
4 

Stress 

In the previous chapter, we considered the purely kinematical description of the motion of 
a continuum without any consideration of the forces that cause the motion and deformation. 
In this chapter, we shall consider a means of describing the forces in the interior of a body 
idealized as a continuum. It is generally accepted that matter is formed of molecules which in 
turn consists of atoms and subatomic particles. Therefore, the internal forces in real matter 
are those between the above particles. In the classical continuum theory the internal forces 
are introduced through the concept of body forces and surface forces. Body forces are those 
that act throughout a volume (e.g., gravity, electrostatic force )by a long-range interaction with 
matter or charge at a distance. Surface forces are those that act on a surface (real or imagined) 
separating parts of the body. We shall assume that it is adequate to describe the surface force 
at a point of a surface through the definition of a stress vector, discussed in Section 4.1, which 
pays no attention to the curvature of the surface at the point. Such an assumption is known as 
Cauchy’s stress principle which is one of the basic axioms of classical continuum mechanics. 

4.1 Stress Vector 

Let us consider a body depicted in Fig. 4.1. Imagine a plane such as S, which passes through 
an arbitrary internal point P and which has a unit normal vector n. The plane cuts the body 
into two portions. One portion lies on the side of the arrow of n (designated by I1 in the figure) 
and the other portion on the tail of n (designated by I). Considering portion I as a free body, 
there will be on plane S a resultant force AF acting on a small area AA containing P. We 
define the stress vector (from I1 to I) at the point P on the plane S as the limit of the ratio 
AF /AA as AA -0. That is, with t,, denoting the stress vector, 

AF t,,=lim - AA AA -0 

(4.1.1) 

If portion I1 is considered as a free body, then by Newton’s law of action and reaction, we shall 
have a stress vector (from I to 11), t-, at the same point on the same plane equal and opposite 
to that given by Eq. (4.1.1). That is, 

t,,= -t-, (4.1.2) 

173 



174 Stress 

Fig. 4.1 

Next, let S be a surface (instead of a plane) passing the point P. Let AF be the resultant force 
on a small area AS on the surface S. The Cauchy stress vector at P on S is defined as 

AF (4.1.3) t=l im - As As-0 

We now state the following principle, known as the Cauchy’s stress principle: The stress vector 
at any given place and time has a common value on all parts of material having a common 
tangent plane at P and lying on the same side of it. In other words, if n is the unit outward 
normal (Le., a vector of unit length pointing outward away from the material) to the tangent 
plane, then 

t = Y4 t ,  n> (4.1.4) 

where the scalar t denotes time. 

n can be expressed as 
In the following section, we shall show from Newton’s second law that this dependence on 

(4.1.5) Y4 t ,  n) = T(4 t>n 

where T is a linear transformation. 

4.2 Stress Tensor 

According to Eq. (4.1.4) of the previous section, the stress vector on a plane passing through 
a given spatial point x at a given time t depends only on the unit normal vector n to the plane. 
Thus, let T be the transformation such that 

t,, = Tn (4.2.1) 
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Fig. 4.2 

Let a small tetrahedron be isolated from the body with the point P as one of its vertices (see 
Fig. 4.2). The size of the tetrahedron will ultimately be made to approach zero volume so that, 
in the limit, the inclined plane will pass through the point P. The outward normal to the face 
PAB is -el. Thus, the stress vector on this face is denoted by Lei and the force on the face is 

t - , p 1  

where AAl is the area of PAB. Similarly, the forces acting on PBC, PAC and the inclined face 
ABC are 

t-e2m29 f - e 3 u 3  

and 

tn A A n  
respectively. Thus, from Newton’s second law written for the tetrahedron, we have 

ZF = t-el(AA1)+t-e2(m2)+t-e,(AA3)+~(AA,) = ma 0 )  

Since the mass m = (density)(volume), and the volume of the tetrahedron is proportional to 
the product of three infinitesimal lengths, (in fact, the volume equals to ( l/6)A.r1AqAq), when 
the size of the tetrahedron approaches zero, the right hand side of Eq. (i) will approach zero 



176 Stress 

faster than the terms on the left where the stress vectors are multiplied by areas, the product 
of two infinitesimal lengths. Thus, in the limit, the acceleration term drops out exactly from 
Eq. (i) (We note also that any body force e.g. weight that is acting will be of the same order 
of magnitude as that of the acceleration term and will also drop out ). Thus, 

t-el(M 1)+t-e2(u2) +t-e3(U3) + t n ( U n >  = 0 (ii) 

Let the unit normal vector of the inclined plane ABC be 
n = nlel+n2e2+n3e3 (4.2.2) 

The areas AA1,AA2, and AA3, being the projections of AA,, are related to AA,, by 

A41 = nlAA,,, AA2 = n2AA,,, AA3 = n3AAn (4.2.3) 

Using Eq. (4.2.3), Eq. (ii) becomes 
t- n +t- n +t- n3+4,=0 el 1 e2 2 e3 

But from the law of action and reaction, 
t-el = -fe,, t-e2 = -&, Le3= -fe3 

Thus, Eq. (4.2.4) becomes 

tn 3 i k 1  +n2&+n3k3 

(4.2.4) 

(iii) 

(4.2.5) 

Now, using Eq. (4.2.2) and Eq. (4.2.5), Eq. (4.2.1) becomes 
T(nlel+n2e2+n3e3) = nlTel+n2Te2+n3Te3 (4.2.6) 

That is ,  the transformation T defined by 
& = T n  (4.2.7) 

is a linear transformation [see Eq. (2B1.2)]. It is called the s h s s  tensor, or Cauchy stress 
tensor. 

4.3 Components of Stress Tensor 

According to Eq. (4.2.7) of the previous section, the stress vectors fei on the three coordinate 

fe = Tel, fe2 = Te2, fe3 = Te3 (4.3.1) 

planes (the ei-planes ) are related to the stress tensor T by 

1 

By the definition of the components of a tensor, Eq. (2B2.1b), we have 
Tei = Tmiem (4.3.2) 

Thus, 
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k1 = Tllel+T21e2+T31e3 (4.3.3a) 

k2 = T12el+T22e2+T32e3 (4.3.3b) 

k3 = T13el+T23e2+T33e3 (4.3.3c) 

Since fel is the stress vector acting on the plane whose outward normal is el, it is clear from 
Eq. (4.3.3a) that Tll is its normal component and T21 andT31 are its tangential components. 
Similarly, T22 is the normal component on the e2-plane and T12, T32 are the tangential 
components on the same plane, etc. 

