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N on-N ewton ian F I u ids 

In Chapter 6, the linear viscous fluid was discussed as an example of a constitutive equation 
of an idealized fluid. The mechanical behavior of many real fluids appears to be adequately 
described under a wide range of circumstances by this constitutive equation which is referred 
to as the constitutive equation of a Newtonian fluid. Many other real fluids exhibit behaviors 
which are not accounted for by the theory of Newtonian fluid. Examples of such substances 
include polymeric solutions, paints, molasses, etc. 

For a steady unidirectional laminar flow of water in a circular pipe, the theory of Newtonian 
fluid gives the experimentally confirmed result that the volume discharge Q is proportional to 
the (constant) pressure gradient in the axial direction and to the fourth power of the diameter 
d of the pipe, that is [see Eq. (6.13.6)] 

Jtd & (8.0.1) 

However, for many polymeric solutions, it was observed that the above equation does not hold. 
For a fixed d, the Q versus Jdp/& I relation is nonlinear as sketched in Fig. 8.1. 

e=--/ 12@ clx I 

Fig. 8.1 

462 



NowNewtonian Fluids 403 

For a steady laminar flow of water placed between two very long coaxial cylinders of radii 
r1 and r3 if the inner cylinder is at rest while the outer one is rotating with an angular velocity 
S2, the theory of Newtonian fluid gives the result agreeing with experimental observations that 
the torque per unit height which must be applied to the cylinders to maintain the flow is 
proportional to Q. In fact [see Eq. (6.15.5)] 

(8.0.2) 

However, for those fluids which do not obey Eq. (8.0.1), it is found that they do not obey 
Eq. (8.0.2) either. Furthermore, for water in this flow, the normal stress exerted on the outer 
cylinder is always larger than that on the inner cylinder due to the effect of centrifugal forces. 
However, for those fluids which do not obey Eq. (8.0.1), the compressive normal stress on the 
inner cylinder can be larger than that on the outer cylinder. Fig. 8.2 is a schematic diagram 
showing a higher fluid level in the center tube than in the outer tube for a non-Newtonian fluid 
in spite of the centrifugal forces due to the rotations of the cylinders. Other manifestations of 
the non-Newtonian behaviors include the ability of the fluids to store elastic energy and the 
occurrence of non-zero stress relaxation time when the fluid is suddenly given a constant shear 
deformation. (For Newtonian fluids, relaxation is instantaneous). 

Fig. 8.2 
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In this chapter, we shall discuss several special constitutive equations and one general one 
which define idealized viscoelastic fluids exhibiting various characteristics of Non-Newtonian 
behaviors. 

Part A Linear Viscoelastic Fluid 

8.1 Linear Maxwell Fluid 

The linear Maxwell fluid is defined by the following constitutive equation: 
T = - p l + ~  (8.1.1a) 

z + A . z = & D  ar (8.1.1b) 

where -PI is the isotropic pressure which is constitutively indeterminate due to the incom- 
pressibility property of the fluid, r is called the “extra stress” which is related to the rate of 
deformation D by Eq. (8.1.1b). 

In the following example, we show, with the help of a mechanical analogy, that the linear 
Maxwell fluid possesses elasticity. 

Example 8.1.1 

Figure 8.3 shows the so-called linear Maxwell element which consists of a spring (an elastic 
element) with spring constant G, connected in series to a viscous dashpot (viscous element) 
with a damping coefficient 7. The elongation (or strain) of the Maxwell element can be divided 
into an elastic portion E, and a viscous portion E,, Le., 

E = E ,  + E ,  (9  

Fig. 8 3  
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Since the spring and the dashpot are connected in series, the force t in each is the same 
(inertia effects are neglected). That is 

Thus, 
dEe 1 d t  - 
dt G dt 

and 

d %  1 -- - --t 
d t t l  

(ii) 

(iii) 

Taking time derivative of Eq. (i) and using Eqs. (iii) and (iv), we obtain the relation between 
the rate of strain of the Maxwell element with the force -t as follows: 

d e  l d t  1 
dt Gdt tl 

+ -t -=- 

os 
dt d e  r+A-=q- dt dt 

where 

G 

(8.1.2) 

(8.1.3) 

(8.1.4) 

has the dimension of time, the physical meaning of which will be discussed below. Equation 
(8.1.3) is of the same form as Eq. (8.l.lb). Indeed both D and d ddt  (in the right side of these 
equations) describe rates of deformation. (We note that in a simple shearing flow in the xy 
plane, the rate of change of shearing strain is given by zDxy ). Thus, by analogy, we see that the 
constitutive equation, Eq. (8.1.1b) endows the fluid with “elasticity” through the term Addat 
with an equivalent elastic modulus G given by Eq. (8.1.4). 

Let us consider the following experiment performed on the Maxwell element: Starting at 
time t = 0, a constant force to is applied to the element. We are interested in how, fort> 0, the 
strain changes with time. This is the so-called creep experiment. From Eq. (8.1.3), we have, 
since d d d t  = 0, for t > 0, 

which yields 

TO 

1 
e = - t + e 0  
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The integration constant 
elastic response of the spring and is therefore given by t,/G. Thus 

is the instantaneous strain E of the element at t = O+ from the 

to to 
E = - f + -  

t l G  
(8.1.5) 

We see from Eq. (8.1.5) that under the action of a constant force to in creep experiment, the 
strain of the Maxwell element first has an instantaneous jump from 0 to to/G and then 
continues to increase with time ( Le. flow ) without limit. 

We note that there is no contribution to the instantaneous strain from the dashpot because, 
with d ~/dt+co , an infinitely large force is required for the dashpot to do that. On the other 
hand, there is no contribution to the rate of elongation from the spring because the elastic 
response is a constant under a constant load. 

We may write Eq. (8.1.5) as 
E 1  1 -- - - - t + - = J  
to tl G 

(8.1.6) 

The function J (t) gives the creep history per unit force. It is known as the creep compliance 
function for the linear Maxwell element. 

In another experiment, the Maxwell element is given a strain E, at t = O  which is then 
maintained at all time. We are interested in how the force t changes with time. This is the 
so-called stress relaxation experiment. From Eq. (8.1.3), with d ~ / d t  = 0, for t> 0, we have 

dt t + L - = O  dt fort > 0 (vii) 

which yields 
t = t o e  -t/A (viii) 

The integration constant to is the instantaneous elastic force which is required to produce the 
strain c0 at t = 0. That is, to = G E,. Thus, 

t = GEoe - t A  (8.1.7) 

Eq. (8.1.7) is the force history for the stress relaxation experiment for the Maxwell element. 
We may write Eq. (8.1.7) as 

r $ ( f ) = G = G e  t -t/a - --p tl -t/a (8.1.8) 

The function @(t)  gives the stress history per unit strain. It is called the stress relaxation 
function, and the constant L is known as the relaxation time which is the time for the force to 
relax to l/e of the initial value oft. 
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It is interesting to consider the limiting cases of the Maxwell element. If G = 00, then the 
spring element becomes a rigid bar and the element no longer possesses elasticity. That is, it 
is a purely viscous element. In creep experiment, there will be no instantaneous elongation, 
the element simply creeps linearly with time (see Eq. (8.1.6)) from the unstretched initial 
position. In the stress relaxation experiment, an infinitely large force is needed at t =O to 
produce the finite jump in elongation (from 0 to 1). The force however is instantaneously 
returned to zero ( Le., the relaxation time A = r]/G +O ). We can write the relaxation function 
for the purely viscous element in the following way 

z = r]S(t)  viscous element only (8.1.9) 

where S( t )  is known as the Dirac delta function which may be defined to be the derivative of 
the unit step function H(t)  defined by: 

Thus, 

m S(t)  = dt 

and 
t 
j- d(t)dt = H(t)  

(8.1.10) 

(8.1.11) 

(8.1.12) 

Example 8.1.2 

Consider a linear Maxwell fluid, defined by Eq. (8.1.1), in steady simple shearing flow: 

v1 = kX2, v2 = v3 = 0 (9  

Find the stress components. 
Solution. Since the given velocity field is steady, all field variables are independent of time. 

ar Thus, - = 0 and we have 
at 

r = & D  (ii) 

Thus, the stress field is exactly the same as that of a Newtonian incompressible fluid and the 
viscosity is independent of the rate of shear for this fluid. 
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Example 8.1.3 

For a Maxwell fluid, consider the stress relaxation experiment with the displacement field 
given by 

U I =  cOH(t)x2, ~2 = ~3 = 0 6) 
where H(t) is the unit step function defined in Eq. (8.1.10). Neglect inertia effects, 
(i) obtain the components of the rate of deformation tensor. 
(ii) obtain t 1 2  at t = 0. 

(iii) obtain the history of the shear stress t12. 

