Tensors

As mentioned in the introduction, all laws of continuum mechanics must be formulated in
terms of quantities that are independent of coordinates. It is the purpose of this chapter to
introduce such mathematical entities. We shall begin by introducing a short-hand notation
- the indicial notation — in Part A of this chapter, which will be followed by the concept of
tensors introduced as a linear transformation in Part B. The basic field operations needed for
continuum formulations are presented in Part C and their representations in curvilinear
coordinates in Part D.

Part A The Indicial Notation

2A1 Summation Convention, Dummy Indices

Consider the sum

s=apxy+axy+axz+ -+ ax, (2A1.1)

We can write the above equation in a compact form by using the summation sign:
n
s= 2 a; x; (2A1.2)
i=1

It is obvious that the following equations have exactly the same meaning as Eq. (2A1.2)

n
5= ajx (2A13)
j=1
n
5= aptn (2A14)
m=1

etc.
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The index i in Eq. (2A1.2), orj in Eq. (2A1.3), or m in Eq. (2A1.4) is a dummy index in the
sense that the sum is independent of the letter used.

We can further simplify the writing of Eq.(2A1.1) if we adopt the following convention:
Whenever an index is repeated once, it is a dummy index indicating a summation with the
index running through the integers 1,2, ..., n.

This convention is known as Einstein’s summation convention. Using the convention,
Eq. (2A1.1) shortens to

s =a;x; (2A1.5)

We also note that
;X = Ay Xy = A X = ... (2A1.6)

It is emphasized that expressions such as a;b; are not defined within this convention. That

is, an index should never be repeated more than once when the summation convention is used.
Therefore, an expression of the form

n
2 a; b x;
i=1

must retain its summation sign.
In the following we shall always take n to be 3 so that, for example,
QjX; = A Xm = a1 + axy + azxs
Qi = Amm = a1 taxp +azs
ae;=aje;+aze;t+aszes

The summation convention obviously can be used to express a double sum, a triple sum,
etc. For example, we can write

3.3 (2A1.7)
2 2 Gij X X
i=1 j=1
simply as
ajj X; Xj (2A1.8)
Expanding in full, the expression (2A1.8) gives a sum of nine terms, i.c.,
@i X; Xj = agpeyxy + apxxg + aggeexs + axxpng +axroxn
+tayxyes + azraxy + azxaxn + azzrans (2A1.9)

For beginners, it is probably better to perform the above expansion in two steps, first, sum
over i and then sum over j (or vice versa), i.e.,

aijxixj = alf-xlxj + azftzx‘] + a3)-x3xj
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where
ajjx1Xj = ajnx1x + apx1xy + apyx;x;
etc.
Similarly, the triple sum

3 3 3
2 2 2 Gijk Xi Xj X)c (2A1.10)

will simply be written as
aijkx,-xj Xi (2A1.11)

The expression (2A1.11) represents the sum of 27 terms.
We emphasize again that expressions such as a; x; x;j x; or ajji x; X; x; Xy are not defined in the
sumnmation convention, they do not represent

3 3
2 ai,-xixjxj or 2 2 a,-jkx,-x,-xjxk
j=1 i=1 j=1 k=1

3
i=1
2A2 Free Indices
Consider the following system of three equations
x] = agpxg + apxy + a3y
X = agpey + apxy + azxy
x3 = agpxy + agpxy + azxs (2A2.1)

Using the summation convention, Eqs. (2A2.1) can be written as

X1 = Qkm
X2 = oty
X3 = G (2A22)
which can be shortened into
X = Gy X, =123 (2A23)

An index which appears only once in each term of an equation such as the index i in
Eq. (2A2.3) is called a “free index.” A free index takes on the integral number 1, 2, or 3 one
at a time. Thus Eq. (2A2.3) is short-hand for three equations each having a sum of three terms
on its right-hand side [i.e., Egs. (2A2.1)].

A further example is given by
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& =Q0men (=123 (2A2.4)
representing
e1 = Or1e1 + Onex + U363
e = Q€1 + Ones + Oe
e3 = Or3e; + Ox3€; + O33¢3 (2A25)

We note that xj = ajpsm, j=1,2,3, is the same as Eq. (2A2.3) and ¢; = Qe j=1,2,3 is the
same as Eq. (2A2.4). However,

a,-=b]-

is a meaningless equation. The free index appearing in every term of an equation must be the
same. Thus the following equations are meaningful

a; +k;i=c¢;
a; + bicd; = 0
If there are two free indices appearing in an equation such as
Tj=AimAjm i=123;j=123 (2A2.6)

then the equation is a short-hand writing of 9 equations; each has a sum of 3 terms on the
right-hand side. In fact,

T = AynAyn = A1l + Apdz + 413413
Ty = AynAom = A1z + A1pAx + A13423
T3 = AynAzm = A1dsr + ApAdzp + 413433

Again, equations such as
Tyj =Ty
have no meaning.
2A3 Kronecker Delta
The Kronecker delta, denoted by 9j;, is defined as

C_ 1 ifisj ,
% = {0 if i#] (2A3.1)

That is,
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011 =0p=033=1
012 =013 =091 =023 =033 =03, =0
In other words, the matrix of the Kronecker delta is the identity matrix, i.e.,

011 012 013 10
[65]1 = |921 022 923| = |0 1
31 032 033 00

—_o o

We note the following:
(a) dii=611+622+633=1+1+1=3

(b) dymam = 01101 + 01202 + 01303 = a1
Oomam = 01a1 + 0202 + 02303 = a3
O3mam = 03101 + 03pap + 03303 = a3
Or, in general

Oimam = aj

(€) O1mTmj = 611 Tyj+012Tp+013T5 = Ty

(53me' = T3]
or, in general
OimTmj = Tjj
In particular,
OimOmj = 0;;
6im6mn6nj = aij
etc.

(d) If eq,e,,e3 are unit vectors perpendicular to each other, then

e,"e]' = (5,]

2A4 Permutation Symbol
The permutation symbol, denoted by &5 is defined by

+1 form an even
&ijx = 1 —1; =according to whether ik {formanodd } permutation of 1,2,3
0 do not form a

(2A3.2)

(2A3.3)

(2A3.4)

(2A3.5)

(2A3.6)

(2A3.7)

(2A4.1)



8 Indicial Notation

ie.,
€123 = €31 = €312 = +1
€132 = €321 = €213 = —1
e =&112="""=0
We note that
i = Ejki = Ekij = ~Ejix = ~Ejpj = —Eji

If e4,e5,e3 form a right-handed triad, then

e;Xey = e3, e;Xe3 = e, epXe; = —e3, e;Xe; =0, ...

which can be written for short as
€;X € = £y = Ejxi = Exjiey
Now, if a = g;e;, and b = b;e;, then
axb = (a;e;) % (bje) = abj(e; X e) = abitijre
ie.,
axb = abjejney
The following useful identity can be proven (see Prob. 2A7)

EiimExim = Oindjr—0idjx

2A5 Manipulations with the Indicial Notation

(a) Substitution
If

a; = Uimbp,
and

b; = Vimtm

(2A4.2)

(2A4.3)

(2A4.4)

(2A4.5)

)

(ii)

then, in order to substitute the b;’s in (ii) into (i) we first change the free index in (ii) from i to

m and the dummy index m to some other letter, say n so that
bm = Viuntn
Now, (i) and (iii) give

a; = UimVinntn

(iii)

(iv)

Note (iv) represents three equations each having the sum of nine terms on its right-hand side.
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(b) Multiplication
If
p = amby, @
and
q = oty (ii)
then,
Pq = Qb chdy (iii)

It is important to note that pq # a,,b;,,cmdm. In fact, the right hand side of this expression
is not even defined in the summation convention and further it is obvious that

3
pq# 2 AnbmCrmdm.
m=1
Since the dot product of vectors is distributive, therefore, if a = a;e; and b = bje;, then
a‘b= (aie,-) (b]ej) = aibj(ei-ej) (iV)
In particular, if e),e,e3 are unit vectors perpendicular to one another, then ¢;-¢; = d;; so that
a‘b= a,'bjd,‘j =ab; = a,b] = a1b1+a2b2+a3b3 )
(c) Factoring
If
T,-jn]-—ln,- =0 (1)
then, using the Kronecker delta, we can write
n; = 6,]nj (ll)
so that (i) becomes
Thus,

(d) Contraction

The operation of identifying two indices and so summing on them is known as contraction.
For example, Tj; is the contraction of T,

Tij = T11+Tp+T3; (i)
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If

then
Ti; = A80;;+2uE;; = 3A0+2uE; (iii)
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PartB Tensors

2B1 Tensor — A Linear Transformation

Let T be a transformation, which transforms any vector into another vector. If T transforms
ainto ¢ and b into d, we write Ta = ¢ and Tb =d.

If T has the following linear properties:
T(a+b) = Ta+Tb (2Bl.1a)

T(ca) = aTa (2B1.1b)

where a and b are two arbitrary vectors and a is an arbitrary scalar then T is called a linear
transformation, It is also called a second-order tensor or simply a tensor.! An alternative and
equivalent definition of a linear transformation is given by the single linear property:

T(aa+pb) = aTa+STb (2B1.2)
where a and b are two arbitrary vectors and & and § are arbitrary scalars.

If two tensors, T and S, transform any arbitrary vector a in an identical way, then these
tensors are equal to each other, i.e,, Ta=Sa - T=S8.

Example 2B1.1

Let T be a transformation which transforms every vector into a fixed vector n. Is this
transformation a tensor?

Solution. Let a and b be any two vectors, then by the definition of T,
Ta=n, Tb=n and T(a+b)=n
Clearly,
T(a+b) # Ta+Th
Thus, T is not a linear transformation. In other words, it is not a tensor.

T Scalars and vectors are sometimes called the zeroth and first order tensor, respectively. Even though they can
also be defined algebraically, in terms of certain operational rules, we choose not to do so. The geometrical
concept of scalars and vectors, which we assume that the students are familiar with, is quite sufficient for our
purpose.
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Example 2B1.2
Let T be a transformation which transforms every vector into a vector that is k times the
original vector. Is this transformation a tensor?

Solution. Let a and b be arbitrary vectors and @ and 8 be arbitrary scalars, then by the
definition of T,

Ta = ka, Tb = kb, and T(aa+pb) = k(aa+pb)
Clearly,
T(aa+Bb) = a(ka)+p(kb) = aTa+8Th
Thus, by Eq. (2B1.2), T is a linear transformation. In other words, it is a tensor.

In the previous example, if k=0 then the tensor T transforms all vectors into zero. This
tensor is the zero tensor and is symbolized by 0.

Example 2B1.3

Consider a transformation T that transforms every vector into its mirror image with respect
to a fixed plane. Is T a tensor?

Solution. Consider a parallelogram in space with its sides represented by vectors a and b
and its diagonal represented the resultant a +b. Since the parallelogram remains a paral-
lelogram after the reflection, the diagonal (the resultant vector) of the reflected parallelogram
is clearly both T(a + b), the reflected (a + b), and Ta + Tb, the sum of the reflected a and
the reflected b.Thatis, T(a + b) = Ta + Tb. Also, for an arbitrary scalar a , the reflection
of aa is obviously the same as a times the reflection of a (i.e., T(aa )= aTa ) because both
vectors have the same magnitude given by a times the magnitude of a and the same direction.
Thus, by Egs. (2B1.1), Tis a tensor.

Example 2B1.4

When a rigid body undergoes a rotation about some axis, vectors drawn in the rigid body in
general change their directions. That is, the rotation transforms vectors drawn in the rigid body
into other vectors. Denote this transformation by R. Is R a tensor?

Solution. Consider a parallelogram embedded in the rigid body with its sides representing
vectors a and b and its diagonal representing the resultant a+b. Since the parallelogram
remains a parallelogram after a rotation about any axis, the diagonal (the resultant vector) of
the rotated parallelogram is clearly both R(a + b) , the rotated (a + b), and Ra + Rb, the
sum of the rotated a and the rotated b. Thatis R(a + b) = Ra + Rb. A similar argument as
that used in the previous example leads to R(aa )= aRa. Thus, R is a tensor.
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Example 2B1.5

Let T be a tensor that transforms the specific vectors a and b according to
Ta =a+2b, Tb=a-b
Given a vector ¢ = 2a+b, find Te.
Solution. Using the linearity property of tensors
Tc = T(2a+b) = 2Ta+Tb = 2(a+2b)+(a—b) = 3a+3b

2B2 Components of a Tensor

The components of a vector depend on the base vectors used to describe the components.
This will also be true for tensors. Let ey, 5, 3 be unit vectors in the direction of the xq-, xo-,

x3-axes respectively, of a rectangular Cartesian coordinate system. Under a transformation T,
these vectors, e, e;, e3 become Te;, Tey, and Tes. Each of these Te; (i=1,2,3), being a vector,

can be written as:
Te; = Ty1e1+ 12182+ T31€3
Te, = Type1+Tper+T3e3

Tez = T3eq+Tx3er+T33e3 (2B2.1a)
or
Te,- = Tj,-ej (2B21b)

It is clear from Eqs. (2B2.1a) that
Tll = el-Tel, T12 = el-Tez, T21 = e2-Te1,
or in general

T,] = ei-Tej (2B22)
The components Tj; in the above equations are defined as the components of the tensor T.