We note that for each stress component q h  the second index j indicates the plane on which 
the stress component acts and the first index indicates the direction of the component; e.g., 
T12 is the stress component in the direction of el acting on the plane whose outward normal 
is in the direction of e2. We also note that positive normal stresses are also known as tensile 
stresses and negative normal stresses as compressive stresses. Tangential stresses are also 
known as shearing stresses. Both T21 and T31 are shearing stress components acting on the 
same plane (the el-plane ), thus the resultant shearing stress on this plane is given by 

T1 = T21e2+T31e3 (4.3.4a) 

the magnitude of this shearing stress is given by 

IT11 =ez 
Similarly, on e2-plane 

T2 = T12el+ T32e3 

and on e3-plane 

=3 = T13el+T23e2 

(4.3.4b) 

(4.3.4c) 

From t = Tn, the components o f t  are related to those of T and n by the equation 

ti = T..n. 9 I (4.3.5a) 

Or, in a form more convenient for computations, 

[tl = [Tl[n] (4.3.5b) 

Thus, it is clear that if the matrix of T is known, the stress vector t on any inclined plane is 
uniquely determined from Eq. (4.3.5b). In other words, the state of stress at a point is 
completely characterized by the stress tensor T. Also since T is a second-order tensor, any one 
matrix of T determines the other matrices of T , see Section 2B13 of Chapter 2. 
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T We should also note that some authors use the convention t = T n so that fei = qjej. Under 
that convention, for example, Tzl and TB are tangential components of the stress vector on 
the plane whose normal is e2 etc. These differences in meaning regarding the nondiagonal 
elements of T disappear if the stress tensor T is symmetric. 

4.4 

i that the stress tensor is generally a symmetric tensor . 

Symmetry of Stress Tensor- Principle of Moment of Momentum 

By the use of moment of momentum equation for a differential element, we shall now show 

Fig. 43 

Consider the free-body diagram of a differential parallelepiped isolated from a body as 
shown in Fig. 4.3. Let us find the moment of all the forces about an axis passing through the 
center point A and parallel to the x3-axis: 

z(MA)3 = T21(h2)(h3)  (2) +(T21+AT21)(h2)(h3) (2) 
- T12(hl>(h3> (2) -(T12+AT12>(hl>(h3> (2) (0  

In writing Eq. (i) we have assumed the absence of body moments. 
Dropping the terms containing small quantities of higher order, we obtain 

t See Prob. 4.27 for a case where the stress tensor is not symmetric 
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(ii) 

Now, whether the elements is in static equilibrium or not, Z(M,4)3 is equal to zero because the 
angular acceleration term is proportional to the moment of inertia which is given by (1/12) 
(density) ( A X ~ A X ~ A X ~ ) [ ( A X ~ ~ + ( ~ ~ ) ~ ]  and is therefore a small quantity of higher order than 
the right side of Eq. (ii). Thus, 

T12 = T21 (4.4.la) 

Similarly, one can obtain 

T13 = T31 

and 

T23 = T32 

(4.4. lb) 

(4.4.1~) 

T These equations state that the stress tensor is symmetric, Le., T = T . Therefore, there are 
only six independent stress components. 

Example 4.4.1 

The state of stress at a certain point is T = -PI, wherep is a scalar. Show that there is no 

Solution. The stress vector on any plane passing through the point with normal n is 
shearing stress on any plane containing this point. 

t = Tn = -pIn = -pn 
Therefore, it is normal to the plane. This simple stress state is called a hydrostatic state of 
stress. 

Example 4.4.2 

With reference to an- coordinate system, the matrix of a state of stress at a certain point 
of a body is given by: 

[TI = 4 0 0 MPa i: : -:] 
(a) Find the stress vector and the magnitude of the normal stress on a plane that passes through 
the point and is parallel to the plane 

~ + 2 ~ + 2 ~ - 6  = 0 
(b) If 
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1 
3 el' = -(2e1+2e2+e3) 

and 
1 

e2' = jZ(ere2)  

find TI,. 
Solution. (a) The planex+2y+&-6 = 0 has a unit normal n given by 

1 
3 n = -(e1+2e2+2e3) 

The stress vector is obtained from Eq. (4.2.7) as 

1 
3 t = -(16e1+4e2+%) MPa 

The magnitude of the normal stress is simply, with T, = T(,)(,) , 

1 
9 T, = t-n = -(16+8+2) = 2.89 MPa 

(b) To find the primed components of the stress, we have, 

1 
3 n  f i2  = e;.Te; = -[2,2, 11 

Therefore, 

f12  = & = 1.65 MPa 

Example 4.4.3 

The distribution of stress inside a body is given by the matrix 
0 

(ii) 

(iii) 

(vii) 
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wherep, p and g are constants. Figure 4.4 shows a rectangular block inside the body. 
(a) What is the distribution of the stress vector on the six faces of the block? 
(b) Find the total resultant force acting on the faces y = 0 and x = 0. 

Solution. (a) We have, from t = Tn, 

on x = 0, [n] = [-1, 0, 01, [t] = [p-pgy, 0, 01 
on x =a, [n] = [+1, 0, 01, [t] = [-p+pgy, 0 ,O] 

on y = 0, [nl = [O,  -1, 01, [tl = [O,  P, 01 
on y = b, [n] = [0, +1, 01, [t] = [0, -p+pgb, 01 

on z = 0, [n] = [0, 0, -11, [t] = [0, 0, p-pgy] 
on z = c, [n] = [0, 0, +1], [t] = [0, 0, -p+pgy] 

(ii) 

A section of the distribution of the stress vector is shown in Fig. 4.5. 

Fig.4.4 Fig.4.5 

(b) On the facey = 0, the total force is 

F~ = J t d ~  = @J&)e2 =pace2 (iii) 

On the facex = 0, the total force is 

F2 = [J@-Pa)&Iel= bJdA-PgJYwe1 (iv) 

The second integral can be evaluated directly by replacing (054) by (cdy) and integrating from 
y = 0 to y = b. Or since SydA is the first moment of the face area about the z-axis, it is 
therefore equal to the product of the centroidal distance and the total area. Thus, 

F2 = [pbc-*] el (VI 
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4.5 Principal Stresses 

From Sect. 2B18, we know that for any symmetric stress tensor T, there exists at least three 
mutually perpendicular principal directions ( the eigenvectors of T ). The planes having these 
directions as their normals are known as the principal planes. On these planes, the stress vector 
is normal to the plane (i.e., no shearing stresses ) and the normal stresses are known as the 
principal stresses. Thus, the principal stresses (eigenvalues of T ) include the maximum and 
the minimum values of normal stresses among all planes passing through a given point. 

The principal stresses are to be obtained from the characteristic equation of T, which may 
be written: 

where 

2-I$+I&-I3 = 0 (4.5.1) 

I3 = det[T] 

(4.5.2a) 

(4.5.2b) 

(4.5.2~) 

are the three principal scalar invariants of the stress tensor. For the computations of the 
principal directions, we refer the reader to Sect. 2B17. 

4.6 Maximum Shearing Stress 

In this section, we show that the maximum shearing stress is equal to one-half the difference 
between the maximum and the minimum principal stresses and acts on the plane that bisects 
the right angle between the directions of the maximum and minimum principal stresses. 

Let el, e2 and e3 be the principal directions of T and let TI, T2, T3 be the principal 
stresses. If n = nlel+n2e2+n3e3 is the unit normal to a plane, the components of the stress 
vector on the plane is given by 

Ti 0 0 
0 T2 0 I:] = [ 0 0 T3 

i.e., 
t = nlTlel+n2T2e~+n3T3q 

and the normal stress on the same plane is given by 
T, = n-  t = nlT1+n2T2+ngT3 2 2  

(4.6. la) 

(4.6. lb) 

(4.6.2) 
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Thus, if T, denotes the magnitude of the total shearing stress on the plane, we have (see 
Fig. 4.6) e= ltl2-2 (4.6.3) 

i.e., 
i$ = ~ n ~ + 7 $ n i + 7 $ 1 $ - ( T 1 n ~ + T 2 n ~ + T & ) ~  (4.6.4) 

Fig. 4.6 

For known values of TI, T2, andT3, Eq. (4.6.4) states that e is a function of 
nl, n2. and n3, i.e., 

< =f(nlpf l3)  (4.6.5) 

We wish to find the triple (nlp2,nng) for which f attains a maximum. However, 

(4.6.6) nl+n2+n3 = 1 

thus, we are looking for a maximum for the value of the functionf(nlp2,n3) subjected to the 
constraint that n i + ~ + n 3  = 1. 

