Kinematics of a Continuum

The branch of mechanics in which materials are treated as continuous is known as
continuum mechanics. Thus, in this theory, one speaks of an infinitesimal volume of material,
the totality of which forms a body. One also speaks of a particle in a continuum, meaning, in
fact an infinitesimal volume of material. This chapter is concerned with the kinematics of such
particles.

3.1 Description of Motions of a Continuum

In particle kinematics, the path line of a particle is described by a vector function of time,
ie.,
r=1xt) (ia)
where r(t) = x(£)e; +y(t)ey+z(t)es is the position vector. In component form, the above equa-
tion reads:

x=x(), y=y(@) and z=2z(t) (ib)
If there are N particles, there are N pathlines, each is described by one of the equations:
L, = L(t), n=12.N (ii)

That is, for the particle number 1, the path line is given by ry(t), for the particle number 2, it
is given by ry(t), etc.

For a continuum, there are not only infinitely many particles, but within each and every
neighborhood of a particle there are infinitely many other particles. Therefore, it is not
possible to identify particles by assigning each of them a number in the same way as in the
kinematics of particles. However, it is possible to identify them by the positions they occupy
at some reference time ¢,,. For example, if a particle of a continuum was at the position (1,2,3)
at the reference time ¢, , the set of coordinates(1,2,3) can be used to identify this particle. In
general, therefore, if a particle of a continuum was at the position (X1,X5,X3) at the reference
time ¢,, the set of coordinate (X1,X7,X3) can be used to identity this particle. Thus, in general,
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80 Kinematics of a Continuum

the path lines of every particle in a continuum can be described by a vector equation of the

Fig. 3.1

form
x = x(X;t) with x(Xt,) =X 3.1.1)
where x = xje;+x,e,+x3e3 is the position vector at time ¢ for the particle P which was at
X = Xje1+Xpe,+X3e3 (see Fig. F3.1).
In component form, Eq. (3.1.1) takes the form:
X1 = x1 (X1,X2,X3,8)
X = x3 (X1,X0,X3,1) (3.1.2a)
x3 = x3 (X1,Xp,X3,f)
or
x; = x; (X1,X0,X3,t) with x; (X1,X2.X3.8,) = X; (3.1.2b)

In Egs. (3.1.2), the triple (X1,X5,X3) serves to identify the different particles of the body

and is known as material coordinates. Equation (3.1.1) or Egs. (3.1.2) is said to define a
motion for a continuum; these equations describe the pathline for every particle in the
continuum, They may also be called the kinematic equations of motion.

Example 3.1.1

Consider the motion
x = X+ ktX; g @)
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where x = xje;+xye,+x3e3 is the position vector at time ¢ for a particle which was at
X = X e;+X,e,+X3e3 at ¢t =0. Sketch the configuration at time ¢ for a body which at ¢=0
has the shape of a cube of unit sides as shown in Fig. 3.2.

Solution. In component form, Eq. (i) becomes

x1 = X1+ktX, (iia)
X2 = X2 (iib)
=X (iic)
X2
kt c' .
c B B
Fig.3.2

Att =0, the particle O is located at (0,0,0). Thus, for this particle, the material coordinates are

X1=0, X2=0 and X3=0.
Substituting these values for X; in Eq. (ii), we get, for alltime ¢, (xy, x5, x3) = (0,0,0). In other
words, this particle remains at (0,0,0) at all times.
Similarly, the material coordinates for the particle 4 are
(XI,XZ’XZB) = (1’0’0)
and the position for 4 at time ¢ is
(r1x263) = (1,0,0)

Thus, the particle 4 also does not move with time. In fact, since the material coordinates for
the points along the material line OA are

(X1, X2, X3) = (X1,0,0)
Therefore, for them, the positions at time ¢ are
(xla X2, x3) = (X l’OaO)
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so that the whole material line OA4 is motionless.

On the other hand, the material coordinates for the material line CB are

(X1, Xp, X3) = (X1,1,0)
so that according Eq. (ii)
(x1,x2,x3) = (X1 + k2, 1,0)

In other words, the material line has moved horizontally through a distance of k¢ (see Fig. 3.2).

The material coordinates for the material line OC are (X3, X, X3) = (0,X3,0), so that for
the particles along this line (xq, x5, x3) = (ktX2,X5,0). The fact that x;=ktX, means that the

straight material line OC remains a straight line OC "at time ¢ as shown in Fig. 3.2. The situation
for the material line AB is similar. Thus, at time ¢, the side view of the cube changes from that
of a square to a parallelogram as shown. Since x3 = X3 at all time for all particles, it is clear
that all motions are parallel to the plane x3 =0. The motion given in this example is known
as simple shearing motion.

Example 3.1.2

Yl = —Xl, Y2 = X2, and Y3 = X3. (l)

Express the simple shearing motion given in Example 3.1.1 in terms of (Y7, Y3, Y3)

Solution. Straight forward substitutions give

x1= ~Y1+ktY,
Xy = Y2 (ll)
X3 = Y3.
These equations, i.e.,
x; = x(Y1,Y2,Y3,0) (iii)

obviously also describe the simple shearing motion just as the equations given in the previous
example. The triples (Y3,Y5,Y3) are also material coordinates in that they also identify the
particles in the continuum although they are not the coordinates of the particles at any time.
This example demonstrates the fact that while the positions of the particles at some reference
time ¢, can be used as the material coordinates, the material coordinates need not be the
positions of the particle at any time. However, within this book, all material coordinates will
be coordinates of the particles at some reference time.
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Example 3.1.3
The position at time ¢, of a particle initially at (X1,X3,X3), is given by the equations:
x=X1+ X1 +X), =X+ (X1 +Xo), x3=X; @)
(a) Find the velocity at t=2 for the particle which was at (1,1,0) at the reference time.

(b) Find the velocity at t=2 for the particle which is at the position (1,1,0) at t=2.
Solution. (a)

ax dx (ii)
vy = (8—[‘1) = Xl + X27 V2 = (th-) = Xl + X2’ V3 = 0
X;—fixed X;—fixed
For the particle (X1,X,X3) = (1,1,0), the velocity at ¢ = 2 (and any time ¢) is
vi=1+1=2 v=1+1=2 v3=0 (iit)
ie.,
v=2e; + 2 (iv)

(b)To calculate the reference position (X;,X>,X3) which was occupied by the particle which
is at (x1,x2,x3) = (1,1,0) at = 2, we substitute the value of (x1,x9x3) = (1,1,0) and t= 2 in
Eq. (i) and solve for (X1,X7,X3), i.e.,

1= 3X1 + 2X2, 1= 2X1 + 3X2 (V)
Thus, X1 = %, X5 = % Substituting these values in Eq. (ii), we obtain

2 2 vi
V1=§, V2='§, V3=0 ( )

3.2 Material Description and Spatial Description

When a continuum is in motion, its temperature ©, its velocity v, its stress tensor T (to be
defined in the next chapter) may change with time. We can describe these changes by:

L. Following the particles, i.e., we express © , v, T as functions of the particles (identified by
the material coordinates, (X1,X5,X3)) and time ¢ In other words, we express

© = O(X1,X2,X3,1) (32.1a)
v = VX1, X, X3,) (3.2.1b)

T = T(X1.X,.X5.1) (B32.1¢c)
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Such a description is known as the material description. Other names for it are: Lagrangian
description and reference description.

II. Observing the chan‘ges at fixed locations, i.e., we express, ©,v,T etc. as functions of fixed
position and time. Thus,

© = O(xy,0p.3t) (3.2.2a)
v= v(xl,xz,x3,t) (3.2.2b)
T = T(ry,003.) (32.20)

Such a description is known as a spatial description or Eulerian description. The triple
(x1,%2,%3) locates the fixed position of points in the physical space and is known as the spatial
coordinates. The spatial coordinates x; of a particle at any time ¢ are related to the material
coordinates Xj of the particle by Eq. (3.1.2). We note thatin this description, what is described
(or measured) is the change of quantities at a fixed location as a function of time. Spatial
positions are occupied by different particles at different times. Therefore, the spatial descrip-
tion does not provide direct information regarding changes in particle properties as they move
about. The material and spatial descriptions are, of course, related by the motion. That is, if
the motion is known then, one description can be obtained from the other as illustrated by the
following example.

Example 3.2.1

Given the motion of a continuum to be
x1=X1thkt Xy,  x=X; x3=X3 (@)

If the temperature field is given by the spatial description
O =x;+x, (ii)
(a)find the material description of temperature and (b)obtain the velocity and rate of change

of temperature for particular material particles and express the answer in both a material and
a spatial description.

Solution. (a)Substituting (i) into (ii), we obtain
O = X; +(ke+1)X>. (iii)

(b) Since a particular material particle is designated by a specific X, its velocity will be given
by

t Note: the superposed ~ and the superposed ~ are used to distinguish different functions for the same
dependent variable.
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(ax,-) (iv)
Vi= 1.,
% ) x.—fixed

v1 = kXp, vo =v3=0 v)

so that from Eq. (i)

This is the material description of the velocity field. To obtain the spatial description, we make
use of Eq. (i) again, where we have x; = X>, so that

vi =kxy, Vo =v3=0 (vi)
From Egq. (iii), the rate of change of temperature for particular material particles is given by

(3_@) = kX, = kty (vii)
! X, —fixed

We note that even though the given temperature field is independent of time, each particle
experiences changes of temperature, since it flows from one spatial position to another.

3.3 Material Derivative

The time rate of change of a quantity (such as temperature or velocity or stress tensor) of
a material particle, is known as a material derivative. We shall denote the material derivative
by D/Dt.

(i)When a material description of the quantity is used, we have

© = 6(X1,X2,X3,1) (33.1)
Thus,
D® _ (46 (332)
De ot X.~fixed

(ii) When a spatial description of the quantity is used, we have
© = O(x1,xp3.4) (333)

where x;, the positions of material particles at time ¢, are related to the material coordinates
by the motionx; = x,(Xl,Xz,X3,t) Then,

(1_)9_) _ (2@) _0¥ 30 96 (5@) @)
Dt ot X —fixed dxq Ot dxy Ot dx3 Ot +.—fixed
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ax 1 ax2 ax3
at’ at’ ot
Cartesian coordinates are used, these are the velocity componentsv; of the particle X;. Thus,
the material derivative in rectangular coordinates is

Do _i© 0, 0 0 (3.3.4a)
Dt ot Yar VZaxy daxs

wher When rectangular

or,

pe_so
Dt o

VO (3.3.4b)

where it should be emphasized that these equations are for © in a spatial description, i.e.
© = O(xy,xp,x3,1). Note that if the temperature field is independent of time and if the veloc1ty

of a particle is perpendicular to VO (i.e, the particle is moving along the path of constant ©)

DO
then, as expecte D =(.

Note again that Eq. (3.3.4a) is valid only for rectangular Cartesian coordinates, whereas
Eq. (3.3.4b) has the advantage that it is valid for all coordinate systems. For a specific
coordinate system, all that is needed is the appropriate expression for the gradient. For
example, in cylindrical coordinate (r, 6, z),

v = v tvgegti,e, (33.5)

and from Eq. (2D2.3)
Vo = @er la_Cé)_ee 6@ (3.3.6)
Thus,
DO 30 30 V940 30 (33.7)

+v, o+ S5
Dt ot or r 90

In spherical coordinates (7,0,9)

V=V, e+vgegtvy ey (3.3.8)
and from Eq. (2D3.9)
_ 90 _130 __1 9® (339)
(V8), =% (VO),=7 30 (V@)¢_rsin05¢
Thus,
DO _30 9O V9O Yy 3O (3.3.10)

Dt o Ve T 90 rsing 5
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Example 3.3.1

Use Eq. (3.3.4), obtain QD% for the motion and temperature field given in the previous

example.

Solution. From Example 3.2.1, we have

V= (I(Xz)el (l)
and
O = x1+xp (ii)
The gradient of © is simply
VO = e;+ey (iii)
Therefore,
DO (iv)

D =0t (keg)er~ (e +ep)=kxy
which agrees with the previous example.

3.4 Acceleration of a Particle in a Continuum

The acceleration of a particle is the rate of change of velocity of the particle. It is therefore
the material derivative of velocity. If the motion of a continuum is given by Eq. (3.1.1), i.e.,

x=x(X;t) with x(X¢,) =X
then the velocity v, at time ¢, of a particle X is given by
e (%:t_x) _ % (3.4.1)
X;—fixed

and the acceleration a, at time ¢, of a particle X is given by

_fav _Dv (34.2)
A7 o Dt
X;—fixed

Thus, if the material description of velocity, v(X,t) is known (or is obtained from Eq. (3.4.1),
then the acceleration is very easily computed, simply taking the partial derivative with respect
to time of the function v(X,¢). On the other hand, if only the spatial description of velocity [i.e.,
v = v(x,t)] is known, the computation of acceleration is not as simple.

(A)Rectangular Cartesian Coordinates (x1,x5,x3). With

v=v1(x1.xpx3,0)e1 Hva(rp,xox30)ex 4 va(xy o3t )es (3.4.3)
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we have, since the base vectors e 1,e 5, and e 3 do not change with time

Dv DV1 +DV2 DV3 (3.4.4)
I A AN

where
Dv; av,+ v v; Py av,-+ vy i av; (3.4.53)
Dt ot dxq axp dx3
i.e,
;v (3.4.5b)
a,-=-5+v]-a—xj

Or, in a form valid for all coordinate systems:
az + (V) v (3.4.5¢)
In dyadic notation, the above equation is written as

. 3_: s (3.4.5d)

where V = e, E
(B)Cylindrical Coordinates (r,0,z). With
v = v (r,0,2)e,+vy(r,0,2)eg+v,(r,0,2)e, (34.6)
and,[ see Eq. (2D2.4)]
v, 1 av, v, |
or 08) 5
_— 6vo 1 ave dvg (3.4.7)
M=% 7+ &
LT
ar r dvg 9z
we have,
v, v, vgldv av, (3.4.8a)
a, = 6_+ Far ——+— ('a—o—ve) +vz¥

dvg dvg vg{dvg dvg (3.4.8b)
ag = ot +v’6 +— (69 +Vz¥
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v, v, vgdv, av, (3.4.8¢c)

@ = 5 it a0 e

(C) Spherical Coordinates (r,0,¢). With

V= Vr(r,e,‘p)er'*'V6(7a0,¢)e0+v¢(’,9,¢)e¢ (34'9)
and, [see Eq. (2D3.17)]
v 1oy V1 (e
ar r\90 ") ising\dag veSl
ov, av dvg
fvvl = ;r—e- -’1j 09 +v, E}Hé 3 —v¢c050) (3:4.10)
vy 10vg 1 Ovg v,+v@cot6
or r 40 rsin6 9¢ r
we have,
v, ov, vg|oy av,
ar = _67r+vra_rr+7 (a—or—ve) +g%(a¢ _v¢81n0 (3-4.113)
dvg dvg vg[dvg dvg
a9 = 5t ty (W”' +it g Ve (4110)
6V¢ 6V¢ Ve 3V¢ _Q (3 4 llc)
ap =, — v P +W+rsl 6\ 39 +v,5inf+vgcosd -

Example 3.4.1

(a) Find the velocity field associated with the motion of a rigid body rotating with angular
velocity @ = we 5 in Cartesian and in cylindrical coordinates.

(b) Using the velocity field of part (a), evaluate the acceleration field.
Solution. (a) For a rigid body rotation

V=X X @)
In Cartesian coordinates
v = wezX{(xie1 txey+x3e3) (i)
ie.,
V= —wxy Vvp=wx; v3=10 (iii)

In cylindrical coordinates

v = we,X(re,) = wreg (iv)
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ie.,
v,=0, vg=wr, v,=0 W)
(b)We can use either Eq. (iii) or Eq. (v) to find the acceleration.
Using Eq. (iii) and Eq. (3.4.5b), we obtain
a1 = 0+ (=0 ) (0)+(@ x1)(-@)+(O)(O)=—0"x;
a; = 0+(~0 x)(@) +(@ x)(O)+(O)NO)=—0"x,
az = 0
ie.,
a= —wz(xlel+x2e2) (Vl)
Or, using Eq. (v) and Egs. (3.4.8), we obtain

2
ar = 0+(0)(0)+-2 (0-v) +(O)(O) = —=- = ~o’r

Ve
ag = 0+(0)(w)+7(0+0) +(0)(0) =0
a,=0
ie.,
a= —a)zre, (vii)
We note that (xje;+xpep) = re, so that (vi) and (vii) are the same. We also note that in this

example, even though at every spatial point there is no change of velocity with time, for every
material point, there is a rate of change of velocity due to a change of direction at every point
as it moves along a circular path giving rise to a centripetal acceleration.