Solution. Differentiate Eq. (i) with respect to time, we get 

Vl = Eo 6(t)x2, v2 = v3 = 0 (ii) 

where d(t )  is the Dirac delta function defined in Eq. (8.1.11). The only non-zero rate of 

. Thus, from the constitutive equation for the linear deformation component is 0 1 2  = - 2 
Maxwell fluid, Eq. (S.l.lb), we obtain 

Eo w 

Integrating the above equation from t=O-c to t=O+c, we have 

(iii) 

The integral on the right side of the above equation is equal to 1 [see Eq. (8.1.12)]. As c*O, 
the first integral on the left side of the above equation approaches zero whereas the second 
integral becomes: 

[t12(0+)-r12 @--)I (v) 

Thus, since 212(0-) = 0, from Eq. (iv), we have 

P Eo 
212(0+) = 7 

Fort> 0, d(t)=O so that Eq. (iii) becomes 

P Eo The solution of the above equation with the initial condition 212(0+) = --J- is 
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(8.1.13) 

This is the same relaxation function which we obtainec for the spring-dashpot model in 
Eq.(8.1.7). In arriving at Eq. (8.1.7), we made use of the initial condition to = G E ~ ,  which was 
obtained from considerations of the responses of the elastic element. Here in the present 
example, the initial condition is obtained by integrating the differential equation, Eq. (iii), over 
an infinitesimal time interval (fromt=O- to t= O + ) .  By comparing Eq. (8.1.13) here with Eq. 
(8.1.8) of the mechanical model, we see that is the equivalent of the spring constant G of the 
mechanical model. It gives a measure of the elasticity of the linear Maxwell fluid. 

P 

Example 8.1.4 

A linear Maxwell fluid is confined between two infinitely large parallel plates. The bottom 
plate is fixed. The top plate undergoes a one-dimensional oscillation of small amplitude u, in 
its own plane. Neglect the inertia effects, find the response of the shear stress. 

Solution. The boundary conditions for the displacement components may be written: 

( 9  iwt A t y = h :  u x = u o e  , uy=uz=O 

Aty = 0: u, = u,, = u, = 0 (ii) 

where i = 6 i  and eiw' = cowt + i sinot. We may take the real part of u, to correspond to 
our physical problem. That is, in the physical problem, u, = uOcowt. 

Consider the following displacement field: 

ux@) = uoiwt ($ , uy = L i z  = 0 (iii) 

Clearly, this displacement field satisfies the boundary conditions (i) and (ii). The velocity field 
corresponding to Eq. (iii) is given by: 

v,@) = iwu4 y;) , vy = v, = 0 

Thus, the components of the rate of deformation tensor D are: 
DI2 = -I 1 .  w ugiwt  (3 and all other Do = 0 

2 

(iii) 

This is a homogeneous field and it corresponds to a homogeneous stress field. In the absence 
of inertia forces, every homogeneous stress field satisfies all the momentum equations and is 
therefore a physically acceptable solution. Let the homogeneous stress component 212 be 
given by 
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We wish to obtain the complex number zo. Substituting 212 = rgiwt into the constitutive 
equation for 212: 

one obtains 
(vii) 

The ratio =G* is known as the complex shear modulus, which can be written as 

G* = G '(0) + iG " (w)  (8.1.14a) 

The real part of this complex modulus is 
(8.1.14b) 

and the imaginary part is 
G" = pw (8.1.14~) 

(1 + A2w2) 
CC If we write 1 as G, the spring constant in the spring-dashpot model, we have 

G' = p2w2G 
(G2 + p2w2) 

(viiia) 

and 
pwG2 (viiib) 

G" = 
(G2 + p2w2) 

We note that as limiting cases of the Maxwell model, a purely elastic element has p+a so 
that  G '  = G and G "  = 0 and a purely viscous element  has G+w so that  
G ' = 0 and G = pw. Thus, G ' characterizes the extent of elasticity of the fluid which is 
capable of storing elastic energy whereas G ' I  characterizes the extent of loss of energy due to 
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viscous dissipation of the fluid. Thus, G is called the storage modulus and G 
loss modulus. 

writing 

is called the 

G* = G ' + iG = IG'ye'b (8.1.15a) 

where 
rr2 112 IG*I  = ( G ~ ~ + G  ) (8.1.15b) 

and 
G " (8.1.15~) 
G tand = 7 

we have, 
G*eiwt = I G* I ,i(wt + 6 )  

Therefore, taking the real part of Eq. (v), we obtain, with Eq. (ix) 

Thus, for a Maxwell fluid, the shear stress response in a sinusoidal oscillatory experiment under 
the condition that the inertia effects are negligible is 

-1l- + tan h) 

The angle 6 is known as the phase angle. For a purely elastic material in a sinusoidally 
oscillation, the stress and the strain are oscillating in the same phase ( 6 = 0 ) whereas for a 
purely viscous fluid, the stress is 90" ahead of the strain. 

8.2 

constitutive equation: 

Generalized Linear Maxwell Fluid with Discrete Relaxation Spectra 

A linear Maxwell fluid with N discrete relaxation spectra is defined by the following 

N (8.2. la) 

1 
7 = E r n  

where 

% rn +A--=@nD 
at 

(8.2.lb) 
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The mechanical analog for this constitutive equation may be represented by N Maxwell 
elements connected in parallel. The shear relaxation function is the sum of the N relaxation 
functions each with a different relaxation time An: 

(8.2.2) 

It can be shown that Eqs. (8.2.1) is equivalent to the following constitutive equation 

a"D 
T + ~ a , , ; = b , D + ~ b , , ~  

1 at 1 

N -  1 a" r N (8.2.3) 

We demonstrate this equivalence for the case of N = 2 as follows: When N = 2 , 
t =rl  +r2 (8.2.4a) 

and 
a1 (8.2.4b) r1 +Al-=&lD and r2 +Az-=@2D 
at at 

Thus 

ar h1 a 2  arl &2 
at at at at at (A1 + A2)- = Al- + 12- + ,I2- + AI- = 2@1+ p2)D-(rl + r2  ) 

a1 *2 a1 *2 + A2- + 1,- = (@l + @2)D- r + 4- + 11- at at at at 

and 

Adding Eqs. (i) and (ii), we obtain 
(iii) 

(8.2.5) 
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In the above equation, if a2 = 0, the equation is sometimes called the Jeffrey's model. 

8.3 Integral Form of the Linear Maxwell Fluid and of the Generalized Linear 
Maxwell Fluid with Discrete Relaxation Spectra 

Consider the following integral form of constitutive equation: 
t 

r = 2 J $(t-t ') D(t ')dt ' 
-m 

where 

$(t)  = $e-t'A 

(8.3.la) 

(8.3.lb) 

is the shear relaxation function for the linear Maxwell fluid defined by Eq. (8.1.1b). If we 
differentiate Eq. (8.3.1) with respect to time t, we obtain (note that t appears in both the 
integrand and the integration limit, we need to use the Leibnitz rule of differentiation) 

r -8 

1 = 1 f ( -3 exp[-(t-t ' ) / A  ]D(t ')dt ' + D(t) 
-m at 

That is, 
(8.1.1b) 

Thus, the integral form constitutive equation, Eqs. (8.3.1) is the same as the rate form 
constitutive equation, Eq. (8.1.1b). Of course, Eq. (8.3.1) is nothing but the solution of the 
linear non-homogeneous ordinary differential equation, Eq. (8.1.1b). [See Prob. 8.61 

It is not difficult to show that the constitutive equation for the generalized linear Maxwell 
equation with N discrete relaxation spectra, Eq. (8.2.1) is equivalent to the following integral 
form 

We may write the above equation in the following form: 
t 

= 2 J $(t-t ')D(t ')dt ' 
-m 

(8.3.2) 

(8.3.3) 

where the shear relaxation function @(t) is given by 
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(8.3.4) 

8.4 

tive equation: 

Generalized Linear Maxwell Fluid with a Continuous Relaxation Spectrum. 