2 2 2  

2 2 2  

Taking the total derivative of Eq. (4.6.5), we obtain 

a~ a 2  a< ( 0  
d ( e )  = -dn1+-&2+-&3 = o an, dn2 an3 
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If dnl, dn2, and dn3 can vary independently of one another, then Eq. (i) gives the familiar 
condition for the determination of the triple (n1~22~23) for the stationary value of $ 

But the dnl,dn2 and dn3 can not vary independently. Indeed, taking the total derivative of 
Eq. (4.6.6), Le., nl+n2+nj = 1. we obtain 2 2 2  

nldnl+n&2+n3dn3 = 0 (ii) 

If we let 

and 

(iii) 

then by substituting Eqs. (iii) (iv) and (v) into Eq. (i), we see clearly that Eq. (i) is satisfied if 
Eq. (4.6.6) is enforced. Thus, Eqs. (iii), (iv), (v) and (4.6.6) are four equations for the 
determination of the four unknown values of n1, n2, n3 and 1 which correspond to stationary 
values of e. This is the Lagrange multiplier method and the parameter 1 is known as the 
Lagrange multiplier (whose value is however of little interest). 

Computing the partial derivatives from Eq. (4.6.4), Eqs. (iii), (iv), and (v) become 

2 n l [ ~ - 2 ( ~ 1 n : + ~ 2 n ; + ~ p ;  )TI] = n l 1  (vi) 

2n2[$-2(~1n?+ T&+T& 1 ~ 2 1  = n2 A (vii) 

2 n 3 [ ~ $ - 2 ( ~ 1 4 + ~ 2 n ; + ~ p ;  1 ~ ~ 1  = n31 (viii) 

From Eqs. (vi), (vii), (viii) and (4.6.6), the following stationary points (nl,n2,ng) can be obtained 
(The procedure is straight forward, but the detail is somewhat tedious, we leave it as an 
exercise.) : 

(1,0,0), (OJ,O),  (0,0,1) (W 
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The planes determined by the solutions given by Eq. (ix) are nothing but the principal planes, 
on which Ts = 0. Thus, on these planes the values of 2 is a minimum (in fact, zero). 

The values of e on the planes given by the solutions (x) are easily obtained from Eq. (4.6.4) 
to be the following: 

and 

(4.6.5) 

(4.6.6) 

(4.6.7) 

Thus, the maximum magnitude of the shearing stress is given by the largest of the three values 

In other words, 

(4.6.8) 

where (Tn),= and (Tn)dn are the largest and the smallest normal stress respectively. It can 
also be shown that on the plane of maximum shearing stress, the normal stress is 

(4.6.9) 

Example 4.6.1 

If the state of stress is such that the components T13,T23,T33 are equal to zero, then it is 
called a state of plane stress. 
(a) For plane stress, find the principal values and the corresponding principal directions. 
(b) Determine the maximum shearing stress. 

Solution. (a) For the stress matrix 
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the characteristic equation has the form 

w2- v 1 1 +  T22Y + (T11T22- <2)1 = 0 

Therefore 1 = 0 is an eigenvalue and its direction is obviously n = q. The remaining eigen- 
values are 

~i - ~ 1 1 + ~ 2 2 ' d ( ~ l l - ~ 2 ~ ~ + 4 ~ ~  (4.6.10) 

(ii) 

1.- 2 

To find the corresponding eigenvectors, we set (7+ldj$nj = 0 and obtain for either 
1 = TI or T2, 

(T11-ll)nl+T12n2 = 0 (iii) 

T12nl+(T22-il)n2 = 0 (iv) 

-,In3 = 0 ( 4  

The third equation gives n3 = 0. Let the eigenvector n = cost9el+sint9e2 (see Fig. 4.7). Then, 
from the first equation 

tan0 = - n2 = -- T11-n (4.6.11) 
nl  T12 

Fig. 4.1 

(b) Since the third eigenvalue is always zero, the maximum shearing stress will be the greatest 
of the value 

KJm 
2 '  2 
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and 

Example 4.6.2 

Do the previous example for the following state of stress: T12 = Tzl = 1000 MPa, all other 

Solution. From Eq. (4.6.10), we have 

qj are zero. 

Corresponding to the maximum normal stress TI = 1000 MPa, Eq. (4.6.11) gives 

0-1000 
lo00 tanel = -~ = +I ,  i.e., el = 45O 

and corresponding to the minimum normal stress T2 = - 1000 MPa, (Le., maximum compres- 
sive stress), 

0 = -1, i.e., O2 = -45 O-(- lo00)  
1000 tan02 = - 

The maximum shearing stress is given by 
1000-( - 1000) = looo MPa 

(Ts)max = 2 
which acts on the planes bisecting the planes of maximum and minimum normal stresses, i.e., 
the el-plane and the e2-plane in this problem. 

4.7 

In this section, we derive the differential equations of motion for any continuum in motion. 
The basic postulate is that each particle of the continuum must satisfy Newton's law of motion. 

Fig. 4.8 shows the stress vectors that are acting on the six faces of a small rectangular element 
that is isolated from the continuum in the neighborhood of the position designated by xi. 

Let B = Biei be the body force (such as weight ) per unit mass, p be the mass density at xi 
and a the acceleration of a particle currently at the position xi ; then Newton's law of motion 
takes the form, valid in rectangular Cartesian coordinate systems 

Equations of Motion - Principle of Linear Momentum 

I fel(xl+hy1.r2~3)-feI(x1*y2*r3) ~ ( x 1 ~ 2 + ~ 2 ~ 3 ) - 6 2 ( x 1 ~ 2 ~ 3 )  
h1 4 
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h l h 2 h 3 + P B h l h Z h 3  

(i) 

11 &3(xl&2&+ h3)-&3(xlJ2&3) 

hl 

= @a)hl&2&3 

[i 

Fig. 4.8 

Dividing by h l , h 2 , h 3  and letting hi-' 0, we have 

abl ate2 a43 (4.7.1) 
-+-+-+pB = pa 

Since ki = Tei = ?;i ej, therefore we have (noting that all ei are of fixed directions in Cartesian 
coordinates) 

aTu (ii) 
---ei+pBiei = paiei 

axl ax, ax3 

axj 

In invariant form, the above equation can be written 
divT+pB =pa (4.7.2a) 

and in Cartesian component form 

(4.7.2b) aqj 
axj -+pBi = pai 
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These are the equations that must be satisfied for any continuum in motion, whether it be solid 
or fluid. They are called Cauchy’s equations of motion. If the acceleration vanishes, then Eq. 
(4.7.2) reduces to the equilibrium equations 

divT+pB = 0 (4.7.3a) 