Example 3.4.2
Given the velocity field
I U T & @
1574 27 14 37 144

(a) Find the acceleration field and (b) find the pathline x; = x; (X;t)
Solution. (a) With

N (i)
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we have
av,- _ Xi (lll)
o (1+£)
Also, since
ax;
—L=¢;
axj ]
so that
av,' _ 2’]_ (lV)
a1+t
therefore,
NP B S, )
Tag 1+t 14t (1 4 )2
Thus,
v; v X; X; vi
a,-=—'+vj5—'=— ’2+ 12=0 (vi)
o A (140" (1+0)
ie.,

a=0 (vii)

We note that in this example, even though at any spatial position (except the origin ), the
velocity is observed to be changing with time, but the actual velocity of a particular particle is
a constant, with zero acceleration.

(b)Since
ax; %i : (viii)
v,-=(—) = i=1273
ot X - fixed 1+¢
therefore,
f‘l dxy _ f‘ dt (ix)
X, X1 0 1+t
so that
Iy —InX;=In(1+¢) (x)
Thus,

x1=X1(1+1) (xi)
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Similarly,
x=X,(1+¢) and x3=X3(1+¢) (xii)

3.5 Displacement Field

The displacement of a particle from position P to position ( is the vector PQ. Thus, the
displacement vector of a particle, from the reference position to the position at time ¢, is given
by

=x(Xf)-X (3.5.1)

From the above equation, it is clear that whenever the pathline x(X¢) of a particle is known,
its displacement field is also known. Thus, the motion of a continuum can be described either
by the pathlines equation Eq. (3.1.1) or by its displacement vector field as given by Eq. (3.5.1).

Example 3.5.1

The position at time ¢, of a particle initially at (X1,X5,X3) is given by

x1 =X H(X+X0), x; =Xo+(X1+Xo), x3=X;3 (1)
Find the displacement field.
Solution.
up = x1—X1=X1+Xo)t, ur=x—X3 = (X1+Xo)t, uz=x3—X3=0 (ii)
Example 5.2
The deformed configuration of a continuum is given by
*1 = %Xb Xy =Xy x3=2X3 ®
Find the displacement field.
Solution. The displacement components are:
(i)

up = %X1—X1 = _%Xl, Uy = Xo-X=0, u3=X3-X3=0

This displacement field represents a uniaxial contraction (the state of confined compression).
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3.6 Kinematic Equation For Rigid Body Motion

(a) Rigid body translation: For this motion, the kinematic equation of motion is given by
x=X+c(t) (3.6.1)
where ¢(0) = 0. We note that the displacement vector, u = x—X = ¢(¢) , is independent of X.

That is , every material point is displaced in an identical manner, with the same magnitude and
the same direction at time ¢.

(b) Rigid body rotation about a fixed point: For this motion, the kinematic equation of
motion is given by
x—b = R(t)(X—b) (3.6.2)

where R(¢) is a proper orthogonal tensor (i.e., a rotation tensor, see Sect. 2B.10) with R(0) =1,
and b is a constant vector. We note that the material point X=b is always at the spatial point
x=b so that the rotation is about the fixed point x=b.

If the rotation is about the origin, then b = 0 and x = R(#)X.

Example 3.6.1

Show that for motions given by Eq. (3.6.2) there is no change in distance between any pair
of material points.

Solution. Consider two material points XD ang x@ , we have, from Eq. (3.6.2)
xD_4@ = R(t)(X(l)—X(z)) @)

That is, the material vector AX=xD-_x® changes to Ax=xD—x? where
Ax = R(?)AX. (ii)
Now, the square of the length of Ax is given by
Ax-Ax = R($)AX - R(H)AX (iii)
The right side of the above equation is, according to the definition of transpose of a tensor
AX- R(t)RT(t)AX. and for an orthogonal tensor, RR” = 1, 50 that
Ax-Ax = AX-AX (iv)
In other words, the length of AX does not change.

(c)General rigid body motion: The kinematic equation describing a general rigid body
motion is given by

x = R(t)(X—b)+c() (3.6.3)

where R(t) is a rotation tensor with R(0) =1 and ¢(t) is a vector with ¢(0) =b.
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Equation (3.6.3) states that the motion is described by a translation ¢(¢), of an arbitrary
chosen material base point X=b plus a rotation R(¢).

Example 3.6.2

From Eq. (3.6.3) derive the relation between the velocity of a general material point in the
rigid body with the angular velocity of the body and the velocity of the arbitrary chosen material
point.

Solution. Taking the material derivative of Eq. (3.6.3) , we obtain
v =R(X-b)+(r)
Now, from Eq. (3.6.3), we have
(X—b) = RT(x~¢) (if)
Thus
v=RR (x-¢) + &) (iif)
Since RR? = I, RR7+RR” = 0, so that RR” is antisymmetric which is equivalent to a dual
(or axial) vector @ [see Sect. 2B16], thus,
v =wX(x—¢) + ¢(t) (iv)
If we measure the position vector r for the general material point from the position at time
t of the chosen material base point, i.e., r = (x—c¢), then
v =@Xr+ ¢(f) )

3.7 Infinitesimal Deformations

There are many important engineering problems which involves structural members or
machine parts, for which the displacement of every material point is very small (mathemati-
cally infinitesimal) under design loadings. In this section, we derive the tensor which
characterizes the deformation of such bodies.

Consider a body, having a particular configuration at some reference time ¢, , changes to
another configuration at time ¢. Referring to Fig. 3.3, a typical material point P undergoes a
displacement u, so that it arrives at the position

x = X+u(Xy) (i)
A neighboring point Q at X+dX arrives at x-++dx which is related to X+dX by:
x+dx = X+dX+u(X+dX) (ii)

Subtracting Eq. (i) from Eq. (ii), we obtain
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Fig. 3.3

dx = dX+u(X+dXf)—u(X) (ii)

Using the definition of gradient of a vector function [see Eq. (2C3.1)], Eq. (iii) becomes
dx = dX+(Vu)dX (3.7.1a)

where Vuis a second-order tensor known as the displacement gradient. The matrix of Vu with
respect to rectangular Cartesian coordinates ( with X = X;e; and u = y;¢;) is

B h

duy duy oy
K a%
Quy dup 3y (3.7.1b)
X, 84X, d0X5
dusz Ouz dus
*x & X

[Vu] =

Example 3.7.1
Given the following displacement components
u1=kX%, upy =u3 = 0. @
(a) Sketch the deformed shape of the unit square O4BC in Fig. 3.4

(b) Find the deformed vector (i.e., dx® and dx?® ) of the material elements ax® = dXie;
and dX? = dX,e; which were at the point C.

(c) determine the ratio of the deformed to the undeformed lengths of the differential elements
(known as stretch) of part (b) and the change in angle between these elements.
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X2
axz ax2
} c Ao B L'k—l o
w71
€,
0| e, A
Fig. 3.4

Solution. (a) For the material line OA, X, = 0, therefore, u; = uy = u3 = 0. That is, the
line is not displaced. For the material CB, X, = 1, u; = k, the line is displaced by k units to

the right. For the material line OC and 4B, u; = kX% , the lines become parabolic in shape.
Thus, the deformed shape is given by OAB'C’ in Fig. 3.4.

(b) For the material point C, the matrix of the displacement gradient is

0 2kX; 0 02 0
(Val={0 0 0 =10 0 0 (ii)
0 0 0 X,=1 0 00
Therefore, from Eq. (3.7.1a)
dx(l)=dX(1)+(Vu)dX(1)=dX1e1+0=dX1e1 (lll)
aXD=dX® +(Vu)dXP=dX,e,+2%kdXre; = dXy(ey+2ke;) (iv)

(c) From Egs. (iii) and (iv), we have ldx(l)l =dXq, Idx(2)| = dX,(1 +4k"2 | thus,

|dxD| |dx@| 2.4 )
19X 1 _1 and =(1+412)
| axD | | axd |
and
D gx® 2% (vi)

1dXD[ 1P| (1+4k3)"

If k is very small, we have the case of small deformations and by the binomial theorem, we
have , keeping only the first power of k,
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ey @ (vii)
Jl;’—;(—l)lL=1 and JI%{)%(“Z’CZ)”l

and
cosf=2k (viii)
if y denote the decrease in angle, then
c050=cos(Z2t——y)=siny=2k

That is, for small &,
y=2k (ix)

We can write Eq. (3.7.1a), i.e., dx = dX+(Vu)dX as

dx = FdX (372)

where
F =1+Vu (3.7.3)

To find the relationship between ds, the length of dx and dS, the length of dX, we take the dot
product of Eq. (3.7.2) with itself:

dx-dx = FdX -FdX = dX-FFdX (3.7.4a)
ie.,

(ds)? = dX-FTFax (3.7.4b)

If F is an orthogonal tensor, then FIF = I, and
2 2
(ds)” = (dS)
Thus, an orthogonal F corresponds to a rigid body motion (translation and/or rotation).
Now, from Egq. (3.7.3),

F'F = (1+Vu) (I+Vu) = I+Vu+(Vu) +(Vu) Vu (3.7.5)

In this section, we shall consider only cases where the components of the displacement vector
as well as their partial derivatives are all very small (mathematically, infinitesimal ) so that the

absolute value of every component of (Vu)TVu is a small quantity of higher order than those
of the components of Vu. For such a case, the above equation becomes:
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F'F = I+Vu+(Vu) =1+ 2E (3.7.6)

where

E= % [(Vu)'+Vu ] = symmetric part of Vu (3.7.7)

From Eq. (3.7.4b) and (3.7.6), it is clear that the tensor E characterizes the changes of lengths
in the continuum undergoing small deformations. This tensor E is known as the infinitesimal
strain tensor.

Consider two material elements dX® and dx®. Due to motion, they become
dxV and dx® attimer withdx) = FaX® and dx® = Fax®. Taking the dot product of
dx? and d)i(z), we obtain

V. axD = ax® . FTrgx?® (3.7.8)
Thus, using Eq. (3.7.6), we have the important equation
Y. ax@ = 2xV . gx@ 4 24x D . ggx@ (3.7.9)

This equation will be used in the next section to establish the meanings of the components of
the infinitesimal strain tensor E.

The components of the infinitesimal strain tensor E can be obtained easily from the
components of the gradient of u given in Chapter 2. We have

(a) In rectangular coordinates:

_1{ow oy (3.7.10a)
Ey=3|ox"3%,
or,
[ o 1fon ) 1fom dug)]
X,  2|ox, ax;| 2|ax; X,
1 6u1 auz 6u2 1 6u2 au3
Y s W O 1[0 ou3 3.7.10b
[B1=121%x, " ox, ax, 2|3x;  ax, ( )
1(8uy du3) 1f0up Ous Suz
BEADA I DAD? x|

(B) In cylindrical coordinates:
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oy 113 Mg tg) 1o 2y '
o 7 00 r| 2|az” ar
1[ 104, oug ug 1(dug 1(dug 104 37.11
ke 5[ 0+ ar r] (ae vl |E )| CTW
1o o) © 1faw 13 auy
2 az+ar 2] 8z roug 9z
L
(¢) In spherical coordinates:
' oy 115, g so 1 L iy ty
or 2|r a0 r AL r
El= 1{10u, dug ug 1 ﬂl& 1] 1 6ug_u¢cot0+1au,2
(E1= 2(rd0" ar 39 ¥ 2 | rsinf 0@ r r 96
1] 1 6u,+a_u,£_£42 1| 1 dug J,cotO 19uy 1 dug u,+ugcot0
2|rsin00®  ar r | 2|rsin6 9¢ r r 86 rsinf 0¢ r
(3.7.12)
3.8 Geometrical Meaning of the Components of the Infinitesimal Strain Tensor

(a)Diagonal elements of E

Consider the single material element dXW = gx® = gx = (dS)n , where n is a unit vector

and dS is the length of dX. Letds denote the deformed length of dxV, i.e., ds = |dx(D|.
Then, Eq. (3.7.9) gives
(ds)®=(dS)* = 2(dS)’n En
Now, for small deformation (ds)>—(dS)? = (ds+dS)(ds—dS) = 2dS(ds—dS). Thus
dY;SdS =n-En = E,, (no sum on n) (3.8.1)

This equation states that the unit elongation (i.e., the increase in length per unit original
length ) for the element which was in the direction n, is given by n-En. In particular, if the
element was in the e; direction in the reference state, then n = e, and E;; = e;-Ee; so that

E11 is the unit elongation for an element originally in the x;~direction. Similarly,
Ey, is the unit elongation for an element originally in the x,—direction and

E33 is the unit elongation for an element originally in the x3—direction.



100 Kinematics of a Continuum

These components (the diagonal elements of the tensor E ) are also known as the normal
strains.

(b)The off diagonal elements:
Let ax® = dSym and dx@ = dS;n, where m and n are unit vectors perpendicular to
each other. Then Eq. (3.7.9) gives
(ds1)(dsp)cos6 = 2(dS1)(dS>)m-En
where 6 is the angle between dxX and ax®. If we let 6 = (*5)—7, then y will measure the
small decrease in angle between dX® and dX(z), known as the shear strain. Since

cos(%—y) = siny

and for small strain
. dsy _ dsp
siny =, Ezl, —‘Ez 1
therefore,
y =2m-En (3.8.2)

If the elements were in the direction of e; and e, , then m-En = Ey; so that according to
Eq. (3.8.2):

2E,, gives the decrease in angle between two elements initially in the x; and x, directions.
Similarly,

2E;5 gives the decrease in angle between two elements initially in the x; and x3 directions,
and

2E,; gives the decrease in angle between two elements initially in the x, and x3 directions.

Example 3.8.1
Given the displacement components
u = kX22 and Uy =U3 = 0, k= 10—4 (‘)

(a) Obtain the infinitesimal strain tensor E.

(b)Using the strain tensor E, find the unit elongation for the material elements

dXD = dx;e; and dX® = dXye,, which were at the point C(0,1,0) of Fig. 3.4 (which is
1%1 2 g

reproduced here for convenience). Also, find the decrease in angle between these two

elements.

(c) Compare the resuits with those of Example 3.7.1.
Solution. (a) We have
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0 2kX, 0
Vul=[0 0 ©
0 0 0

(ii)

Therefore
0 kX3 0
[E] = [(Vuf' = [KX; 0 0 (i)
0 0 0

(o) & dx?
N o Ko B ”k—l o
C B
xit /&

0 I e, A
Fig. 3.4 (repeated)

(b) At the point C, X»=1, therefore

(iv)
(E] =

o’ O
oo &
[ i

For the element dXV = dx; 1€1, the unit elongation is E;;, which is zero. For the element
dx? = dX,e,, the unit elongation is E,, which is also zero. The decrease in angle between
these elements is given by 2E,, which is equal to 2k, i.e., 2% 10™* radians.

(¢) In Example 3.7.1, we found that

V| = 1axD 51— 1ax®
l X ldIX(ll)l | = 0, | X ,dlx(lz), | = (1+4k2)1/2_1 = 1+2k2_1 = 2k2(z0) (V)

and siny = 2k=2X 1074 so that y = 2X 1074

We see that the results of this example is accurate up to the order of k.



102 Kinematics of a Continuum

Example 3.8.2
Given the displacement field
- 2V Y2 X2 e =0 - =10"*% ()
uy = k(2X1+X3), uy = k(X7-X3), u3=0 ; k=10

(2)Find the unit elongation and the change of angle for the two material elements
dx® = dXie; and dx® = dX,e, that emanate from a particle designated by X = e;—e,.

(b)Find the deformed position of these two elements dX® and 4x@.
Solution. (a) We evaluate [Vu] at (X3, X5, X3) = (1, —1,0) as

2 -20 .
[Val =k(2 20 (ii)
0 00
and therefore the strain matrix is
200
[E]=k[0 2 0 (iii)
000

Since Ej1 = Ey; = 2k, both elements have a unit elongation of 2x10™*, Further, since
E15 = 0, these line elements remain perpendicular to each other.