The linear Maxwell fluid with a continuous relaxation spectrum is defined by the constitu- 

1 

T = 2 J @(t-t  ')D(t ')dt 
- W  

where the relaxation function @(t) is given by 

The function H(A.)/A is the relaxation spectrum. Eq. (8.4.2a) can also be written 
W 

$(t) = H(A.) e-'/' d Id 
0 

(8.4.1) 

(8.4.2a) 

(8.4.2b) 

As we shall see later that the linear Maxwell models considered so far are physically 
acceptable models only if the motion is such that the components of the relative deformation 
gradient (i.e., deformation gradient measured from the configuration at the current time t, see 
Section 8.5 ) are small. When this is the case, the components of rate of deformation tensor 
D are also small so that [see Eq. (v), Example 5.2.11 

(8.4.3) dE Dx- 

where E is the infinitesimal strain measured with respect to the current configuration. 
Substituting the above approximation in Eq. (8.4.1) and integrating the right hand side by parts, 
we obtain 

at 

The first term in the right hand side is zero because $( 0 0 )  = 0 for a fluid and E(t)=O because 
the deformation is measured relative to the configuration at time t. Thus, 

E(t ')dt d$(t-t ') 
r =-2S_, dt ' 

(8.4.5) 

Or, letting t-t I =  s, we can write the above equation as 
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Let 

we can write Eq. (8.4.6) as 

a 

t = 2 J * ( t - s ) d r  
0 

or 

(8.4.6) 

(8.4.7) 

(8.4.8a) 

(8.4.8b) 

The above equation is the integral form of constitutive equation for the linear Maxwell fluid 
written in terms of the infinitesimal strain tensor E (instead of the rate of deformation tensor 
D). The functionf(s) in this equation is known as the memory function. The relation between 
the memory function and the relaxation function is given by Eq. (8.4.7). 

The constitutive equation given in Eq. (8.4.8) can be viewed as the superposition of all the 
stresses, weighted by the memory function f(s), caused by the deformation of the fluid particle 
(relative to the current time) at all the past time ( t ' = - 00 to the current time t).  

For the linear Maxwell fluid with one relaxation time, the memory function is given by 

(8.4.9) 

For the linear Maxwell fluid with discrete relaxation spectra, the memory function is: 

and for the Maxwell fluid with a continuous spectrum 

(8.4.10) 

(8.4.11) 
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Part B Nonlinear Viscoelastic Fluid 

8.5 

of the same particle at time t. Then the equation 

Current Configuration as Reference Configuration 

Let x be the position vector of a particle at current time t, and let x‘ be the position vector 

x‘ = xft (qt) with x = dl(x,t) ( 8.5.1) 

defines the motion of a continuum using the current time t as the reference time. The 
subscript t in the function f t ( x ,  t) indicates that the current t is the reference time and as such 
dl@, z) is also a function oft 

For a given velocity field v = v(x, t), the velocity at the position x’ at time t is v = v(x’, t). 
On the other hand, for a particular particle (Le., for fixed x and t ), the velocity at time t is given 

by (z) .Thus, 
y-fixed 

(8.5.2) 
v(x’,t) = 

Equation (8.5.2) allows one to obtain the pathline equations from a given velocity field, using 
the current time t as the reference time. 

Example 8.5.1 

Given the velocity field of the steady unidirectional flow 
v1 = v(x2), v2 = 0, v3 = 0 

describe the motion of the particles by using the current time t as the reference time. 
Solution. From the given velocity field, we have, the velocity components at the position 

v1 = v(xzf), v2 = 0, v3 = 0 (ii) 

(x1‘,x2’,x3’) at timet: 

Thus, with x’ = x’iq, Eq. (8.5.2) gives 

axl’ ax2’ ax3’ 
at. = v(x2’), - dt -0 ,  - a t = O  

ax2’ 
From dt = 0, we have 

(iii) 

x2‘ = f ( X 1 ,  x2, x3,O 

x2’ = x 2  

But, at t = t, x2‘ = x2, therefore, for all t 



Similarly, for all t 
x3’ = x3 

Sincex;?’ = x2 for all z, therefore, from Eq. (ii) 

Thus 

At t = t, x l ’  = xl, therefore 

from which 

and 

Thus, 

X I ’  = V(X2)t+Xl--V(X~)t 
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( 4  

X I ’  = x1+v(x2)(t-t) 

x2’ = x2 

X’J‘ = x3 

8.6 Relative Deformation Gradient 

t and z, respectively. Then they are related by 
Let dx and dx‘ be the differential vectors representing the same material element at time 

dx‘ = x’,(x+dqt)-x’,(qt) = (VX’,)dX (9 
That is 

d i  = Fdx (8.6.1) 

The tensor 
F, V X ‘ ~  (8.6.2) 

is known as the relative deformation gradient. Here, the adjective “relative ” indicates that 
the deformation gradient is relative to the configuration at the current time. We note that for 
t = t ,  dx’ = dx so that 

Ft ( t )  = I (8.6.3) 

In rectangular Cartesian coordinates, 
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ax, ax2 ax3 [F,] I [VX’,] = - - (8.6.4) 

In cylindrical coordinates, with pathline equations given by 
rf  = r’(r, e , ~ ,  t), 8’ = Of@, e , ~ ,  t), zf = zf(r, e , ~ ,  t) (8.6.5) 

the two point components of F,, with respect to (ef, e’@, e‘*) at time t and (e,., Q, q) at the 
current time t are given by the matrix 

(8.6.6) 

In spherical coordinates, with pathline equations given by 
r’ = r‘(r, e,@, t), 8’ = @(r, e,$, t), = @(r, e,$, t) (8.6.7) 

the two point components of F,, with respect to (e’, e’e, e’+) at time t and (e, w, e+) at the 
current time t are given by the matrix 

(8.6.8) 

8.7 Relative Deformation Tensors 

The descriptions of the relative deformation tensors (using the current time t as reference 
time) are similar to those of the deformation tensors using a fixed reference time. [See 
Chapter 3, Section 3.18 to 3.291. Indeed by polar decomposition theorem (Section 3.21) 

(8.7.1) 

is the relative 

F,= %Ut = Vt % 
where Ut and V, are relative right and left stretch tensor respectively and 
rotation tensor. Note 



F,(t) = U,(t) = V,(t) = &(t) = I 

From Eq. (8.7.1) , we clearly also have 

v, = rt ut rtT 
and 

ut = RTV, R, 
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(8.7.2) 

(8.7.3) 

(8.7.4) 

The relative right Cauchy-Green deformation tensor C,is defined by 

C, = U, 2 T  = F, F, (8.7.5) 

and the relative left Cauchy-Green deformation tensor B, is defined by 

B, = V;" = F,F; (8.7.6) 

and these two tensors are related by 

Bt=R,C,hTand C f = q T B f q  (8.7.7) 

The tensors Cy1 and BF1 are often encountered in the literature. They are known as the 

We note that 
relative Finger deformation tensor and the relative Piola deformation tensor respectively. 

Ct(x,t) = Bt(x,t) = C,-l(x,t) = BT1(x,t) = I 

Example 8.7.1 

Show that if dd') and dx(2) are two material elements emanating from a point P at time t 
and dx'(') and 

dx' (1) . dx' (2) = dx(l) . CdX(2, (8.7.8) 
are the corresponding elements at time t, then 

(8.7.9) 

(ii) 
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Also, since 

dx = Ft-ldx' 

(iii) 

(8.7.10) 

therefore, 

&') .dx(2> = [(F;')&(l']. [(F;1)&'(2)] = dx'(l) .B;' d ~ ' ( ~ )  (iv) 

Let dx = &el be a material element at the current time t and dx' = &'n be the same 
material element at time t , (where el is a unit vector in a coordinate direction and n is a unit 
vector), then Eq. (8.7.8) gives 

On the other hand, if dx' = &'el is a material element at time t and dx = &n is the same 
material element at current time t, then Eq. (8.7.9) gives 

(8.7.12) 

The meaning of the other components can be obtained using Eq. (8.7.8) and (8.7.9). [See also 
Sections 3.23 to 3.26 on finite deformation tensors in Chapter 3. However, care must be taken 
in comparing equations in those sections with those in this chapter because of the difference 
in reference configurations. 

We note that 

Ct(x,t) = Bt(x,t) = Ct-l(x,t> = BT'(x,t) = I (8.7.13) 

8.8 Calculations of the Relative Deformation Tensor 

(A)Rectangular Coordinates 
With the motion given by: 

X i f  = XI' (XI, x2, "3, r), X2' = X2' (Xi, X2, X3, t), x3' = x3' (XI, x2, X3, Z) (8.8.1) 

Equations (8.7.5) and (8.6.4) give 
2 

(Ct)11= [q2+ [q2+ [q (8.8.2a) 
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(8.8.2.b) 

(8.8.2.c) 

(8.8.2.d) 

(8.8.2.e) 

(8.8.2.0 

To obtain the components of Ct-’, one can either invert the symmetric matrix whose 
components are given by Eqs. (8.8.2), or one can obtain them from the inverse functions of 
Eq. (8.8.1), Le., 

X I  = . “ ~ 1 ( ~ 1 ’ , ~ 2 ’ , ~ 3 ’ , t ) ,  ~2 = ~ 2 ( ~ 1 ’ , ~ 2 ’ , ~ 3 ‘ ,  z), ~3 = x 3  ( ~ 1 ‘ , ~ 2 ’ , ~ 3 ’ ,  t) (8.8.3) 

Indeed, it can be obtained 

(8.8.4a) 

(8.8.4.b) 

etc. 