Example 4.7.1 

In the absence of body forces, does the stress distribution 
2 2 2  

2 

Ti1 = x ~ + v ( x ~ - x ~ ) ,  T12 = - 2 ~ ~ 1 x 2  

T22 = x1+V(xz-x;), T u  = Ti3 = 0 

2 2  
T33 = V ( X l + X 2 )  

where vis a constant, satisfy the equations of equilibrium? 
Solution. Writing the first(i = 1) equilibrium equation, we have 

dT1. dT11 dT12 aT13 - = -+-+- = 2vx1-2vx1+0 = 0 
axi ax, ax2 ax3 

Similarly, fori = 2, we have 
aT dT dT22 dT3 -.?f = A+-+- = -2vx2+2vx2+0 = 0 
axj axl ax2 ax3 

and for i = 3 
d T .  aT31 dT32 dT33 2 i  = -+-+- = o+o+o = 0 
axi ax, ax2 ax3 

Therefore, the given stress distribution does satisfy the equilibrium equations 

(4.7.3b) 

(ii) 

(iii) 

Example 4.7.2 

Write the equations of motion if the stress components have the form cj = -pGu where 
P = P(xlJ2J3,t) 
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Solution. Substituting the given stress distribution in the first term on the left-hand side of 
Eq. (4.7.3b), we obtain 

Therefore, 

--+pBi aP = pai 
axi 

or, 
-Vp+pB =pa  

(4.7.4a) 

(4.7.4b) 

4.8 

In Chapter 2, we presented the components of divT in cylindrical and in spherical coor- 
dinates. Using those formulas, we have the following equations of motion: [See also 
Prob. 4.341 
Cylindrical coordinates 

Equations of Motion in Cylindrical and Spherical Coordinates 

aT, 1aTd T,-Tm aT, 
+-+pB, = pa, d r + r + +  az 

(4.8.la) 

(4.8. lb) 

(4.8.1~) 

We note that for symmetric stress tensor, Td-Te,=O. 

Example 4.8.1 

The stress field for the Kelvin's problem (an infinite elastic space loaded by a concentrated 
load at the origin ) is given by the following stress components in cylindrical coordinates 

Tn = - 0) 

(ii) 
where 

2 2 2  R = r  + z  
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andA is a constant. Verify that the given state of stress is in equilibrium in the absence of body 
forces. 

Solution. From R2 = 2 + z2, we obtain 

Thus, 

aT, - 3Azr 6n 15r3z +- 
dr RS Rs R7 

Trr - Tee - 3 n  - -- 
r R5 

aTn 3Azr 6n 15n3 +- 
Thus, the left hand side of Eq. (4.8.la) becomes, with B, = 0 

-=--- 
aZ Rs Rs R7 

(iii) 

In other words, the r-equation of equilibrium is satisfied. 

equation of equilibrium is also satisfied. 

[see Prob. 4.351. 

Since Td = TO, = 0 and Tee is independent of 8, therefore, with Be = ag = 0, the second 

The third equation of equilibrium Eq. (4.8.1~) with B, = a, = 0 can be similarly verified. 

Spherical coordinates 

(4.8.2b) 3 
1 a(r Tor)+ 1 a(Teesin8) 
r 3 ar rsin8 ae +-- r r + PBe = 

1 aTw TMcot8 Td-Tgr +- 

1 ( ~ 3 r ~ T # ~ ) +  1 a(T&in8) 
r3 dr rsin8 ae + G S - F + 7  r + PB# = pa# (4.8.2~) 

1 aTM Te+cot8 TM-T#r + 

Again, we note that for symmetric stress tensor, Td-Ter = 0 andT,+-T#r=O. 
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4.9 

If on the boundary of some body there are applied distributive forces, we call them surface 
tractions. We wish to find the relation between the surface tractions and the stress field that 
is defined within the body. 

If we consider an infinitesimal tetrahedron cut from the boundary of a body with its inclined 
face coinciding with the boundary surface (Fig. 4.9), then as in Section 4.1, we obtain 

t = Tn (4.9.1) 

where n is the unit outward normal vector to the boundary, T is the stress tensor evaluated at 
the boundary and tis the force vector per unit area on the boundary. Equation (4.9.1) is called 
the stress boundary condition. 

Boundary Condition for the Stress Tensor 

Fig. 4.9 

Example 4.9.1 

Given that the stress field in a thick wall elastic cylinder is 
B B 
r r 

T, = A  + 2, Tee = A  - 2, Tu = constant 

Tfi = T, = Toz = 0 (9  

whereA and B are constants. 
(a) Verify that the given state of stress satisfies the equations of equilibrium in the absence of 
body forces. 
(b) Find the stress vector on a cylindrical surface r = a. 
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(c) If the surface traction on the inner surface r = ri is a uniform pressure pi and the outer 
surface r = ro is free of surface traction, find the constants A and B. 

Solution. 

aT, 2B Tm-Tee 2B - -- =- 
3 r 3’ r (a) We have, - - ar 

(ii) 

The above results, together with Td = T, = 0, give a value of zero for the left hand side of 
Eq. (4.8.la) in the absence of a body force component. Thus, the r-equation of equilibrium is 
satisfied. Also, by inspection, one easily sees that Eq. (4.8.lb) and Eq. (4.8.1~) are satisfied 
when&= Bz =a@ =az = 0. 

(b) The unit normal vector to the cylindrical surface is n = e,, thus the stress vector is given by 

i.e., 

(iii) 

t = T,e, + Te,ee + Tue, = 

The boundary conditions are 

At r = ri, t = -pie, 

and 
at r = r,, t = 0 

Thus, 

B A + - = O  2 
‘0 

Eqs. (vii) and (viii) give 
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thus, 
2 2 2 2 

Piri Piri T, = - 
ro - ri ro - ri 

Example 4.9.2 

It is known that the equilibrium stress field in an elastic spherical shell under the action of 
external and internal pressure in the absence of body forces is of the form 

To, = T+, = TM = 0 (9 

(a) Verify that the stress field satisfies the equations of equilibrium in the absence of body 
forces. 
(b) Find the stress vector on spherical surface r=a. 

(c) Determine A and B if the inner surface of the shell is subjected to a uniform pressurepi 
and the outer surface is free of surface traction. 

Solution. 