(b) From Eq. (3.7.1a)

dX; 2 -2 0|41 142k
[dx(l)]=[dx(l)]+[Vu][dX(1)] =10 [+k|2 2 0|| 0 |=dxy| 2k (iv)
0 0 00| o0 0
and similarly
—2k
[@xD)={dX D)+ [VulldX D) =dx; | 1+2% )
0

The deformed position of these elements is sketched in Fig. 3.5. Note from the diagram that
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i " '
Qv—
3 - 3
' —— —— = - O\
! Q P X1 2kdX 4
P ‘_dX1_‘|
3k
Fig.3.5
%Xy % (i)
a=EE = e k) 14k X
and
B~tang = 222 _ (vii)

dX,

Thus, as previously obtained, there is no change of angle between dX® and dx@.

Example 3.8.3
A unit cube, with edges parallel to the coordinates axes, is given a displacement field
uy=kXy, uy=u3=0, k=10""* (M)

Find the increase in length of the diagonal AB (see Fig. 3.6) (a) by using the infinitesimal strain
tensor E and (b) by geometry

Solution. (a) The strain tensor is easily obtained to be
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(E] = (ii)

oo &
[l )
OO

Since the diagonal 4B was originally in the direction n = g(eﬁez), its unit elongation is

given by
kool[vze] 3
E,,=n-En=[v2/2v2/2,0]|0 0 0| V22| = 5  (nosumonn) (iii)
000|| 0
Since AB = V2,
AAB = (-'zﬁ) vz (iv)
(b) Geometrically,
AB'-AB = [1+(1+k)]2-v2
or,
AAB = VZ[(1+k+k*/2)"*-1] v)

To take advantage of the smallness of k, we expand the first term in the right hand side of
Eq. (v) as

K1,k k .
(1+k+ 2) = 1+2(k+ 2) o 145 (vi)
Therefore, in agreement with Part (a) , Eq. (iv),
A4B = V2 (g) (viD)
2 BB
k=107
1
X1

A
fe— 1 —f Kk —
Fig.3.6
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3.9 Principal Strain

Since the strain tensor E is symmetric, therefore, (see Section 2B.18) there exists at least
three mutually perpendicular directions ny,nyn3 with respect to which the matrix of E is

diagonal. That is

E, 0 0
€L =|0 E 0 (3.9.1)
0 0 Ej

Geometrically, this means that infinitesimal line elements in the directions of ny,ny,n3 remain
mutually perpendicular after deformation. These directions are known as the principal
directions of strain. The unit elongation along the principal direction (i.e., Eq,E,,E3) are the
eigenvalues of E , or principal strains , they include the maximum and the minimum normal
strains among all directions emanating from the particle. For a given E, the principal strains
are to be found from the characteristic equation of E, i.e.,

P14 Li—-I;=0 (3.9.2)
where
Iy = Ey+Ep+Ey (3.9.32)
1= |En En| |Eu Es Ey Ep (3.9.3b)
27 |En Exn| |Esn Es| |En Exn
I = || (3.9.3¢)

The coefficients I1,I5, and I3 are called the principal scalar invariants of the strain tensor.

3.10 Dilatation

The first scalar invariant of the infinitesimal strain tensor has a simple geometric meaning.
For a specific deformation, consider the three material lines that emanate from a single point
P and are in the principal directions. These lines define a rectangular parallelepiped whose
sides have been elongated from the initial dimension

d51 ,dS2 and dS3
to
dS{(1+E,), dSy(1+E;) and dS3(1+E3)

where Eq,E; and E4 are the principal strains. Hence the change A(dV) in this material volume
dVis

A(dV) = (dS1)(dS2)(dS3)(1+E1)(1+E2)(1+E3)—(dS1)(dS2)(dS3)
= (dV)}(E1+E,+E3) + higher order terms in the E;’s.
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Thus, for small deformation

e= —A(ddVV) = E1+Ey+E5 = E1+Eypn+Es; (3.10.1)
This unit volume change is known as dilatation. Note also that
ou;
— . = e 3.10.2a
e=E; 3x; divu ( )
In cylindrical coordinates,
ou, 10ug u, du, (3.10.2b)
e = 0t
In spherical coordinates,
du, 10ug 2w, 1 dug ugcotf (3.10.2¢)

e=?+,60+ r +rsin03¢+ r

3.11 The Infinitesimal Rotation Tensor

Equation (3.7.1), i.e., dx = dX + (Vu)dX, can be written
dx = dX+(E+Q)dX (3.11.1)
where €, the antisymmetric part of Vu, is known as the infinitesimal rotation tensor. We
see that the change of direction for dX in general comes from two sources, the infinitesimal
deformation tensor E and the infinitesimal rotation tensor &. However, for any dX which is
in the direction of an eigenvector of E, there is no change of direction due to E, only that due

to Q. Therefore, the tensor € represents the infinitesimal rotation of the triad of the
eigenvectors of E. It can be described by a vector t! in the sense that

¢ xdX=0QdX (3.11.2)
where (see Section 2B.16)
= 3701 +Qq3e,+ Q53 (3-11.3)
Thus, Q3,,9213,92,; are the infinitesimal angles of rotation about e, ey, and es-axes, of the
triad of material elements which are in the principal direction of E.
3.12 Time Rate of Change of a Material Element

Let us consider a material element dx emanating from a material point X located at x at
time t. We wish to compute (D/Dt)dx, the rate of change of length and direction of the material
element dx. From x = x(X/t), we have
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dx = x(X+dX,£)—x(X,£) @)

Taking the material derivative of Eq. (i), we obtain

B e B

Now, N
(D/DOX(X,t) = W(X£) = V(x¢) (3.12.1)

where QX,t) and ;'Ex,t) are the material and the spatial description of the velocity of the
particle X, therefore Eq. (ii) becomes

(gt) dx = VX+dX.)—V(X,f) = V(x+dx)—v(xs) (iii)

Thus, from the definition (see Section 2C3.1) of the gradient of a vector function, we have
( % ) dx = (VX (3.12.2)

and
( % ) dx = (V,9)dx (3.12.3)
InEq. (3.12.2) the subscript X in (VX6 emphasizes that (va3 is the gradient of the material

description of the velocity field v and in Eq. (3.12.3) the subscript x in (V4v) emphasizes that
(Vyv) is the gradient of the spatial description of v.

In the following, the spatial description of the velogity function will be used exclusively so
that the notation (V) will be understood to mean (Vyv). Thus we write Eq. (3.12.3) simply as

(gt—) dx = (Vv)dx (3.124)

With respect to rectangular Cartesian coordinates, the components of (Vv) are given by

dvq ovy avl—
ary ary dr
vy dvy vy (3.12.5)
dx; dxp dx3
dvy dvy dv3

[V] =

dxy oxp dxg
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3.13 The Rate of Deformation Tensor

The velocity gradient (Vv) can be decomposed into a symmetric part and an antisymmetric
part as follows:

(VW) =D + W (3.13.1)
where D is the symmetric part, i.e.,
D= %[(Vv) + (Vv)T] (3.13.2)
and W is the antisymmetric part, i.e.,
W = 2{(7)-(")] (3.133)

The symmetric tensor D is known as the rate of deformation tensor and the antisymmetric
tensor W is known as the spin tensor. The reason for these names will be apparent soon.

With respect to rectangular Cartesian coordinates, the components of D and W are given

by:
[ 1fdvn, o) 1fdv1 s ]
axy 2|0xy dxy| 2fdrz dxq
dvy oy av vy v
D] = 1|21, 22 X2 12 N3 (3.13.4)
2 6x2 axl BX2 2 6x3 6x2
ifin ) 1o ) s
2{dx3 dxq| 2[dx3 dxp axs
L J
- 0 1 6v1 3V2 l a_vl_ 3V3 E
2 8x2 8x1 2 ax3 axl
dvy @ d d
_ Vi_oV2 0 1jovz_ov3 (3.13.5)
2| ox3 axp

1
W= axy  axg

1(dvy dvy 1{dv2 dv3

2 ax3 6x1 2 GX3 6x2

With respect to cylindrical and spherical coordinates the matrices take the form given in
Eq. (3.7.11) and Eq. (3.7.12).

We now show that the rate of change of length of dx is described by the tensor D whereas
the rate of rotation of dx is described by the tensor W.

Let dx = dsn, where n is a unit vector, then
dx-dx = (ds)2 (i)

Taking the material derivatives of the above equation gives
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D oy = 2a:D s (i)
2dx Dt(dx) = 2ds Dt(ds)
Now, from Eq. (3.12.4) and (3.13.1)

dX'-[Q)Z(dx) = dx-(Vv)dx = dx-Ddx + dx- Wdx (i)

and by the definition of transpose of a tensor and the fact that W is an antisymmetric tensor
(ie,W=-W T ), we have

dx-Wax = dxWdx = —dx-Wdx (iv)
Thus,
dx-Wdx= 0 )
Therefore,
dx'gt(dx) = dx-Ddx (vi)
Equation (ii) then gives
ds 295) _ D dx (3.13.6a)
Dt
With dx = dsn , Eq. (3.13.6a) can also be written:
% %dts) =n-Dn=D,, (nosumonn) (3.13.6b)

Eq. (3.13.6b) states that for a material element in the direction of n, its rate of extension
(i.e., rate of change of length per unit length ) is given by D,,(no sum on n). The rate of
extension is also known as stretching, In particular

Dy = rate of extension for an element which is in the e; direction
Dy, = rate of extension for an element which is in the e, direction and
D33 =rate of extension for an element which is in the e direction

We note that since vdt gives the infinitesimal displacement undergone by a particle during the
time interval dt , the interpretation just given can be inferred from those for the infinitesimal
strain components. Thus, we obviously will have the following results: {see also Prob. 3. 45(b)]:

7 . L
2 Dy = rate of decrease of angle (from E) of two elements in e and e; directions

4 . L
2 Dy5 = rate of decrease of angle (from —2~) of two elements in e; and e directions and
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7 . S
2 Dy3 = rate of decrease of angle (from 5) of two elements in e, and e directions.

These rates of decrease of angle are also known as the rates of shear, or shearings.

Also, the first scalar invariant of the rate of deformation tensor D gives the rate of change
of volume per unit volume (see also Prob. 3.46). That is,

1 D@V) 3.13.7a
Du+Dp+Dy3 = 5=, ( )

Or, in terms of the velocity components, we have

1 D@y _ovi (3.13.7b)
w D a9V

Since D is symmetric, we also have the result that there always exists three mutually
perpendicular directions (eigenvectors of D) along which the stretchings (eigenvalues of D)
include a maximum and a minimum value among all differential elements extending from a
material point.

Example 3.13.1

Given the velocity field:
V1=kX2 V2=V3=0 (l)

(a) Find the rate of deformation and spin tensor.

(b) Determine the rate of extension of the material elements:
D = (dspyer, XD = (dsy)es, and dx = (e1+2¢y) (ii)

(¢) Find the maximum and minimum rates of extension.

Solution. (a) The matrix of the velocity gradient is

0kO
[Vv]=10 0 0 (iii)

000

so that

k

03
[D] = [W] = % 00 (iv)

00 0
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and
k
0 3
W] = [V = —% 00 ©
0 00

(b) The material element axVis currently in the eq-direction and therefore its rate of extension
is equal to Dy1 = 0. Similarly, the rate of extension of dx? is equal to Dy = 0. For the

element dx= (ds)n, where n = (7%) (eq+2e)

o k
2 1
1D iy enDn=l k =2 ;
dsDt(ds) =n-Dn= S[1, 2,0] > 00 3 5k (vi)
0020
(¢) From the characteristic equation
ID-AI| = —A(A\2—k?/4) =0 (vii)

we determine the eigenvalues of the tensor D asA = 0, * k/2, therefore, k/2 is the maximum

and -k/2 is the minimum rate of extension. The eigenvectors nq = (izz) (e1+ep) and

= %2_- (e1—ey) give the directions of the elements having the maximum and the minimum

stretching respectively.

3.14 The Spin Tensor and the Angular Velocity Vector

In section 2B.16 of Chapter 2, it was shown that an antisymmetric tensor W is equivalent to
a vector @ in the sense that for any vector a
Wa = @Xa (3.14.1)
The vector @ is called the dual vector or axial vector of the tensor W and is related to the three
nonzero components of W by the relation:
o = —(Wyei+Wser+ Wise3) (3.14.2)
Now, since the spin tensor W is an antisymmetric tensor (by definition, the antisymmetric
part of Vv), therefore
Wdx = oXdx (3.14.3)
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and

%ltx (V¥)dx = (D+W )dx = Ddx+@Xdx (3.144)

We have already seen in the previous section that W does not contribute to the rate of change
of length of the material vector dx. Thus, Eq. (3.14.3) shows that its effect on dx s simply to
rotate it (without changing its length) with an angular velocity .

It should be noted however, that the rate of deformation tensor D also contributes to the
rate of change in direction of dx as well so that in general, most material vectors dx rotate with
an angular velocity different from @ (while changing their lengths). Indeed, it can be proven
that in general, only the three material vectors which are in the principal direction of D do
rotate with the angular velocity @, (while changing their length). (see Prob. 3.47)

We also note that in fluid mechanics literature, 2W is called the vorticity tensor.

3.15 Equation of Conservation of Mass

If we follow an infinitesimal volume of material through its motion, its volume 4V and
density p may change, but its total mass pd} will remain unchanged. That is,

D _ (3.15.1)
piPd) =0
ie.,
P20 a2 - g
t
Using Eq. (3.13.7), we obtain
De _ (3.15.2a)
p ax, Dt 0
Or, in invariant form,
P divv+QB =0 (3.15.2b)
Dt
where in spatial description,
Dp_dp, . (3.15.3)
Dr - atVYP

Equation (3.15.2) is the equation of conservation of mass, also known as the equation of
continuity.

In Cartesian coordinates, Eq. (3.15.2b) reads:

[3V1+GVZ+BV3] _B _& _B_ a9 (3.15.4)

axp  axy  dr M TR VLS P
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In cylindrical coordinates, it reads:

v, 109 Vr Wz dp _3 Vedp . p _
p(ar+r60+r+a +6t T or + ao+Vzaz—0 (3.15.5)

In spherical coordinates it reads:

v, 19 vy 1 Wy vecotd) ap  dp Vedp Ve 3p _ ., (3.156)
p(3r+r a6t r +rsin63¢+ +3t+v r60 ’51n66¢

For an incompressible material, the material derivative of the density is zero, and the mass
conservation of equation reduces to simply:

divw=10 (3.15.7)
or, in Cartesian coordinates
vy dvy OV 3.15.7a
ax1 dxp dx3
in cylindrical coordinates
av’- 16113 v’- avz (3 15 7b)
ar Tr0 T g =0.
and in spherical coordinates
6v,+ 1 8ve 2v, 1 av¢+v,9cot0 0. (3.15.7c)

r FT r +rsmG ap r

Example 3.15.1
For the velocity field of Example 3.4.2,

Xj
v; =
Fo(1+)
find the density of a material particle as a function of time.

Solution. From the mass conservation equation

Do _ _ 1,1, 1] 3 ()
Dt p&x l:1+t+l+t+1+t = T1a

Thus,
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from which we obtain

3.16 Compatibility Conditions for Infinitesimail Strain Components

T+’

(iif)

When any three displacement functions 1, 4y, and w3 are given, one can always determine

the six strain components in any region where the partial derivatives

O%; exist. On the oth
a‘XjCXIS' n e other

hand, when the six strain components (E11,E2,,E33,E12,E13,E23) are arbitrarily prescribed in
some region, in general, there may not exist three displacement functions (u,u5,u3), satisfying

the six equations

du 1
aX,

du 1
X,

Nl»—-

au2
X3 "

NlH

au3
ax,

N]»—A

For example, if we let

6u2
aX,

6u3
X,

du 1
X5

=Ep

=E3

2
Eyn=X5 Ep=Ep=Epp=E;3=Ep=0

then, from Eq. (3.16. 1)

X2 and from Eq. (3.16.2), ——

’ BX

U1 = XX +(XX3)

= (), so that

(3.16.1)

(3.16.2)

(3.16.3)

(3.16.4)

(3.16.5)

(3.16.6)

@

(ii)
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and
uy = g(X1,X3) (iii)

where f and g are arbitrary integration functions. Now, since E1; = 0, we must have, from
Eq. (3.16.4)

d ) i
__u.l_*,ﬂ —_ 0 (lV)
X, aX;
Using Egs. (ii) and (iii), we get from Eq. (iv)
af(X; ag(X; v
2X Xy f 2,X3)+ (X1 X3) _ 0 W)

X, X,

Since the second or third term cannot have terms of the form X1.X,, the above equation can

never be satisfied. In other words, there is no displacement field corresponding to this given
E;;. That is, the given six strain components are not compatible with the three displacement-
strain equations.

