5.21. Do problem 5.19 if the boundariesxs = 0 andxg = I are both rigidly fixed. 

5.22. Do Problem 5.19 if the assumed displacement field is of the form 
u3 = sinp (x3 - ct ) + a sin/? (x3 + ct ), 

u1= u2 = 0. 

5.23. Do Problem 5.22 if the boundaryx3 = 0 is fixed(no motion) and x3 = I is traction-free ( 

5.24. Do Problem 5.22 if the boundary x3 = 0 and x3 = 1 are both rigidly fixed. 

5.25. Consider an arbitrary displacement field u = u(xl, t ), 

(a) Show that if the motion is equivoluminal (- = 0) that u must satisfy the equation 

t = O ) .  

aui 
axi 

2 a ui 2 a ui 
y q q = p o 2 .  at 

au, auj au, 
axj axi axi 

(b) Show that if the motion is irrotational (- = -) that the dilatation e = - must satisfy 

the equation 
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5.26. (a) Write a displacement field for an infinite train of longitudinal waves propagating in 
the direction 3 el + 4e2. 

(b) Write a displacement field for an infinite train of transverse waves propagating in the 
direction 3 el + 4e2 and polarized in the x1 x;! plane. 

5.27. Consider a material with Poisson's ratio equal 1/3 and a transverse elastic wave (as in 
Section 5.10) of amplitude ~1 and incident on a plane boundary at an angle al. Determine the 
amplitudes and angles of reflection of the reflected waves if 
(a)al  = 0 

(b) al = 15'. 

5.28. Consider an incident transverse wave on a free boundary as in Section 5.10. For what 
particular angles of incidence will the only reflected wave be transverse? ( Take Y = 113 ). 
529. Consider a transverse elastic wave incident on a traction-free plane surface and polarized 
normal to the plane of incidence. Show that the boundary condition can be satisfied with only 
a reflected transverse wave that is similarly polarized. what is the relation of the amplitudes, 
wavelengths, and direction of propagation of the incident and reflected wave? 
530. Consider the problem of Section 5.10 and determine the characteristics of the reflected 
waves if the boundaryx2 = 0 is fixed (no motion). How are the results different from the case 
of a free boundary. 
531. A longitudinal elastic wave is incident on a fixed boundary 
(a) Show that in general there are two reflected waves, one longitudinal and the other 
transverse (polarized in plane normal to incident plane). 
(b) Find, as in Section 5.10, the amplitude ratio of reflected to incident elastic waves. 
532. Do the previous problem for a free boundary. 
533. Verify that the thickness stretch vibration given by Eq. (5.11.3) does satisfy the lon- 
gitudinal wave equation. 
534. Do Example 5.11.1 if the right facexl = 1 is free. 

535. (a) Find the thickness stretch vibration if the x1 = 0 face is being forced by a traction 
t = @ cos o t )el and the right-hand face X I  = I is fixed. 

(b) Find the resonant frequencies. 
536. (a) Find the thickness-shear vibration if the left-hand face x1 = 0 has a forced displace- 
ment u = (a cos w t )e3 and the right-hand face X I  = 1 is fixed. 

(b) Find the resonant frequencies. 
537. Do the previous problem if the forced displacement is given by 
u = a (cos w t e2 + sin w t e3 ). Describe the particle motion throughout the plate. 
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538. Determine the total elongation of a steel bar 76 cm long if the tensile stress is 0.1 GPa 
and E y  = 207 GPa. 

539. A cast iron bar, 4 ft (122 cm) long and 1.5 in.(3.81 cm) in diameter is pulled by equal and 
opposite axial forces P at its ends. 
(a) Find the maximum normal and shearing stresses if P = 20,000 lb (89000 N). 

(b) Find the total elongation and lateral contraction ( E y =  15x10 ti psi (103 GPa), 
v = 0.25 ). 
5.40. A steel bar ( E y  = 207GPa ) of 6 cm2 cross-section and 6 m length is acted on by the 
indicated (Fig.PS.1) axially applied forces. Find the total elongation of the bar. 