These components can be put in a matrix as follows:
Ty Tz Ti3
[T = |T21 T2 T3
T3 Ty T3
This matrix is called the matrix of the tensor T with respect to the set of base vectors
{e1, €2, €3} or {e;} for short. We note that, because of the way we have chosen to denote the

components of transformation of the base vectors, the elements of the first column are
components of the vector Te,, those in the second column are the components of the vector
Te,, and those in the third column are the components of Tes.
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Example 2B2.1

Obtain the matrix for the tensor T which transforms the base vectors as follows:
Te; = 4e1+e,
Te, = 2e1+3e3
Te; = —e;+3e,+e;

Solution. By Eq. (2B2.1a) it is clear that:

4 2 -1
[T]=]10 3
03 1
Example 2B2.2

Let T transform every vector into its mirror image with respect to a fixed plane. If e; is
normal to the reflection plane (e; and e3 are parallel to this plane), find a matrix of T.

Mirror
-]

450

Fig. 2B.1

Solution. Since the normal to the reflection plane is transformed into its negative and vectors
parallel to the plane are not altered:

Tel = —e
Te2 =€
Te; = e3

Thus,
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M=

SO -
O = O
—_ oo

€

We note that this is only one of the infinitely many matrices of the tensor T, each depends
on a particular choice of base vectors. In the above matrix, the choice of ¢; is indicated at the

bottom right corner of the matrix. If we choose ey and e; to be on a plane perpendicular to
the mirror with each making 45° with the mirror as shown in Fig. 2B.1 and e points straight
out from the paper. Then we have

Te; = e
Te, = e;
Te; = e3

Thus, with respect to {e; }, the matrix of the tensor is

010
Ty ={100
00 1],

Throughout this book, we shall denote the matrix of a tensor T with respect to the basis
e; by either [T] or [T};] and with respect to the basis ¢; " by either [T]" or [T,-j'] The last
two matrices should not be confused with [T '], which represents the matrix of the tensor
T ' with respect to the basis e;.

Example 2B2.3

Let R correspond to a right-hand rotation of a rigid body about the x3-axis by an angle 6.
Find a matrix of R.

Solution. From Fig. 2B.2 it is clear that
Re; = cosfle;+sinfe,
Re, = —sinfe;+cosfe;
Re; = e3
Thus,

cosd —sind 0
{R] = [sinf cos6é 0
0 01 .
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Re, €2
Re
0 1
0 'y
Fig. 2B.2

2B3 Components of a Transformed Vector

Given the vector a and the tensor T, we wish to compute the components of b=Ta from the
components of a and the components of T. Let the components of a with respect to {ej,e,e3}

be [al, an, a3], i.e.,

a = qqe1tase+ases

then

b = Ta = T(aje;+ae;+azes) = a;Tey+a,Tey+asTes

Thus,
b1 = e;*b = ay(e; - Tey)+ay(e - Tey) +as(e; - Tes)
by = ey-b = ay(ey Te)+ay(ey Tey)+as(e; - Tes)
by = e3'b = ay(e3- Tey)+an(e3- Tey)+as(e; Tes)
By Eq. (2B2.2), we have,
b1 = Tnay+Tipar+Ti3a3
by = Ty1a1+Tar+Tas
b3 = T3101+Txar+T33a3

We can write the above three equations in matrix form as:

(M

(i)

(iii)

(2B3.1a)
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by T Ty Ti| |

by| = |T21 T2 T3l a2 (2B3.1b)
bs T3 T3 Ts3)las
or
(b] = [T)[a] (2B3.1c)

We can concisely derive Eq. (2B3.1a) using indicial notation as follows: From a = g;e;, we
get Ta = Taje; = a;Te;. Since Te; = Tje;, (Eq. (2B2.1b)), therefore,
by = b-e, = Ta-e, = a;Tji¢; ¢ = ;T = a;Ty;
ie.,
bk = Tk,-a,- (2B31d)
Eq. (2B3.1d) is nothing but Eq. (2B3.1a) in indicial notation. We see that for the tensorial

equation b = Ta, there corresponds a matrix equation of exactly the same form, i.e., [b] = [T][a].
This is the reason we adopted the convention that Te; = Tqye;+T1e,+T3;e3, etc. If we had

adopted the convention Te; = Tyje;+Tye,+Tyse3, etc., then we would have obtained

[b]=[T]T[a] for the tensorial equation b =Ta, which would not be as natural.

Example 2B3.1

Given that a tensor T which transforms the base vectors as follows:
Tey = 2e;—6ey+4e3
Te, = 3e;+4ey—e3
Tey = —2eq+ey+2e;
How does this tensor transform the vector a = e;+2e;+3e3?

Solution. Using Eq. (2B3.1b)

by 2 3 =2|]1 2
bl =1|-6 4 1|{2|=15
bs 4 -1 2|3 8

or
b = 2e;+5e,+8e;

2B4 Sum of Tensors

Let T and S be two tensors and a be an arbitrary vector. The sum of T and S, denoted by
T+, is defined by:

(T+S)a = Ta+Sa (2B4.1)
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It is easily seen that by this definition T + S is indeed a tensor.
To find the components of T + S, let
W=T+S§

Using Egs. (2B2.2) and (2B4.1), the components of W are obtained to be

Wij = ¢;(T+S)e; = ;- Tej+e;* Se;
i.e.,

Wi = Ty+S;

In matrix notation, we have

(W] = [T]+[S]

2B5 Product of Two Tensors

(2B4.2a)

(2B4.2b)

(2B4.2¢)

Let T and S be two tensors and a be an arbitrary vector, then TS and ST are defined to be

the transformations (easily seen to be tensors)
(TS)a = T(Sa)

and
(ST)a = S(Ta)

Thus the components of TS are

(TS);;=¢; (TS)ej=e; T(Sej)=e; TS, i€, =Spj¢; - Ter, = Ti,Spij

ie.
(TS);j = TimSmj
Similarly,
(ST);j = SimTimj
In fact, Eq. (2B5.3) is equivalent to the matrix equation:
[TS] = [T][S]

whereas, Eq. (2B5.4) is equivalent to the matrix equation:
[ST] = [S][T]

(2B5.1)

(2B5.2)

(2B5.3)

(2B5.4)

(2B5.5)

(2BS.6)

The two matrix products are in general different. Thus, it is clear that in general, the tensor

product is not commutative (i.e., TS # ST).

If T,S, and V are three tensors, then

(T(SV))a = T((SV)a) = T(S(Va))
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and
(TS)(Va) = T(S(Va))
ie.,
T(SV) = (TS)V (2B5.7)

Thus, the tensor product is associative. It is, therefore, natural to define the integral positive
powers of a transformation by these simple products, so that

T>=1TT, T°=TIT, ... (2B5.8)

Example 2B5.1
(a)Let R correspond to a 90° right-hand rigid body rotation about the x3-axis. Find the matrix
of R.

(b)Let S correspond to a 90° right-hand rigid body rotation about the x;-axis. Find the matrix
of S.

(c)Find the matrix of the tensor that corresponds to the rotation (a) then (b).
(d)Find the matrix of the tensor that corresponds to the rotation (b) then (a).

(e)Consider a point P whose initial coordinates are (1,1,0). Find the new position of this
point after the rotations of part (c). Also find the new position of this point after the rotations
of part (d).

Solution. (a) For this rotation the transformation of the base vectors is given by

Re; =¢;
Re; = —¢g
Re;=¢;
so that,
0-10
RI={1 00
0 01
(b)In a similar manner to (a) the transformation of the base vectors is given by
Sey = ¢
Se2 =e3
Se; = —ep
so that,

10 0
[S]=10 0 -1
01 0
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(c)Since S(Ra) = (SR)a, the resultant rotation is given by the single transformation SR
whose components are given by the matrix
10 0|0 -10 0 -1 0
[SR]=(0 0 -1{|1 00 =0 0 -1
01t 0]]0 01 1 0 0

(d)In a manner similar to (c) the resultant rotation is given by the single transformation RS
whose components are given by the matrix

0-10] [to of [oo1
[RS]=]1 00| |00 -1|=|100
0 o1 {01 o [010

(e)Let r be the initial position of the point P. Let r* and r'* be the rotated position of P
after the rotations of part (c) and part (d) respectively. Then

0 -1 of 1 -1
[F'I=[SR][\l={0 O -1||1]=] O
1 0 0]]0 1
ie.,
r*=—e1+e3
and
00 1|1 0
[™1=[RS]H= {1 0 Of [1{ =1
010[1(0 1
ie.,
r"=e2+e3

This example further illustrates that the order of rotations is important.

2B6 Transpose of a Tensor

The transpose of a tensor T, denoted by T7, is defined to be the tensor which satisfies the
following identity for all vectors a and b:

a-Tb=b-T'a (2B6.1)

It can be easily seen that 17 is a tensor. From the above definition, we have
€ Tej = ej . TTe,'
Thus,

Tjj = 7}7 (2B6.2)

or
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(1) =y’
i.e., the matrix of T is the transpose of the matrix of T.
We also note that by Eq. (2B6.1), we have
a-Tb=b-(1T)a
Thus, b-Ta = b- (TT)Ta for any a and b, so that
T= (TT)T (2B6.3)

It can also be established that (see Prob. 2B13)
(Ts)T = s'1T (2B6.4)

That is, the transpose of a product of the tensors is equal to the product of transposed tensors
in reverse order. More generally,

(ABC...0) = D7...cTBTAT (2B6.5)

2B7 Dyadic Product of Two Vectors

The dyadic product of vectors a and b, denoted by ab, is defined to be the transformation
which transforms an arbitrary vector ¢ according to the rule:

(ab)e = a(b-c) (2B7.1)
Now, for any ¢, d, @ and §, we have, from the above definition:
(ab)(ac+pd) = a(b-(ac+8d)) = a((ab-c)+(Bb-d)) = a(ab)c+S(ab)d
Thus, ab is a tensor. Letting W=ab , then the components of W are:
Wi = ¢;-We; = ¢;*(ab)e; = ¢;-a(b-¢;) = a;b;

ie.,
Wij = aib; (2B7.2a)
In matrix notation, Eq. (2B7.2a) is
a albl a1b2 a1b3
[W] = |az]| [by, by, b3l = |acb1 azby azbs3 (2B7.2b)
a3 ashy azby asbs

In particular, the components of the dyadic product of the base vectors e; are:

100 010
[eie1] =10 O 0O, [e1e2) = |0 0 OF, ...
000 000

Thus, it is clear that any tensor T can be expressed as:
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T= Tnelel + T12e1e2+ ..t T33e3e3

ie.,
T= Tije,-ej

(2B7.32)

(2B7.3b)

We note that another commonly used notation for the dyadic product of a and b is a®b.