Example 8.8.1 

Find the relative right Cauchy-Green deformation tensor and its inverse for the velocity 

Solution. Since 
field given in Example 8.5.1 

XI‘  = x1+v(xz)(t-t>, x2‘ = x2, x3’ = x3, 

we have, with k = dv /&2, 
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and 

[Ctl = k ( t - t )  1 0 
0 0 1  0 ° 1  

L 

1 k(t-t) 0 
0 1 0  
0 0 1  0 

1 

0 

The inverse of Eqs.(i) are 
x1 = x1’-v(x2)(t-t), x2 = x2’, x3 = x3’, 

1 -k( t - t )  0 
[Ct-ll = ; p] 1 

-k(t-t) :] = 
0 0 1  

l+k2(t-t)2 -k(t-t) 0 

0 0 1  
- k(t - t )  1 0  

(ii) 

(iii) 

(iv) 

(vii) 

(viii) 

(B) Cylindrical Coordinates 
The procedures described below for obtaining the formulas for computing the components 

for the relative right Cauchy-Green tensors, are the same as those used in Section 3.30 of 
Chapter 3. 

We have 
dx’ = dr’erl+r’d~’e’~+&’e’,, dx = drel+rdeeg+&ez (8.8.5) 

Thus, fromdx‘ = FJx, 

dr’ = dr(e‘; Ftel) +rdO(e‘; Fteg) +&(e’; Ftez) 0) 

But from calculus 
ar’ dr’ ar’ 
dr az dr’ = - d r + ~ d V + - &  

Thus, we have 
ar’ 1 art ar’ 

t r -  ar r az e’;Fe - - e’;Ft% = - e’,.Fe - - 

Similarly, one can obtain 

(ii) 

(iii) 
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and 

Equations (iii) to (v) are equivalent to the following equations: 
art aet azf 
ar ar ar Fte, = --et,+rt--e’~+-et, 

ar’ aef azt ,,- az a t  a t  F e - -e t ,+rtete+-etz  

As already noted in the previous section, the matrix 
ar’ 1 art 
ar r az 

(8.8.6a) 

(8.8.6b) 

(8.8.6~) 

(8.8.7) 

being obtained using bases at two different points, give the two point components of the tensor 
Ft. Now, from 

Ct = FrFt 
we have 

T (C,), = e;F, Fte, = ef-FT 

ar’ T d e f  T azt T 
ar ar 
art aet az 
ar ar ar 

= -(e,.Ft etr)+rf-(e;Ft eto)+-&ef*Ft etz) 

= -(eff F,e,) +rt-(efe F,e,) + -( e’, - F,e,) 
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(vii) 

Other components can be derived similarly. Thus, with the pathline equations given by 

r‘ = r‘(r, O,z,t), 0’ = O f @ ,  0,z , t) ,  Z’ = z’(r, O,z,z) (8.8.8) 

the components of C, with respect to the bases e,,% and e, are: 

(8.8.9a) 

(8.8.9b) 

To obtain the components of CT1, one can either invert the symmetric matrix whose 
components are given by Eqs. (8.8.9), or one can obtain them from the inverse functions of 
Eq. (8.8.8), Le., 

r = r(r’, O’,z’,t), 0 = e@’, 0’,z’,z), z = z(r’, O’,z’,t) 

In fact, from dx = FT’dx‘, we obtain 

dr = e,.dx = dr’(er.Ft-l e’,) + r‘dO’(e,*FT1e’e) + dz’(er.FT1e‘,) 

rd6 = +*dx = dr’(ee-F[-’e’,) + rfdef(eg.Frle’e) + &‘(%-FT1ef,) 

etc. Thus, 

e,-Ft-’e‘, = e‘,.F, -IT e, = - ar e,.Ff-’efe = efe.F;lTe, = - ar 
ar” rfaef 

(8.8.10) 

(viii) 

(ix) 

(4 
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etc. These equations are equivalent to the following equations: 

and 

(8.8.1 la) 

(8.8.1 lb) 

(8.8.11~) 

(8.8.12a) 

(8.8.12b) 

(8.8.12~) 

From 

(8.8.13) 1 - l T  (Ct-'>rr = er-Fyl FF1'er , = e,*Fr Ft Q 

etc., we obtain, with the help of Eqs. (8.8.11) and (8.8.12), 

= [ ($q2+ (s)2+ (32] 
(8.8.14a) 

(8.8.14b) 

The other components can be easily written down following the patterns given in the above 
equations.. 
(C) Spherical coordinates 

With path line equations given by 

r' = r'(t, r, 8, qj ,  t ) ,  8' = 8'(t,  r, 8, qj ,  t ) ,  qj' = qj'(t, r, 8, q j ,  t )  (8.8.15) 

the components of Ct with respect to er,e+,ee can be obtained to be 
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(8.8.16a) 

(8.8.16b) 

(8.8.16~) 

Again, using the inverse functions of Eqs. (8.8.15), we can obtain the following components 

(8.8.17a) 

(8.8.17b) 

The other components can be easily written down following the patterns given in the above 
equations. 

8.9 History of the Relative Deformation Tensor. Rivlin-Ericksen Tensors 

The tensor Ct(x,t) describes the deformation at time t of the element which is at x at 
time t. Thus, as one varies t from r = - 00 to t = t in the function C,(x,t), one gets the whole 
history of the deformation from infinitely long time ago to the present time t. 

If we assume that we can expand the components of C, in Taylor series about ‘t = t, we 
have, 
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Let 

and 

A N =  [$] , N=3,4, ... 
T = t  

(8.9.2a) 

(8.9.2b) 

(8.9.29 

We have, (note, C&t) = I ) 

2 
C,(qt) = I + ( a - t ) A , + F A z +  ... (8.9.3) 

The tensor Al,A2, ... An are known as Rivlin-Ericksen tensors. 

We see from the above equation that provided the Taylor series expansion is valid, the 
An's determine the history of relative deformation. It should be noted however, that not all 
histories of relative deformation can be expanded in Taylor series; For example, the stress 
relaxation test in which a sudden jump in deformation is imposed on the fluid, has a history of 
deformation which is not representable by a Taylor series. 

Example 8.9.1 

Find the Rivlin-Ericksen tensor for the uni-directional flows of Example 8.8.1. 
Solution. We have, from Example 8.8.1 

Thus, (see Eq. (8.9.3)) 

'; !i) :] + 
0 0 1  

( t - t )2  
2 

(ii) 
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0 0 0  
B 2 1 =  0 ut2 0 [ m  0 0 0  

[An] = 0 for all n 2 3  

where k = dv/&2. 

Example 8.9.2 

Given an axisymmetric velocity field in cylindrical coordinates: 
v,= 0, vg = 0, V,  = v(r) 

(iii) 

(a) Obtain the motion using current time t as reference 
(b) Compute the relative deformation tensor C, 

(c) Find the Rivlin-Ericksen tensors. 
Solution. (a) Let the motion be 

r’ = r’(r, 6,z, t), 8’ = e’@, 6, z, t), z’ = z’(r, 6, z, t )  (iij 

then, from the given velocity field, we have 
&’ - dr’ de’ -=o, _ -  d t  dt 0, = v(r‘) 

(iii) 

Integration of these equations with the conditions that at t = t, r’ =r, 6’ = 6 and z’ = z, we 
obtain 

r’ = r, 8’ = 6, z‘ = z + v(r)(t-t)  (iv) 

(b) Using Eq. (8.8.9), we obtain, with k(r) E dv /dr 

k ( t - t )  

(c)From the result of part (b) , we have 

[C,]= 0 1 0 + 0 0 0 (z-t)+ 0 0 0 [i : :] [k:) : 1 1 
Thus, the Rivlin-Ericksen tensors are [see Eq. (8.9.3)] 

& 
2 
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Example 8.9.3 

Consider the Couette flow with a velocity field given in cylindrical coordinates as 

v, = 0, vo = v(r), v, = 0 (9 

(a) Obtain the motion using current time t as reference. 
(b) Compute the relative deformation tensor Ct . 
(c) Find the Rivlin-Ericksen tensors. 