Fig. P5.1 

5.41. A steel bar of 10 ft (3.05 m) length is to be designed to carry a tensile load of 100,000 lb 
(444.8 kN). What should the minimum cross-sectional area be if the maximum shearing stress 
should not exceed 15,000 psi (103 MPa)and the maximum normal stress should not exceed 
20,000 psi (138 MPa)? If it is further required that the elongation should not exceed 0.05 
in(0.127 cm), what should the area be? 
5.42. Consider a bar of cross-sectional areaA that is stretched by a tensile force P at each end. 
(a) Determine the normal and shearing stresses on a plane with a normal vector that makes 
an angle a with the cylindrical axis. For what values of a are the normal and shearing stresses 
equal? 
(b) If the load carrying capacity of the bar is based on the shearing stress on the plane defined 
by a = a, remaining less than to, sketch how the maximum load will depend on the angle a,. 

5.43. Consider a cylindrical bar that is acted upon by an axial stress Tll = a, 

(a) What will the state of stress in the bar be if the lateral surface is constrained so that there 
is no contraction or expansion? 
(b) Show that the effective Young's modulus Ey' = Tll/Ell is given by 

( 1 - v )  
(1 - 2 Y ) ( 1  + Y )  Ey* Ey'  = 
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(c) Evaluate the effective modulus for Poisson's ratio equal to 1/3 and 1/2. 

5.44. Let the state of stress in a tension specimen be given by Tll = 0 ,  all other qj = 0. 

(a) Find the components of the deviatoric stress T" = T - - TkkI. 

(b) Find the scalar invariants of 'f 
5.45. Three identical steel rods support the load P, as shown in Fig.P5.2. How much load does 
each rod carry? Neglect the weights of the rod and the rigid bar. 

1 
3 

Fig. P5.2 

5.46. Solve the previous problem if the cross-sectional area of the middle bar is twice that of 
the left- and right-hand bars. 
5.47. Let the axis of a cylindrical bar be vertical and initially coincide with the x1 axis. If 
x1= 0 corresponds to the lower face, then the body force is given by pB = -p gel. Assume 
that the stress distribution induced by the body force alone is of the form 

7.11 = Pgxl 
and all other &j = 0. 

(a) Show that the stress tensor is a possible state of stress in the presence of the body force 
mentioned above. 
(b) If this possible state of stress is the actual distribution of stress in the cylindrical bar, what 
surface tractions should act on the lateral face and the pair of end faces in order to produce 
this state of stress. 
5.48. A circular steel shaft is subjected to twisting couples of 2700 N-m. The allowable tensile 
stress is 0.124 GPa. If the allowable shearing stress is 0.6 times the allowable tensile stress, 
what is the minimum allowable diameter? 
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5.49. A circular steel shaft is subjected to twisting couples of 5000 ft-lb (6780 N -m). Determine 
the shaft diameter if the maximum shear stress is not to exceed 10,000 psi(69 MPa) and the 
angle of twist is not to exceed 1.5 o in 20 diameters of length. p = 12X lo6 psi (82.7 GPa). 
5.50. Demonstrate that the elastic solution for the solid circular bar in torsion is also valid for 
a circular cylindrical tube in torsion. If a is the outside radius and b is the inside radius, how 
must Eq. (5.13.10) for the twist per unit length be altered? 
5.51. In Example 5.13.2, if the radius of the left portion isal and the radius of the right portion 
is a2, what is the twisting moment produced in each portion of the shaft? Both shafts are of 
the same material. 

Fig. P53 

5.52. Solve the previous problem if al = 3.0 cm, a2 = 2.5 cm, 11 = 12 = 75 cm, and MI = 700 N*m. 

5.53. For the circular shaft shown in Fig.P5.3, determine the twisting moment produced in each 
part of the shaft. 
5.54. A circular bar of one-inch (2.54 cm) radius is under the action of an axial tensile load of 
30,000 lb( 133 kN) and a twisting couple of 25,000 in-lbs(2830 N-m). 
(a) Determine the stress throughout the bar. 
(b) Find the maximum normal and shearing stress that occurs over all locations and all 
cross-sectional planes throughout the bar. 
5.55. Show that for any cylindrical bar of non-circular cross-section in torsion that the stress 
vector at all points along the lateral boundary acting on any of the normal cross-sectional planes 
must be tangent to the boundary. 
5.56. Demonstrate that the displacement and stress for the elliptic bar in torsion may also be 
used for an elliptic tube, if the inside boundary is defined by 