(a) 
2 2 2~ l a 2  2 A 2 B  r T, = Ar - -, -(r T,) = - + 7 

r ,2ar r r  
(ii) 

(iii) 

Thus, Eq. (4.8.2a) is satisfied when B, = a, = 0, Eqs. (4.8.2b) and (4.8.2~) can be similarly 
verified. [see Prob.4.381. 
(b) The unit normal vector to the spherical surface is n = e,., thus the stress vector is given by 

i.e., 

( 4  
2B t = T,p, + To& + T+,e+ = (A - 2) e, 
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(c)The boundary conditions are 
At r = ri, T, = -pi 

At r = r,, T, = 0 

Thus, 

From Eqs. (viii) and (ix), we obtain 

Thus, 

2B 
3 

r0 
A - - = O  

3 3 3  
Piri Pirdi A=- - -  
3 3 B =  3 3 '  

r, - ri 2(ro - ri ) 

3 3 3 3 
Piri r0 Piri 

r, - ri r r, - ri 
T, = ___ 3 3 ( 1 - 3 )  Tee=- 

(vi) 

(vii) 

(viii) 

4.10 Piola Kirchhoff Stress Tensors 

Let d4, be the differential material area with unit normal no at the reference time to and 
dA that at the current time t of the same material area with unit normal n. We may refer to 
dA, as the undeformed area and dA as the deformed area. Let df be the force acting on the 
deformed area dAn. In Section 4.1, we defined the Cauchy stress vector t and the associated 
Cauchy stress tensor T based on the deformed area dAn, that is 

d f =  ta!A (4.10.1) 

and 
t = T n  (4.10.2) 

In this section, we define two other pairs of (pseudo) stress vectors and tensors, based on the 
undeformed area. 
(A) The First Piola-Kirchhoff Stress Tensor 

Let 

df=W 0 (4.10.3) 
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The stress vector b , defined by the above equation is a pseudo-stress vector in that, being 
based on the undeformed area, it does no describe the actual intensity of the force. We note 
however, that t, has the same direction as the Cauchy stress vector t. 

The first Piola-Kirchhoff stress tensor (also known as the Lagrangian Stress tensor ) is a 
linear transformation To such that 

b = Tono (4.10.4) 

The relation between the first Piola-Kirchhoff stress tensor and the Cauchy stress tensor 
can be obtained as follows: 

Since 
d f =  tdA = bdAo 

therefore 
dA b=-t 

&o 

Using Eqs. (4.10.2) and (4.10.4), Eq. (ii) becomes 
Ton,= ( $ ) T n = q  TdAn 

Using Eq. (3.28.6), Le., 

dAn = dAo(detF)(F-l)Tno 

we have, 
-1 T Tono = T(detF)(F ) no 

The above equation is to be true for all q,, therefore, 
-1 T To = (detF)T(F ) 

This is the desired relationship. 
In Cartesian components, Eq. (4.10.6a) reads 

(T& = (detF)TmF-5m 

From Eq. (4.10.6a), we obtain 
1 T  T = -ToF 

detF 

(ii) 

(iii) 

(4.10.5 ) 

(iv) 

(4.10.6a) 

(4.10.6b) 

(4.10.7a ) 

which in Cartesian components, reads 
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1 q j = - ( T ) .  F. detF O lm Jm 
(4.10% ) 

We note that when Cartesian coordinates are used for both the reference and the current 
ax, ax, 
axm a x ,  configuration, Fim = - and F,G1 = -. 

We also note that the first Piola-Kirchhoff stress tensor is in general not symmetric. 
(B) The Second Piola-Kirchhoff Stress Tensor 

Let 
df= GA0 (4.10.8a) 

where 
d f =  Fdf (4.10.8b) 

In Eq. (4.10.8b), dfis the (pseudo) differential force which transforms, under the deformation 
gradient F into the (actual) differenfial force df at the deformed position (one mjy compare 
the transformation equation df = Fdf with dx = F a ) ;  thus, the pseudo vector tis in general 
in a different direction than that of the Cauchy stress vector t. 

- 

- 
The second Piola-Kirchhoff stress tensor is a linear transformation T such that - -  

t= mo (4.10.9) 

where we recall no is the normal to the undeformed area. From Eqs. (4.10.8a) (4.10.8b) and 
(4.10.9). we have 

df= F fn&, 6 )  

We also have (see Eqs. (4.10.3) and (4.10.4) 
df = ?&lo = TonJAo 

Comparing Eqs. (i) and (ii), we have - 
T =  F - ~ T ~  

(ii) 

(4.10.10) 

Equation (4.10.10) gives the relationship between the first Piola-Kirchhoff stress tensor To and 
the second Piola-Kirchhoff stress tensor f Now, from Eqs. (4.10.6a) and (4.10.10), one easily 
obtain the relationship between the second Piola-Kirchhoff stress tensor and the Cauchy stress 
tensorT as 

f= (detF)F-lT(F-')T (4.10.11) 

We note that the second Piola-Kirchhoff stress tensor is always a symmetric tensor if the 
Cauchy stress tensor is a symmetric one. 
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[F] = 

Example 4.10.1 

The deformed configuration of a body is described by 

- 
4 

0 

0 
- 

1 1 
X I =  4x1, x2 = -7x2, x3 = --x3 2 

If the Cauchy stress tensor for this body is 

['" i i] MPa 

(a) What is the corresponding first Piola-Kirchhoff stress tensor. 
(b) What is the corresponding second Piola-Kirchhoff stress tensor. 

Solution. From Eqs. (i), we have 

0 

0 

1 
2 

_- 
- 

0 

1 
2 

-- 

0 

and 

detF = 1 

[F-'1 = 

1 - 0  0 4 

0 -2 0 

0 0 -2 

Thus, from Eq. (4.10.6a) , we have, the first Piola-Kirchhoff stress tensor: 

100 0 0 

0 0 0  
0 0 0] 

1 - 0  0 4 

0 -2 0 

0 0 -2 

The second Piola-Kirchhoff stress tensor is, from Eq. (4.10.11) 

0 01 

['?j=[F]-'[To]= = I 0 0 01 MPa 

(ii) 

(iii) 



Piola Kirchhoff Stress Tensors 199 

- 
2 0  0 

1 0 0  4 
0 -2 0 

- 

Example 4.10.2 

The equilibrium configuration of a body is described by 
1 1 
2 2 X i  = -xi, X;? = --x3, X3 = 4x2 

If the Cauchy stress tensor for this body is 1 i li] MPa 

(a) What is the corresponding first Piola-Kirchhoff stress tensor. 
(b) What is the corresponding second Piola-Kirchhoff stress tensor and 
(c) calculate the pseudo stress vector associated with the first Piola-Kirchhoff stress tensor on 
the e3 - plane in the deformed state. 

(d) calculate the pseudo-stress vector associated with the second Piola-Kirchhoff stress tensor 
on the % - plane in the deformed state. 

Solution. From Eqs. (i), we have 

P I  = 

- 1 0 0 1  
2 

detF = 1 
,O O I  

Thus, from Eq. (4.10.6) , we have, the first Piola-Kirchhoff stress tensor: 

- - 
2 0  0 

- - 
The second Piola-Kirchhoff stress tensor is, from Eq. (4.10.11) 

(ii) 

(iii) 
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- 
[q = [F]-l[T,] = = 

0 0 01 

0 - 7 1  0 MPa 

(c) For a unit area in the deformed state in the e3 direction, its undeformed area dA, no is 
given by Eq. (3.28.6). That is 

&,no=- FTn detF 

With detF = 1 , and the matrix F given above, we obtain 
dA, no = 4e2 (vii) 

Thus, no = e2 and 

b = Tono 
gives 

i.e, b = 25% MPa. We note that this vector is in the same direction as the Cauchy stress vector, 
its magnitude is one fourth of that of the Cauchy stress vector, because the undeformed area 
is 4 times that of the deformed area. 
(d) We have, from Eq. (4.10.9) 

Thus, 

- -  
t= Tn, 

0 

25 
4 

0 

- 

- 25 i. e., t = -e2 MPa. 4 

We see that this pseudo stress vector is in a different direction from that of the Cauchy stress 
vector. (We note that the tensor F transforms e2 into the direction of e3.) 
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4.1 1 

of motion can be written as follows: 

Equations of Motion Written With Respect to the Reference Configuration. 