We now state the following theorem: If Ej(X;,X5,X3) are continuous functions having

continuous second partial derivatives in a simply connected region, then the necessary and
sufficient conditions for the existence of single-valued continuous solutions 4, %, and u3 of

the six equation Eq. (3.16.1) to Eq. (3.16.6) are
62E1 1 32E22 _ °E o (3.16.7)
an ' BX% 0X10X,

32E22_L62E33 _ 62E23 (3168)
X o 9XpaXs

e axt  0XaeXy

82lgll _ a "aE23 6E31 aE12 (3.16.10)

XX,  aXp| oX; @ oX, @ aXs

OEp _ 8 —6E31+3E12+6E23 (3.16.11)
6X36X 1 0X,| X, 3X3 Xy

62E33 _9‘ - 6E12 6E23 + 8E31 (3.16.12)
aX10X, dX3| 4X3 ). CH). €)
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These six equations are known as the equations of compatibility (or integrability condi-
tions).

That these conditions are necessary can be easily proved as follows:

From
ouq duy (i
idad TN =2 i)
6X1 Ell and 8X2 E22
we get
2 3 2 3
d E11 - ad Ui d E22 - ad Uz (ii)
Xz aX3eX, X2 aX20X,

Now, since the left-hand sides of the above equations are, by postulate, continuous, therefore,
the right-hand sides are continuous, and so the order of the differentiation is immaterial , so
that

2 2
OBy _ 92 (duy By _ 2 (o i
axz  9X9X%|aXp X2 0X19Xp | X,y
Thus, from Egs. (iii) and Eq. (3.16.4)
2 2 ’
a E11L ] E22 - 62 i},ﬂ.-}-a_u% _ ad E12 (lv)
X3 ax? X1dXp|aX; aXy 0X10X,

The other five conditions can be similarly established. We omit the proof that the condi-
tions are also sufficient (under the conditions stated in the theorem). In Example 3.16.3 below,
we shall give an instance where the conditions are not sufficient for a region which is not
simply-connected. (A region of space is said to be simply-connected if every closed curve drawn
in the region can be shrunk to a point, by continuous deformation, without passing out of the
boundaries of the region. For example, the solid prismatical bar represented in Fig. 3.7 is
simply-connected whereas, the prismatical tube represented in Fig. 3.8 is not simply-con-
nected).

It is worth noting the following two special cases of strain components where the com-
patibility conditions need not be considered because they are obviously satisfied:

(1)The strain components are obtained from given displacement components.
(2)The strain components are linear functions of coordinates.

Example 3.16.1
Will the strain components obtained from the displacements

up = X%, Uy = &, uz = sinX, )
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be compatible?

Solution. Yes. There is no need to check, because the displacement u is given (and therefore
exists!)

Example 3.16.2

Does the following strain field:
2X1 X; 1t 2X2 0 )
[E] = |[X1+2X, 2X; O ()
0 0 2X3

represent a compatible strain field?

Solution. Since each term of the compatibility equations involves second derivatives of the
strain components with respect to the coordinates, the above strain tensor with each com-
ponent alinear function of X;. X;. X5 will obviously satisfy them. The given strain components
are obviously continuous functions having continuous second derivatives (in fact continuous
derivatives of all orders) in any bounded region. Thus, the existence of single valued con-
tinuous displacement field in any bounded simply-connected region is ensured by the theorem
stated above. In fact, it can be easily verified that

Uy = X%+X%, uy = 2X1X2+X%, Uz = X% (ii)

(to which of course, can be added any rigid body displacements) which is a single-valued
continuous displacement field in any bounded region, including multiply-connected region.

Example 16.3

For the following strain field
X5 X

=, Epp=——F5, Epy=Ex3=Ep=E;3=0 (i)
X2+ X2 202+X3) 3 3

Ey

does there exist single-valued continuous displacement fields for (a) the cylindrical body with
the normal cross-section shown in Fig. 3.7 and (b) for the body with the normal cross-section
shown in Fig. 3.8 and with the origin of the axis inside the hole of the cross-section.

Solution. Out of the six compatibility conditions, only the first one needs to be checked, the
others are automatically satisfied. Now,

2 2 2 2
OEyn _ _(X1+X9)—-Xp(2Xy) _ Xp—Xi (ii)
0X; G+x3)° X +X3)°




118 Kinematics of a Continuum

2, y2 2 (2
LB  (G+X)-Xi(2X)  Xo-Xi (i)
X, 2 v2.2 T 2. w22
1 (X1+X3) (X1+X3)
and
2 .
"Eyp =0 (iv)
axs
Thus, the equation
2 2 2
3 Ey Ep _ 9Ep ”

X2 axt XXy

is satisfied, and the existence of solution is assured. In fact it can be easily verified that for the
given Ej;,

(vi)

up = arctan==, up =0, u3=0

=2
X1

Fig. 3.7 Fig. 3.8

(to which, of course, any rigid body displacement field can be added). Now arctan X,/X; is a
multiple-valued function, having infinitely many values corresponding to a point (X1,X5,X3).



Compatibility Conditions For Rate Of Deformation 119

For example, for the point (X1,X5,X3) = ( 1,0,0), arctan X, /X = 0, 27, 4, etc. It can be
made a single-valued function by the restriction 8,<arctanX,/X<6,+2n for any 6,. For a
simply-connected region as that shown in Fig. 3.7, a 6, can be chosen so that such a restriction

makes Eq. (vi) a single-valued continuous displacement for the region. But for the body shown
in Fig. 3.8, the function uy = arctanX,/X3, under the same restriction is discontinuous along

the line 8 = 6, in the body ( in fact, u; jumps by the value of 27 in crossing the line). Thus,
for this so-called doubly-connected region, there does not exist single-valued continuous u;
corresponding to the given Ej;, even though the compatibility equations are satisfied.

3.17 Compatibility Conditions For Rate Of Deformation

When any three velocity functions v1,v,, and v are given, one can always determine the six
rate of deformation components in any region where the partial derivatives dv;/ ax; exist. On
the other hand, when the six components D;; are arbitrarily prescribed in some region, in
general, there does not exist any velocity field v; , satisfying the six equations

1(avi v} _ 3.17.1
2[axj+0x,- =D; ( )

The compatibility conditions for the rate of deformation components are similar to those
of the infinitesimal strain components [Eqgs. (3.16.7-12)}, i.e.,

3Dy Dy 8°Dpy

+ - (3.17.2a)
ax% ax% 6x16x2
2 2 2
“D a°D °D
2y P2 (3.17.2b)
a3 ax5 axp0x3
°D33 3°Dyy _ Dy
ax% axg axlax3 (3. 17.2(:)

etc. It should be emphasized that if one deals directly with differentiable velocity functions
vi(x1,x2,x3,8), (as is often the case in fluid mechanics), the question of compatibility does not
arise.
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3.18 Deformation Gradient
We recall that the general motion of a continuum is described by

x=x(X, £) (3.18.1)

where x is the spatial position at time ¢, of a material particle with a material coordinate X.
A material element dX at the reference configuration is transformed, through motion, into a
material element dx at time ¢. The relation between dX and dx is given by

dx = x(X+dX, £)-x(X, t) = (Vx)dX (3.182)
ie.,
dx = FdX (3.18.3)
where the tensor
F = Vx (3.184)

is called the deformation gradient at X. The notation Vx is an abbreviation for the notation
Vxx where the subscript X indicates that the gradient is with respect to X for the function

X(X, £). We note that with x = X + u, where u is the displacement vector,
F=1+Vu (3.18.5)

Example 3.18.1
Given the following motion:
X1 = X1+X% t, X =Xo—Xpt—X3t, x3=X3+Xpt—X3t ®

where both x; and X; are rectangular Cartesian coordinates. Find the deformation gradient
att = 0andatf = 1.

Solution. For rectangular Cartesian coordinates,

_axl 6x1 3X1~
X, X, Xy
o oy (i)
X, X, 0X
6x3 6x3 ax3
X, X, X

(F] =

Thus, from Eq. (i) and (ii),
1+2Xy¢ 0 O
[F}= |0 1-t  —t¢ (iii)
0 t 1-t¢
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From Eq. (iii) we have at¢ = 0, F=I, and dx=dX.
Att = 1, for all elements

142X, 0 0 _
[F]= |0 0 -1 (iv)
0 10

3.19 Local Rigid Body Dispiacements

In Section 3.6, we discussed the case where the entire body undergoes rigid body displace-
ments from the configuration at a reference time ¢, to that at a particular time ¢. For a body
in a general motion, however, it is possible that the body as a whole undergoes deformations
while some (infinitesimally) small volumes of material inside the body undergo rigid body
displacements. For example, for the motion given in the last example, at¢= 1and X; =0,

10 0 _
[Fj= [0 0-1 @
01 0

It is easily to verify that the above F is a rotation tensor R (i.e., FF' =TanddetF = + 1.

Thus, all infinitesimal material volumes with material coordinates (0,X,X3) undergo a rigid
body displacement from the reference position to the position at¢ =1.

3.20 Finite Deformation

Deformations at a material point X of a body are characterized by changes of distances
between any pair of material points within the small neighborhood of X. Since, through
motion, a material element dX becomes dx =FdX, whatever deformation there may be at X,
is embodied in the deformation gradient F. We have already seen that if F is a proper
orthogonal tensor, then there is no deformation at X. In the following, we first consider the
case where the deformation gradient F is a symmetric tensor before going to more general
cases.

We shall use the notation U for a deformation gradient F that is symmetric. Thus, for a
symmetric deformation gradient, we write

dx = UdX (3.20.1)

In this case, the material within a small neighborhood of X is said to be in a state of pure
stretch deformation (from the reference configuration). Of course, Eq. (3.20.1) includes the
special case where the motion is homogeneous, i.e., x = UX, (U = constant tensor) in which
case the entire body is in a state of pure stretch.
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Since U is real and symmetric, there exists three mutually perpendicular directions, with
respect to which, the matrix of U is diagonal. Thus, if e,,e,,e3 are these principal directions,

with eigenvalues 41, 4;, 43, then, for ax® = dXqe1, Eq. (3.20.1) gives v = AdXqey, ie.,
ax = AldX(l) (3.20.2a)

Similarly, for dx? = dXpe, and dx® = dX3e; , we have
ax? = lde(Z) (3.20.2b)

&3 = ,13dx(3) (3.20.2¢)

We see that along each of these three directions, the deformed element is in the same direction
as the undeformed element. If the eigenvalues are distinct, these will be the only elements
which do not change their directions. The ratio of the deformed length to the original length
is called the stretch,i.e.,

x| (3.20.3)
|dX

Thus, the eigenvalues of U are the principal stretches; they include the maximum and the
minimum stretches.

Stretch =

Example 3.20.1
Given that at time ¢,
X1 = 3X1
Xy = 4X2 (I)
X3 = X3

Referring to Fig. 3.9, find the stretches for the following material line (a)OP (b)OQ and (¢)OB.
Solution. The matrix of the deformation gradient for this given motion is
300
[FI=10 4 0
001
which is a symmetric matrix and is independent of X; (i.e., the same for all material points).

Thus, the given deformation is a homogeneous pure stretch deformation. The eigenvectors
are obviously (see Sect. 2B.17, Example 2B17.2) e;,e,,e3 with corresponding eigenvalues, 3, 4

and 1. Thus:

(a)At the deformed state, the line OP triples its original length and remains parallel to the
x1 -axis, i.e., stretch =147 = 3.
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(b)At the deformed state, the line OQ quadruple its original length and remains parallel to
the x,- axis; stretch =1, = 4.

(c)The line OB has an original length of 1.414. In the deformed state, it has a length of 5,
thus, the stretch is 5/1.414. Originally, the line OB makes an angle of 45° with the x; -axis; in

the deformed state, it makes an angle of tan_1(4/3). In other words, the material line OB
changes its direction from OB to OB’ (see Fig. 3.9).

X5

QI

3 B'

4
Q
1
X
0 1p P’ 1
Fig. 3.9
Example 3.20.2

For a material sphere with center at X and described by |dX| = €, under a symmetric
deformation gradient U, what does the sphere become after the deformation?

Solution. Let ey, e,, e3 be the principal directions for U, then with respect (e, €5, €3 ) a
material element dX can be written

dX = dX e, +dXe;+dXze, @)
In the deformed state, this material vector becomes
dx = dx;e;+dx,e,+dxze; (ii)
Since F is diagonal, with diagonal element 11, 4,, 43, therefore dx=FdX gives
dxy = MdXy dry = A,dX), dxy = A3dX;, (iii)
thus, the sphere :
(@X) + (@) +(dXs) = @)
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becomes
2 2 2
dn)’ (o) (d)_ o N
A Ao 13) ~°

This is the equation of an ellipsoid with its axis parallel to the eigenvectors of U. (see Fig. 3.10).

B Q'

A /——
P A’

Fig. 3.10

3.21 Polar Decomposition Theorem

In the previous two sections, we considered two special deformation gradients F: a proper
orthogonal F (denoted by R) describing rigid body displacements and a symmetric F (denoted
by U ) describing pure stretch deformation tensor. It can be shown that for any real tensor F

with a nonzero determinant (i.e., F~ lexists ), one can always decompose it into the product of
a proper orthogonal tensor and a symmetric tensor. That is

F = RU (3:21.1)

or,
F=VR (321.2)

In the above two equations, U and V are positive definite symmetric tensors and R (the same
in both equations) is a proper orthogonal tensor. Eqgs. (3.21.1) and (3.21.2) are known as the
polar decomposition theorem. The decomposition is unique in that there is only one R, one U
and one V for the above equations. The proof of this theorem consists of two steps : (1)
Establishing a procedure which always enables one to obtain a symmetric tensor U and a
proper orthogonal tensor R (or asymmetric tensor V and a proper orthogonal tensor R) which
satisfies Eq. (3.21.1) (or, Eq. (3.21.2)) and (2) proving that the U, V and R so obtained are
unique. The procedures for obtaining the tensors U, V, and R for a given F will be
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demonstrated in Example 3.22.1 and 3.23.1. The proof of the uniqueness of the decomposi-
tions will be given in Example 3.22.2.

For any material element dX at X, the deformation gradient transforms it (i.e., dX) into a
vector dx:

dx = FdX = RU dX (3.21.3)

Now, UdX describes a pure stretch deformation (Section 3.20) in which there are three
mutually perpendicular directions (the eigenvectors of U) along which the material element
dX stretches (i.e., becomes longer or shorter ) but does not rotate. Figure 3.10 depicts the
effect of U on a spherical volume |dX| = constant ; the spherical volume at X becomes an
ellipsoid at x. (See Example 3.20.2 ) The effect of R in R(U dX) is then simply to rotate this
ellipsoid through a rigid body rotation.(See Fig. 3.11)

Fig. 3.11

Similarly, the effect of the same deformation gradient can be viewed as a rigid body rotation
(described R) of the sphere followed by a pure stretch of the sphere resulting in the same
ellipsoid as described in the last paragraph.

From the polar decomposition theorem, F = RU = VR, it follows immediately that
U=R'VR (3.214)

Example 3.21.1

Show that if the eigenvector of U is n, then the eigenvector for V is Rn; the eigenvalues for
both U and V are the same

Solution. Let n be an eigenvector for U with eigenvalue 4, then
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Un =An. ®

so that
RUn = ARn (ii)

Since RU = VR = F, therefore, from Eq. (ii), we have
V(Rn) = A(Rn) (iii)

Thus, Rn is an eigenvector of V with eigenvalue A.

3.22 Calculation of the Stretch Tensors From the Deformation Gradient
From a given F, we have F = R U, thus,
F'F = (RU)T(RU) = UTRRU = UTU ®
That is,
U’ =F'F (3.22.1)

From which the positive definite symmetric tensor U can be calculated as (See Examples
below).

U= (FTF)V 2 (3.22.2)
Once U is obtained, R can be obtained from the equation
R=FU"} (3.22.3)
Since
U Frul=ulvul =1 (i)
therefore, [note that U is symmetric],
FU HTFU =1 (ii)
Thus, from Eq. (3.22.3),
R'R=1 (iif)

Eq. (iii) states that the tensor R obtained from Eq. (3.22.3) is indeed an orthogonal tensor.

The left stretch tensor V can be obtained from

V = FR” = RURT (3.22.4)
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Example 3.22.1
Given
x1 =Xy, xp = —3X3, x3=2X, (@)

Find (a) the deformation gradient F, (b) the right stretch tensor U, and (c) the rotation tensor
R and (d) the left stretch tensor V.