2 2  
- + - = k  x2 x3 2 

a2 b2 
where k< 1. 
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5.57. Compare the twisting torque which can be transmitted by a shaft with an elliptical 
cross-section having a major axis equal to twice the minor axis with a shaft of circular 
cross-section having a diameter equal to the major axis of the elliptical shaft. Both shafts are 
of the same material. Also compare the unit twist under the same twisting moment. 
5.58. Repeat the previous problem, except that the circular shaft has a diameter equal to the 
minor axis of the elliptical shaft. 
5.59. (a) For an elliptic bar in torsion, show that the magnitude of the maximum shearing stress 
varies linearly along radial lines x2 = h 3  and reaches a maximum on the outer boundary. 

(b) Show that on the boundary the maximum shearing stress is given by 
- -  - 

b’ + &a’ - b’ ) 2 4  
z a2 b3 

(Ts 1 max = ___ d 

so that the greatest shearing stress does occur at the end of the minor axis. 
5.60. Consider the torsion of a cylindrical bar with an equilateral triangular cross-section as in 
Fig.P5.4. 

(a) Show that a warping function ~p = a (3xZx3 - x3 ) generates an equilibrium stress field. 

(b) Determine the constant a in order to satisfy the traction-free lateral boundary condition. 
Demonstrate that the entire lateral surface is traction-free. 
(c) Write out explicitly the stress distribution generated by this warping function. Evaluate 
the maximum shearing stress at the triangular corners and along the linex3 = 0 in a cross-sec- 
tion. Along the line x3 = 0 where does the greatest shearing stress occur? 

3 

Fig. P5.4 

5.61. An alternate manner of formulating the problem of the torsion of a cylinder of noncircular 
cross-section employs a stress function t,b (x2 , x3 ) such that the stresses are given by 
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and all other qj = 0 

(a) Demonstrate that the equilibrium equations are identically satisfied for any choice of v. 
(b) Show that if ly satisfies the equation 

+ constant 

then the stress will correspond to a compatible strain field for simply-connected cross-sectional 
areas. 
(c) Show that the lateral boundary condition requires that Vq be in the same direction as the 
outward normal. In other words, the values of ?# on the outer boundary is a constant. 
5.62. A beam of circular cross-section is subjected to pure bending. The magnitude of each 
end couple is 14,000 N-m. If the maximum normal stress is not to exceed 0.124 GPa, what 
should be the diameter? 
5.63. The rectangular beam of Example 5.15.1 has a width b and a height 1 2 .  If the right-hand 
couple is given by M = 24,o@k2 ft-lb (32,500 Nem), determine the dimension b in order that 
the maximum shearing stress does not exceed 600 psi (4.14 MPa). 
5.64. Let the beam of Example 5.15.1 be loaded by both the indicated bending moment and a 
centroidally applied tensile force P. Determine the magnitude of P in order that T1120. 

5.65. Verify that if p (XI, x2) satisfy Eq. (5.16.7), than it does correspond to a compatible strain 
field. 
5.66. Show that if the bending moment applied to a bar in pure bending is not referred to 
principal axes, then the flexural stress will be 

M2Lz + M34y 

'u'yy - Iiy 

W-fl + M24y 

'zz'fl - 'iy 
Tl1 = 2 x3 - 2 x2 

5.67. Figure P5.5 shows the cross-section of a beam subjected to pure bending. If the end 
couples are given by 2 lo4 N-m, find the maximum normal stress. 
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Fig. P5.5 

5.68. Consider the stress function 
2 2 

(0 = a l x l +  a g l x 2  + a 3 ~ 2  

(a) Verify that this stress function is a possible one for plane strain. 
(b) Determine the stresses and sketch the boundary tractions on the rectangular boundary, 

5.69. Consider the stress function p = a x1 x2 

(a) Is this a possible stress function for plane strain? 
(b) Determine the stresses. 
(c) Determine and sketch the boundary traction on the boundary defined by 

5.70. Consider the stress function p = a x i  + b x i .  

(a) Is this a possible stress function for plane strain? 
(b) Determine and sketch the boundary tractions on the rectangular boundary of the previous 
problem. 