Solution. (a) From the given velocity field, one has 

- 0  - 0, r ’  - = v(r ’), - - de ’ dz’ dr ’ 
d t  d t  d t  
-- (ii) 

Integration of the above equation gives the pathline equations to be: 

(iii) r r = r ,  w=e+m(*-t), z ’ = z  
r 

(b) Using Eqs. (8.8.9), one easily obtain the relative right Cauchy-Green deformation tensor 
to be 

1 
0 

k(r) = - - - (2 ;) 
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[Ctl = 

(c) The nonzero Rivlin Ericksen tensors are 

- - 

0 0 - 4 /3  r4[r3 + 3a(t-t)] 

3 u 3  

2 0 Ir + 3a(t-t)] 0 
r 

0 0 
3 213 

2 
[r + 3a(t-t)] 

r - - 

Example 8.9.4 

Given the velocity field of a sink flow in spherical coordinates: 
a 
r 

V r  = -- 2, ve=  0, V$ = 0 

(a) Obtain the motion using current time t as reference 
(b) Compute the relative deformation tensor Ct 

(c) Find the Rivlin-Ericksen tensors. 
Solution. (a) Let the motion be 

r’ = r’(r, e,@, t), 8’ = @(r, 8, @, t), @’ = @’(r, 8, @, t )  (ii) 

then, from the given velocity field, we have 
(iii) 

Integration of these equations with the conditions that at t = f ,  r’ =r, 8’ = 8 and @’ = @, we 
obtain 

rt3 = r 3 + 3a(t-t), e’ = e, @’ = @  (iv) 

(b) Using Eq. (8.8.16), we obtain, with k dv /dr 
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[A21 = 

(c)From the result of part (b) , we have 

0 6 r 
-2a2 

0 --g- r 

............... 
................ 

etc. 
Thus, from Eqs. (8.9.2) 

[All = 

r 

0 

- & o  
3 r 

-2a 
O T  r 

0) 0 +I 
r 

1 0  0 - -a2 
6 r 

(vii) 

(vii) 

[A3], [A4] ..... etc. can be obtained by computing the higher derivatives of the components of 
Ct and evaluating them at t = t .  

8.10 Rivlin-Ericksen Tensor in Terms of Velocity Gradients - The Recursive 
Formulas 

In this section, we show that 
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AI = 2D = V V + ( V V ) ~  

DAl A2 = -+A1(V~)+(V~)TA1  Dt 

and 

 AN+^ = % + A N ( ” ) + ( V V ) ~ A ~ ,  N=1,2,3 .... 

where V v  is the velocity gradient and D is the rate of deformation tensor. 
We have, at any time t 

ds2‘ = dx‘(t)*dx‘(t) = dX-C&x 

= dx. (2) dx 
xi-fured, r=t t= t  Dt 

That is, [see Eqs. (8.9.2)] 

clearly, we also have 

D2 2 

Dt2 
-(A ) = dx’A2 dx 

and 

~ ( d s  $ J 2  ) = dx.ANdx 
Dt 

We now recall from Section 3.13, Eq. (3.13.6a), that 

D 2  -(& ) = 2dx-Ddx 
Dt 

1 
2 where D = -[Vv + ( V V ) ~ ]  is the rate of deformation tensor. Thus, 

A1 = 2D 
Next, from Eq. (8.10.4), 

D D $(ds2) = ( 3 x )  .Aldx + dx*-Al Dt dx + d r A 1  -dx Dt 
Of2 

(8.10.1) 

(8.10.2) 

(8.10.3) 

(9 

(ii) 

(8.10.4) 

(8.10.5) 

(8.10.6) 

(iii) 
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But 

Therefore, 

[see Eq. (3.12.4)] D -dx = (Vv)dx Dt 

D2 DAl -(ds2) = (Vv)dx.Al dx + dxe- dx + dx- A1 (Vv)dx Dt2 Dt 

From the definition of transpose 

(Vv)dx-Al dx = dx. ( V V ) ~ A ,  dx 

D2 ,(ds2) = dx. + (Vv)TA1 + Al(Vv)] dx 
Dt 

Thus, from Eq. (8.10.5), 

A2 = ~ + A ~ ( V V ) + ( V V ) ~ A ~  

Equation (8.10.3) can be similarly proved. 

8.1 1 Relation Between Velocity Gradient and Deformation Gradient 

From 

dx'  (t)= x, '(x+dqt)-x, '(qt) 

we have 
dx ' = Ft(x, t )  dx and 

D -dx ' (t)' v '(x+dx,t)-v '(qt) =V,V ' (4 t )dx  Dr 
From Eq. (8.11.2) 

Comparing Eqs. (8.11.3) and (8.11.4), we have 

(8.11.1) 

(8.11.2) 

(8.11.3) 

(8.1 1.4) 

(8.11.5) 

and from which 
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(8.11.6) 

Using this relations, we can obtain the following relations between the rate of deformation 
tensor D and the relative stretch tensor Ut as well as the relation between the spin tensor W 
and the relative rotation tensor 4. In fact, from the polar decomposition theorem 

F t ( t )  = W ) U t ( t )  (8.11.7) 

we have 
(8.11.8) 

Evaluating the above equation at t = t, using Eq. (8.11.6) and noting that U,(t) = &(t) = I, we 
obtain 

(8.1 1.9) 

is a symmetric tensor and it can be easily shown that 
t = t  

antisymmetric tensor. Thus, in view of the fact that the decomposition of a tensor into a 
symmetric and an antisymmetric tensor is unique, therefore, 

(8.11.10) P F ]  t=t = D(t) 

p s ]  = W(t) 
t = t  

(8.11.11) 

8.12 Transformation Laws for the Relative Deformation Tensors under a Change 
of Frame 

The concept of objectivity was discussed in Chapter 5, Section 5.31. We recall that a change 

(8.12. la) 

t* = t-a (8.12. lb) 

of frame, from x to x* , is defined by the transformation 

x*W = c(t> + Q(Nx - X, 1 

and if a tensor A, in the un-starred frame, transforms to A* in the starred frame in accordance 
with the relation 

(8.12.2) 
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then, the tensor A is said to be objective, or frame indifferent (i.e., independent of observers). 
From Eq. (8.12.1), we have 

dx*(t) = Q(t)dx(t) (i) 

and 
dx'*(t) = Q(t)dx'( t )  (ii) 

Since dx'(t)  = F,(t)dx(t) and dx'*(t) = F,*(t)dx*(t), therefore from Eq. (ii), we have 

Ff( t )dx*( t )  = Q(t)dx' ( t )  = Q(t)F,(t)dx(t)  (iii) 

Now, use the inverse of Eq. (i), we get 

Ff (t)dx*(t) = Q(r)Fl(t)QT(f)dx*(t) 

Thus, 

F;W = Q W F ~ ( ~ ) Q ~ ( O  

(iv) 

(8.12.3) 

This is the transformation law for Ft(t) under a change of frame. We see that this tensor is not 
objective. 

Since F; = &*Uf and Ft = &Ut, therefore, from Eq. (8.12.3) 

Rt UT = Q ( ~ ) v J ~ Q ~ ( ~ )  (v) 

In the above equation, the tensor inside the first bracket is an orthogonal tensor and the tensor 
inside the second bracket is a symmetric tensor. Since the polar decomposition for F; is 
unique, therefore, we have 

Rt = QW~CQ*(~) (8.12.4) 

ut = Q(t)Ut QT(t) (8.12.5) 

It is a simple matter to show the following transformation laws under a change of frames: 

ct = QW,Q~(~)  (8.12.6) 

(8.12.7) 
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(8.12.10) 

Equations (8.12.5),(8.12.6) and (8.12.7) show that the relative right stretch tensor, the relative 
right Cauchy-Green deformation tensor C,  and its inverse C,-' (the relative Finger tensor) 
are objective. On the other hand, Vt, B, and B,-l are nonobjective. We note, this situation is 
different from that of the deformation tensor using a fixed reference configuration [See Section 
5.3 11. 

From Eq. (8.12.4) and (8.11.11), one can also show that in a change of frame 
(8.12.11) 

which shows, as expected that the spin tensor is non-objective. 

Using Eq. (8.12.11), one can derive for any objective tensor T (i.e., T* = Q(t)TQT(t)) that 

DT - + Tw-WT Dt 
(8.12.12) 

is objective, that is, [see Prob. 8.221 
(8.12.13) D T . + T * w . - w T * = Q ( ~ )  Q ( t )  

Dt I T  
The expression given in (8.12.12) is known as the Jaumann derivative of T which will 

be discussed further in a later section. 

8.1 3 Transformation law for the Rivlin-Ericksen Tensors under a Change of 
Frame 

From Eq. (8.12.6) 

we obtain 

(8.13.1) 

(8.13.2) 

and in fact, for all N, 
(8.13.3) 
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Thus, from Eqs. (8.9.2), we have, for all N 

A&) = Q(Qw)Q~(~) (8.13.4) 

We see therefore that all AN are objective. This is quite to be expected because these tensors 
characterize the rate and the higher rates of changes of length of material elements at time t 
which are independent of the observers. 