Solution. (a)

KSR
X, X, X3
10 0
ax2 6x2 axz V.
Fl=|l=> =5 v | =100 -3 (ii)
[F] X, X, X 02 0
3%, X, X
(b)
1 0 ojfro o (10 0O
W= 'Fi=l0 o 2{{o0 -3|=[04 o0 (iif)
0 -3 0//l02 o0 (00 9
Thus, the positive definite tensor U is given by
10 0 '
[Ul=102 0 (iv)
00 3
(c)
10 offt 0o o 10 0
R]=[FIU" =0 0 -3|[0 ¥2 0 |=(00 -1 @)
02 o/l0 0 Yy3] |01 0
(d)
;|10 offt 0 0] {100
[VI={F][RI'=10 0 -3||0 0 1|=|0 3 0 (vi)
02 0/|0 -1 0] [002
We can also obtain V from
[V] = [RI[U]R]" (3.222)

In this example, the calculation of [U ] and [R] are simple because F'F happens to be
diagonal. If not, one can first diagonalize it to obtain [ U ]and [ U ]_1 as diagonal matrices
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with respect to the principal axes of F'F. After that, one then uses the transformation law
discussed in Chapter 2 to obtain the matrices with respect to the ¢; basis. (See Example 3.23.1

below).

Example 3.22.2
(a) Show that if F = RjU; = RyU,, then R; = Ry and U; = U,
(b) Show thatif F = RU = VR’, then R=R"’
Solution. (a) From R U; = RyU, , we have (RIUS = (R2U2)T
Thus, U;RY = U,RY | so that U;RT(R,U;) = U,RE R,U,

In other words, U% = U% . Since both U; and U, are positive definite, therefore

U=U,=U
and from RyU = RyU , it follows,
R,=R,=R
(b) Since
VR =R'R VR =R'®R"VR"
thus,

' ,—1
F=RU=R (R VR
—1
Noting that (R VR') is symmetric, from the result of part (2), we have
R=R’

From the decomposition theorem we see that what is responsible for the deformation of a
volume of material in a continuum in general motion is the stretch tensor, either U (the right

stretch tensor ) or V ( the left stretch tensor ). Obviously, U? and V? also characterize the
deformation, as are many other tensors related to them. In the following sections, we discuss
those tensors which have been commonly used to describe finite deformations for a continuum.

3.23 Right Cauchy-Green Deformation Tensor

Let
C=u? (3.23.1)
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where U is the right stretch tensor. The tensor C is known as the right Cauchy-Green
deformation tensor (also known as the Green’s deformation tensor). We note that if there is
no deformation, U =C =1,

Using Eq. (3.22.1), we have
C=FF (3.23.2)
The components of C have very simple geometric meanings which are described below.
Consider two material elements dx") = FdX®" and dx? = Fax® , we have
XD . @ = Fax® . pax@ = gxO . fTrgx®@ (3.23.3)
ie.,
D@ = gx®.cgx® (3.234)
Thus, if dx=dsn, is the deformed vector of the material element dX = dSe; then Eq.
(3.23.4) gives
(ds)? = (dS)%;Ce; for dXD = dx@ = dse,

That is
ds\ 2 (3.23.5a)
Cu= (E) for a material element dX = dSe;
similarly,
ds\? (3.23.5b)
Cy = ( dS) for a material element dX = dSe,
(3.23.5¢)

2
C3y3= (%) for a material element dX = dSe;

By considering two material elements ax® = dS;e; and dx® = dS,e, which deform

into dx» = dsym and dxV = dsyn where m and n are unit vectors having an angle of 8
between them, then Eq. (3.23.4) gives

ds’ldSzCOSﬂ = dS1d5201 ~Ce2 (3236)
That is

ds,
cos(dx(l) ) for ax® = dSie; and dX? = ds,e, (3.23.62)

c ds;
127 35,ds,

Similarly
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1ds3
cos(dx(l) dx(3)) for ax®W) = dSie1 and dx® = dSses

Ci3= dS as,

and

Cx= %cos(dx(z) a3y for dX® = ds,e, and dX® = dS;e,
Example 3.23.1
Given
x1=X1+2X;, x=X5, x3=X3
(a) Obtain C
(b) Obtain the principal values of C and the corresponding principal directions
(c) Obtain the matrix of U and U™ with respect to the principal directions
(d) Obtain the matrix of U and U™ lwith respect to the e; basis
(e) Obtain the matrix of R with respect to the e; basis

Solution. (a) From Eq. (i), we obtain,

120
[Fl=10 10
001
Thus,
100][t20 [120
Ccl=F F=1[210[|lo10|/=[250
001[{001] (o001

The eigenvalues of C and their corresponding eigenvectors are easily found to be

C;=5828, m = (2 < 13) [e + 2.414e,] = [0.3827¢; + 0.9238e,]

C,=0.1716, mp = e; — 0.4142¢5] = [0.9238e; — 0.3827¢;]

L
1.0824
C3 =1 , N3 =e3
(b) The matrix of C with respect to the principal axis of C is

5828 0 0
[C1=]| 0 01716 0
0 0 1

(3.23.6b)

(3.23.6¢)

®

(ii)

(i)

(iv)

™)
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(c) The matrix of U and U1 with respect to the principal axis of C are given by
v5.828 0 0 2414 0 O

[Uln=| 0 V01716 0| =| 0 04142 0 (vi)
' 0 0 1 0 0 1
04142 0 O )
W, = 0o 24143 0 (vii)
' 0 0 1

(d) The matrix of U and U1 with respect to e; axes is given by

0.3827 09238 0| |2414 0 O} (03827 09238 O
[Ulg, = |0.9238 —0.3827 0 0 04142 0] 109238 —0.3827 0
0 0 1 0 0 1 0 0 1

0.7070 0.7070 0 (vii)
= (07070 2.121 ©
0 0 1

L 03827 09238 0f |04142 0 0]]03827 09238 0
[u~ le, = |0.9238 —0.3827 0 0 2414 0 09238 -0.3827 0

0 0 1 0 1
2121 ~07070
= | -0.7070 07070 0 (ix)
0
(e)
. 12 0][2121 0707 0 0707 0.707 0
Rl = [FIU] "= {0 1 0 —0707 0707 0 —0707 0.707 0 ®)
001 0 1

Using the same procedure as that used in the above example, one can obtain that in general,
for

[F] = (3.23.7)

SO =
(=R )
—_o O
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k
1 £ 9
2
K
[R] = (1+7) 7" —% 10 (3.23.8)
2
0 0 (1+"7)V2

Example 3.23.2
Consider the simple shear deformation given by
x1=X1+kXp, x=X5 x3=X;3 (i)
(a) What is the stretch for an element which was in the direction of e;
(b) What is the stretch for an element which was in the direction of e,
(c) What is the stretch for an element which was in the direction of e + e;

(d) In the deformed configuration, what is the angle between the two elements which were in
the directions of e; and ep

X2
k ‘—k———l
B B’ C C'
1
X
0 1 A !

Fig. 3.12

Solution.

[F] = (i)

SO
(=R
- o O
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10o0[{t ko0 1 k 0
[C1=|k 10[{010|=|k 1+4% 0 (iif)
0o01{foo1] |, o ;

(a) fordX = dSie;,ds/dS =1
(b) fordX = dSye;, ds/dS=V 1+# [eg. OB’ =V 1+ OB
(¢) for dX = (dS/VZ)(e1 + ey) = dSe; " ,

1 &k 0

r 1
Cu= 5[1,1,0] k 1+k2 0
0 0 1

1+k+

[ RS
1]
NI

thus, for this material element

k2
ds/dS=1+k+—2—

(d) For dX = dSqe; and dX = dSze;

dsy ds k k
(1) g2y 2182~ .g. cosdOB ' =
oS ) = Gy ds, 2T Vi 08 Vard),

Example 3.23.3

Show that (a) the eigenvectors of U and C are the same and (b) an element which was
in the principal directionn of C becomes, in the deformed state, an element in the direction
of Rn.

Solution. (a) Since Un = An, therefore Un=1Un=1%n
ie.,
Cn=41n
Thus, n is also an eigenvector of C with A% as its eigenvalue.

(b) If dX = dSn where n is a principal direction of U and C, then UdX = dSUn = dS An so
that

dx = FdX = RUdX = 1dS(Rn)
That is , the deformed vector is in the direction of Rn ,
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3.24 Lagrangian Strain Tensor

Let
B o % €-1) (3.24.1)

where C is the right Cauchy-Green deformation tensor and I is the identity tensor. The tensor
E* is known as the Lagrangian Finite Strain tensor. We note that if there is no deformation,

C=1andE"'=0.
From Eq. (3.23.4) , we have
dx(l) . dx(z) - dx(l) . dX(z) = dx(l) . (C—])dx(z)
ie.,
XD gD —gxD . gx@ = 24xD . g*4x? (3.24.2)

For a material element dX = dSe;, deforming into dx = dsn, where n is a unit vector, Eq.
(3.24.2) gives

2,2
e E'ey =% sz (3.24.3)
2dS
Thus,
ds*~ds* 3243
El*l =—2 for dX=dSe1 ( btk a)
24S
Similarly,
. ds*—ds? (3.24.3b)
Eyp = for dX = dSe; o
22 2 Sz
B =80 (X = dse, (32430)
245>

We note that for infinitesimal deformations, Eqs.(3.24.3) reduces to Eq. (3.8.1)

By considering two material elements ax = dSie; and dx? = dS,e, deforming into
dxD = dsym and dx® = ds,n, where m and n are unit vectors, then Eq(3.25.2) gives

*

. (3.24.4)

_ dsydsy
=7 Syd S2cos(n,m)

We note that for infinitesimal deformations, Eq. (3.24.4) reduces to Eq. (3.8.2).
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The meanings for 2E13 and 2E53 can be established in a similar fashion.

We can also express the components of E * in terms of the displacement components. From
Eq. (3.24.1), Eq. (3.23.2) and Eq. (3.18.5), we obtain immediately

E'= %[Vu+(Vu)T]+%(Vu)T(Vu) (3.24.52)
in component form,
o _ 1[0 Ouj) 10Uy Oty (3.24.5b)
Ej = 2[a)g+ax,-]+2 3X; 0X;
and in long form,
E duq N 11| { duq 2+ duy 2+ dus (3.24.6a)
* = — — _— —_— —_—
7 5x; 2| |aX; 0Xq aX;

_1fu ows) | af(w) (o) (o) (aua) (o) (3us)] (306t
Erxn=3 [6X2+6X1) *2 [(aXl) (aXz] + [aXl) (aXZ] + (aXl] [6X2
Other components can be similarly written down.

We note that for small values of displacement gradients these equations reduce to those
of the infinitesimal deformation tensor.

Example 3.24.1
For the simple shear deformation
x1=X1+kXp, xp=Xp, x3=X3

(a) Compute the Lagrangian Strain tensor [E*]

(b) Referring to Fig. 3.12, by a simple geometrical consideration, find the deformed length for
the element OB in Fig. 3.12.

(c) Compare the results of (b) with E5,

Solution. (a) Using the [C] obtained in Example 3.23.2, we easily obtain from the equation
2E" = C—Ithat
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T
050
s _ |k K
E*Y1 = |X K
[E] 220
00 0

(b) From Fig. 3.12, we see from geometry, that OB '=0BV 1 + ¥*

k2
(c)E3 = - Thus

(As)’—(ASy® _ K
2(AS)? 2

Thus, As = AS V1 + 4%, this result is the same as that of (b). We note that if k is small then
As = AS to the first order of k.

Example 3.24.2
Consider the displacement components corresponding to a uniaxial strain field:
u1=kX1, u2=u3=0 (1)
(a) Calculate both the finite Lagrangian strain tensor E* and the infinitesimal strain tensor E.

(b) Use the finite strain tensor E7; and the infinitesimal strain tensor Ej; to calculate %;: for

the element AX = ASe;.

(c) For anelement AX = as e; + e), calculate As from both the finite strain tensor E* and
A AS

the infinitesimal strain tensor E.
Solution. (a)

k0o (ii)
[Vu]= (0 0 0| =[Vu]’
000
Thus, the infinitesimal strain tensor gives
k0O (iii)
[E]=[Vu]'= |0 0 0| =[Vu]
000
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and _ -
k(1+§) 00

[E"] = (Va5 (V= | 0 00 (iv)
0 00

2
(b) Basedon Ejy =k + = k , —(—)—(-—L =k+ —, therefore
2 2(AS)?

(As)? = [1 + 2k + k%] (AS)%, As = (1 +k)AS. )

As—AS
AS

Basedon Ejy =k, = k, therefore
As = (1 + k)AS (vi)

We see both the finite and the infinitesimal strain tensor components lead to the same answer
whether k is large or small.

(c)Let &' = 71;(e1 + e;) then,

N &
LY

*’ 1
Ey = 5[1,1,0] 0 00 (vii)

S b
Il

2 A2

Thus, %L ; + & ,fromwhichwe find As = V1 +k + ¥*/2 AS.This result s easily
confirmed by the geometry in Fig. 3.12 for any value of k. On the other hand, the infinitesimal
strain component

.1 k0o |1 k
Ey = [110] 0001 =3
000]]0
Thus, AXSAS = g, from which we find As = (1 + E) AS. From Fig 3.12, we can easily

conclude that this result is acceptable only if k is very small.

This example demonstrates clearly that in the case of finite deformations, the concept of
unit elongation (i.e., change of length per unit length ) is inadequate.
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3.25 Left Cauchy-Green Deformation Tensor

Let
B =V? (3.25.1)
where V is the left stretch tensor. The tensor B is known as the left Cauchy-Green deformation

tensor (also known as the Finger deformation tensor). We note that if there is no deforma-
tion, V=B =1

Since F = VR, and R’R = I, it is easily verified that
B = FF! (325.2)
Thus, one can calculate B directly from the deformation gradient F.
Substituting F = RU in Eq. (3.25.2) , we obtain the relation between B and C as follows:
B=RCR and C=R’BR (3.25.3)

We also note that if n is an eigenvector of C with eigenvalue 4, then Rn is an eigenvector
of B with the same eigenvalue A.
The components of B have simple geometric meanings which are described below:

Consider a material element dX = dSn, where n = RTel, R being the rotation tensor
associated with the deformation gradient F. Then from Eq. (3.23.4) , we have

ds® = ds?n-Cn = dS?R7e;-CRe; = dS%e, - (CRT)'R7e; = dS%,-RCR¢, (3254)
That is
ds® = dS%,-Be, for dX = dS(R"ey), (3.25.5)
That is
ds\ 2 T (3.25.5a)
By = (EE) for a material element dX = dS(R"eq)
similarly,
ds\ 2 T (3.25.5b)
By, = (3) for a material element dX = dS(R"e;)
(3.25.5¢)

2
By = (j’—s) for a material element dX = dS(R”e3)
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By considering two material elements ax) = dSl(RTel) and dx® = dSz(R e;) which

deform into dx(V) = dsym and dx® = ds,n where m and n are unit vectors having an angle
of B between them, then Eq. (3.23.4) gives

dsidsycosf = d51d52(RTel) 'C(RTez) = dS; dS,e;'Be, (3.25.6)
That is
dsy ds; 3.25.6a
B12 = 5,45, L2 os(dxydxg) for dXO = ds;(RTey) and dX? = dsy(R7ey) ( )
Similarly
dsy ds3 3.25.6b
B3 = d5,45, OLT3 os(dxydxs) for dXV = ds;(R7e;) and dX® = ds;(R7es) ( )
and
ds, ds3 3.25.6¢
Bas = 75, 45,205 @) for dX® = ds,(R7e;) and dX® = dS3(R7e3) ( )

We can also express the components of B in terms of the displacement components.
Using Eq. (3.18.5) , we have

B = FF’ = (I+ Vu)(I+Vu)” = I+[Vu+(Vu) ]+ (Vu)(Vu)” (3.25.7a)
and in component form,

ey [O%i | Buj)  Ou; duy
_d”+[aX+aX *9X,,0X,, (3.25.7v)

d;7) reduces to 2E;; of Eq. (3.7.10a).

We note that for small displacement gradients,—;-(B,-j -

Example 3.25.1

For the simple shear deformation

x1=X1 + sz, =X x3=X; ()
(a) Obtain the left Cauchy-Green deformation tensor.