2B8 Trace of a Tensor

The trace of any dyad ab is defined to be a scalar given by a-b. That is,

trab=a-b

Furthermore, the trace is defined to be a linear operator that satisfies the relation:
tr(aab+fScd) = atr ab+ftr cd

Using Eq. (2B7.3b), the trace of T can, therefore, be obtained as
trT = tr(T,-je,-ej) = T}jtr(e,-ej) =T,-je,-'ej =

that is,

tr T = T;; = T11+ T+ T33 = sum of diagonal elements

It is obvious that

tr TT=tr T

Example 2B8.1
Show that for any second-order tensor A and B
tr(AB)=tr(BA)
Solution. Let C=AB, then C;;=A;,,,Bp. Thus,
tr AB=tr C=C;;=A;,Bpm;
Let D=BA, then D;j=B;;,A,,;, and
tr BA=tr D=D;=B;,,A,,;
But B;,4,,i=Bidim (change of dummy indices), that is
tr BA=tr AB

(2B8.1)

(2B8.2)

(2B8.3)

(2B8.4)

(2B8.5)

(@)

(i)

(iif)
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2B9 Identity Tensor and Tensor inverse

The linear transformation which transforms every vector into itself is called an identity
tensor. Denoting this special tensor by I, we have, for any vector a,

Ia=a (2B9.1)

and in particular,
Ie; = ¢
Ie; = ¢
Ieg=¢3
Thus, the components of the identity tensor are:
Iij = ¢;-lej = ¢;-¢j = J;; (2B9.2a)

ie.,

m=1o

0
0 (2B9.2b)
001

It is obvious that the identity matrix is the matrix of I for all rectangular Cartesian coordinates
and that TI = IT = T for any tensor T. We also note that if Ta = a for any arbitrary a, then
T=L

Example 2B9.1

Write the tensor T, defined by the equation Ta = ka, where k is a constant and a is arbitrary,
in terms of the identity tensor and find its components.
Solution. Using Eq. (2B9.1) we can write k a as kla so that Ta = ka becomes
Ta = kla
and since a is arbitrary
T =kl
The components of this tensor are clearly,

Given a tensor T, if a tensor S exists such that ST=I then we call S the inverse of T or

S=T71, (Note: With T =T 1*1=T°=], the zeroth power of a tensor is the identity
tensor). To find the components of the inverse of a tensor T is to find the inverse of the matrix
of T. From the study of matrices we know that the inverse exists as long as detT#=0 ( thatis, T
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is non-singular) and in this case, [T]_1 [T] =[T] [T]_1 = [I]. Thus, the inverse of a tensor
satisfies the following reciprocal relation:

T Ir=71"1=1 (2B9.3)

We can easily show (see Prob. 2B15) that for the tensor inverse the following relations are
satisfied,

(TT)_I = (T— 1)T (2B9.4)

and
(ST)_l =111 (2B9.5)

We note that if the inverse exists then we have the reciprocal relation that

Ta=b and a=T b

This indicates that when a tensor is invertible there is a one to one mapping of vectors
a and b. On the other hand, if a tensor T does not have an inverse, then, for a given b, there
are in general more than one a which transforms into b. For example, consider the singular
tensor T = ed (the dyadic product of ¢ and d, which does not have an inverse because its
determinant is zero), we have

Ta=c(d-a)=b
Now, let h be any vector perpendiculartod (i.e.,d-h =0), then
T(a+h)=c(d-a)=b
That is, all vectors a + h transform under T into the same vector b,

2B10 Orthogonal Tensor

An orthogonal tensor is a linear transformation, under which the transformed vectors
preserve their lengths and angles. Let Q denote an orthogonal tensor, then by definition,
|Qa| = |a| and cos(a,b) = cos(Qa,Qb) for any a and b, Thus,

Qa-Qb=a-b (2B10.1)

for anya and b.
Using the definitions of the transpose and the product of tensors:

(Qa)'(Qb) = b-Q(Qa) = b (Q'Q)a @)
Therefore,
b(Q’Q)a=a-b=b-a=bIa (i)
Since a and b are arbitrary, it follows that

Q=1 (iii)
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This means that Q”1=Q7 and from Eq. (2B9.3),

0'Q=00Q" =1 (2B10.2a)
In matrix notation, Eqs. (2B10.2a) take the form:
[QIQI" = [Q1'[Q] = 1] (2B10.2b)
and in subscript notation, these equations take the form:
QimQjm = OmiOmj = 9jj (2B10.2¢)
Example 2B10.1

The tensor glven in Example 2B2.2, being a reflection, is obviously an orthogonal tensor.
Verify that [T][T] = {I] for the [T] in that example. Also, find the determinant of [T].

Solution. Using the matrix of Example 2B7.1:

-100 100 100
mm = o010/[{ 010 =010
001 001 001
The determinant of [T] is
-100
ITI=] 010 =-1
001
Example 2B10.2

The tensor given in Example 2B2.3, being a rigid body rotation, is obviously an orthogonal
tensor. Verify that [R][R] = [I] for the [R] in that example. Also find the determinant of [R].

Solution. It is clear that

r cos® —sinfd 0 cosf@ sinfd O 100
[RJ[R]" = [sin6 cos® O |—sind cosd O =(0 1 0
0 01 0 01 001

cosf —sin@ 0
det[R] = |R| = |sin@ cosf 0 = +1
0 01

The determinant of the matrix of any orthogonal tensor Q is easily shown to be equal to
either + 1 or -1. In fact,

[l =m
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therefore,

Q| = 1Q|1Q7| = I1|
Now, {Q| = lQTI,and |I} = 1, therefore, |Q|2 = 1, thus
Q| = %1 (2B10.3)

From the previous examples we can see that the value of + 1 corresponds to rotation and -1
corresponds to reflection.

2B11 Transtormation Matrix Between Two Rectangular Cartesian Coordinate
Systems.

Suppose {e;} and {e; } are unit vectors corresponding to two rectangular Cartesian coor-
dinate systems (see Fig. 2B.3). It is clear that {e;} can be made to coincide with {e; } through
either a rigid body rotation (if both bases are same handed) or a rotation followed by a
reflection (if different handed). That is {e;} and {e; } can be related by an orthogonal tensor
Q through the equations

¢ = Qe; = Opmi®m (2B11.1a)

ie.,

e; = O1e1+0x e+ 03163

e; = O1pe1+0Oner+ 033

e3 = O13¢1+0x+ 03383 (2B11.1b)
where

QimQjm = QmiQmj = éij

or

T_ AT
QQ =QQ=I
We note that Q3 = e;-Qe; = e;-e1 = cosine of the angle between e; and e;,
Q017 = €1-Qe, = e;-e) = cosine of the angle between e; and e; , etc. In general, Qi = cosine
of the angle between ¢; and ¢; which may be written:

Qjj = cos(e;e)) = €€ (2B11.2)

The matrix of these directional cosines, i.e., the matrix

On QG O3
[Ql= Q2 On 0O
O3 Q32 O3



Part B Transformation Matrix Between Two Rectangular Cartesian Coordinate Systems. 27

is called the transformation matrix between {e;} and {e; }. Using this matrix, we shall obtain,
in the following sections, the relationship between the two sets of components, with respect
to these two sets of base vectors, of either a vector or a tensor.

€r
€

€3
Fig.2B.3

Example 2B11.1
Let {e } be obtained by rotating the basis {e;} about the e3 axis through 30° as shown in
Fig. 2B.4. We note that in this figure, e; and e3 coincide.

Solution. We can obtain the transformation matrix in two ways.
(i) Using Eq. (2B11.2), we have

’ J_ I I
Qu=cos(e1,e1)=cos30"=—23~, Q15=cos(ey,e5)=cos120°= —%, Q13=cos(ej,e3)=c0s90°=0

’ 1 ’ 1
Q21=cos(e2,e1)=cos600=§, Q22=cos(e2,e2)=cos30°=§, Q23=cos(ez,e3)=c0s90° =0

031=cos(e3,e1)=c0s90°=0, Q3,=cos(es,e2)=c0s90°=0, Q33=cos(es,e3)=cos0’=1

(ii) It is easier to simply look at Fig. 2B.4 and decompose each of the ¢; ’s into its components
in the {e;,e,,e3} directions, i.e.,

F_V3 o1
e = -E—e1+5e2

e'=—le+—\/—_3—
2= T8t e
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e3 = e3
Thus, by either method, the transformation matrix is
T 1
2 20
|1 ¥3
0 0 1
e
92' 2
o
30 e 1'
o
30° _,
Fig. 2B.4

2B12 Transformation Laws for Cartesian Components of Vectors
Consider any vector a, then the components of a with respect to {e;} are

ai=aeg
and its components with respect to {e; }are

a;j=a-e
Now, €; = Omiem, [Eq. (2B11.1a)}, therefore,

a; = a:Omiem = Omi(a-em)
ie.,
@i = Omim

In matrix notation, Eq. (2B12.1a) is

(2B12.1a)
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a Ou On Q3| |a1 (2B12.1b)
ay| = |Q12 O Q32| |22
az Q13 O 033 |a3

or
[a] = [Q]'[a] (2B12.1¢)

Equation (2B12.1) is the transformation law relating components of the same vector with
respect to different rectangular Cartesian unit bases. It is very important to note that in
Eq. (2B12.1c), [a]’ denote the matrix of the vector a with respect to the primed basis ¢; and
[a] denote that with respect to the unprimed basis ¢, Eq. (2B12.1) is not the same as
a' =QTa. The distinction is that [a] and [a]’ are matrices of the same vector, where aand a’ are
two different vectors; a’ being the transformed vector of a (through the transformation QT).

If we premultiply Eq. (2B12.1c) with [Q], we get

[a] = [Q][a]’ (2B12.2a)
The indicial notation equation for Eq.(2B12.2a) is
a; = Qi (2B12.2b)

Example 2B12.1

Given that the components of a vector a with respect to {e;} are given by (2,0,0), (i.e.,
a=2e,), find its components with respect to {e; }, where the ¢; axes are obtained by a 90°
counter-clockwise rotation of the e; axes about the ez-axis.

Solution. The answer to the question is obvious from Fig. 2B.5, that is
a=2e; = —2e

We can also obtain the answer by using Eq. (2B12.2a). First we find the transformation matrix.
With e; = e5, e; = —e; and e3 = e3, by Eq. (2B11.1b), we have

0-10
Q=|1 00
0 01
Thus,
- 01 0f ]2 0
[a) =[Q]'[a]=|-10 Of (O =|-2
00 1(]0 0
ie.,

a=—2e,
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2B13 Transformation Law for Cartesian Components of a Tensor

Consider any tensor T, then the components of T with respect to the basis {e;}are:
T,] = e,--Tej
Its components with respect to {e; }are:

T;] =€ Tej

With e,{ = QmieM’
TtJl = Qmitm " TQnjen = OrniOnj(€m " Tey)
ie.,
T,]' = OmiOni T (2B13.1a)

In matrix notation, Eq. (2B13.1a) reads

Ty Tiz Ti3 On Oxn On| [T T2 Tis| [Qu O Q3] (2B13.1b)
Ty Ty Tyl = Q1w 02 03| |Ta Tn Tu| |Qn 0n 05
T3, T3 Tas Q13 O3 033 |T31 T2 T33( (O31 QP32 O33

or

(1) = [Q)[T)[Q] (2B13.1¢)
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We can also express the unprimed components in terms of the primed components Indeed,
premultlply Eq (2B13.1¢) with [Q] and postmultiply it with [Q] we obtain, since

I’ = [QI71Q] =
[T] = [QTI'[Q" (2B13.2a)

Using indicial notation, Eq. (2B13.2a) reads
T:] = QimanTr;m (2B13.2b)

Equations (2B13.1& 2B13.2) are the transformation laws relating the components of the
same tensor with respect to different Cartesian unit bases. It is important to note that in these
equations, [T] and [T]'are different matrices of the same tensor T. We note that the equation

[T] = [Q]T[T] [Q] differs from the equation T ' = QTTQ in that the former relates the com-
ponents of the same tensor T whereas the latter relates the two different tensors Tand T *.

Example 2B13.1

Given the matrix of a tensor T in respect to the basis {e;}:

010
M={120
001

Find [T];, i.e., find the matrix of T with respect to the {e; } basis, where {e¢; } is obtained by
rotating {e;} about e3 through 90°. (see Fig. 2B.5).

Solution. Since e] = e, e) = —e; and e3 = e3, by Eq. (2B11.1b), we have

0-10
Q=1 00
0 01
Thus, Eq. (2B13.1c) gives
010/|010[[0-10 2 -10
[TY=|(-100|120|1 00/=]-1 00
001 ]1001(f0 01 0 01

ie., T1:1 =2, Tllz = -1, T1’3 = O,T2’1 = —1, etc.

Example 2B13.2

Given a tensor T and its components 7;; and T;j with respect to two sets of bases {¢;} and
{e; }. Show that Tj; is invariant with respect to thls change of bases, i.e., Tj; = Tj;.
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Solution. The primed components are related to the unprimed components by
Eq. (2B13.1a)

Tl‘; = QmianTmn
Thus,
Tl; = OmiOniTmn
But, 0,,,;0p; = 0., (Eq. (2B10.2¢)), therefore,
Tt; = OmnTmn = Trum
ie.,

Ti1+Tp+T3 = T+ Tn+Ts

We see from Example 2B13.1, that we can calculate all nine components of a tensor T with
respect to e; from the matrix [T]e, by using Eq. (2B13.1c). However, there are often times

when we need only a few components. Then it is more convenient to use the Eq. (2B2.2)
(T;j = e; - Te; ) which defines each of the specific components.

In matrix form this equation is written as:
T = (€] [T)[¢] (2B134)

where [e']T denotes a row matrix whose elements are the components of e; with respect to the
basis {e; }.