8.14 Incompressible Simple Fluid 

tive equation 
An incompressible simple fluid is an isotropic ideal material having the following constitu- 

T = -pI+r (8.14.1) 

where ‘c depends on the past histories up to the current time t of the relative deformation 
tensor C,. In other words, a simple fluid is defined by 

T = -pI+H [Cd%t);-w<tSt] (8.14.2) 

where the index t= - 00 to t indicates that the values of the functional H depends on all C, from 
C,(x,- 00) to C,(x,t). We note that such a fluid is called “simple” because it depends only on 
the history of the relative deformation gradient F,(t) = Vx’ tensor (from which C d t )  is 
obtained), and not on the history of the higher gradient of the relative deformation tensor (e.g., 

Obviously, the functional H in Eq. (8.14.2) is to be the same for all observers (Le., 
H*=H ). However, it can not be arbitrary, because it must satisfy the frame indifference 
requirement. That is, in a change of frame, 

HtCf Wl = Q(t>HtC&)lQT(t) (8.14.3) 

VVX‘). 

Since C,(t) transforms in a change of frame as [see Eq. (8.12.6)] 

ct = Q(W,Q~(O (8.14.4) 

therefore, the functional H [Cdx,t);- 00 <tSt ]  must satisfy the condition 

We note that Eq. (8.14.5) also states that the fluid defined by Eq. (8.14.2) is an isotropic 
fluid. 

Any function or functional which obeys the condition given by Eq. (8.14.5) is known as an 
isotropic function or isotropic functional. 

The relationship between stress and deformation given by Eq. (8.14.2) for a simple fluid is 
completely general. In fact, it includes Newtonian incompressible fluid and Maxwell fluids as 
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special cases. In this most general form, only very special flow problems can be solved. A class 
of such flows, called the viscometric flow, will be considered in Part C, using this general form 
of constitutive equation. However, in the following few sections, we shall first discuss some 
special constitutive equations. Some of these constitutive equations have been shown to be 
approximations to the general constitutive equation given in Eq. (8.14.2) under certain 
conditions (slow flow and/or fading memory). They can also be considered simply as special 
fluids. For example, a Newtonian incompressible fluid can be considered either as a special 
fluid by itself or as an approximation to the general simple fluid when it has no memory of its 
past history of deformation and is under slow flow condition relative to its relaxation time 
(which is zero). 

8.15 Special Single Integral Type Nonlinear Constitutive Equations 

In Section 8.4, we see that the constitutive equation for the linear Maxwell fluids is defined 
bY 

m 

z = 2 J f(~) E ( t - ~ ) h  
0 

(8.15.1) 

where E is the infinitesimal strain tensor measured with respect to the configuration at time 
t. It can be shown that for small deformations, (see Example 8.15.2 below) 

Ct-I = I-Ct- 1 = 2 E (0  

Thus, the following two nonlinear viscoelastic fluids represent natural generalizations of the 
linear Maxwell fluid in that they reduce to Eq. (8.15.1) under small deformation conditions. 

and 

(8.15.2) 

(8.15.3) 

(8.15.4) 

andf(s) may be given by any one of Eqs. (8.4.9), (8.4.10) and (8.4.11). 
We note that since C,(t) is an objective tensor, therefore the constitutive equations defined 

by Eqs. (8.15.2) and (8.15.3) are frame indifferent. We note also that even though the fluids 
defined by Eqs. (8.15.2) and (8.15.3), withfi =f2 have the same behaviors at small deforma- 
tion, they are two different nonlinear viscoelastic fluids, behaving differently at large 
deformation. Furthermore, if we treatfl(s) andf2(s) as two different memory functions, then 
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Eqs. (8.15.2) and (8.15.3) define two nonlinear viscoelastic fluids whose behavior at small 
deformations are also different. 

Example 8.15.1 

For the nonlinear viscoelastic fluid defined by Eq. (8.15.2), find the stress components when 
the fluid is under steady shearing flow defined by the velocity field: 

v1 = kx2, v2 = v3 = 0 (9  

Solution. The relative Cauchy-Green deformation tensor corresponding to this flow was 
obtained in Example 8.8.1 as: 

(ii) 

Thus, 

(iii) 

Thus, from Eq. (8.15.2) 

0 

We see that for this fluid, the viscosity is given by 
OD 

(8.15.5) 

(8.15.6) 

(8.15.7) 

We also note that the normal stresses are not equal in the simple shearing flow. In fact, 

(v) 7-11 = -p + t l l  = -p 

m 

T33 = -p + r33 = -p (vii) 
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We see from this example that for the nonlinear viscoelastic fluid defined by Eq. (15.2), i.e., 
m 

T = 2J f&) [C, (t-s)-I]& 
0 

the viscosity function ,u(k) is given by 
m 

,u(k)=t,, = -k J sf1 (s)& 
0 

and the two normal stress functions are given either by 
m 

q ( k )  3 T11-Tz = -k2 s2fi(s)& 
0 

m 

02(k) E T22-T33 = k2 J szfi(s)& 
0 

or 

(8.15.2) 

(8.15.8) 

(8.15.9a) 

(8.15. loa) 

(8.15.9b) 

9 ( k )  E T'1-T33 = 0 (8.15. lob) 

The  shear stress function, and the two normal stress functions (either 
o1 and 02, or D l  and D2) completely describe the material properties of this nonlinear vis- 
coelastic fluid in the simple shearing flow. In part C we will show that these three material 
functions completely describe the material properties of every simple fluid, of which the 
present nonlinear fluid is a special case, in viscometric flows, of which the simple shearing flow 
is a special case. 

Similarly, for the nonlinear viscoelastic fluid defined by Eq. (8.15.3), 
OD 

T = J f2(s)[I-C;l (t-s)]& 
0 

the viscosity function and the two normal stress functions can be obtained to be 
m 

P(k) = -k J $2 
0 

m 

q ( k )  = - k 2 s  s2f2(s)& 
0 

(8.15.3) 

(8.15.11) 

(8.15.12) 
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9(k) = 0 (8.15.13) 

A special nonlinear viscoelastic fluid defined by Eq. (8.15.3) with a memory function 

f2(s) = f(s) when 12 2 B 2 +3 (8.15.14) 

dependent on the second invariant 12 of the tensor C, in the following way 

f2W = 0 when 12 c BL+3 
is known as Tanner and Simmons network model fluid. The function f(s) is given by Eq. (8.4.9). 
For this fluid, the network “breaks” when a scalar measure of the deformation 12 reaches a 
limiting value B2 + 3, where B is called the “strength” of the network. 

Example 8.15.2 

Show that for small deformations relative to the configuration at time t 

C,-I = I- C,-’ = 2 E (8.15.15) 

where E is the infinitesimal strain tensor. 

Then 
Solution. Let u denote the displacement vector measured from the configuration at time t. 

x ’(z) = x + u(qz) ( 9  

Thus, 
Ft = Vx‘ = I + Vu 

Now, if u is infinitesimal, then 

(ii) 

(iii) 

Also 

Thus 

C,-I = 2E and I-Ct-’= 2E 
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Example 15.3 

Show that any polynomial function of a real symmetric tensor A can be represented by 
F(A) =foI +f lA +f,A-' (8.15.16) 

wherefi are real valued functions of the scalar invariants of the symmetric tensor A. 

Solution. Let 

Since A satisfies its own characteristic equation: 
2 A3 - I1 A + I2A - I3 I = 0 

therefore, 

A3 = 11A2 - I2A + I 3 I  

(ii) 

(iii) 

A4 = I1 A3 - 12A2 + 13A = I1 (I1 A2 - I2A + I3 I )  - I,A2 + I3 A (iv) 

etc., Thus, every AN foriVr3 can be expressed as a sum of A, A2 and I with coefficients being 
functions of the scalar invariants of A. Substituting these expressions in Eq. (i), one obtains 

Now, from Eq. (iii), we can obtain 

A2= I1A - I21 + I3A-l 

therefore, Eq. (v) can also be written as 

which is Eq. (8.15.16). Actually the representation of F(A) given in this example can be shown 
to be true under the more general condition that the symmetric function F of the symmetric 
tensor A is an isotropic function ( of which the polynomial function of A is a special case ). An 
isotropic function F is a function which satisfies the condition 

F(QAQ~) = Q W Q ~  (viii) 

for any orthogonal tensor Q. Now, let us identify A with C, and Ii with the scalar invariants of 
C, ( note however that I3 = 1 for incompressible fluid ), then the most general representation 
of F(C, ) is [we recall that F(Ct) is required to satisfy Eq. (Viii) for frame indifference, see Eq. 
(8.14.5) also], 
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8.1 6 General Single Integral Type Nonlinear Constitutive Equations 

integral type nonlinear constitutive equation for an compressible fluid is defined by 
From the discussions given in the previous example, we see that the most general single 

m (8.16.1). 