In this section, we shall showt that with respect to the reference configuration, the equations 

(4.1 1.1) 

where (To)d are the Cartesian components of the first Piola-Kirchhoff stress tensor, po is the 
density in the reference configuration, Xi are the material coordinates and Bi and ai are 
body force per unit mass and the acceleration components respectively. 

From Eq. (4.10.7b), we have 

Thus, 

Now, 

-~ a(To)im 1 KCo)im 1 - ax,, d n m ~ =  ax,,, detF 

and we can show that the last term of Eq. (ii) is zero as follows: 

- - 1 a2< ax,, - axj 1 ( ddetF) - axn 
(detF) ax,,ax,,, axj ax,,, (ktF )2 ax,, axj 

(iii) 

t In Chapter 7, an alternate shorter proof will be given. 
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(iv) 

By using the following identity [see Prob. 4.401 for any tensor A(Xi,X’,X3) 

we obtain, 

so that 

Thus, 

a aAjn -detA = detA (A-’),,j a ~ ,  a x m  

2” ax,, aFi, - ax,, a - a 
detF axj ax,,ax, 4 e t F  = detF a x m  axj ax, 

(A)(*) ax, detF = o  

Substituting Eq. (vii) in the Cauchy’s Equation of motion [ Eq.(4.7.2b)], we get 

+p(detF )Bi = p(&tF )ai 
a x m  

Since dV = (detF)dVo [See Eq. (3.29.3)], therefore, 

pdetF = po 

(4.1 1.2) 

(vii) 

(viii) 

(4.11.3) 

wherePois the initial density. Thus, we have, in terms of the first Piola-Kirchhoff stress tensor 
and with respect to the material coordinates, the equations of motion take the following form 

(4.11.4) 

whereas in terms of the Cauchy stress tensor and with respect to the spatial coordinates, the 
equations of motion take the form 

(4.11.5) 

In invariant notation, Eq. (4.11.4) reads 
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DivT,+p,B = p,a (4.1 1.6) 

where Div denotes the divergence with respect to the material coordinates X and Eq. (4.11.5) 
reads 

divT+pB = pa (4.11.7) 

where div denotes the divergence with respect to the spatial coordinates x. 

4.12 Stress Power 

Referring to the infinitesimal rectangular parallelepiped of Fig. 4.8 which is repeated here 
for convenience, let us compute the rate at which work is done by the stress vectors and body 
force on the particle as it moves and deforms. 

Fig. 4.8 (repeated) 

The rate at which work is done by the stress vectors Lei and kl on the pair of faces having 
-el and el as their respective normal is: 

(i) a 
[(kl *~)xl+k1J2J3-((te1 *v)x1J2,1&&3 = GCC~ * v ~ i ~ & 3  =  vi^] d~ 

where we have used the fact that k l - v  = Tel-viei = viei*Tel = viTi1 , and dV=&1&&3 
denotes the differential volume. Similarly, the rate at which work is done by the stress vectors 
on the other two pairs of faces are: -(viq2) dV and -(viq3) dV. 

p 2  ] [a:3 ] 
Including the rate of work done by the body force ( pBdV*v = pBivgiV ) the total rate of 

work done on the particle is 
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Since 

Eq. (4.12.1) takes the form 

However, we have from the equations of motion 

therefore, we have 

(4.12.1) 

(ii) 

(4.12.2) 

(4.12.3) 

(4.12.4) 

The first term in the right-hand side of Eq. (4.12.4) represents the rate of change of kinetic 
energy of the particle as is seen from the following: 

D 
Dt where we note that -(pdV) = 0 on account of the mass conservation principle. Thus, from 

Eq. (4.12.4) 

(4.12.6) D 
Dt P = -(KE) + PJV 

where 

avi T 
axj P, = T.- = tr(T V,v) (4.12.7) 

is known as the stress power. It represents the rate at which work is done to change the volume 
and shape of a particle of unit volume. 

avi av. av. 
"axi 'laxi ['axi For a symmetric stress tensor qj = qi so that T.- = T.> = T . 2 .  Thus, 
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(4.12.8a) 

where Dii are the components of the rate of deformation tensor defined in Section 3.13. 

Equation (4.12.8a) can be written in the invariant form 
P, = tr(TD ) (4.12.8b) 

Example 4. 12.1 

Show that the stress power can be expressed in terms of the first Piola-Kirchhoff stress 
tensor To and the deformation gradient F as the following 

P TDF P, =-tr(T -) 
Po ODt 

Solution. In Sect. 3.12, we obtained [see Eq. (3.12.4)], 
D -dx = (V,V) dx 
Dt 

Since dx = F dX [ see Eq. (3.7.2)], therefore 

D - ( F a )  = (V,V) FdX Dt 

Equation (i) is to be true for all dX, thus 
DF 
- = (V,v)F Dt 

DF -1 ( V,V) = -F 
Dt 

Using Eqs. (4.12.7) and (4.12.10b), the stress power can be written 

T TDF -1 
) P, = tr(T Vxv) = tr(T -F Dt 

Since [see Eq. (4.10.7 )] 

T=-  T , F ~  
detF 

therefore, 

(4.12.9) 

(4.12. loa) 

(4.12.10b) 

(ii) 

TDF -1 P, = tr(FT - F ) detF O Dt (iii) 
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Using the identity tr(ABCD) = tr(BCDA) = tr(CDAB) and the relation detF = k, Eq. (iii) 
becomes 

P 

P TDF P, = -tr(T -). 
Po ODt 

Example 4.12.2 

tensor T and the Lagrange strain tensor E * as follows 
Show - that the stress power can be expressed in terms of the second Piola-Kirchhoff stress 

Solution. From Eq. (3.13.6), 

D 2  
Dt 
-& =2dx.Ddx 

and Eq. (3.7.2) 

we obtain 
d x = F d X  

D 2  -A = 2FdX * DFdX = 2dX FT(DF)dX Dt 

From Eq. (3.24.2), we obtain 

d s 2 = d S 2 + 2 d X - E * d X  
so that 

Compare Eq. (i) with Eq. (4.12.12), we obtain 

Using Eq. (4.10.11), that is 
T=-FTF~ 1 

detF 
we have for the stress power 

Ps = tr(TD) = 2 tr(F’IFTD) detF 
4- - tr(’IF’DF) 

detF 

(4.12.11) 

(4.12.12) 

(4.12.13) 

(ii) 
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Making use of Eq. (4.12.13), Eq. (ii) becomes 
1 -m* -LE* 

P, = -tr( T -) = &tr( T -) detF Dt PO Dt 

DF - D E *  
Dt Dt We note that (T ,D ), (To ,- ) and ( T,- ) are sometimes known as conjugate pairs. 