Example 2B13.3
Obtain T7, for the tensor T and the bases e; and ¢; given in Example 2B13.1
Solution. Since e] = e,, and e, = —ey, thus

Tip =1 Tey = ey T(—e;) =—ey-Tey = —Tpy = —1
Alternatively, using Eq. (2B13.4)

- 010]]-1 0
Typ = [e1] [Tllez] = [0,1,0]{1 2 0|| 0| =[0,1,0]|-1] = -1
001 0 0

2B14 Defining Tensors by Transformation Laws

Equations (2B12.1) or (2B13.1) state that when the components of a vector or a tensor with
respect to {¢;} are known, then its components with respect to any {e; } are uniquely deter-
mined from them. In other words, the components a; or T;; with respect to one set of {e;}
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completely characterizes avector or a tensor. Thus, it is perfectly meaningful to use astatement
such as “consider a tensor T};” meaning consider the tensor T whose components with respect

to some set of {e;} are T;. In fact, an alternative way of defining a tensor is through the use of
transformation laws relating the components of a tensor with respect to different bases.
Confining ourselves to only rectangular Cartesian coordinate systems and using unit vectors
along positive coordinate directions as base vectors, we now define Cartesian components of
tensors of different orders in terms of their transformation laws in the following where the
primed quantities are referred to basis {¢; } and unprimed quantities to basis {e;}, the ¢; and

¢; are related by e; =Qe;, Q being an orthogonal transformation

a' =a zeroth-order tensor(or scalar)

ai = Omiam first-order tensor (or vector)

Tij = OmiOnjTmn second-order tensor(or tensor)
Tijk = QmiQnjQrkTrnnr third-order tensor

etc.

Using the above transformation laws, one can easily establish the following three rules
(a)the addition rule (b) the multiplication rule and (¢) the quotient rule.

(a)The addition rule:

If Tjj and S;; are components of any two tensors, then Tj;+S;; are components of a tensor.
Similarly if Ty and Sy are components of any two third order tensors, then T +S; are
components of a third order tensor.

To prove this rule, we note that since Tjjx=0niOnjOrk Trmnr and S;jx=0miOniQricSmnr We
have,

Tkt Sijke = OmiQnjQricTrmnr+ OmiOniQricSmnr = ConiCrjOri Tounr + Spanr)
Letting Wi = Tjx+Sijk and Wi, =Tnpr+ Spun We have,
i]k thQn]Qrkanr
i.e, Wjy, are components of a third order tensor.
(b)The multiplication rule;

Leta; be components of any vector and 7;; be components of any tensor. We can form many
kinds of products from these components. Examples are (a)aa; (b)aajay (¢) T;jTy, etc. It can

be proved that each of these products are components of a tensor, whose order is equal to the
number of the free indices. For example, a;a; is a scalar (zeroth order tensor), aajay, are
components of a third order tensor, 7T}, are components of a fourth order tensor.

To prove that T;;Ty, are components of a fourth-order tensor, let Mijj=T;; Ty, then
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M']I'kl = Tij"Tk’1=QmianTanerslTrs=QmiQ"iQ'kQ-"1 TounTrs
ie.,

M}kl = QmianQerslenrs
which is the transformation law for a fourth order tensor.
It is quite clear from the proof given above that the order of the tensor whose components
are obtained from the multiplication of components of tensors is determined by the number

of free indices; no free index corresponds to a scalar, one free index corresponds to a vector,
two free indices correspond a second-order tensor, etc.

(c) The quotient rule:

If a; are components of an arbitrary vector and T; are components of an arbitrary tensor
and g; = T;jb; for all coordinates, then b; are components of a vector. To prove this, we note
that since a; are components of a vector, and T,-j are components of a second-order tensor,
therefore,

a; = Qimm (i)
and
Tii = QimQjnTrmn (ii)
Now, substituting Eqgs. (i) and (ii) into the equation a; = Tjjb;, we have
Qimtm = QimOjnTymnbj (iii)
But, the equation ; = T;;b; is true for all coordinates, thus, we also have
ay = Tyunbn (iv)
Thus, Eq. (iii) becomes
OimTnbn = QimQjnTrnnb V)
Multiplying the above equation with Oy and noting that Q;Q;p, = Ogm, We get
Tinbn = Qjn Tinbj (vi)
ie.,
Tin(bn—Qjnbj)=0 (vii)

Since the above equation is to be true for any tensor T, therefore, the parenthesis must be
identically zero. Thus,

b;;=anbj (viii)
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This is the transformation law for the components of a vector. Thus, b; are components of a
vector.

Another example which will be important later when we discuss the relationship between
stress and strain for an elastic body is the following: If Tj; and E;; are components of arbitrary

second order tensors T and E then

Tij = CijiEr
for all coordinates, then Cjj; are components of a fourth order tensor. The proof for this
example follows that of the previous example.

2B15 Symmetric and Antisymmetric Tensors
A tensor is said to be symmetric if T = Thus, the components of a symmetric tensor
have the property,
T:=TY=T. (2B15.1)

ie.,
Tio=Tn Ti3=Tz, T3=Tx
A tensor is said to be antisymmeticif T = —T7. Thus, the components of an antisymmetric
tensor have the property

T
Ty=-Tf = -T; (2B15.2)

ie.,
Tin=Ty=T3=0
and
Tip=-Ty, Tiz=-T3, Tz= T3,

Any tensor T can always be decomposed into the sum of a symmetric tensor and an
antisymmetric tensor. In fact,

T=T+T¢ (2B15.3)
where
T
T+T® . .
T = 5> is symmetric
and
T
T—
™ = 2T is antisymmetric

It is not difficult to prove that the decomposition is unique (see Prob. 2B27)
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Example 2B15.1

Show that if T is symmetric and W is antisymmetric, then tr(TW)=0.
Solution. We have, [see Example 2B8.4]

tr(TW)=tr(TW) =tr(W TT) @)
Since T is symmetric and W is antisymmetric, therefore, by definition, T=TT, w=-wT. Thus,
(see Example 2B8.1)
tr(TW)=—tr(WT)=—tr(TW) (ii)
Consequently, 2tr(TW)=0. That is,
tr(TW)=0 (iii)

2B16 The Dual Vector of an Antisymmetric Tensor

The diagonal elements of an antisymmetric tensor are always zero, and, of the six non-
diagonal elements, only three are independent, because T1p = ~Typ, T13= —T3;

and T3 = —T73,. Thus, an antisymmetric tensor has really only three components, just like a
vector. Indeed, it does behavior like a vector. More specifically, for every antisymmetric tensor
T, there corresponds a vector tA, such that for every vector a the transformed vector, Ta, can
be obtained from the cross product of t! with a. That is,

Ta=t'xa (2B16.1)

This vector, tA, is called the dual vector (or axial vector ) of the antisymmetric tensor. The
form of the dual vector is given below:

From Eq.(2B16.1), we have, since a'bX¢ = b-cXa,
Tip = e1-Tey = e -0 xe, = reyxey = 13 = —1f
T3, =e3:Te; = e3-tA><e1 = ‘A°e1x93 = _(‘.ez = _t-24
Ty =eyTey3= ez'tAxes = tA‘e3><¢2 =—tle = —/14

Similar derivations will give T,y = £5, T13 = £5,T5p = £§ and T3 = Ty = T33 = 0. Thus, only
an antisymmetric tensor has a dual vector defined by Eq.(2B16.1). It is given by:
(! = —(Tye1+ Tyyer+ Tipes) = (Taper+ Tizer+ Tares) (2B16.22)

or, in indicial notation
ol = — e Tne; (2B16.2b)



Part B The Dual Vector of an Antisymmetric Tensor 37

Example 2B16.1
Given
123
[T]=14 2 1
111

(a)Decompose the tensor into a symmetric and an antisymmetric part.

(b)Find the dual vector for the antisymmetric part.
(c)Verify T4a = ¢!xafora = e;+es
Solution. (a) [T] = [TS]+[T*], where

r 132
s =TI 135
2 211

T 0 -11

[1“‘]=———[T]_2[T] =1 00
-1 00

(b)The dual vector of T is
(! = —(To5e1+ Taier+ Thpes) = —(Oe—ex—e3) = ey+e,
(¢)Letb= T4a, then

0 -1 1|1 1
fbj=] 1 0 0f|0]= 1
-1 0 0f]1 -1
ie.,
b=e1+e2—e3
On the other hand,

tixa= (ext+e3)X(e+e3) = —e3+ej+ey=b

Example 2B16.2
Given that R is a rotation tensor and that m is a unit vector in the direction of the axis of
rotation, prove that the dual vector q of RY is parallel to m.
Solution. Since m is parallel to the axis of rotation, therefore,

Rm = m Q)
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Thus, (RTR)m = R'm. Since R'R = I, we have
R'm=m (ii)
Thus, (i) and (ii) gives
(R-RDm =0 (iii)

But (R—RT)m = 2qxm, where q is the dual vector of R1 Thus,
qXm =0 (iv)
i.e., q is parallel to m. We note that it can be shown (see Prob. 2B29 or Prob. 2B36) that if 6
denotes the right-hand rotation angle, then
q = (sind)m (2B16.3)

2B17 Eigenvalues and Eigenvectors of a Tensor
Consider a tensor T. If a is a vector which transforms under T into a vector parallel to itself,
ie.,
Ta = Aa (2B17.1)

then a is an eigenvector and A is the corresponding eigenvalue.

If a is an eigenvector with corresponding eigenvalue A of the linear transformation T, then
any vector parallel to a is also an eigenvector with the same eigenvalue A. In fact, for any scalar
a’

T(aa) = aTa = a(la) = A(aa) (i)
Thus, an eigenvector, as defined by Eq. (2B17.1), has an arbitrary length. For definiteness, we
shall agree that all eigenvectors sought will be of unit length.

A tensor may have infinitely many eigenvectors. In fact, since Ia=a, any vector is an
eigenvector for the identity tensor I, with eigenvalues all equal to unity. For the tensor S, the
same is true, except that the eigenvalues are all equal to S.

Some tensors have eigenvectors in only one direction. For example, for any rotation tensor,
which effects a rigid body rotation about an axis through an angle not equal to integral multiples
of 7, only those vectors which are parallel to the axis of rotation will remain parallel to
themselves.

Let n be a unit eigenvector, then
Tn=An=AIn (2B17.2)

Thus,
(T-An =0 (2B17.3a)
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Let n = ¢;¢;, then in component form
(Tyj—A9;)a; =0 (2B17.3b)

In long form, we have
(Tyy—Aar+Ta+Tisa3 =0
T21a1+(T22—).)a2+ T2303 =0
T3101+T32(12+(T33—1)(Z3 =0 (2B17.3¢)

Equations (2B17.3c) are a system of linear homogeneous equations in ay, @, and a3.
Obviously, regardless of the values of A, a solution for this system is a; =a;=a3=0. This is know
as the trivial solution. This solution simply states the obvious fact that a = 0 satisfies the
equation Ta = Aa, independent of the value of A. To find the nontrivial eigenvectors for T, we
note that ahomogeneous system of equations admits nontrivial solution only if the determinant
of its coefficients vanishes. That is

|T-A1] =0 (2B17.42)
ie.,
T4 T Tis (2B17.4b)
Ty T2 Ty |=0

Ty Tz Ti3—4
Foragiven T, the above equation s a cubic equation inA. It is called the characteristic equation
of T. The roots of this characteristic equation are the eigenvalues of T.

Equations (2B17.3), together with the equation

a%+a%+a% =1 (2B17.5)

allow us to obtain eigenvectors of unit length. The following examples illustrate how eigen-
vectors and eigenvalues of a tensor can be obtained.

Example 2B17.1
If, with respect to some basis {e;}, the matrix of T is

200

[T]=(0 2 0

002

find the eigenvalues and eigenvectors for this tensor.
Solution. We note that this tensor is 2I, so that Ta = 2la = 2a, for any vector a. Therefore,

by the definition of eigenvector,(see Eq. (2B17.1)), any direction is a direction for an eigen-
vector. The eigenvalues for all the directions are the same, which is 2. However, we can also
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use Eq. (2B17.3) to find the eigenvalues and Eqgs. (2B17.4) to find the eigenvectors. Indeed,
Eq. (2B17.3) gives, for this tensor the following characteristic equation:
-1 =0.
So we have a triple root A=2. Substituting A=2 in Egs. (2B17.3¢), we obtain
-2y =0
2-2)a; =0
2-2)az=0
Thus, all three equations are automatically satisfied for arbitrary values of @y, a,, and a3, so

that vectors in all directions are eigenvectors. We can choose any three directions as the three
independent eigenvectors. In particular, we can choose the basis {e;} as a set of linearly

independent eigenvectors.

Example 2B17.2
Show that if T5y=T31=0, then *e; is an eigenvector of T with eigenvalue T;.
Solution. From Te{=Tj1e1+Th1ey+ T31e3, we have
Tey = Tyre; and T(~eq) = T11(—eq)
Thus, by definition, Eq. (2B17.1), e, are eigenvectors with T as its eigenvalue. Similarly, if

T1,=T3,=0, then *e, are eigenvectors with corresponding eigenvalue Ty; and if
T13=T3=0, then *e3 are eigenvectors with corresponding eigenvalue Ts3.