5.71. Consider the stress function p = a x1 x i  + /l x1 x2 3 

(a) Is this a possible stress function for plane strain? 
(b) Determine the stresses. 
(c) Find the condition necessary for the traction on x2 = b to vanish and sketch the stress 
traction on the remaining boundaries x;! = 0 ,  x1 = 0 , x1 =a. 

5.72. By integration, obtain Eq. (5.17.13) 

x ~ = O ,  x ~ = u ,  x ~ = O ,  ~ 2 = b .  

2 

X I  = 0 ,  X I  = U ,  ~2 = 0 ,  ~2 = b. 
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5.73. From Eqs. (5.19.2), show that Eq. (5.19.4) can also be written as: 
b 

-M = s T w h &  
a 

= [-A In- 6 - B(b2 1116 - a 2 l ~ )  - C (b2 - a 2 )] 
U 

5.74. Obtain the general solution of Eq. (5.20.6) as 

5.75. A hollow sphere is subjected to an internal pressurepi only. 

(a)Show that T, is always negative (Le., compressive ) and Tm is always positive (tensile). 

(b) Find the maximum TH. 

(c) If the thickness t a, -ai is small, show that the equation obtained in (b) reduces to 

5.76. Using Eq. (5.16.6) in Eq. (5.16.7) to obtain Eq. (5.16.8). 
5.77. Derive Eq. (5.16.9). 
5.78. Obtain the solution for the differential equation, Eq. (5.17.8). 
5.79. Obtainu, and ug from Eqs. (5.17.11) and (5.17.12). 

5.80. Verify Eq. (5.19.4) 
5.81. Find the general solution for Eq. (5.20.6) 
5.82. Write stress strain laws for a monoclinic elastic solid whose plane of symmetry is the 
XI x2 plane in contracted notation. 

5.83. Write stress strain laws for a monoclinic elastic solid whose plane of symmetry is the 
~ 3 x 1  plane in contracted notation. 

5.84. Verify any one of the equations in Eqs(iv) of Section 5.26 on transversely isotropic elastic 
solid. 

5.85. Show from the equation Cli33 = 0 that C1133 = C233 for a transversely isotropic 
material [See Section 5.261 
5.86. Referring to Section 5.26, for a transversely isotropic elastic solid, obtain Eq. (ix) 
5.87. In Section 5.26 we obtained the reduction in the elastic coefficients for a transversely 
isotropic elastic solid by demanding that each Sp plane is a plane of material symmetry. We 
can also obtain the same reduction by demanding that C&/ be the same for all/?. Verify that 
the two procedures lead to the same elastic coefficients. 
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5.88. Verify the relations between CJ and the engineering constants given in Eqs. (5.29.2a) 

5.89. Obtain Eq. (5.29.3) from Eq. (5.29.2) 
5.90. Derive the inequalities expressed in Eq. (5.30.4) 
5.91. Write down all the restrictions for the engineering constants for a monoclinic elastic solid. 
5.92. Show that if a tensor is objective, then its inverse is also objective. 

5.93. Show that the rate of deformation tensor D = -[(Vv) + (VV)~]  is objective 

5.94. Show that in a change of frame, the spin tensor W transforms in accordance with the 
equation w * = Q W Q ~  + Q Q ~  
5.95. Show that the material derivative of an objective tensor T is in general non-objective 
5.96. The second Rivlin-Ericksen tensor is defined by 

1 
2 

A2 = AI + A~(VV) + (VV)~A, 

where A1 = 2D [See Prob. 5.931. Show that A2 is objective. 

5.97. The Jaumann derivative of a second order tensor T is 
T + Tw-wr 

where W is the spin tensor [see Prob. 5.941. Show that the Jaumann derivative of T is objective. 
5.98. In a change of frame, how does the first Piola-Kirchhoff stress tensor transform ? 

5.99. In a change of frame, how does the second Piola-Kirchhoff tensor transform? 
5.100. (a) Starting from the assumption that 

and 
T = H(F) 

T *=H *(F *), 
show that in order that the constitutive equation be independent of observers, we must have 

QTQ~=WQF) 

(b) Choose Q=RT to obtain 

T=R H ( U ) R ~  
where R is the rotation tensor associated with the deformation gradient F and U is the right 
stretch tensor. 
(c) Show that 

f= h(U) 
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where 
h = UH(U)UT 

2 Since C = U , therefore we may write 
r= f(C) 