(b) Calculate RTel and RTe2
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(c) Sketch both the undeformed and the deformed position for an element which was in the

direction of RTez. Calculate the stretch from the geometry in the figure and compare it with
By,

Solution. (a)

1k0][100] [1+k kO
B]=[FF =0 10|k 10[=| ¥ 10 @
001/[001 0 01
(b) From Eq. (3.23.8), we have
[ K -12 k K -1/2 ]
1+ A+ 777 0
2 2
[R] = ——(1+4) 12 (“IZ)_W 0 (i)
0 0 1
Thus,
RTe, = (1+ k247" 2[—§e1 + ¢ (i)

|"’2k’2| B’ CF—k_-IC'
7

A

Fig. 3.13

(¢) Referring to Fig. 3.13, OFE was an element in the direction of RTez. After deformation, it

becomes OF ', which obviously has the same length as OE. Thus, from geometry, the stretch
for this element is unity. This checks with the value of By, which is also unity.
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3.26 Eulerian Strain Tensor

Let
e = 1(1_3—1) (3.26.1)
2
where B = FFT, then the tensor e* is known as the Eulerian Strain Tensor. We note that if
there if no deformation, then B"' =1 and e* = 0.

The geometric meaning of the components of e* and B~ ! are described below:

From
dx = FdX (3.26.2)
we have
dX = Flx (3.26.3)
where F ™ lis the inverse of F. In rectangular Cartesian coordinates, Eq. (3.26.3) reads
dx; = F,-]—-ldxj (3.26.4)
Thus,
_1_ 3% (3.26.5)
Y ax;

where X; = Xi(x1,6p,%3,t) is the inverse function of x; = x;(X1,X2,X3,f).

In other words, when rectangular Cartesian coordinates are used for both the reference and
the current configuration,

(0x; ox, oxy
axl GX2 GX3

Py (P 3 %
F1=1% & o (3.26.6)
Xz X3 3X;

6x1 6x2 ax3
J

Now,
aXW . gx@ = p 15D . g~ 15® = 5D '(F—I)TF_ldx(z) - dx(l)'(FFT)_ldx(z)
ie.,

dX(l) dx® = axV. B 1? (3.26.7)



142 Eulerian Strain Tensor

and
dx(l) . dx(z)— dx(l) . dx(z) - dx(l) . (I—B'_l)dx(z)
Or,
XD -ax@ _gxD . gx@ = 244D . e* gx@ (3.26.8)

Thus, if we consider a material element, which at time ¢ is in the direction of
e;,i.e., dx = dseq and which at the reference time is dX = dSn, where n is a unit vector, then

Eq. (3.26.7) and Eq. (3.26.8) give:
For dx = dse;

and
o (ds®—ds?)
n=""—5
ds*
Similar meanings hold for the other diagonal elements of B land ¢".

By considering two material elements ax = dsqieq and ax? = dsye; at time ¢ correspond-

ing to dx® = dSyn and dXx® = dS,m at the reference time, n and m are unit vectors, Eq.
(3.26.7) and Eq. (3.26.8) give

_1  dS,dS,
By = dsids, cos(n,m)
. dsyds,
2812 = l—ds—ldsz—cos(n,m)

Similar meanings hold for the other off-diagonal elements of B lande*.

We can also express B land e*in terms of the displacement components:

From u = x-X, we can write
X = x—u(xy,x.x3,t) (3.26.9a)

or,
X; = xi—uj(x1x0,x3.1) (3.26.9v)

where we have used the spatial description of the displacement field because we intend to
differentiate this equation with respect to the spatial coordinates x;. Thus,
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2X; _ a,-j-%‘ﬁ (3.26.10a)
axj Xj

or,
Fl=1-vau (3.26.10b)

Thus , (dropping the subscript x from Vyu)
“1 - FHTF ! = 1-V) (1-Vau) = I-[Va+ (V) ]+ (V) (V) (3:26.11)

and
oo [Vau+ (V'] (V) (V) (3.26.12a)
2 2
In component form, Eq. (3.26.12a) is
oo (i 04y 18 Ot (3.26.12b)
U 2{ax; ox;| 20dx ax
] J f]
and in long form,
R | [ B AR 7
€11 = KI 2 8x1 axl axl (3.26133)

(= L2 ) L (o) (o) (ug) (3ug) (o) (005
1277 axy ary | 2||axq || axy axy | | axp ax; (3.26.13b)
The other components can be similarly written down. We note that for infinitesimal defor-

mation. *. Eq. (3.26.12) reduces to Eq. (3.7.10a).

du;

? BX ox; ox;’
Example 3.26.1
For the simple shear deformation
x1 =X +kXp, =X x3=X3 (i)

(a) Find B"tand e*.
(b) Use the geometry in Fig. 3.13 to discuss the meaning of ey and e,,.

Solution. (a)
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~k

1k0 1 0 ..
[Fl=[010 FYy=10 1 0 (i)
001 0 0 1
) A 1 00|[t ko0 1 -k 0
B™1=[F 1[F']= |-k 10[|0 1 0] = |-k 1+K* 0 (iii)
0 01 0 0 1 0 0 1
- ) 1
0 > 0
R P L .
[€1=50-B71= |¥ =< 9 (iv)
0 0 1
L !
(b) Since e]; = 0, an element which is in e; direction in the deformed state (such as B'C ')
2
had the same length in the undeformed state ( BC in Fig. 3.13). Also since e3; = —%—, an

element which is in the e, direction in the deformed state (such as AH ' ) had a length AH
given by the equation

(AH ")~ (AH) = 2(4H 'Y &3, )
from which one obtains
AH = (AH"W1+# (vi)

This result checks with the geometry in Fig. 3.13.

3.27 Compatibility Conditions for Components of Finite Deformation Tensor

Whenever the three pathline equations (or equivalently, the three displacement functions)
are given, one can always obtain the six components of e* or C or B or E* etc. by differentiation.
On the other hand, if the six components of e* etc. are given, there exist three displacement
functions corresponding to the given strain components only when compatibility conditions
for the components are satisfied. This is because in general, it is not possible to solve for three
unknown functions from six differential equations. The compatibility conditions can in
principle be obtained by the elimination of the three displacement components ; from the six
equations relating strain components with the displacement components such as
Eqgs. (3.26.12b) by partial differentiation and elimination as was done for the infinitesimal
components (Section 3.16) The procedure is very lengthy and will be omitted. Only the
conditions for ¢;* are given below with the super * dropped for convenience:
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azek,, R 6261,,, azek,,, azeh,
ax; Ox,y,  Oxp X,  Axp Ax,  Axy Oy

de de de de;;  de, de de de de; de;; de de
_[ ks+ ns__ kn][ Is+ ms Im]_'_( ks+ ms km](_i_i_ ns ln]

dx, Oxp dxg |{dx, Oy Ox ax,, Oxp Oxg ||dx, Odx; axg

+2ers [__2 ax, Oxp ax, ||ox, ox axg 0%, Ox) dx, |lox, adxy oxg

oey, Oe,, de dey; de de dey, de, de de;, de,s de

Zkr | Tnr Thkn _15+_.ﬂ__1’_".)_ [__kurﬁ__ﬂ] [_IS+A__J2)
de, e,y de, de, e de,

+4 [__k’_,___ﬂ___’.‘_”_) (_Ii_*_ﬂ__IﬂJ] =0

ax, ox; Ox, ||dx, dx Ox
(3.27.1)

We note that for infinitesimal deformation, Eq. (3.27.1) reduces to

2 2 2 2
d €kn 0 €im _ d €lem _ d €ln =0 (3.27.2)
ox; 0x,,, Oxp Ox, Ox;0x, Oxy AX,,

which are the same as those given in Sect. 3.16.

3.28 Change of Area due to Deformation

Consider two material elements dX(! = 45 11 and dx = dS,e; emanating from X.. The
rectangular area formed by dX® and dX@ at the reference time t, is given by
dA, = dXV x dXP = dS, dS, e3 = dA,e3 (3:28.1)
where dA,, is the magnitude of the undeformed area and e3 is normal to the area. At time
t, dX deforms into dx(P = FaX and dX? deforms into dx® = FdX® and the area is
dA = FdXD x FaX® = ds, dS, Fe; xFe, = d4,, Fe; X Fe, (3.282)

Thus, the orientation of the deformed area is normal to Fe; and Fe,. Let this direction be
denoted by the unit vector n, i.e.,

dA = dAn (3.28.3)
then,
dA n = dA, (Fe; X Fey) @)
From the above equation, it is clear that
Fe; -dAn=Fe; - dAn =0 (ii)

and
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Fe; : dA = dA, (Fes - Fe; X Fey) (iii)

Recall that for any vectors a, b, and ¢,

a-bXc = determinant whose rows are components of a, b,and c. Therefore

Fe;-Fey X Fe; = detF (iv)

Eq. (iii) becomes
Fe; : dAn =dA,detF v)

Using the definition of transpose of a tensor, Egs. (ii) become
el-FTn=e2-FTn=0 (vi)

and Egq. (v) becomes

dd .
es - Fn= (_&70) detF (vid)

Thus, FTn s in the direction of €3, so that
dA (vii)

T
F'n =2—Ag(detF)e3
Therefore,

dAn=dA, (detF) (F )T ey (3.284)

Equation (3.28.4) states that the deformed area has a normal in the direction of (F~ l)T ezand
with a magnitude given by

dA = dA, (det F) |(F~ 1T ¢ (3.28.5)

In deriving Eq. (3.28.4), we have chosen the initial area to be the rectangular area formed by
the Cartesian base vectors e; and e, it can be shown that the formula remains valid for any

material area except that e3 be replaced by the normal vector of the undeformed area n,. That
is in general,

dAn =dA, (det F) (F HTn, (3.28.6)

3.29 Change of Volume due to Deformation

Consider three material elements

dXW = gsje;, dXP = dSye, and dX® = dSse;,
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emanating from X.. The rectangular volume formed by dX(l), dX® and dX® at the reference
time ¢, is given by

dV, =dS1dS,dS; (3.29.1)
At time ¢, dX(I) deforms into D = FdX(l), dX@ deforms into dx(z) = FdX(z) and
dX®deforms into dx® = FaX® and the volume is
dv = FaX® . Fax® x Fax® = ds, dS, dS; (Fe, -Fe, x Fe3)
= dV, (Fe; -Fe, X Fey) (3.29.2)

That is,
dV = (det F)dV, (3.29.3)
Since C=F'F and B= FFT, therefore
detC = detB = (detF)? (3.294)

Thus, Eq. (3.29.3) can also be written as
dV = VdetC dV,, = VdetB dV,, (3.29.5)

We note that for an incompressible material, dV' = dV,, , so that
detF = detC = detB = 1 (3.29.6)

We note also that due to Eq. (3.29.3), the conservation of mass equation can be written as:

= po
P detF

(3.29.7)

Example 3.29.1

Consider the deformation given by

x1=2X7 xp = —A3X3, x3=242Xp (i)
(a)Find the deformed volume of the unit cube shown in Fig. 3.14.
(b)Find the deformed area of OABC.

(c) Find the rotation tensor and the axial vector of the antisymmetric part of the rotation tensor.
Solution. (a) From Eq. (i),
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Thus,

detF =4, 4,43 (ii)
Since det F is a constant, from the equation

dV=(detF )dV,
we have, with AV, =1,

AV =A1dphs (iii)
X2

cC B
1
]

" 1
1]
I

JI B | x,
0 A
rd s 1
1
X3
Fig. 3.14

(b) Using Eq. (3.28.6), with A4, = 1, and n, = —e3, we have

Adn=(1)(detF) F Hn, =

1
L0 0
! o 0 .
(igdz) |0 0 —=I | 0f = |[A142 (iv)
e 0
0 iy 0

ie.,
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AAn=,11).2e2

Thus, the area OABC, which was of unit area and having a normal in the direction of -e3
becomes an area whose normal is in the direction of e, and with a magnitude of 1, 4,.

(©)

2, 0 0], 0 o Foo
UP=(FF=|0 0 4||0 0 43| =]0 43 0
—A ly 0 3
0 —43 0410 4 0 0 A3
A 0 0 )
=014 0
0 0 i3
I 7
£ 0 0
A1 0 0 11 10 0
[RI=[FU" =[0 0 -3} |0 i, 0| =]00 -1 (vi)
01, 0 . 01 0
00,1—
3

It is easily verified that R corresponds to a 90° rotation about the e;, which is the axial

vector of the antisymmetric part of R

3.30 Components of Deformation Tensors in other Coordinates

The deformation gradient F transforms a differential material element dX in the reference
configuration into a material element dx in the current configuration in accordance with the
equation

dx = FdX (3.30.1)

where
X = X(X1,X2,X3,t)

describes the motion. If the same rectangular coordinate system is used for both the reference
and the current configurations, then since the set of base vectors (eq,e;,e3) is the same at every

point , we have
¢;-dx = ¢;"F(dX,,ep,) = dX (¢ Fe,,,) = F;pdX,, @)

That is
dx; = FiypdXp, (ii)
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Thus
ox; (3.30.2)

Fim=m'

ie.,

| dxy dn oxy 1
Xy, 0X, 0X;
dxy;  dxp axy
Fl=|—2 ——%2 22 3.30.3
[F] aX; 98X, 6X; ( )
ax3  dx3 dx3
aX; 60X, 4X;
L J
We have already used this matrix for computing the components of F in a few examples above.
The situation is more complicated if the base vectors at the reference configuration are
different from those at the current configuration. Such situations arise not only in the case
where different coordinate systems are used for the two configuration ( for example, a
rectangular coordinate system for the reference and a cylindrical coordinates for the current
configuration , see (B) below) , but also in cases where the same curvilinear coordinates are

used for the two configurations. The following are examples.

(A) Cylindrical coordinate system for both the reference and the current configuration
Let

r=r(ro,00,Zo,t), 0=0(r0,00,20,t), Z=Z('o,9o,zo,t) (lll)
be the pathline equations. We shall show in the following that
ar rao 0z
= o, o P 304
Feor (aro) e, + ( aro ) €y + (8}‘0) e, (3 a)
ar rab 0z
=190, 3.30.4b
Feoe (roaeo) er + (roaeo) ea + (roaoo) ez ( )
ar r a0 0z
= laz. F P 304
FeOZ (azo) e]‘ + ( 820) eO + (azo) ez (3 C)
and
Te,= (o - & 3305
Fe, (aro) €or + (r,,a%) €p0 + (620) €0z (3.30.5a)

FTCB = (@) e, + ( raé )eoe + (@)eoz (3.30.5b)
4
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Te = |22 %z L2 3.30.5¢
Fle,= (aro) Cor ¥ (r 0600) oo + (azo) Foz (33059
where e,; denotes base vectors at the reference position and e; those at the current position.
Substituting
dx =dre, + rd Oeg + dze, and dX =dr,e, + rod0,e,9 + dzpe,, @iv)
in the equation dx = FdX , we obtain
dr = dry(e, Fe,,) + 1,d 6, (¢, Fe, g) + dz,(e, Fep,) v)
rd 6 = dry(eg-Fe,,) + r,d 0, (eg-Fegg) + dzy(eg- Fe,,) (vi)
etc. Thus,
or ar or
. = . =— . = — 3.30.6
er Feor aro ’ er Feoe Ty aeo ’ er F eoz azo ( a)
r 36 raf raf
. = . = . = 3.30.6b
€ Feor aro ’ e9 Fe09 ro aoo ’ ee F eOZ azo ( )
oz 9z oz
. =% . = . = 3.30.6¢
e, ‘Fe,, ar,’ e, ‘Feyg 7,80, ’ e, ‘Fe,, oz, ( )

These equations are equivalent to Egs. (3.30.4).

The matrix

[or  _or or]
ar, 1,96, oz,
rd6 ra6  rab
ar, 1,00, az,
2

o, 7000, az,,_{ei b e}

[F} = (330.7)

is based on two sets of bases, one at the reference configuration ( e,, , €,g , €,; ) and the other
the current configuration ( e, eg,e, ). The components in this matrix is called the two point
components of the tensor F with respect to (e, ,eg,e, Y and (e, , e,9, €, ).