Example 2B17.3
Given that
200
[T}=({0 2 0
003

Find the eigenvalues and their corresponding eigenvectors.
Solution. The characteristic equation is
2-1)’G-1) =0
Thus, =3, A,=13=2. (note the ordering of the eigenvalues is arbitrary). These results are

obvious in view of Example 2B17.2. In fact, that example also tells us that the eigenvector
corresponding to A1=3 is e3 and eigenvectors corresponding to A,=A3=2 are e¢; and e,. How-
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ever, there are actually infinitely many eigenvectors corresponding to the double root. In fact,
since Te;=2e, and Te,=2e,, therefore,

T(ae;+Pe;) = aTe +pTe, = 2ae,+2Be,=2(ae; +fe))

i.e., ae;+Pe; is an eigenvector with eigenvalue 2. This fact can also be obtained from
Egs.(2B17.3c). With 1=2 these equations give

0a,1=0

0ca=0

a3=0

Thus, @, and a, are arbitrary and 23=0 so that any vector perpendicular to e i.e,
n=qa,e;+0a,e, is an eigenvector.

Example 2B17.4
Find the eigenvalues and eigenvectors for the tensor
20 0
M=]0 3 4
0 4 -3

Solution. The characteristic equation gives

2-A 0 0
T-Aj=| 0 3-4 4 |=@-)@A%2-25)=0
0 4 -3-1

Thus, there are three distinct eigenvalues, 1,=2, =5 and A3=—5.

Corresponding to 41=2, Egs. (2B17.3c) give

0(11 =0
a2+4a3 =0
4a7_—5a3 =0

and Eq. (2B17.5) gives
a%+a%+a§= 1
Thus, a;=a3=0and a;==*1, so that the eigenvector corresponding to 4;=2is nj==*e;. We

note that from the Example 2B17.2, this eigenvalue 2 and the corresponding eigenvector
+e; can be written down by inspection without computation.

Corresponding to A,=5, we have

3a1=0
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~2ay+4a;3 =0
4a,—-8az =0
Thus (note the second and third equations are the same),
a; =0, a,=*25, a3=+1N§

and the eigenvector corresponding to 1,=5 is

m= tvly(2e2+e3)

Corresponding to A3=~S5, similar computations give

= 1‘713‘( —e2+2e3)

All the examples given above have three eigenvalues that are real. It can be shown that if a
tensor is real (i.e., with real components) and symmetric, then all its eigenvalues are real. If a
tensor is real but not symmetric, then two of the eigenvalues may be complex conjugates. The
following example illustrates this possibility.

Example 2B17.5

Find the eigenvalues and eigenvectors for the rotation tensor R corresponding to a 90°
rotation about the e;-axis (see Example 2B5.1(a)).

Solution. The characteristic equation is
0-2 -1 0

ie.,

H1-D)+(1-4) = (1-D)(A2+1) = 0
Thus, only one eigenvalue is real, namely 4,=1, the other two are imaginary, 153=+v~-1.

Correspondingly, there is only one real eigenvector. Only real eigenvectors are of interest to
us, we shall therefore compute only the eigenvector corresponding toA1=1.

From
(0-Day—a, =0
a1—ay =0
(1-Daz=0
and

a%+a%+a§=1
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We obtaina; =0, a,=0, az==1, i.e., n=*e3, which, of course, is parallel to the axis of rotation.

2B18 Principal Values and Principal Directions of Real Symmetric tensors

In the following chapters, we shall encounter several tensors (stress tensor, strain tensor,
rate of deformation tensor, etc.) which are symmetric, for which the following theorem, stated
without proof, is important: “the eigenvalues of any real symmetric tensor are all real.” Thus,
for a real symmetric tensor, there always exist at least three real eigenvectors which we shall
also call the principal directions. The corresponding eigenvalues are called the principal
values. We now prove that there always exist three principal directions which are mutually
perpendicular.

Let n; and n, be two eigenvectors corresponding to the eigenvalues 4; and A, respectively
of a tensor T. Then

Tnl = /11]!1 (l)
and
Tll2 = lzﬂz (ll)
Thus,
ny-Tn; = A1n; my (iii)
n;-Tny = Aomyomy (iv)

The definition of the transpose of T gives ny-Tny = n2-TTn1, thus for a symmetric tensor
T, T=TT, so that ny - Tny = ny-Tny. Thus, from Egs. (iii) and (iv), we have

A1—4)(ny'mp) =0 )

It follows that if A; is not equal to A,, then n; *ny = 0, i.e., n; and n, are perpendicular to each

other. We have thus proven that if the eigenvalues are all distinct, then the three principal
directions are mutually perpendicular.

Next, let us suppose that ny and n; are two eigenvectors corresponding to the same eigen-
value A. Then, by definition, Tny = Any and Tmy = An; so that for any a, and §,
T(an;+fny)=aTn;+Tny=A(an, +8ny). That is an; +Bn; is also an eigenvector with the same
eigenvalue A . In other words, if there are two distinct eigenvectors with the same eigenvalue,
then, there are infinitely many eigenvectors (which forms a plane) with the same eigenvalue.
This situation arises when the characteristic equation has a repeated root. Suppose the
characteristic equation has roots 4; and A,=A3;=A4 (4, distinct from 1). Let n; be the eigenvec-
tor corresponding to 4, then ny is perpendicular to any eigenvector of 4. Now, corresponding
to A, the equations

(Tu—Nay+Tipap+Tiza3 =0 (2B18.1a)
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o1+ (Tp—A)ay+Tyaz = 0 (2B18.1b)
T3101+ T30+ (T33—A)a3 = 0 (2B18.1c)

degenerate to one independent equation (see Example 2B17.3) so that there are infinitely
many eigenvectors lying on the plane whose normal is n;. Therefore, though not unique, there

again exist three mutually perpendicular principal directions.

In the case of a triple root, the above three equations will be automatically satisfied for
whatever values of (a1,a2,23) so that any vector is an eigenvector (see Example 2B17.1).

Thus, for every real symmetric tensor, there always exists at least one triad of principal directions
which are mutually perpendicular.

2B19 Matrix of a Tensor with Respect to Principal Directions

We have shown that for a real symmetric tensor, there always exist three principal directions
which are mutually perpendicular. Let ny,n; and n3 be unit vectors in these directions. Then

using ny,ny,n3 as base vectors, the components of the tensor are
Ty1=n;'Tn;=np-dng =4
Ty =mny Ty =ny-dmy =1,
T33=n3:Tny = n3-A3n3 = 43
Ti2 =n1"Tny = ny-Anp = Ap(ngmp) = 0= T
T13 =ny-Tng = ny-A3n3 = 3(n;'n3) = 0 = T3,
T3 =mp Ty =ny-Agmy =A3(my'n3) = 0= T3
That is
40 0
[Ty, = 0 4, 0 (2B19.1)
0 0 A3
Thus, the matrix is diagonal and the diagonal elements are the eigenvalues of T.

We now show that the principal values of a tensor T include the maximum and minimum
values that the diagonal elements of any matrix of T can have.

First, for any unit vector ey = an;+ny+yn;,
A4 0 0] g
Tii=e;"Tey =[apyl|0 4 018
0 0 A3]|Y

ie.,

Tl'l = /llaz +12ﬂ2 +}.3}’2
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Without loss of generality, let
/11 = ).2 = /13

then noting that az+,32+y2 = 1, we have

A1 =A@ +8%+y7) = Ma?+ 482 +Az”

ie.,
M =Ty
Also,
11a2+1382+).3y2 = /13(a2+ﬂ2+y2) =13
ie.,

'
maximum
minimum minimum

Thus, the maximum value of the principal values of T is the {
elements of all [T] of T.

} value of the diagonal
2B20 Principal Scalar Invariants of a Tensor

The characteristic equation of a tensor T, | T;;—40;;| =0 is a cubic equation in 4. It can be
written as

B2+ bA-1; =0 (2B20.1)
where
I =Ty+Tp+Ty=T;=trT
_ | T T2 (T2 To3|  |Tu Ti3| _ 1 1 5
12 B T21 T22 T32 T33 T31 T33 N Z(THT}]_TIIT}‘) - 2[(tr T) —tr (Tz)]

Tyy Ty T3

L= |Txn Tx Tx| =det[T]
T3 T3 T3

Since by definition, the eigenvalues of T do not depend on the choices of the base vectors,
therefore the coefficients of Eq. (2B20.1) will not depend on any particular choice of basis.
They are called the principal scalar invariants of T.

We note that, in terms of the eigenvalues of T which are the roots of Eq.(2B20.1), the I;’s
take the simpler form

11 = /11+A.2+A.3
I = AAp+AA3+A34
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13 = ).11213 (2B20.2)

Example 2B20.1

For the tensor of Example 2B17.4, first find the principal scalar invariants and then evaluate
the eigenvalues using Eq. (2B20.1).

Solution. The matrix of T is

(T =

SON
S wWwo
W o

I} =2+3-3=2

20

3 4
12:,03

4 -3

2 0

+ 0 -3

+

| =2

3 4

I3= |T| =2‘4 -3

| - =50
These values give the characteristic equation
A3=21,—254+50=0
or,
A-2)A-5)@A+5)=0
Thus, the eigenvalues are 1=2,5,—5 as previously determined.
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Part C Tensor Calculus

2C1 Tensor-valued functions of a Scalar

Let T=T(f) be a tensor-valued function of a scalar ¢ (such as time). The derivative of T with
respect to ¢ is defined to be a second-order tensor given by

dr _ ~ lim T(t+At)—T(¢) (2C1.1)
The following identities can be easily established [only Eq. (2C1.2d) will be proven here]:
dt(T+S) ‘g “’; (2C1.2a)
4o = Lrrad (2C1.2b)
(TS) ﬂS+T‘(i; (2C1.2¢)
(Ta) = dTa+T‘(11t—a (2C1.2d)
T

d dr

2T = (E) (2C1.2¢)

To prove Eq. (2C1.2d), we use the definition (2C1.1)
T(t+ Aa(t+A)-T()a(t)

dt(T a) = AHO At

_ limT(t+At)a(t+At)—T(t)a(t)+T(t)a(t+At)-—T(t)a(t+At)
A0 At

- [T(t+A)-T()]a(t+As) +li T)[a(t+A)—a(r)]

= nm m
At—>0 A A0 At

Thus,
(Ta) = ﬂa+T%:;l

Example 2C1.1

Show that in Cartesian coordinates the components of dT/d¢, i.e., (dT/dt);; are given by the
derivatives of the components, dT;/dt.
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Solution.

ij = ei-Tej

Since the base vectors are fixed,

Therefore,

(ii)

(iii)

Example 2C1.2

Show that for an orthogonal tensor Q(¢), (dQ/dt)QTis an antisymmetric tensor.

Solution. Since QQT = I, we have

dQ" dQ T _
Qg+ @ =0
That is
dQ’ _ _dQ.T
Larralia .
Since
Q" _ (dQ)"
dt dt
Therefore,
T
dQ) _ dQ.T
But

therefore,

@

(i)

[see Eq. (2C1.2¢)]

(iii)

[see Eq. (2B6.4)]
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T (iv)
dQQT __dQ.T
(dt ) =4l
Example 2C1.3

A time-dependent rigid body rotation about a fixed point can be represented by a rotation
tensor R(¢), so that a position vector r,, is transformed through rotation into 1) =R(#)r,,. Derive

the equation

dr _ @
dar wXr
. . . dR_T
where @ is the dual vector of the antisymmetric tensor ER .
Solution. From 1(t)=R(t)r,
dr _dR__dR_T (ii)
- a T A"
dR_T. . .
But, —-R’ is an antisymmetric tensor (see Example 2C1.2) so that
dr _ (dRpr) _ (i)
i (dtR )r-—mxr

where @ is the dual vector of ‘Z—I:RT.
From the well-known equation in rigid body kinematics, we can identify @ as the angular
velocity of the body.