A special nonlinear viscoelastic fluid, known as the BKZ fluid, is defined by Eq. (8.16.1) 
with the functionsfl(s) andf2(s) given by 

(8.16.2a) 

au (8.16.2b) 
f2(s) = -2- 

a12 

where 

where a, /3 and c are constants. 

8.1 7 Differential Type Constitutive Equations for Incompressible Fluids 

We see in Section 8.9 that under the assumption that the Taylor series expansion of the 
history of the deformation tensor Ct(x,r) is justified, the Rivlin-Ericksen tensor 
A,(n = 1,2, ...m) determines the history of C&). Thus we may write Eq. ( 8.14.2) as 

T = -PI + f(A1,Az ,... A, ,...) (8.17.1) 

where f(Al,A2, ... A,, ...) is a function of the Rivlin-Ericksen tensor and trA1 = 0 which follows 
from the equation of conservation of mass for an incompressible fluid. 

In order to satisfy the frarne-indifference condition, the function f cannot be arbitrary but 
must satisfy the relation 

Qf(A1,A2,...A,)QT = f(QAiQ*,QA2QT”’.QA,QT) (8.17.2) 

for any orthogaonal tensor Q. We note again, Equation (8.17.2) makes “isotropy of material 
property” as part of the definition of a simple fluid. Equation.(8.17.2) is obtained in the same 
way as Eq. (8.14.5) is. 

The following are special constitutive equations of this type 
(A) Rivlin-Encksen incompressible fluid of complexity n 

T = -p I + f(Ai,A2, ... A,) (8.17.3) 
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In particular, a Rivlin-Ericksen liquid of complexity 2 is given by: 

where plp2 , .  . .& are scalar material functions of the following scalar invariants: 

2 3  trA1, trA1, trA2, trAz, trAl 

trA1A2, trA:A2, trA1A2 trA:Az (8.17.5) 

We note that if p2 = pg .....= pn = 0 and p l  = a constant, Eq. (8.17.4 ) reduces to the 
constitutive equation for a Newtonian liquid with viscositypl. 

(B) Second order Fluid 

T = -P 1 + P A  + P2AI + P3A2 (8.17.6) 

where ,q,p2, and p3 are material constants. The second order fluid may be regarded as a 
special case of the Rivlin-Ericksen fluid. However, it has also been shown that under the 
assumption of fading memory, small deformation and slow flow, Eq. (8.17.6) provides the 
second-order approximation whereas the Newtonian fluid provides the first order approxima- 
tion and the inviscid fluid, the zeroth order approximation. 

Example 8.17.1 

For a second order fluid, compute the stress components in a simple shearing flow given 
by the velocity field 

"1 = kr;?, v2 = v3 = 0 6 )  

Solution. From Example 8.9.1, we have for the simple shearing flow, 
(ii) 

(iii) 

and 
A3 = A4 = .... = 0 
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Now, 

[Ail = [AlI[A11 = 

therefore, Eq. (8.17.6) gives 

k2 0 0 
0 k2 01 
0 0 0  

Ti1 = -p i p2k 2 , T22 = -p + p2k2 i &3k2, T33 = -p (vi) 

Ti2 =p ik ,  Ti3 = T, = 0 (vii) 

We see that because of the presence ofp2 and& normal stresses, in excess of p on the planes 
xi =constant and x2 = constant are necessary to maintain the shearing flow. Furthermore, 
these normal stress components are not equal. The normal stress difference 

U l W  = Ti1 - T22 (viii) 

and 

u2w = T22 - T33 

are given by 

u1 = -&3k2. u2 = p2k2 + &3k2 
By measuring the normal stress differences and the shearing stress components T12, the 
three material constants can be determined. 

Example 8.17.2 

For the simple shearing flow, compute the scalar invariants of Eq. (8.17.5). 
Solution. Since 

[A;] = 
0 0 0  0 0 0  
0 4k4 01 [All = [ 0 8k6 0 
0 0 0  0 0 0  

(ii) 



506 Objective Rate of Stress 

2 2 3  tr i l l= 2k , trA, = 0, trA2 = 2k2, 

trAg = 4k4, trA: = 8k6, trAlA2 = 0, 

trA:A2 = 2k4, trAIA; = 0, trA:A; = 4k6 

Example 8.17.3 

In a simple shearing flow, compute the stress components for the Rivlin -Ericksen liquid. 
Solution. From Eqs. (8.17.4) and the results of the previous example, we have (note 

A3 = A4 = ... = O )  

Tl1 = -P + k2D42(k2)1 

T z  = -p+2k2D43(k2) + $9(k2) + 2@4(k2) + p7(k 2 2  ))k + 4k4pg(k2)] 

T33 = -P 

Ti2 = k b l ( 2 )  + 2k2p,(k2) + 4k4p6(k2)] = b(k2) E s(k) 

T u  = Ti3 = 0 

where pl(k2) indicates that p1 is a function of k2, etc. The normal stress differences 
Tll - TZ2 and T22 - T33 are even functions of k ( = rate of shear ), whereas the shear stress 
function s(k) is an odd function of k. 

8.18 Objective Rate of Stress 

The stress tensor T is objective, therefore in a change of frame 

T* = Q ( ~ ) T Q ~ ( ~ )  (8.18.1) 
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Taking material derivative of the above equation, we obtain [note D/Dt* = D/Df] 

-- dQ T DT T DT*--TQ Dt a3 +Q--Q Dt + Q T  
(8.18.2) 

The above equation shows that the material derivative of stress tensor T is not objective. 
That the stress rate D T/Dt is not objective is physically quite clear. Consider the case of 

a time-independent uni-axial state of stress with respect to the first observer. With respect to 
this observer, the stress rate DT/Df is identically zero. Consider a second observer who rotates 
with respect to the first observer. To the second observer, the given stress state is rotating 
respect to him and therefore, to him, the stress rate DT*/Df is not zero. 

In the following we shall present several stress rates at time t which are objective 
(A) Jaumunn derivutive of stress 

Let us consider the tensor 
(8.18.3) 

We note that since &(t) = hT(t) = I, therefore, the tensor J and the tensor T are the same at 
timet. That is 

J(t)  = T(t)  (0 

However, while DT/Dt is not an objective stress rate , we will show that 

[Y] t = t  

(ii) 

is an objective stress rate. To show this, we note that in Sect.8.12, we obtained, in a change 
of frame 

Thus, 

Thus, 

(8.18.4) 

and 
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(8.18.5) o"c.> = Q ( f )  @h@ QT(t), N=1,2,3 ... [ dv ] T = t  [ ...]T=t 

That is, the tensor J(t) as well as its material derivatives evaluated at time t, is objective. 
The derivative 

(8.18.6) 

is called the first Jaumann derivative of T and the corresponding Nth derivatives are called 
the Nth Jaumann derivatives. They are also called the co-rotational derivatives, because they 
are the derivatives of T at time t as seen by an observer who rotates with the material element 
(whose rotation tensor is R). 

We shall now show that 

--- DcrT - DT + T(t)W(t)-W(t)T(t) 
Dt Dt 

(8.18.7) 

where W(t) is the spin tensor of the element. The right side of Eq. (8.18.6) is 

Evaluating the above equation at t = t  and noting that 

&(t) = qT(t)=I 
and 

[F] = W(t) 
T = t  

= WT(t)=-W(t) 

we obtain immediately 

- DcrT = DT + T(t)W(t)-W(t)T(t) 
Dt Dt 

(B) Olboyd lower convected akrivative 
Let us consider the tensor 

(vii) 

(viii) 

(8.18.8) 
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Again, as in (A), 

JL@> = 

and 

El 7=t 

Thus, 

and 

(8.18.9) 

"'"1 7=t = Q(t) [ #JL(t) ] QT(t), N=1,2,3 ... (8.18.10) 

t= t  
L3P 

That is , the tensor JL(z) as well as its material derivative evaluated at time t , is objective. 
The derivative 

(8.18.11) 

is called the first Oldroyd lower convected derivative. The Nth derivatives of JL are called 
the Nth Oldroyd lower derivatives. Noting that 

r q t )  = Fq(t)=I (xi4 

and 

it can be shown that 
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(8.18.12) 

and 

Further, since 
(Vv) f D + W 

Equation (8.18.12) can also be written as 

(8.18.14) 

where the first term in the right hand side is the co-rotational derivative of T given by 
(8.18.7). 
(C) OMroyd upper convected derivative 

Eq. 

Let us consider the tensor 

&(t) = Ft-'(t)T(t)F;lT(t) (8.18.15) 

Again, as in (A) and (B) , 

U t )  = T(t) 

and the derivatives 

[%] , N=1,2,3 ... 
r =t 

(xvii) 

(xviii) 

can be shown to be objective stress rates. [See Prob. 231 These are called the Oldroyd upper 
convected derivatives. 