By using the definition of transpose of a tensor, one can easily establish Egs. (3.30.5 ) from
Eqg. (3.30.4). [see Prob. 3.73]

The components of the left Cauchy-Green tensor, with respect to the basis at the spatial

position x. can be obtained as follows. From the definition B = FF7, and by using Egs. (3.30.4)
and (3.30.5 ) we obtain
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B,=¢. 'Be,=e, -FFTe,

= (9], . _Or e . e .
= ( ar,,) ¢, * Fe,, + (roa()o) e, - Feyg + ( 620) e, - Fe,,

(o), (L), (o)’ (vii)
or, r,96, 9z,
Similarly,
B,g=e,-Beg=e,-FFTe9
_ (ro0) (o) , (36 (or) , (ro6) (or (viid)
ar, ) \ or, 1,008, \r,00 dz, ] | 0z,
Other components can be obtained in the same way [see Prob. 3.74]. We list all the com-
ponents below:
5 - i2+ or 2+ ﬂ2 (3.30.8a)
T\, 1,90, 9z,
5 (2)°, (r80\*, (ra8)? (3.30.8b)
%~ \or, r,90, 2,
5 - [ 2+ 3z 2+ " 2 (3.30.8¢)
% \or, 1,96, 2o
B = |9 raé + [ raé + [ rdé (3.30.8d)
%= \or,) | or, r,30, | \r,80,|  \dz,) |8z,
B, = or)(oz) (o 9 ), [9r)(9z (3.30.8¢)
or, | | or, 1,30, | | 7,30, dz, | | 0z,
_ [0z (ro6) | (o2 \ (o0 ) , (8z)(r0 (3.30.80)
By = ar, aro) M (roae,,) (roae,, * az,,) (GZOJ

The components of B~ ! can be obtained either by inverting the tensor B or by inverting the
pathline equations. Let

ro =ro(r,0.2,8), 6, =0,(r,0zt), z,=2z,(r,0.z¢) (ix)

be the inverse of Eq. (iii). Then from the equation dX = Flax , one can obtain
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Bl- (% : + 'o_gr‘_’ﬁ : . %9)2 (3.30.8g)
B = (r% 2+ % 2+ riz%)z (3.30.8h)
Bol- (aa_’; 2+ % 2+ aaiz")z (3.30.8i)
Brg = (%) (r% - %5 (o) + (52 ,%) (3:30.8)
B = (%Crg) (Z—? * @ZT% % * aai,o %") (3.30.8K)
By = (%rzg) (r% * %@e % + a;_zo %%) (330.81)

The components of the right Cauchy-Green tensor C, with respect to the basis at the

reference position X can be obtained as follows. From the definition C = F'F , and by using
Eqgs. (3.30.4) and (3.30.5 ) we obtain

T
CrJo = eor "Ceor = €y 'F'Fe,,

or T rab T az T
= (E)eo,'F e,+ (—)eo,-F eg+ (5;)60,°F e,

ar,
_ (o), (re0)*, (&)? )
ar,, ar, ar,
Similarly,
Cro,= €or Cepg = e -FTFeog
_ [_or ) (or + ro@ |\ (rad + az | (oz (xi)
7,96, | | or, 7,00, ] \ dr, ry00, ) | ar,
Other components can be obtained in the same way [see Prob. 3.75]. We list all the com-
ponents below:
2 2 2
c ()", (re8)", (oz (330.92)
'do | or, ar, or,
2 2
Con o[ ), (0 (e 2 (3.30.9b)
68 ryd0, 7,36, 1,90,
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C.. = £2+ ﬂ2+ oz)’ (3.30.9¢)
2o |z, 2z, dz,

_ (2] (_or raf) (_rab dz)( oz

Go, = (ar,,) (roa%] + ( ar,,) (———roaeo) + ( 3r0) (———ro 600) (3.30.9d)
_(or) () , (o0 (re8) | (32) (22

Crao = (ar,,) (620) + (ar,,) (620) + [aro) (azo) (3.30.9¢)

() (o, (ro6) (o0 , (oz)(_ez
Ce, = (azo) (roaeo) M [azo) (r,,ae,,) + (azo) (r,,aeo) (3.30.99

Again , the components of C~ ! can be obtained by using the equationdX = Flax and Eq.
(ix). We list here two of the six components. The other four components can be easily written
down following the patterns of these two equations.

ot [ 2+ o) (ar,) (3.30.9g)
Tdo~ | or roé + az

—1 _ (9r0) [re%0) . [30) (709 , (%r0) (7% 3.30.9h
C’oeo - (ar or + roé roé + P74 0z ( )

(B) Cylindrical coordinates (r,6,z ) for the current configuration and rectangular Cartesian
coordinates (X,Y,Z) for the reference configuration.

Let
r=rXY,Z{) 0=0XY,Zt) z=zXYZf) (xii)

describe the motions. Then using the same procedure as described for the case where one
single cylindrical coordinate is used, it can be derived that [see Prob.3.76].

Fey = %(fr + :;‘;? e + %{ez (3.30.102)
Fey=re, + 0es + 3L, (3.30.10b)

o reb & (3.30.10c)
Fez =3z " az% * oz

The matrix
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[or  or  or ]
aX aY oz
roé@ rad rod
_ |re8 radb roo 3.30.11
F1= 1% v oz (3.30.11)
0z 9z 9z
X Y oz | (e,...) (ex...)

gives the two point components of F with respect to the two sets of bases, one at the reference
configuration, the other at the current configuration.

The components of the left Cauchy-Green deformation tensor B with respect to the basis
at the current configuration are given by [see Prob.3.77]

B, = (%)Z (ai}r;)z N (56%)2 (3.30.12a)

Bop = (%’i) ‘. (ra_ag) ’, (%)2 (330.12b)

B, - (:_2)2 ' (3_)27)2 N (:%)2 (3.30.120)

Bro = (:_)r() (%) + (g_r) (raio) + (2_2) (%azg) (3.30.12d)
Br:= (3611() (%() * (a%r’f) (g_;') + (a%) (%) (3.30.12¢)
moe= () (36 - 7 (3 < (52) () somo

Again, the components of B~! can be obtained by using the equation dX = F~1dx and the
inverse of Eq. (xii). We list here two of the six components. The other four components can
be easily written down following the patterns of these two equations.

2 2 2 (3.30.12g)
-1_ (89X )4 9z
(3] (6] (5]
-1 _ (8X) (8X) | (oY) (dV)  (9Z) (dZ (3.30.12h)
Be = (E)r) (rae) * (ar) (rae) * (ar) (rae)

The components of the right Cauchy-Green deformation tensor C with respect to the basis
at the reference configuration are given by : [see Prob. 3.78]
2
con e [2)7, (re0)", () (3.30.13a)
XX~ \ox ax ax
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2 2 2
_(ar\*, (ro6\ (2
Cyy= (a ) + ( p ) + (ay) (3.30.13b)
2
Crr= 30| + (799 2+ ) (3.30.13¢)
2™ \oz 9z Z
_ (o) (or) , (ro6)(re6) . (sz)(oz
Cxr = )¢ (a + ax) 572 GX) Y (3.30.13d)
ar\ ( or raé\ (rof dz )\ (dz
= 1axi 37 vl 57 “vlla7 30.1
Cxz= \ax (aZ) " lax ) iz) " GX) az) (3.30.13¢)
_ (o) (ar) , (ro6) (rs6) | (o) (2=
Crz = aY (BZ) + ay) PYA + GY) (GZ) (3.30.13f)
The components of C~! can be obtained as:
cil= (X (X 2+ ax\? (3.30.13g)
XX~ {or ro0 z
-1 aX\ (dY X\ (Y aX) (dY
=515 ol 17 —il|= .30.13h
= (3] (&)« (3) () + (%) (&) oo

and the other four components can be easily written down following the patterns of these two
equation.

(C) Spherical coordinate system for both the reference and the current configuration
Let

r=r(r0,00,¢o,t), 0=0(r0,00,¢0,t), ¢=¢(ro,ao’¢oat) (Xll)

be the pathline equations. Then using the same procedure as described for the cylindrical
coordinate case, it can derive that the two point components for F with respect to (eeg,es )

at xand (e,,€x0,€y4) at X are given by the matrix

[ or ar ar 1
ar, r,d0, r,5in6,6¢,,
_ |8 r 8o rdo 3.30.14)
[F] = ar, ryd0,  1,5in6,00, (
rsinfd¢  rsinfog rsinfdg
ar, 1,00, r,sinf,a, | (&) (o))

The components of the left Cauchy-Green tensor are:
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2 2 2
ar or or
= 1% 3.30.15
B, (ar,,) + (roae,,) M (rosin()oaqbo) ( 3)
2 2 2
rob rof raf
=15 CanA ah 3.30.15b
Boa (aro) * (roaeo) * (rosineoaq)o) ( )
2
_ (rsin6g rsinfog _rsinfop 3.30.15
Byo = ( ) ( 1,96, ) (r,,sme,,a%) (3:30.15¢)
B = réé a rof + ar rof
® aro ar, 7,36, | T \7osin6,00, | | rosind,op, (3.30.15d)
B, ., = rsinfop) | (_or | (rsin6dp) | or rsinfdg
r¢ 6r0 ar, 1,90, | r,36, r,5in6,8¢, | | r,sind,o¢, (3.30.15¢)

By 1n0 rsin06¢ raf + rsinfo¢p raf
¢ aro 1,36, | \r,06, ro8inf,a¢,, | | r,siné,d¢,, (3.30.15%)

The components of B! can be written:

2 2 2
or, r, 00 r,sing,, o
-1_ |Ze ) 0> 0770 3.30.15
5 (ar)+(ar)+( ° ) (3:30.15)

Bl oy ar, N 7,00, [ r,00, roSiné,o0, \ [r,sinb,d¢,,
7z 7 \ ar ) \rsinfa¢ or rsinfé¢ + ar rsinfa¢ (3.30.15h)

etc.

The components of C are:

2 2 2

_{or r a6 rsinf

e ()" (22 630160
ar 2 rob 2 rsinfa¢ 2
Co g, = (r,,aeo) + (r,,aeo) + [ r,90,, ) (3.30.16b)
2 2 2

_ ar r a6 rsinfdgp

Ceze (rosineoaquo) + (rosineoatpo) * (rosineoaq)o) (3.30.16¢)

C. . = or ar + ro6) [ rob + rsinfdg | (rsinfa¢p
Fo | ar, ) | 1,06, ar, | | r,96, ar, 7,96, (3.30.16d)
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C. . = or or + ra6 rad + rsin6og | ( _rsinfd¢
o | ar, ) \r,sin6,d¢, ar, | \r,sinb,0¢, ar, r,siné 09, (3.30.16¢)

ar or r 96 rdb rsinBo¢ 0z
- 3.30.16
RXX (rosineoaqso) (r,,ae(,) * (rosinooatpo) (roaeo] + (rosin006¢o) (roaoo) ( )

The components of C~! can be written:

-1 [ 2+ ar, 2+ ar, \2 (3.30.16g)
Tfo  \ or rof rsinfdgp
ar,, r060 o) (re%) | (%0 ) (7% )}  (330.16h)
o o raf] \ rod rsinfo¢ | \ rsinfa¢
etc.

3.31 Current Configuration as the Reference Configuration

Let x' be the position at time 7 of a material point which is at the spatial position x at
time ¢, then the kinematic equations of motion ( the pathline equations) take the form of

x'=x'(x,r), with x=x'(x,) (3.31.1)

Equations (3.31.1) describe the motion using the current configuration as the reference
configuration. The subscript¢ inx, ' indicates that the current time ¢ is the reference time and

as such in addition to x and 7, it is also a function of ¢.
Example 3.31.1
Given the velocity field
vi=kry v2=v3=0 @
Find the pathline equations using the current configuration as the reference configuration.

Solution. Letx'1(x,t), x'5(x,7), x'3(x, 7) be the position at time 7 then
! , dxy  dx3 (ii)

The second and the third equation state that both x', and x’3 are constants. Since they must
be x, andxj at time t, therefore,

x2’ = X2, x3’ =X3
Now from the first equation, since x'y = x,, we have



Kinematics of a Continuum 159

x1’ = I\’th +C
so that
xl' =x1 + kx2(1: - t) (ll)

When the current configuration is used as the reference, it is customary also to denote
tensors based on such a reference with a subscript ¢, e.g.,

F, =V, x,' (relative deformation gradient )
C = F,T F, (relative right Cauchy-Green Tensor)

B, = F,FtT (relative left Cauchy-Green Tensor)

etc. All the formulas derived earlier, based on a fixed reference configuration , can be easily
rewritten for the case where the current configuration is used as the reference. For example,
let(r’, 0,z ',v) denote the cylindrical coordinates for the position x ' at time 7 for a material
point which is at (r ,0,z) at time ¢ i.e.,

r'=r'(r,0,z,7), '=0'(r,0,z,7), z'=2z'(r,0,z,7)

then, with respect to the current bases ( e, , g, €,)

(C)y = ar’ 2 + r'ao 2 + az' 2 (3.31.1a)

timr or ar P

(Ceg = or’ 2+ r'af’ 2+ az’ 2 (3.31.1b)
v \ra6 raf rof

(€)= |2 2+ r'og 2+ az'\? (331.1¢)
zz = |5y p P

_(or') (or' r'od\(r'o0 az'Y({oz' (3.31.1d)
(Coe = (6r)(r60) +( ar )( rof )+ ( ar)(rae)

_ (o' (or" r'a@’'\({r'aé dz'\(dz' (3.31.1e)
(C')’Z'(ar)(az)+( or )( oz )+(8r)(6z)

_(8r'Y(ar' r'a0') (r' a6 8z') (az’ (3.31.1f)
(Ct)zo_(az)(r60)+( 0z )(me)““(a:)(me)

We will have more to say about relative deformation tensors in Chapter 8 where we shall
discuss the constitutive equations for Non-Newtonian fluids.
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PROBLEMS
3.1. Consider the motion
x1=kt +X;
X=X
x3=2X3

where the material coordinates X; designate the position of a particle at¢ = 0.

(a) Determine the velocity and acceleration of a particle in both a material and spatial
description.

(b) If in a spatial description, there is a temperature field 6 = Ax, find the material derivative
D 6/Dx.

(¢) Do part (b) if the temperature field is given by 6 = Bx;.

3.2. Consider the motion

X1 = Xl
Xy = kXA + X,
X3 =X3

where X; are the material coordinates.

(a) At ¢ = 0 the corners of a unit square are at 4(0,0,0), B(0,1,0), C(1,1,0) and D(1,0,0).
Determine the position of 4, B, C, D att = 1, and sketch the new shape of the square.

(b) Find the velocity v and the acceleration Dv/Dt in a material description.
(c) Show that the spatial velocity field is given by
vi=v3=0, vp= 2kx%t.
3.3. Consider the motion
X1 = kX%t2 + X1
Xy = kXot + X5
x3=X3
(a)At ¢t = 0, the corners of a unit square are at 4(0,0,0), B(0,1,0), C(1,1,0), and D(1,0,0).
Sketch the deformed shape of the square at ¢ = 2.
(b) Obtain the spatial description of the velocity field.
(c) Obtain the spatial description of the acceleration field.
3.4. Consider the motion
x1 = (k+ Xt + X
xy =X
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X3 = X3
(a) For this motion, repeat part (a) of the previous problem.
(b) Find the velocity and acceleration as a function of time of a particle that is initially at the
origin.
(c)Find the velocity and acceleration as a function of time of the particles that are passing
through the origin.
3.5. The position at time ¢ of a particle initially at (X;,X5,X3) is given by

x1=X1— 2X%t2, n=X—-X3t, x3=X3

(a) Sketch the deformed shape, at time ¢ = 1 of the material line OA which was a straight line
att = 0 with O at (0,0,0) and 4 at (0,1,0).

(b) Find the velocity at ¢ = 2, of the particle which is at (1,3,1) at¢ = 0.
(c) Find the velocity of a particle which is at (1,3,1) at¢ = 2.
3.6. The position at time ¢ of a particle initially at (X1,X5,X3 ), is given by

1= X1+ (XG+ X0 =X+ X1+ X0 x3=X3
(a) Find the velocity at ¢ = 2 for the particle which was at (1,1,0) at the reference time.
(b) Find the velocity at t = 2 for the particle which is at the position (1,1,0) at ¢ = 2.
3.7. Consider the motion

1+¢
X1 = 1+t0X1’ XZ—Xz, X3—X3

(a) Show that reference time is ¢ = ¢,,.

(b) Find the velocity field in spatial coordinates.

(c) Show that the velocity field is identical to that of the following motion
n=01+6Xy, x=X5 x3=Xj.

3.8. The position at time ¢ of a particle initially at (X1,X,,X3) is given by

x1=Xj +X%t2, X=X+ Xt, x3=X;

(a) For the particle which was initially at (1,1,0) , what are its positions in the following instants
oftime:t =0,t =1,¢t =2,

(b) Find the initial position for a particle which is at (1,3,2) at ¢ = 2.