2C2 Scalar Field, Gradient of a Scalar Function

Let ¢(r) be a scalar-valued function of the position vector r. That is, for each position
r, ¢(r) gives the value of a scalar, such as density, temperature or electric potential at the point.
In other words, ¢(¥) describes a scalar field. Associated with a scalar field, there is a vector
field, called the gradient of ¢, which is of considerable importance. The gradient of ¢ at a point
ris defined to be a vector, denoted by (grad ¢), or by V¢ such that its dot product with dr gives
the difference of the values of the scalar at r+dr andr, i.e.,

dp = p(r+dr)—¢(r) = Vi -dr (2C2.1)

If dr denotes the magnitude of dr, and e the unit vector in the direction of dr (note: e=dr/dr),
then the above equation gives, for drin the e direction,
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@ _ ve-
o Vo-e (2C22)

That is, the component of V¢ in the direction of e gives the rate of change of ¢ in that direction
(the directional derivative). In particular, the components of V¢ in the e, direction is given by

(ge

£ =32 = Vp-e; = (V)

) in the e, direction

Similarly,

#) =22 = Vg = (V)

in the e, direction

ap =9 _vi.e =
(dr . Sy, = V= (V)
in the e, direction

Therefore, the Cartesian components of Ve are g¢ that is,
_%, 00, 9, (2C2.3)
Vo = o a2 o

The gradient vector has a simple geometrical interpretation. For example, if ¢(r) describes
a temperature field, then, on a surface of constant temperature (i.e., isothermal surface), ¢ =
a constant. Let r be a point on this surface. Then, for any and all neighboring point r+dr on
the same isothermal surface, dp=0. Thus, V¢ -dr=0. In other words, V¢ is a vector, perpen-
dicular to the surface at the point r. On the other hand, the dot product Ve -dris a maximum
when dr is in the same direction as V. In other words, V@ is greatest if dr is normal to the
surface of constant ¢ and in this case,

%? = |V¢|, fordr in the normal direction.

Example 2C2.1
If ¢=xxp+x3, find a unit vector n normal to the surface of a constant ¢ passing through
(2,1,0).

Solution. We have

3¢ L, 9
+T¢ +xq1e5+
V¢ = axl 8x2 5.€2 a3 = xyeytxiex+e3

At the point (2,1,0), V¢ =e; +2e,+e3. Thus,

n= 713-(e1+2e2+e3)
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Example 2C2.2

If q denotes the heat flux vector (rate of heat flow/area), the Fourier heat conduction law
states that
q= —kVo
where 6 is the temperature field and k is the thermal conductivity. If 0=2(x§+x%), find 6 at

A(1,0) and B(1/V2, 1/V2). Sketch curves of constant 6 (isotherms) and indicate the vectors q
at the two points.

Solution. Since,

Vo = :Tele1+—§%e2+5}%e3 = 4x1e, +4xqe,
therefore,
q = —4k(x1e1+x2€7)
At point A4,
qq = —4key
and at point B,

ag = —2V2 k(e;+ey)

Clearly, the isotherm, Fig.2C.1, are circles and the heat flux is an inward radial vector.

Fig. 2C.1

Example 2C2.3

A more general heat conduction law can be given in the following form:
q= —KVo



52 Tensors Calculus

where K is a tensor known as thermal conductivity tensor.

(a)What tensor K corresponds to the Fourier heat conduction law mentioned in the previous
example?

(b)If it is known that K is symmetric, show that there are at least three directions in which heat
flow is normal to the surface of constant temperature.

(0)If 6 = 2x1+3x5 and

K= |-

O =N
[ SR
Woo

find q.

Solution.
(a)Clearly, K=kI, so that q=—kIVO=—kV0

(b)For symmetric K, we know from Section 2B.18 that there exist at least three principal
directions nq,n, and ng such that

Kn; = kyng

1
Fig. 2C.2
Kn; = kom;
Kn3 = k3n3

where kq,k; and k3 are eigenvalues of K. Thus, for V6 in the direction of n4,
q; = —KV8 = —K|V0|n; = — |VO|Kn; = ~k,|V0|n,
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But ny, being in the same direction as V8, is perpendicular to the surface of constant 6. Thus,
q; is normal to the surface of constant temperature. Similarly, q; is normal to the surface of
constant temperature., etc. We note that if k1,k; and k3 are all distinct, the equations indicate
that different thermal conductivities in the three principal directions.

(¢)Since 8 = 2x1+3x,, we have

2 -10||2 -1
[ql=—(-1 20([3|=|-4
0 03((0 0
ie.,
q=—e—4e;

which is clearly in a different direction from the normal.

2C3 Vector Field, Gradient of a Vector Field

Let v(r) be a vector-valued function of position, describing, for example, a displacement or
a velocity field. Associated with v(r), there is a tensor field, called the gradient of v, which is
of considerable importance. The gradient of v (denoted by Vv or grad v) is defined to be the
second-order tensor which, when operating on dr gives the difference of vatr+ dr andr.
That is,

dv = v(r+dn)—v(r) = (Vv)dr (2C3.1)

Again, letdr denote |dr| and e denote dr/dr, we have

(dv) = (W)e
dar}. .. .
in e direction

Thus, the second-order tensor (Vv ) transforms the unit vector e into the vector describing the
rate of change v in that direction.

(2C3.2)

Since

dv) av
= =-—=(W)e
(dr in e direction oxy

thus, in Cartesian coordinates,
av 0
W1 = e (W)ey = e;-—— = ——(e;*
(W11 =€ (Wep = ¢ a1 axl(¢1 V)

That is,

v _ avl
(Wi = P

Or, in general
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(41) _ v _ e, (2C3.3)
dr in € direction axj

thus,

s = @0 .= -ﬂ:i .o (2C3’4)
(W)= (W)t = & 5= (&)

so that the Cartesian components of (Vv ) are

oy = i (2C3.52)
) ay

That is,

avl 6v1 6v1
oy ary dx3
vy Gy vy (2C3.5b)
ax1 ax2 6x3
6V3 6V3 GV3

[W] =

dxy Oxp dxz

A geometrical interpretation of Vv will be given later in connection with the kinematics of
deformation.

2C4 Divergence of a Vector Field and Divergence of a Tensor Field.

Let v(r) be a vector field. The divergence of v(r) is defined to be a scalar field given by the
trace of the gradient of v. That is,

divv = tr(Wv) (2C4.1)
. . . . vy vy
With reference to rectangular Cartesian basis, the diagonal elements of Vv are FrairT and
1 2
ov
——3. Thus
ox3
ovy vy ov av 2C4.2
divy =21, &2 3 _ S (2c42)

T oxp oxp dxz  Oxp,

Let T(r) be a second order tensor field. The divergence of T is defined to be a vector field,
denoted by div T, such that for any vector a

(divT)-a = div(T a)—tr(T7(Va)) (2c4.3)
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To find the Cartesian components of the vector div T, let b=div T, then (note Ve;=0 for
Cartesian coordinates), from Eq. (2C4.3),

T 2C4.4
bj=b-¢= div(TTei)—tr(TTVei) = div(Tjmem)—0 = axlm ( !
m
In other words,
oT. 2C4.5
divT = — e, o
Xy,
Example 2C4.1

If a=a(r) and a=a(r), show that div(ea)=adiva+(Va)-a.
Solution. Let b=aa. Then b;=aaq; and

. ob; da; da
divb = a—x," = agi'ng—iai

= adiva+(Va)-a

Example 2C4.2

Given a(r) and T(r), show that
div(aT) = T(Va)+adivT
Solution. We have, from Eq. (2C4.5),

. a da aT;
divi@T) = g @Tye; = a—ijzjei+a—ex'f i

a 7
But
da _
a—xjﬂjei = T(Va)
and
a—Le; = adivT
ax;

/)
Thus, the desired result follows.

2C5 Curl of a Vector Field

Let v(r) be a vector field. The curl of v is defined to be the vector field given by twice the
dual vector of the antisymmetric part of (Vv). That is
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curlv = 2¢* (2C5.1)
where t! is the dual vector of (VV)A.
In a rectangular Cartesian basis,
[ 0 1[{ovy ovy 1(6vy ovs ]
2 8x2 oxy 2 6x3 axy
vy v dvy v
[VV]A = _l _1__._2 0 l ._2__._3
2(dxy 0xp 2 ax3 dxy
1(dvy dv3 1{dvy ovs 0
2|dx3 ox 2| dx3 Oxy

Thus, the curl of v is given by [see Eq. (2B16.2)]

0 0 0 d 0 d
curlvm 2t = (22 22) (1 dvs) (v an) (2C5.2)
6x2 6x3
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Part D Curvilinear Coordinates

2D1 Polar Coordinates
In this section, the invariant definitions of V¥, W, divv and divT will be utilized in order to
determine their components in plane polar coordinates.

Let r,0 denote, see Fig. 2D.1, plane polar coordinates such that

= @ V2

_1X
0 = tan 122
X1

Fig. 2D.1

The unit base vectors e, and eg can be expressed in terms of the Cartesian base vectors
e; and e; as:

e, = cosfe; +sinfe, (2D1.1a)
ey = —sinfe;+cosfe, (2D1.1b)

These unit base vectors vary in direction as € changes. In fact, from Eqs. (2D1.1a) and
(2D1.1b), it is easily derived that

de, = dOey (2D1.2a)

deg = —dbe, (2D1.2b)
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The geometrical representation of de, and deg are shown in the following figure where one
notes that e,(P) has rotated an infinitesimal angle d0 to become e, (Q)=e,(P)+de, where de, is
perpendicular to e,(P) with a magnitude |de,|=(1)(df). Similarly deg is perpendicular to
eg(P) but is pointing in the negative e, direction and its magnitude is also (1)d6.

From the position vector r=re,, we have
dr = dre,+rde,
Using Eq. (2D1.2a), we get
dr = dre,+rdfeg (2D1.3)

The geometrical representation of this equation is also easily seen if one notes that dris the
vector PQ in Fig. 2D.2. The components of Vf, Vv etc. in polar coordinates will now be
obtained.

X

egtde,

(i) Components of Vf
Let f(r,0) be a scalar field. By definition of the gradient of f, we have
df = Vf-dr = [a,e,+ageg]].[dre,+rdbeg]
where a, and ag are components of Vf in the e, and ey direction respectively.

Thus,
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df=a,dr+agrdf (2D14)

But from Calculus,
(2D1.5)

df = %édr+g];d0

Since Eqgs. (2D1.4) and (2D1.5) must yield the same result for all increments dr, d6, we have

a,=g—{ and rag=—g£
Thus,
_of 19f (2D1.6)
Vf = 5-’-.9’- + r—ayeg
(ii) Components of VW
Let
v(r,0) = v, (r,0)e,+vg(r,0)ey (2D1.7)
By definition of Vv, we have
dv = (Vvydr
Let T=Wy, then
dv = Tdr = T(dre,+rdbeg) = drTe,+rd0Tey
Now,
Te, = T,e,4+ Tgeg and Teg = T,ge,+Togeg
Therefore,

dv = (T, dr+T,grd6)e,+(To,dr+ Togrd6)eg (2D1.8)

But from Eq. (2D1.7)
dv = dvye,+v,de,+dvgegtvedeg
and from calculus, we have,

av, av, dvg
dv, dr Td@ and dvg = —dr+—9-d0

From the above three equations and Egs. (2D1.2), we have

dv= [6v,dr+ (?36 —ve) dﬂ] e + [ dr+ ( 30 +v,) dO] (2D19)

In order that Egs. (2D1.8) and (2D1.9) agree for all increments dr,d6, we have
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av, 1{av, dvg 1{9vg
T, = > T = 7(—67_‘)9 , Tgr= F Tee = P =g tVr

In matrix form,

av 1(o
= | o T\ (2D1.10)
o 1(%,
ar ri\e@ " r
(iii) divv
Using the components of Vv obtained in (ii), we have
. av, 1/[dvg

divv = tr((W) = T,,+Tgg = a—r’+7 (W’”’r) (2D1.11)

(iv) curl v
From the definition that curlv= twice the dual vector of (VV)A, we have

dvg vg 19v, 2D1.12
curlv = (¥+T—rw €3 ( 12)
(v) Components of div T
The definition of the divergence of a second-order tensor is
(divT)-a = div(T a)—tr((Va)T?)
for an arbitrary vector a.

Take a=e, then, the above equation gives
(divT), = div(T e,) —tr((Ve,)T") (2D1.13)

To evaluate the first term on the right hand side, we note that

TTe, = T, +Tgeg

so that according to Eq. (2D1.11), withv, = T,,, andvg = T(g

6T” 1 aT,9
o 7(W+Tﬂ

To evaluate the second term, we first use Eq. (2D1.10) to obtain Ve, In fact, since
e, = (1)e,+0eg, we have, with v,=1 and vg=0in Eq. (2D1.10),

div(TTe,) = div(T, e, + T,geg) =

00 T 0 0
[Ve, ] = . 1 and [Ve, ][T']= _Tﬁ Iﬁ
r

r r
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T,
so that tr(Ve,TT) = ——rQQ Thus, from Eq. (2D1.13), we have

aT T T,-T,
(divT), = = 16'90 i

r

In a similar manner, (see Prob. 2D1), one can derive

1 Toe T+ Ty

divT T+
(divT)g = 80 ’

2D2 Cylindrical Coordinates

(2D1.14)

(2D1.15)

In cylindrical coordinates, see Fig. 2D.3, the position of a point P is determined by (r,6,2)
where r and 0 determine the position of the vertical projection of the point P on the xy plane
(the point P’ in the figure) and the coordinate z determines the height of the point P from the
xy plane. In other words, the cylindrical coordinates is comprised of polar coordinates (r,0) in

the xy plane plus a coordinate z perpendicular to the xy plane.