4.13 Rate of Heat Flow Into an Element by Conduction 

Let q be a vector whose magnitude gives the rate of heat flow across a unit area by 
conduction and whose direction gives the direction of heat flow, then the net heat flow by 
conduction Q, into a differential element can be computed as follows: 

Referring to the infinitesimal rectangular parallelepiped of Fig. 4.10, the rate at which heat 
flows in to  t h e  e lement  across the face with el as i ts  outward normal  is 
[(-q.el)x,+df,x2,x3&&3 and that across the face with -el as its outward normal is 
[(q*el)xl,2,3&&3 Thus, the net rate of heat inflow across the pair of faces is given by 

- ~ ~ l ~ ~ l + ~ l * y 2 ~ 3 ~ - ~ 1 ~ ~ 1 ~ 2 * y 3 ~ 1 ~ & 3  = -(,Xl)&1&&3 841 (i) 

where qi q .ei. Similarly, the net rate of heat inflow across the other two pairs of faces is 

so that the total net rate of heat inflow by conduction is 

d V =  - (divq)dV (4.13.1 ) 

Example 4.13.1 
Using the Fourier heat conduction law q = -KVO, where VO is the temperature gradient 

and K is the coefficient of thermal conductivity, find the equation governing the steady-state 
distribution of temperature. 

Solution. From Eq. (4.13.1), we have, per unit volume, the net rate of heat inflow is given 
bY 

K-) +-( K-) +-( K-) . ;x: 3 a ao a ao a 
- [Q ax, ax2 ax2 ax3 
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Now, if the boundaries of the body are kept at fixed temperature, then when the steady-state 
is reached, the net rate of heat flow into any element in the body must be zero. Thus, the 
desired equation is 

a ao a ao a ao -( K-) +-( K-) +-( K-) = 0 ax, ax, ax2 ax2 ax3 ax3 

For constant K,  this reduces to the Laplace equation 

& a 2 0  a 2 0  
ax, ax2 ax: 
+2+- = 0 

(4.13.2) 

(4.13.3) 

4.14 Energy Equation 

Consider a particle with a differential volume dV at the position x at time f .  Let U denote 
its internal energy, KE the kinetic energy, Q, the net rate of heat flow by conduction into the 
particle from its surroundings,Q, the rate of heat input due to external sources (such as 
radiation) and P the rate at which work is done on the particle by body forces and surface 
forces (Le., P is the mechanical power input). Then, in the absence of other forms of energy 
input, the fundamental postulate of conservation of energy states that 

D -(U+KE) = P + Q, + Qs Df 

Now, using Eq. (4.12.6) and Eq. (4.13.1), we have 
D avi 

P = -(KE) + T,j-.qdV Df 

thus, Eq. (4.14.1) becomes 

If we let u be the internal energy per unit mass, then 
DU D(updV) Du - p dV- -- - 
Df Df Df 

In arriving at the above equation, we have used the conservation of mass principle 
(D/Df)( p dV) = 0 

Thus, the energy equation (4.14.1) becomes 
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(4.14.2a) 

where qs is the rate of heat input (known simply as the heat supply) per unit mass by external 
sources. In invariant notation, Eq. (4.14.2a) is written 

(4.14.2b) Du 
Dt p- = tr(TD)-divq + pqs 

4.1 5 Entropy Inequality 

Let ~ ( x ,  t )  denote the entropy per unit mass for the continuum. Then the entropy in avolume 
dV of the material is pqdV, where p is density. The rate of increase of entropy following the 
volume of material as it is moving is 

D 
Dt Dt which is equal to p d e ,  because --@dV) = 0 in accordance with the conservation of mass 

principle. Thus, per unit volume, the rate of increase of entropy is given by p Dt 
Drl 

The entropy inequality law states that 

(4.15.1) 

where 0 is the absolute temperature, q is the heat flux vector and qs is the heat supply. 
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Problems 

4.1. The state of stress at certain point of a body is given by 

On each of the coordinate planes (normals el, e2, e3 ) (a) what is the normal stress and (b) 
what is the total shearing stress. 
4.2. The state of stress at a certain point of a body is given by 

[TI = -1 4 0 MPa 

(a) Find the stress vector at a point on the plane whose normal is in the direction 
2el+ 2e2 + e-j. 
(b) Determine the magnitude of the normal and shearing stresses on this plane. 
43. Do the previous problem for a plane passing through the point and parallel to the plane 

4.4. The stress distribution in a certain body is given by 

[: t ’d 

[ - 1 m 2  0 0 O I -  
X i  - 2x2 + 3X3=4. 

0 1OQrl -1m2 
[TI = o 

Find the stress vector acting on a plane which passes through the point (112 , n / 2 , 3 )  and 
is tangent to the circular cylindrical surface x! + x$ = 1 at that point. 

4.5. Given T11= 1 Mpa, T22 = - lMpa and all other Tjj  = 0 at a point in a continuum. 

(a) Show that the only plane on which the stress vector is zero is the plane with normal in the 
e3 - direction. 

(b) Give three planes on which there is no normal stress acting. 
4.6. For the following state of stress 

10 50 -50 
[TI = [ 50 0 ;] MPa 

find Tll’ and T13‘ where el’ is in the direction of el + 2e2 + 3e3 and e;?’ is in the direction 
of el + e2 - e3. 

4.7. Consider the following stress distribution 

-50 0 



Stress 211 

a 2  B 0 
[TI = [ { ; ;] 

where a and /3 areconstants. 
(a) Determine and sketch the distribution of the stress vector acting on the square in thexl = 0 plane 
with vertices located at (O,l,l), (0,-1, l), (O,l,-1), (0,-4-1). 
(b) Find the total resultant force and moment about the origin of the stress vectors acting on 
the square of part (a). 
4.8. Do the previous problem if the stress distribution is given by 

and all other qj = 0. 

4.9. Do problem 4.7 for the stress distribution 
T11= a, T21= T12 = ax3 

and all other qj = 0. 

4.10. Consider the following stress distribution for a circular cylindrical bar 
0 -ax3 +ax2 

[TI = - a 3  0 
[ a 2  0 :I 

[TI = [ -x!3 - a 3  ; x2 (IIMPa 

(a) What is the distribution of the stress vector on the surfaces defined by 
x2 + x 3  = 4, X I =  0 and xl = Z ?  

(b) Find the total resultant force and moment on the end facexl= 1. 

4.11. An elliptical bar with lateral surface defined by x: + 2rz = 1 has the following stress 
distribution 

2 2  

(a) Show that the stress vector any point(xlj2j3) on the lateral surface is zero. 

(b) Find the resultant force and resultant moment about the origin 0 of the stress vector on 
the left end facexl = 0. 

Note: sx&4 2 = Jt and sxyi.4 2 = 5 
8 '  

4.12. For any stress state T., we define the deviatoric stress S to be 
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s = T- (+) I 

where TM is the first invariant of the stress tensor T. 
(a) Show that the first invariant of the deviatoric stress vanishes. 
(b) Given the stress tensor 

evaluate S 
(c) Show that the principal direction of the stress and the deviatoric stress coincide. 
(d) Find a relation between the principal values of the stress and the deviatoric stress. 
4.13. An octahedral stress plane is defined to make equal angles with each of the principal 
axes of stress. 
(a) How many independent octahedral planes are there at each point? 
(b) Show that the normal stress on an octahedral plane is given by one-third the first stress 
invariant. 
(c) Show that the shearing stress on the octahedral plane is given by 

where TI, T2, T3 are the principal values of the stress tensor. 