(c) Find the acceleration at ¢ = 2 of the particle which was initially at (1,3,2).
(d) Find the acceleration of a particle which is at (1,3,2) at¢ = 2.

3.9. (a)Show that the velocity field



162 Problems

corresponds to the motion
X =X(1+1)

(b) Find the acceleration of this motion in the material description.
3.10. Given the two-dimensional velocity field

Ve=2, V=2
(a) Obtain the acceleration field.
(b) Obtain the pathline equations.
3.11. Given the two-dimensional velocity field

=k, v,=-ky
(a) Obtain the acceleration field.
(b) Obtain the pathline equations.
3.12. Given the two-dimensional velocity field,

.2 2
Vy =X 7Y,

vy = =2ty

Obtain the acceleration field.

3.13. In a spatial description the equation to evaluate the acceleration
Dv _ ov
Dt = o + (Vv)v

is nonlinear. That is, if we consider two velocity fields vAandv? , then

alyaB a1t 8

where a”! and a® denote respectively the acceleration fields corresponding to the velocity fields
v! and V2 each existing alone, a7 B denotes the acceleration field corresponding to the
combined velocity field vi+VB Verify this inequality for the velocity fields
\’4 = —2xye1 + 2xq€;
VB = 2.\?281 - leez
3.14. Consider the motion
X=X
xp = X + (sin zt)(sin X7)
X3 = X3
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(a) At ¢t = 0 a material filament coincides with the straight line that extends from (0,0,0) to
(1,0,0). Sketch the deformed shape of this filament at ¢t = 1/2, t = 1,and¢t =3 /2.

(b) Find the velocity and acceleration in a material and a spatial description.
3.15. Consider the following velocity and temperature fields:
_X1€ + x7€)

’
x% +x%

0 = k(3 + x3)

(a) Determine the velocity at several positions and indicate the general nature of this velocity
field. What do the isotherms look like?

(b) At the point A(1,1,0), determine the acceleration and the material derivative of the
temperature field.

3.16. Do the previous problem for the temperature and velocity fields:

—x.€1 + x1€)
v= $———, 0= k(xi‘ +x%).
2 2
x1 +x3

3.17. Consider the motion x= X+ Xjke; and let dx = (dS 1/ V2)(e; + €3) and

dX® = (dS, / V2)(—e; + ;) be differential material elements in the undeformed configura-

tion.

(a) Find the deformed elements dxX" and ax®,

(b) Evaluate the stretches of these elements, dsy /dSy and ds , / dS,, and the change in the

angle between them.

(c)Do part (b) fork = 1andk = 1072

(d) Compare the results of part(c) to that predicted by the small strain tensor E.

3.18. The motion of a continuum from initial position X to current position x is given by
x=(I+B)X

where Lis the identity tensor and B is a tensor whose components B;; are constants and small

compared to unity. If the components of x are x; and those of X are Xj, find

(a) the components of the displacement vector u, and
(b) the small strain tensor E.
3.19. At time ¢, the position of a particle initially at (X1,X»,X3) is defined by

x1=X1 + kX3
x2=X2+kX2
x3= X3

where k = 107>,



164 Problems

(a) Find the components of the strain tensor.
(b) Find the unit elongation of an element initially in the direction of e; + e,.

3.20. Consider the displacement field
up =KX + X1 X2), uy=kX3, u3=0,

where k = 1074,
(a) Find the unit elongations and the change of angle for two material elements
ax® = gx, 11 and dx® = dX,e, that emanate from a particle designated by X = e; + e,.

(b) Find the deformed shape of these two elements.

3.21. For the displacement field of Example 3.8.3, determine the increase in length for the
diagonal element of the cube in the direction of e; + e, + e3(a) by using the strain tensor and

(b) by geometry.
3.22. With reference to a rectangular Cartesian coordinate system, the state of strain at a point
is given by the matrix

5 3 0
[Ej={3 4 -1{x107*
0 -1 2

(a) What is the unit elongation in the direction 2e, + 2e, + e3?

(b) What is the change of angle between two perpendicular lines (in the undeformed state)
emanating from the point and in the directions of 2e; + 2e; + e3 and 3e; — 6e3?

3.23. Do the previous problem for (a) the unit elongation in the direction 3e; — 4e,, (b) the
change in angle between two elements in the direction 3e, — 4e3 and 4e; + 3es.
3.24. (a)For Prob.3.22, determine the principal scalar invariants of the strain tensor.
(b) Show that the following matrix
300
0 6 0[x107*
002

cannot represent the same state of strain of Prob.3.22.
3.25. For the displacement field

u = kX%, Up = I(X2X3, Uz = k(2X1X3 + X%)v k= 10—6

find the maximum unit elongation for an element that is initially at (1,0,0).

x10

3.26. Given the matrix of an infinitesimal strain field
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kX, 0 0
[El=| 0 —kXo 0
0 0 kX,
(a) Find the location of the particle that does not undergo any volume change.

(b) What should be the relation between k1 and k; be such that no element changes volume?
3.27. The displacement components for a body are

wy = k(X3 + Xy, uy=k(4X3 - Xp), w3=0, k=10"*
(a) Find the strain tensor.
(b) Find the change of length per unit length for an element which was at (1,2,1) and in the
direction of ey + e;.
(c) What is the maximum unit elongation at the same point (1,2,1)?
(d) What is the change of volume for the unit cube with a corner at the origin and with three
of its edges along the positive coordinate axes.

3.28. For any motion the mass of a particle (material volume) remains constant. Consider the
mass to be a product of its volume times its mass density and show that (a)for infinitesimal
deformation p(1 + Ey;) = p,, where p, denotes the initial density and p the current density.

(b) Use the smallness of Ej; to show that the current density is given by
P =pol— Ex)
3.29. True or false: At any point in a body, there always exist two mutually perpendicular

material elements which do not suffer any change of angle in an arbitrary small deformation
of the body. Give reasons.

3.30. Given the following strain components at a point in a continuum:
Ell = E12 = E22 = k, E33 = 3k, E13 = E23 =0 k>0

Does there exist a material element at the point which decreases in length under the defor-
mation? Explain your answer.

3.31. The unit elongations at a certain point on the surface of a body are measured experimen-

tally by means of strain gages that are arranged 45° apart (called the 45° strain rosette ) in the
directions e, (V2/2)(e; + €;) and e,. If these unit elongations are designated by a,b,c

respectively, what are the strain components Eq1,E2,E15.

3.32. (a) Do Problem 3.31 if the measured strains are 200x10~%, 50x107%, 100x107°,
respectively.

(b) If E53 = E3p = E3; = 0, find the principal strains and directions of part (a).
(c) How will the result of part (b) be altered if £33 # 0?
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3.33. Repeat Problem 3.32 except thata = b = ¢ = 1000X% 1076,

3.34. The unit elongations at a certain point on the surface of a body are measured experimen-
tally by means of strain gages that are arranged 60° apart (called the 60° strain rosette ) in

the directions ey, %(el + V3e,), and %(—el + V3e,). If these elongations are designated by

a,b,c respectively, what are the strain components E11,E,E17?

3.35. Do Problem 3.34 if the strain rosette measurements give @ = 2><10_6, b= 1><10_6,
-6
c=15%x10"".

3.36. Do Problem 3.35 exceptthata = b = ¢ = 2000x 1078,
3.37. For the velocity field, v = (kx3)e,

(a) Find the rate of deformation and spin tensors.
(b) Find the rate of extensions of a material element dx = (ds)n where
n = (V2/2)(e; + e;) at x= 5e; + 3e,.
3.38. For the velocity field
e ( t+k ) e
1+x

find the rates of extension for the following material elements: dxd = dsqe; and
dx® = (ds,/VZ)(e, + €,) at the origin at time ¢ = 1.

3.39. (a) Find the rate of deformation and spin tensors for the velocity field
v = (cos t) (sin 7xq)e;.

(b) For the velocity field of part (a), find the rates of extension of the elements

axV = (ds)e;, XD = (dsy)ey, dx® = ds3/VZ(e; + ) atthe originatt = 0.

3.40. Show that the following velocity components correspond to a rigid body motion:
Vi=Xp—X3, V2= -X1tX3 V3=X1—Xp

3.41. For the velocity field of Prob.3.15

(a) Find the rate of deformation and spin tensors.

(b) Find the rate of extension of a radial material line element.

3.42. Given the two-dimensional velocity field in cylindrical coordinates
=0, vp=2r

(a) Find the acceleration at r = 2.
(b) Find the rate of deformation tensor atr = 2,
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3.43. Given the velocity field in spherical coordinates
v,=0, vg=0, vyp= (Ar + %) sin@
r

(a) Find the acceleration field.
(b) Find the rate of deformation field.

3.44. A motion is said to be irrotational if the spin tensor vanishes. Show that the velocity
field of Prob.3.16 describes an irrotational motion.

3.45. (a) Let ax = {ds{)n, and dx? = (ds,)m be two material elements that emanate from

a particle P which at present has a rate of deformation D. Consider (D/Dt)(dx(l) -dx(z)) and
show that

1 D(dsy) L1 D(ds,)
dsy Dt ds, Dt

where 0 is the angle between m and n.

cosB—(sinG)%? =2m-Dn.

(b) Consider the special cases (i) dxX = x and (ii) € = /2. Show that the above expression
reduces to the results of Section 3.13.

3.46. Let eq, ey, €3 and Dy, D, D3 be the principal directions and values of the rate of
deformation tensor D. Further, let

& = (dsp)ey, dx? = (dsp)e, ax = (ds3)e;
be three material line elements. Consider the material derivative
(D/DE)[dxY - (dx@ x dx(>)] and show that

1 DAv)
—_dV Dt —D1+D2+D3

where the infinitesimal volume dV = (ds{)(ds;)(ds3).
3.47. Consider a material element dx = dsn
(a) Show that
(D/Dt)(n) = Dn + Wn—(n-Dn)n
(b) Show that if n is an eigenvector of D then

Dn
Dt - Wn =wXn

where w is the axial vector of W.

3.48. Given the following velocity field
vy = k(x2—2)2x3,

V2 = —x1x2
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v3=kx1x3 ,

for an incompressible fluid, determine k such that the equation of mass conservation is
satisfied.

3.49. Given the velocity field in cylindrical coordinates
v=f(rf), vg=0, v,=0

For an incompressible material, from the conservation of mass principle, obtain the most
general form of the function f (r, 6).

3.50. An incompressible fluid undergoes a two-dimensional motion with

_ kcos@
Ve =

find vy if vg =0 at 6=0.
3.51. Are the fluid motions described in (a) Prob.3.15 and (b) Prob.3.16 incompressible?

3.52. In a spatial description, the density of an incompressible fluid is given by p = kx,. Find
the permissible form for the velocity field with v3 = 0, so that the conservation of mass

equation is satisfied.
X1
v= e
1+¢) 1

3.53. Consider the velocity field
(a) Find the density if it is independent of spatial position, i.e.,p = p(¢).
(b) Find the density if it is a functionx; alone.

3.54. Given the velocity field

vV=x1ter +xytey
determine how the fluid density varies with time, if in a spatial description it is a function of
time only.

3.55. Check whether or not the following distribution of the state of strain satisfies the
compatibility conditions:

Xl + X2 X1 X2
X2 X3 X1 + X3

where k = 10~%,

3.56. Check whether or not the following distribution of the state of strain satisfies the
compatibility conditions:
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XX XB+X XX
[El=k|X3+X3 0 X
XX X X
where k = 1074,
3.57. Does the displacement field
uy = sinXy, upy = X%Xz, u3 = cosX3
correspond to a compatible strain field?
3.58. Given the strain field
Epp=E;n=kX1X;

where k = 10~* and all other Ej; = 0.
(a) Check the equations of compatibility for this strain field.

(b) By attempting to integrate the strain field, show that there does not exist a continuous
displacement field for this strain field.

3.59. The strain components are given by
1
Eyy = f(X2.X3)

v
Ep = E33 = —5f(X2,X3)
Ep=E;3=Ex=0
Show that for the strains to be compatible f(X3,X3) must be linear.
3.60. In cylindrical coordinates (r 0, z ), consider a differential volume bounded by the three
pairs of facesr = rp,r =r, +dr; 0 =0,,0 =0, + d0; z =2,z =z, + dz. The rate at which
mass is flowing into the volume across the face r =r,, is given by (pv,)(r,d0)(dz) and similar

expressions for other faces. By demanding that the net rate of inflow of mass must be equal
to the rate of increase of mass inside the volume, obtain the equation of conservation of mass
in cylindrical coordinates as that given in Eq.(3.15.5).

3.61. Given the following deformation in rectangular Cartesian coordinates

X1 = 3X3
Xy = _Xl
X3 = —2X2

Determine (a) the deformation gradient F, (b) the right Cauchy-Green deformation tensor
C, (c¢) the left Cauchy-Green deformation tensor B, (d) the rotation tensor R, (e) the Lagran-
gian strain tensor, (f) the Euler strain tensor, (g) ratio of deformed volume to the initial
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volume, (h) the deformed area (magnitude and its normal) for the area whose normal was in
the direction of e, and whose magnitude was unity in the undeformed state.

3.62. Do Prob. 3.61 for the following deformation

x1=2X,
Xy =3X5
x3=Xq
3.63. Do Prob. 3.61 for the following deformation
x1=X;
x =3X3
x3=—2X,
3.64. Do Prob. 3.61 for the following deformation
x1=2X,
xn=-X;
x3=3X3
3.65. Given
x1=X1+3X3, xp=X;, x3=X;
Obtain
(a)F,C.

(b) the eigenvalues and eigenvectors of C .

(c) the matrix of U and u-! using the eigenvectors of C as basis.
(d) the matrix of U and U™ with respect to the e; basis.

(d) the rotation tensor R with respect to the e; basis.

You may check your results with the formulas given in the next problem.

3.66. Verify that with respect to rectangular Cartesian base vectors, the right stretch tensor
U and the rotation tensor R for the simple shear deformation

x1=X1+ kX, x2=X3, x3=X3

are given by



Kinematics of a Continuum 171

0

k

FoY o Py
2 k

wi= |4 ol mi= |3 f

0 0 01

K 1
where f = (1 + —&—) 2.

3.67. Let dx® = dSlN(l) and dX® = dSzN(Z) be two material elements at a point P. Show
that if 6 denotes the angle between their respective deformed elements dx and ax® , then

CopNONP
A1y

where N = NDe, ,N® = N{le,, 11 = tand 2, = 7¢
1

3.68. Given the following right Cauchy-Green deformation tensor at a point
90 O
[Cl=104 0
0 0 036
(a) Find the stretch for the material elements which were in the direction of eq, e; and ey
directions.

cosf =

(b) Find the stretch for the material element which was in the direction of e; + e,

(c) Find cosé, where 8 is the angle between dxD and dx?.
3.69. Show that for any tensor A(X1,X2,X3)

9 A -1, Mjn
T, QetA = (detA)(d ™)y 52

3.70. Given
r=r,, 0=0,+k,, z=¢2,

where (r,6,2z) and (r,,0,,z2,) are cylindrical coordinates for the current and reference
configuration respectively.

(a) Obtain the components of the left Cauchy-Green tensor B with respect to the basis at the
current configuration.

(b) Obtain the components of the right Cauchy-Green tensor C with respect to the basis at
the reference configuration.
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3.71. Given

r=(2aX +b)"? 0=);,, z=2Z
where (r,0,z) is cylindrical coordinates for the current configuration and (X,Y, Z) are
rectangular Cartesian coordinates for the reference configuration.

(a) Calculate the change of volume.

(b) Obtain the components of the left Cauchy-Green tensor B with respect to the basis at the
current configuration.

3.72. Given
r=fix), 0=g), z=h(2)
where (r,0,z) and (X,Y, Z) are cylindrical coordinates and rectangular Cartesian coor-

dinates for the current and reference configuration, respectively. Obtain the components of
the right Cauchy-Green tensor C with respect to the basis at the reference configuration

3.73. From Egs.(3.30.4a), obtain Eqs.(3.30.5).

3.74. Verify Eq.(3.30.8b) and (3.30.8d).

3.75. Verify Eq.( 3.30.9b) and (3.30.9d).

3.76. Derive Eqgs.(3.30.10).

3.77. Using Eqgs.(3.30.10) derive Eqs.(3.30.12a) and (3.30.12d).
3.78. Verify Eqgs. ( 3.30.13 a) and (3.30.13d).