Fig2DJ3

We shall denote the position vector of P by R, rather than r, to avoid the possible confusion
between the position vector R and the coordinate r (which is a radial distance in the xy plane).
The unit vector e, and eg are on the xy plane and it is clear from the above figure that

R =re,+ze,

(2D2.1)



62 Curvilinear Coordinates

and
dR = dre,+rde,+dze,+zde,

In the above equation, de, is given by exactly the same equation given earlier for the polar
coordinates, i.e., Eq. (2D1.2a). We note also that e, never change its direction or magnitude
regardless where the point P is, thus de,=0. Thus,

dR = dre,+rdOeg+dze, (2D2.2)

By retracing all the step used in the section on polar coordinates, we can easily obtain the
following resuits:

(i)Components of Vf
of  1of (2D2.3)
vf= °’+raoe"+ az?
(i) Components of Vv
v, 1(av, v, | (2D2.4)
ar r\ag ‘8] 3
_|9ve 1(dve dvg
A A
?ﬁz_ 10v, av,
| o rab 9z
(iii) divv
. av, 1 6Vg av, (2D2.5)
divv=—+ gt %
(iv) curl v
Iv = 10v, dvg ov, dv, . 6ve+ve 16v, (2D2.6)
V=170 &z az o9 \or " r rod
(v) Components of div T
aT,, 16T,9 T,—Tog 0T, (2D2.7a)
(divT), = or r 60 r ez
. 0Ty, 10Tgg Tg+Ty 0Ty, (2D2.7b)
(divI)g = ar r a6 * r + az
aT, aT, aT T, 2D2.7¢c
(divT), = =24 12228 +Z ( )

ar r 96 r
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We note that in dyadic notation, divT7 is written as V- T, so that (div T),9 = (V- T)gp, etc.

2D3 Spherical Coordinates

In Fig. 2D.4a, we show the spherical coordinates (r,0,¢) of a general point P. In this figure,
e,eg and ey are unit vectors in the direction of increasing r,0,¢ respectively.

€r

(a) (b)

Fig. 2D.4

The position vector for the point P can be written as
r=re, (2D3.1)

where r is the magnitude of the vector r. Thus,
dr = dre,+rde, (2D3.2)
To evaluate de,, we note from Fig. 2D.4b that
e,=cosfe,+sinfe,’ , eg=cosfe, —sinfe, (2D3.3)
where e, is the unit vector in the »' (OE) direction (r' is in the xy plane). Thus,
de, = —sinfd0e,+cos0dbe,’ + sinfde,’ = df(—sinbe,+cosOe,’ )+sinbde,’
= dBeg + sinfde,’ (i)
But, just like in polar coordinates, due to do, de,’ =(1)d¢e¢, therefore,
de, = (dO)eg+(sinfdp)ey (2D3.4a)
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Again, from Fig. 2D.4b, we have

e, =cosfeg+sinfe, (ii)
therefore,
deg=cosOde,' —sinfdfe,’ —cosbdOe,=—db(sinbe,’ +cosbe,)+cosbde,’ (iii)
that is,
deg = —(df)e,+(cosbdp)e, (2D3.4b)

From Fig. 2D .44, it is clear that de¢ = d¢(—e,’ ), therefore,
dey = —(sinfdp)e,—(cosfdp)eg (2D3.4c¢)

Substituting Eq.(2D3.4a) into Eq.(2D3.2), we have
dr = dre,+r(df)eg+r(sinfdp)e, (2D3.5)
We are now in a position to obtain the components of Vf,Vv, div v, curl v and div T in
spherical coordinates.
(i)Components of Vf
Let (r,6,¢ ) be a scalar field. By the definition of the gradient of f, we have,
daf = (Vf)-dr = [(V),e,+(VN)geg+(V)gep] [ (dr)e,+(rdb)eg+(rsinfdp)ey] (2D3.6)

ie.,
df = (V),dr+(Vf)grd6+(Vf)grsinbdg (2D3.7)
From calculus, the total derivative of f is
_of, . of df (2D3.8)
df ardr +50'd0 +wd¢
Comparing Eq. (2D3.7) with Eq. (2D3.8), we obtain
1 o (2D3.9)

=L =1L (w,

r 30 = rsinf ¢

(ii) Components of W
Let the vector field v be represented as:
V(r,0,¢) = v,(r,0,¢)e,+v@(r,0,¢)e9+v¢(r,0,¢)e¢ (2D3.10)

Letting T=WVv, we have
dv = Tdr = T(dre,+rdfeg+rsinfdpey) = drTe,+rd0Teg+rsinbdpTe, (2D3.11)

Now by definition of the components of tensor T in spherical coordinates
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Te, = T,e,+Tgeg+Tyey
Teg = Tige,+ Togeg+ Tygey
Tey = Trpe,+Togeo+ Tpgpey (2D3.12)
Substituting this equation into Eq. (2D3.11) and rearranging terms we have
dv = (T,dr+rT,gd0+rsinfTydp)e,
+(Todr+rToedf+rsinfTyydp)eg
+(Tydr+rTpdb +rsinfTspdp)ey (2D3.13)

But from Eq. (2D3.10) we have,
dv = dv,e,+v,de.+dvgegtvedeg+dvges+vadey (2D3.14)

and from calculus we have

o, v, @
v, —v—'dr+—vg’d9+£d¢

dvg
dvg = dr+—0—d0+——d¢

- Wy 2D3.15
dV¢ a—rdr+—0-d0+wd¢ ( )

Thus, using Egs. (2D3.15) and Egs. (2D3.4) , Eq. ( 2D3.14) becomes
6v, av, av, .
dv= dr+ 29 Ve dO+ w—v,,,sm() dp|e+

_avf; dvg dvg
—ar—dr+ <@ tvr|do+ a¢—v¢c050 dp | eg+

[av, oV av,
j?dr+79ﬂd6+ (—a?gi+v,sin0+vecost9) d¢] B (2D3.16)

In order that Eqgs. (2D3.13) and (2D3.16) agree for all increments dr, d0, dg, we have

_ov _1(9v,
T,= E T = - (W‘Vﬂ) s e

which we display in matrix form as
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_% 1 aVr 1 av, 0
ar rla6 '8 rsing\og 'eS"
dvg 1(dvg 1 dvg
w= |20 1{% Mo _
V=1%o 730 ™) rsing 36 Vecos? (2D3.17)
Iy 19 1 vy v, vecotd
ar r 98 rsing 0¢ = r r

(iii)div v
Using the components of Vv obtained in (ii), we have
ad d t0
1 Vg + 1 dvg v,+veco
T 36 " rsind 09

divv = tr(Vv) =

2 .
10(r'vy 1 d(vgsinf) 1 vy
+ + 2D3.18
2 or rsind 40 rsing 99 ( )

(iv)curl v
From the definition of the curl and Eq. (2D3.17) we have

curlve 1 9(vgsing) 1 dvg 1 6v,_ 18(rvg) 18(rvg) 1 v,
UIVE sing 96 rsinf d¢ ™ | rsind op r or r or roo|% (2D3.19)
(v)Components of div T

Using the definition of the divergence of a tensor, Eq. (2C4.3), with the vector a equal to
the unit base vector e, gives
(2D3.20)

(divT), = div(T ) —tr((Ve,)TT)
To evaluate the first term on the right-hand side, we note that
T e = T,,e,+ T,geg+ T,¢e¢
so that according to Eq. (2D3.18), withv,=T,, vg=Tyg, T =Ty

2T T esi
= + +— 21
div(T ) P2 or rsind 90 rsind o9 ( )

To evaluate the second term on the right-hand side of Eq. (2D3.20) we first use Eq. (2D3.17)
with v=e, to obtain
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- g [ T
000 0 0 0
T,
Ve.1= [0 L 0| and (ve,17j= |12 Too Tao
r r r r
00 1 T Top Tpp
| T r r r

so that

Too+T,
tr(Ve,TT) = -2 22

r

From Egq. (2D3.20), we obtain

2 ,
a(rT, (T,4sin8 0T,y Tep+T,
(divT),=1 Ty), 1 0Tesind) 1 Ty TogtTyy

2 or Tsing 90 rsinb 09 r
In a simijlar manner, we can obtain (see Prob. 2D9)

o 13(PTg) 1 N(Teesin) 1 Tgy  Tg—Tg—Tpgcotd
(divT) = A or rsind 0 ' rsing 09 r

10°Ty) 1 OTgesind) | 1 3Tpp Try=Tor+ Tageotd
r

(divT)y = s o rsinf 90 rsing o¢

(2D3.22)

(2D3.23)

(2D3.24a)

(2D3.24b)

(2D3.24c)
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PROBLEMS
2A1. Given
102 1
[Sj1= |0 1 2} and [q])=|2
303 3

evaluate (a) Sjj, (b) S;iSjj, (¢) SkSkj» (d) Am@m, (€) Smnman.

2A2. Determine which of these equations have an identical meaning with q; = Q,-ja,f
(a) ap = Qpmam,

(b) ap = Qgpag,

(©) apm = anOmn-

2A3. Given the following matrices

1 230 031
[@]=|0| Bjl=[05 1| [C=|102
2 021 243

Demonstrate the equivalence of the following subscripted equations and the corresponding
matrix equations.

(a) Dj; = By [D]=[BY,

(b) b; = Bya; [b] = [Blla],

(c)¢j = Bya; [c] = [Bllal,

(d)s = Byaa; s = [a]'[Bllal,

(e) Dy = B;ijCy [D] = [BIIC],

(f) D = ByCy [D) = [BIICY".

2A4. Given that Tj; = 2uE;i+A(Eg)0j, show that

(2)
1
W= ET'IE’] E Ej+2(Ekk)
)]
P = T;T;j = 4 EEy+ (B (4uh+31%)
2A5. Given
1 0 012
[a]= 2| Wml=[2| [S=|123
0 3 401
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(a) Evaluate [T}] if Tj; = gjay
(b) Evaluate [c;] if ¢; = &;Sjk
(c) Evaluate [d;] if dy, = &;a;b; and show that this result is the same as d; = (aXb)-ey
2A6.
(a) If &3 Tjx = O,show that Tj; = Tj;
(b) Show that ;5 = 0
2A7. (a)Verify that
EijmExkim = Oiwdj1—0ijk
By contracting the result of part (a) show that
(0)eitmEjim = 20jj
(OEijutijk = 6
2A8. Using the relation of Problem 2A7a, show that
ax(bxc) = (a-c)b—(a-b)e
2A9. (a) If Tjj = —Tj; show that Tjaa; =0

(b) If T;; = —T; and S;; = Sj; show that TSy, =
lj B ] It

1

E(Sij_sfi)’ show that

S =T; +Rl]’ T ],, and R,] = R],

2A11. Let f(xq,x2,x3) be a function of x; and v;(x1,xo,x3) represent three functions of x;. By

expanding the following equations, show that they correspond to the usual formulas of
differential calculus.

l S,']"I'Sﬁ) and R,'j =

2A10. Let Ty = (

_9of
(@ df= g;id’fi

av,-
(b) dV,' = Ex;dxj

2A12. Let |A4;;| denote the determinant of the matrix [4;]. Show that |4 = €Ai1djpAys.

2B1. A transformation T operates on a vector a to give Ta = where |a| is the magnitude

_a
. . . |al’
of a. Show that T is not a linear transformation.

2B2. (a) A tensor T transforms every vector a into a vector Ta = mXa, where m is a specified
vector. Prove that T is a linear transformation.

(b)If m = e; + e,, find the matrix of the tensor T
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2B3. A tensor T transforms the base vectors e; and e, so that

Tey = e +ey

Te; = e;—e,
If a=2e;+3e; and b= 3e;+2e;, use the linear property of T to find
(a)Ta (b)Tb and (c) T(a+b).

2B4. Obtain the matrix for the tensor T which transforms the base vectors as follows:

Te; = 2eqy+e3
Te; = e;+3e3
Tez = —eq+3e,

2BS5. Find the matrix of the tensor T which transforms any vector a into a vector b = m(a-n)
where

m= g(eﬁez) and n= g(—e1+e3)

2B6. (a) A tensor T transforms every vector into its mirror image with respect to the plane
whose normal is e,. Find the matrix of T.

b) Do part (a) if the plane has a normal in the ez direction instead.

2B7. a) Let R correspond to a right-hand rotation of angle 8 about the x;-axis. Find the matrix
of R.

b) Do part (a) if the rotation is about the x-axis.

2B8. Consider a plane of reflection which passes through the origin. Let n be a unit normal
vector to the plane and let r be the position vector for a point in space

(a) Show that the reflected vector for r is given by Tr=r-2(r-n)n, where T is the
transformation that corresponds to the reflection.