4.14. (a) Let m and n be two unit vectors that define two planesM and N that pass through 
a point P. For an arbitrary state of stress defined at the point P, show that the component of 
the stress vector t,,, in the n- direction is equal to the component of the stress vector t,, in the 
m-direction. 
(b) If m = eland n = e2, what does the result of part (a) reduce to? 

4.15. Let m be a unit vector that defines a plane M passing through a point P. Show that the 
stress vector on any plane that contains the stress traction fm lies in the M-plane. 

4.16. Let t,,, and be stress vectors on planes defined by the unit vectors m and n and pass 
through the point P. Show that if k is a unit vector that determines a plane that contains t,,, 
and t,,, then t,,, is perpendicular to m and n. 

4.17. True or false 
(i) Symmetry of stress tensor is not valid if the body has an angular acceleration. 
(ii) On the plane of maximum normal stress, the shearing stress is always zero. 
4.18. True or false 
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(i) On the plane of maximum shearing stress, the normal stress is zero. 
(ii) A plane with its normal in the direction of el + 2e2 - 2e3 has a stress vector 
t =50el + 100e2 - 1005 MPa. It is a principal plane. 

4.19. Why can the following two matrices not represent the same stress tensor? 
100 200 40 40 100 60 

-3; I;:] MPa 1:: 10; MPa. 

4.20. Given a 

[TI = 100 0 0 Mpa 

(a) Find the magnitude of shearing stress on the plane whose normal is in the direction of 
el + e2. 

(b) Find the maximum and minimum normal stresses and the planes on which they act. 
(c) Find the maximum shearing stress and the plane on which it acts. 
4.21. The stress components at a point are given by 

[ :l::] 

T11= 100MPa, T22 = 300 MPa, T33 = 400 MPa, T12 = Ti3 = T z  = 0 
(a) Find the maximum shearing stress and the planes on which it acts. 
(b) Find the normal stress on these planes. 
(c) Are there any plane/planes on which the normal stress is 500 MPa? 
4.22. The principal values of a stress tensor T are: Tl = 10 MPa , T2 = - 10 MPa and 
T3 = 30 MPa. If the matrix of the stress is given by 

Tl1 0 0 

0 2 T33 
[TI = [ 0 1 21 X lOMpa 

find the value of T11 and T33. 

4.23. If the state of stress at a point is 
0 0  

0 400 
[TI = ['" -200 O]  kPa 

find (a) the magnitude of the shearing stress on the plane whose normal is in the direction of 
2e l+  2e2 + e3, and (b)the maximum shearing stress. 

4.24. Given 
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[TI = 4 1 0 MPa. [: : :] 
(a) Find the stress vector on the plane whose normal is in the direction el + e2. 

(b) Find the normal stress on the same plane. 
(c) Find the magnitude of the shearing stress on the same plane. 
(d) Find the maximum shearing stress and the planes on which this maximum shearing stress 
acts. 
4.25. The stress state in which the only non-vanishing stress components are a single pair of 
shearing stresses is called simple shear. Take T12 = T21 = r and all other qj = 0. 

(a) Find the principal values and principal directions of this stress state. 
(b) Find the maximum shearing stress and the plane on which it acts. 
4.26. The stress state in which only the three normal stress components do not vanish is called 
tri-axial stress state. Take T11= (TI, T22 = 9, T33 = a3 with ~ 1 > ~ 2 > ~ 3  and all other qj = 0. 
Find the maximum shearing stress and the plane on which it acts. 
4.27. Show that the symmetry of the stress tensor is not valid if there are body moments per 
unit volume, as in the case of a polarized anisotropic dielectric solid. 
4.28. Given the following stress distribution 

0 x2 :I [ O  

x1 + x 2  T12(Xl*Y2) 
[TI = T12(XlJ2) x 1 -  2 2  

find T12 so that the stress distribution is in equilibrium with zero body force and so that the 
stress vector on x1 = 1 is given by t = (1 + x2)el+ (5 - x2)ez. 

4.29. Suppose the body force vector is B = -ge3, whereg is a constant. Consider the following 
stress tensor 

[TI = a  -x3 0 -x2 [ I:: T31] 
and find an expression for T33 such that T satisfies the equations of equilibrium. 

430. In the absence of body forces, the equilibrium stress distribution for a certain body is 
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(a) Find the value of C. 
(b) The boundary plane x1 - x2 = 0 for the body is free of stress. Determine the values of A 
and B. 
431. In the absence of body forces, do the stress components 

2 2 Tll = a [x$ + Y (XI - x$)], T22 = a [q + Y (x$ - xf)]. 

T33 = a v (xl + x2), TI2 = -2a vx1x2, T u  = T u  = 0. 2 2  

satisfy the equations of equilibrium? 
432. Repeat the previous problem for the stress distribution 

[TI = a  2x1 -x2 x 1 - 3 2  0 
Xl+X2 2x1-x2 

[ o  0 1 1  
433. Suppose that the stress distribution has the form (called plane stress) 

(a) What are the equilibrium equations in this special case? 
(b) If we introduce a function (p(x1~2) such that 

will this stress distribution be in equilibrium with zero body force? 
434. In cylindrical coordinates (r,8,z), consider a differential volume of material bounded by 
the three pairs of faces r = r,, r = ro + dr, 8 = e,, 8 = 8, + de and z = z,, z = z, + dz. 
Derive the equations of motion in cylindrical coordinates and compare the equations with 
those given in Section 4.8. 
435. Verify that the stress field of Example 4.8.1 satisfies the z-equation of equilibrium in the 
absence of body forces. 
436. Given the following stress field in cylindrical coordinates 

3Pz3 Tee= 0, Tzz = -- 3Pr2z T =-- 
2zR5 ' 2nR5 

IT 

Verify that the state of stress satisfies the equations of equilibrium in the absence of body force. 



216 Problems 

437. For the stress field given in Example 4.9.1, determine the constants A and B if the inner 
cylindrical wall is subjected to a uniform pressurep, and the outer cylindrical wall is subjected 
to a uniform pressurep,. 

438. Verify that Eq. (4.8.2b) and (4.8.2~) are satisfied by the stress field given in Example 4.9.2. 
439. In Example 4.9.2, if the spherical shell is subjected to an inner pressure ofpi and an 
outer pressure ofp,, determine the constant A and B 

4.40. Prove that for any tensor A(X1, X2, X3 ) 

a - 1  aA 
-detA = detA(A axm 

4.41. The equilibrium configuration of a body is described by 
1 1 

If the Cauchy stress tensor is given by T11 = 1000 MPa., all other 

(a) Calculate the first Piola-Kirchoff stress tensor. 
(b) Calculate the second Piola-Kirchoff stress tensor. 
4.42. The equilibrium configuration of a body is described by 

= 0. 

1 
x 1 =  -lx1, 2 x2 = 2x3, x3 = -4x, 

If the Cauchy stress tensor for this body is 

1 : -!oU]Mpa 

(a) What is the corresponding first Piola-Kirchhoff stress tensor? 
(b) What is the corresponding second Piola-Kirchhoff stress tensor? 
(c) Calculate the pseudo stress vector associated with the first Piola-Kirchhoff stress tensor on 
the e-j - plane in the deformed state. 

(d) Calculate the pseudo stress vector associated with the second Piola-Kirchhoff stress tensor 
on the e3 - plane in the deformed state. 