1 . . . .
(b) Let n=-rx(e; +e,+e3), find the matrix of the linear transformation T that corresponds to
this reflection.
(c) Use this linear transformation to find the mirror image of a vector a = e;+2e5+3es3.

2B9. A rigid body undergoes a right hand rotation of angle 8 about an axis which is in the
direction of the unit vector m. Let the origin of the coordinates be on the axis of rotation and
r be the position vector for a typical point in the body .

(a) Show that the rotated vector of r is given by Rr = (1-cos®)(m-r)m+cosfr+sinfmXr,
where R is the transformation that corresponds to the rotation.



Tensors 71

(b) Let m=713—(e1+e2+e3), find the matrix of the linear transformation that corresponds to
this rotation.

(c) Use this linear transformation to find the rotated vector of a = e;+2e,+3es.

2B10. (a) Find the matrix of the tensor S that transforms every vector into its mirror image in
a plane whose normal is e; and then by a 45° right-hand rotation about the eq-axis.

(b) Find the matrix of the tensor T that transforms every vector by the combination of first the
rotation and then the reflection of part (a).

(c) Consider the vector e;+2e,+3es, find the transformed vector by using the transformations
S. Also, find the transformed vector by using the transformation T .

2B11. a) Let R correspond to a right-hand rotation of angle 6 about the x3-axis.
(a)Find the matrix of R%.

(b)Show that R? corresponds to a rotation of angle 26 about the same axis.
(c)Find the matrix of R” for any integer n.

2B12. Rigid body rotations that are small can be described by an orthogonal transformation
R = I+¢R", where £—0 as the rotation angle approaches zero. Considering two successive

rotations Ry and Ry, show that for small rotations (so that terms containing 2 canbe neglected)
the final result does not depend on the order of the rotations.

2B13. Let T and S be any two tensors. Show that
(a) T7is a tensor.

) TT+8T = (T+8)7

() (18)7 = 817,

2B14. Using the form for the reflection in an arbitrary plane of Prob. 2B8, write the reflection
tensor in terms of dyadic products.

2B15. For arbitrary tensors T and S, without relying on the component form, prove that
(@) (17H7 = (DL
(b)(TS)"1=s"1171,

2B16. Let Q define an orthogonal transformation of coordinates, so that ¢; = Q,,,;e,,,. Consider
e; ¢ and verify that 0,Omj = 9;;

2B17. The basis ¢; is obtained by a 30° counterclockwise rotation of the ¢; basis about e,

(2) Find the orthogonal transformation Q that defines this change of basis, i.c., & = Qi€
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(b) By using the vector transformation law, find the components of a = V3e; +e, in the primed
basis (i.e., find a;)
(c) Do part (b) geometrically.

2B18. Do the previous problem with ¢; obtained by a 30° clockwise rotation of the e;-basis
about es.

2B19. The matrix of a tensor T in respect to the basis {e;} is

15 -5
= 50 0
-50 1

Find Ty, Ty and T3, in respect to a right-hand basis e; where e; is in the direction of
—ep+2e3 and e; is in the direction of e;

2B20. (a) For the tensor of the previous problem, find [ﬁj] if ¢; is obtained by a 90° right-hand
rotation about the es-axis.
(b) Compare both the sum of the diagonal elements and the determinants of [T] and [T]'.

2B21. The dot product of two vectors a = a;e; and b; = b;e; is equal to a;b;. Show that the dot
product is a scalar invariant with respect to an orthogonal transformation of coordinates.

2B22. (a) If T;; are the components of a tensor, show that T};T;; is a scalar invariant with respect
to an orthogonal transformation of coordinates.

(b) Evaluate 7;;Tj; if in respect to the basis ¢;

(1] =

—
[\S I \S R en]
wWwnm o

(c) Find [T]' if ¢; = Qe; and

1
Il

[Q]=

[y
OO
SO =

r
1
Ko

(d) Show for this specific [T] and [T]' that
Tt;mTt;m = Tuij

2B23. Let [T] and [T]' be two matrices of the same tensor T, show that
det [T] = det [T]'.

2B24. (a) The components of a third-order tensor are R;jx. Show that R;;; are components of
avector.
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(b) Generalize the result of part (a) by considerin%hthe components of a tensor of n'® order
Rij... Show that R;;... are components of an (n-2) " order tensor.

2B25. The components of an arbitrary vector a and an arbitrary second-order tensor T are
related by a triply subscripted quantity Ry in the manner a; = Ry T for any rectangular
Cartesian basis {e;,e,,e3}. Prove that Ry are the components of a third-order tensor.

2B26. For any vector a and any tensor T, show that
(a)a-T4a =0,
(b)a-Ta = a-Ta.

2B27. Any tensor may be decomposed into a symmetric and antisymmetric part. Prove that
the decomposition is unique. (Hint: Assume that it is not unique.)

2B28. Given that a tensor T has a matrix

1
(1] = |4
7

o N
o N W

(a) find the symmetric and antisymmetric part of T.
(b) find the dual vector of the antisymmetric part of T.

2B29 From the result of part (a) of Prob. 2B9, for the rotation about an arbitrary axis m by
an angle 6,

(a) Show that the rotation tensor is given by R = (1—cos0)(mm)+sinfE , where E is the
antisymmetric tensor whose dual vector is m. [note mm denotes the dyadic product of m with
m].

(b) Find R? | the antisymmetric part of R.

(c) Show that the dual vector for RY is given by sinfm
2B30. Prove that the only possible real eigenvalues of an orthogonal tensor are A==*1.

2B31. Tensors T, R, and S are related by T = RS. Tensors R and S have the same eigenvector
n and corresponding eigenvalues ry and s;. Find an eigenvalue and the corresponding eigen-
vector of T.

2B32.If nis areal eigenvector of an antisymmetric tensor T, then show that the corresponding
eigenvalue vanishes.

2B33. Let F be an arbitrary tensor. It can be shown (Polar Decomposition Theorem) that any
invertible tensor F can be expressed as F = VQ = QU, where Q is an orthogonal tensor and
U and V are symmetric tensors.

(b) Show that VV = FF” and UU = F'F.
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(c) If 4; and n; are the eigenvalues and eigenvectors of U, find the eigenvectors and eigenvec-
tors of V.

2B34. (a) By inspection find an eigenvector of the dyadic product ab
(b) What vector operation does the first scalar invariant of ab correspond to?

(c¢) Show that the second and the third scalar invariants of ab vanish. Show that this indicates
that zero is a double eigenvalue of ab. What are the corresponding eigenvectors?

2B35. A rotation tensor R is defined by the relations
Rel =€y, Re2 = €3, Re3 =€

(a) Find the matrix of R and verify that RR” = I and det |R] = 1.
(b) Find the angle of rotation that could have been used to effect this particular rotation.

2B36. For any rotation transformation a basis e; may be chosen so that e3 is along the axis of
rotation.

(a) Verify that for a right-hand rotation angle 6, the rotation matrix in respect to the e; basis
is

cosf —sinf 0O
[R]= |sin® cos® 0
0 01 iy

(b) Find the symmetric and antisymmetric parts of [R]'.
(c) Find the eigenvalues and eigenvectors of RS
(d) Find the first scalar invariant of R.

(e) Find the dual vector of R

(f) Use the result of (d) and (e) to find the angle of rotation and the axis of rotation for the
previous problem.

2B37. (a) If Q is an improper orthogonal transformation (corresponding to a reflection), what
are the eigenvalues and corresponding eigenvectors of Q?

(b) If the matrix Q is

WIN W= W

W= W WM

Q1=

1

|
W WIN W=

find the normal to the plane of reflection.

2B38. Show that the second scalar invariant of T is
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I TiT;  TyTj
27 2 2

by expanding this equation.
2B39. Using the matrix transformation law for second-order tensors, show that the third scalar
invariant is indeed independent of the particular basis.
2B40. A tensor T has a matrix
5 40
[TI=14 -1 0
0 03

(a) Find the scalar invariants, the principle values and corresponding principal directions of
the tensor T.

(b) If ny,ny,n3 are the principal directions, write [T],,i.

(c) Could the following matrix represent the tensor T in respect to some basis?

72 0

21 0

00 -1
2B41. Do the previous Problem for the matrix

oo w
prOo O
=237

2B42, A tensor T has a matrix

g
Pk
oo,

002
Find the principal values and three mutuafly orthdgonal principal directions.

2B43. The inertia tensor fo of a rigid body with respect to a point o, is defined by

1, = [(P1-m)pdv

where r is the position vector, r=|r|, p= mass density, I is the identity tensor, and dV is a
differential volume. The moment of inertia, with respect to an axis pass through o, is given by
I, = n-I,n, (no sum on n), where n is a unit vector in the direction of the axis of interest.

(a) Show that fo is symmetric.
(b) Letting r = xe; +ye,+zes, write out all components of the inertia tensor io.

(c) The diagonal terms of the inertia matrix are the moments of inertia and the off-diagonai
terms the products of inertia. For what axes will the products of inertia be zero? For which
axis will the moments of inertia be greatest (or least)?
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Let a coordinate frame e;,e;,e3 be attached to a rigid body which is spinning with an angular
velocity @. Then, the angular momentum vector H, in respect to the mass center, is given by

H, = icm
and
de;
i Xe;
(d) Letw = w;e; and demonstrate that
. _dw _ do;
©=a "

and that
H, = %Hc = Lo +ox (o)
2C1. Prove the identities (2C1.2a-e) of Section 2C1.
2C2. Consider the scalar field defined by ¢ = x2+3xy+22.
(a) Find a unit normal to the surface of constant ¢ at the origin (0,0,0).
(b) What is the maximum value of the directional derivative of ¢ at the origin?
(c) Evaluate d¢/dr at the origin if dr = ds(ey+e3).
2C3. Consider the ellipsoid defined by the equation x2/a2+y2/b2+22/c2= 1.
Find the unit normal vector at a given position (x,y,z).
2C4. Consider a temperature field given by € = 3xy.
(a) Find the heat flux at the point 4(1,1,1) if g = —&V6.
(b) Find the heat flux at the same point as part (a) if = —~KV6, where

kK 0 0
[K]=10 2k 0
0 0 3

2CS. Consider an electrostatic potential given by ¢ = afxcosf+ysinf], where a and 6 are
constants.

(a) Find the electric field E if E = —Vg.
(b) Find the electric displacement D if D = ¢E, where the matrix of ¢ is
e 0 0
[e]=]10 & O
0 0 &

(¢) Find the angle 6 for which the magnitude of D is a maximum.
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2C6. Let¢(x,,z) and Y(x.y,z) be scalar fields, and let v(x,y,z) and w(x,y,z) be vector fields. By
writing the subscripted component form, verify the following identities:

(2) V(p+y) = Vo+Vy
Sample solution:
V@+)l = 3 0+9) = 3o+ 50 = )+ (Vo
(b) div(v+w) = divv+divw,
(©) div(gv) = (V¢)-v+o(div),
(d) curl(Vg) =0,
(e) div(curlv) = 0.
2C7. Consider the vector field v = x2e1 + 22e2 + y2e3 . For the point (1, 1, 0):
(a) Find the matrix of Vv.
(b) Find the vector (Vv)v.
(¢c) Find divv and curl v.
(d) if dr = ds(e, + e, + e3), find the differential dv.

2D1. Obtain Eq. (2D1.15)
2D2. Caiculate div u for the following vector field in cylindrical coordinates:

@u,=ug=0, u,=A4 +Br2,

(b)u,=¥, ug=0, u;=0,

(S)u, =% sin6r?, ug = %cos@rz, M, =0,

sind cos@

(A, = —rE—, ug = —-—;2—, u, = 0.

2D3. Calculate div u for the following vector field in spherical coordinates:
u,=Ar+r%, ug=uyp =0

2D4. Calculate Vu for the following vector field in cylindrical coordinate
u,=f71, ug=bBr, v,=0

2D5. Calculate Vu for the following vector field in spherical coordinate

u,=Ar+-B§, u9=u¢=0
r



78 Problems

2D6. Calculate div T for the following tensor field in cylindrical coordinates:
2 3 2
Az 3z o _Az Tzz=_[ﬂ+£], n-_[f£+3i}

"R R ¥R B R T RR
T, = T =0, where R®= P+ 7
2D7. Calculate div T for the following tensor field in cylindrical coordinates:

T,,=A+%, T99=A—r%, T,, =constant, T,g =T, =Tg, =0
r

2D8. Calculate div T for the following tensor field in spherical coordinates:

To=d-2 Tp=Ty=4+%
r r

To, =Ty =Tpp =0
2D9. Derive Eq. (2D3.24b) and Eq. (2D3.24c).