Let 

and note that 
(8.18.17) 

one can derive 
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or more generally 

Again, using Eq. (xvi), Eq. (8.18.18) can also be written 

(8.18.18) 

(8.18.19) 

(8.18.20) 

where the first term in the right hand side is the co-rotational derivative of T given by 
(8.18.7). 
(D) Other objective stress rates 

The stress rates given in (A)(B)(C) are not the only ones that are objectives. Indeed there 
are infinitely many. For example, the addition of any term or terms that is (are ) objective to 
any of the above derivatives will give a new objective stress rate. In particular, the derivative 

Eq. 

-+a(TD DCJ + DT)  
Dt 

(8.18.21) 

is objective for any value a. We note that For a = + 1, it is the Oldroyd lower convected 
derivative and for a = -1, the Oldroyd upper convected derivative. 

8.19 The Rate Type Constitutive Equations 

tive equations: 
Constitutive equations of the following form are known as the rate type nonlinear constitu- 

T = - p I + r  (8.19. la) 

Der D$ D*D (8.19.lb) 
r + L1- + L - + ... = &D + p2-+ ... 

where D,/Dt, D2/Dt2 etc., denote some objective time derivative and objective higher time 
derivatives, r is the extra stress and D is rate of deformation tensor. Equation (8.19.1) may 
be regarded as a generalization of the generalized linear Maxwell fluid defined in Sect. 8.2. 

Dt ' ~ t 2  Dt 
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- - 
k 0 - 0  2 

k [D]= 2 0 0 

0 0 0  

[ w l = - z  

- - 

The following are some examples: 

The convected Maxwell fluid is define4 
(a) The convected Maxwell fluid 

- 
k 

0 0 

0 0 0  

0 2 0  
k 

- 

by the constitutive equal 

Dcr = T+A-=@D Dt 

Dcr where - is the corotational derivative. That is Df 

on 
(8.19.2) 

(8.19.3) 

Example 8.19.1 

Obtain the stress components for the convected Maxwell fluid in a simple shearing flow. 
Solution. With the velocity field for a simple shearing flow given by 

Thus, 

(9 

(ii) 

(iii) 
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[rW-Wr] = 

k 

k k 
-323 2 1 3  

Since the flow is steady and the rate of deformation is a constant independent of position, 
therefore, the stress field is also independent of time and position. Thus, the material derivative 
D d D t  is zero so that Eq. (v) is the corotational derivative ofr(see Eq. (8.19.3). Substituting 
this equation into the constitutive equation, we obtain 

t11-ka.z12 = 0 (vi) 

(vii) 

(viii) 

t 3 3  = 0 

From Eqs. (viii) and (x), we obtain, 

t i 3  = ~ 2 3  = 0 

From Eqs. (vi) and (ix), respectively 

t l l  = u t 1 2  

(xi) 

(xii) 

(xiii) 

and 

222 = - a z 1 ; !  (xiv) 

Using the above two equations, we obtain from Eq. (vii) the shear stress function z(k) 

The apparent viscosity 7 is 
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The normal stress functions are 
(xii) 

(xiii) 

(b) The Corotational Jefiey Fiuid 
The corotational Jeffrey Fluid is defined by the constitutive equation 

T = - p I + r  (8.19.4a) 

(8.19.4b) 

Example 8.19.2 

Obtain the stress components for the corotational Jeffrey fluid in simple shearing flow. 
Solution. The corotational derivative of the extra stress is the same as the previous example, 
thus, 

(ii) 

Substituting the above two equations and D from the previous example into Eq. (8.19.4), we 
obtain 

t i l  - k A 1  212 = -,u A2k2 (iii) 
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t 33  = 0 (viii) 

Proceeding as in Example 8.19.1, we obtain the apparent viscosity r ]  and the normal stress 
functions as: 

t 1 2  1 + A1A2k2 

k 1 + A:k2 
q(k) E - = p  

(c) The Oldroyd 3-constant fluid 

following constitutive equation: 
The Oldroyd 3-constant model (also known as the Oldroyd fluid A) is defined by the 

T = - p I + r  (8.19.5a) 

(8.19.5b) 

where Dup / Dt denote the Oldroyd upper convected derivative defined in Section 8.18. That 
is 

D T D c r ~  
up=-- (TD + D 7 )  Dt Dt 

and 
(ii) 
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where again DCr /Dt denote the corotational derivative. By considering the simple shearing 
flow as was done in the previous two models, we can obtain that the viscosity of this fluid is a 
constant independent of the shear rate k, i.e., 

rl(N = P  (iii) 

The normal stress functions are: 

~1 3 Ti1 - T22 = 2p  (11 - 12) k2 

(d)The Oldroyd Ccomtantfluid 
the Oldroyd 4-constant fluid is defined by the following constitutive equation: 

T = - p I + s  (8.19.6a) 

(8.19.6b) 

We note that in this model an additional termpo(tr s ) D  is added to the left hand side. This 
term is obviously an objective term since both 7 and D are objective. The inclusion of this 
term will make the viscosity of the fluid dependent on the rate of deformation. 

By considering the simple shearing flow as was done in the previous models, we can obtain 
the apparent viscosity to be 

The normal stress functions are: 

Part C Viscometric Flows of an Incompressible Simple Fluid 

8.20 Viscometric Flow 

(ii) 

(iii) 

Viscometric flows may be defined to be the class of flows which satisfies the following 
conditions: 
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(i) At all time and at every material point, the history of the relative right Cauchy-Green 

2 (8.20.1) 
deformation tensor can be expressed as 

C f ( t )  = I + (t-t)Al + - (z-t> A2. 
2 

(ii) There exists an orthogonal basis (ni ), with respect to which, the only nonzero Rivlin- 
Erickson tensors are given by 

’i 

(8.20.2 ) 

The orthogonal basis { ni } in general depends on the position of the material element. 

(ni ) with respect to which 
The statement given in (ii) is equivalent to the following: There exists an orthogonal basis 

(8.20.3) AI = k(N + NT) 

A2 = 2k2NTN 

where the matrix of N with respect to (ni ) is given by 

ro 1 01 

(8.20.4) 

(8.20.5 ) 

In the following examples, we demonstrate that simple shearing flow, plane Poiseuille flow, 
Poiseuille flow and Couette flow are all viscometric flows. 

Example 8.20.1 

Consider the uni-directional flow with a velocity field given in Cartesian coordinates as: 
v1 = v(x2), v2 = v3 = 0 (0 

Show that it is a viscometric flow. We note that the uni-directional flow includes the simple 
shearing flow (where v(x2)=kw;?) and the plane Poiseuille flow. 

Solution. In Example 8.9.1, we obtained that for this flow, the history of C f ( t )  is given by 
Eq. (8.20.1) and the matrix of the two non-zero Rivlin-Ericksen tensors AI and A2, with respect 
to the rectangular Cartesian basis, are given by Eqs. (8.20.2) where k = k(x2). Thus, the given 
uni-directional flows are viscometric flows and the basis {ni} with respect to which, 
A, and A2 have the forms given in Eq. (8.20.2), is clearly given by 
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n1 = el, n2 = e2, n3 = e3 (ii) 

Example 8.20.2 

Consider the axisymmetirc flow with a velocity field given in cylindrical coordinates as: 

v, = 0, ve = 0, v, = v(r) (0  

Show that this is a viscometric flow. Find the basis { ni }with respect to which, Al and A2 have 
the forms given in Eq. (8.20.2). 

Solution. In Example 8.9.2, we obtained that for this flow, the history of the right Cauchy- 
Green deformation tensor Ct(t) is given by an equation of the same form as Eq. (8.20.1) 

where the two non-zero Rivlin-Ericksen tensors are given by 

[A1ler,ee,e, = 0 0 0 
[k:) ," ' y ]  e,,eg,e, 

Let 
n1 = e,, n2 = e,, n3 = Q 

then 

(Ai)ll = ( A i h ,  (A1)12=(A1)zr, (A1)13=(A1)26 etc. 
Then with respect to the basis { ni }. 

(ii) 

(iii) 

( 9  

ni 

Thus, this is a viscometric flow for which the basis { ni } is related to the cylindrical basis 
(e, ,%,eJ by Eq. (iv) [see figure 8.41. 
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Fig. 8.4 

Example 8.20.3 

Consider the Couette flow with a velocity field given in cylindrical coordinates as 

V, = 0, ve = V(T)  = TW(T) ,  V, = 0 (0 
Show that this is a viscometric flow and find the basis {ni } with respect to which, A, and A2 
have the forms given in Eq. (8.20.2). 

Solution. For the given velocity field, we obtained in Example 8.9.3 

[C,(t)] = [I] + (z-t)  [ k(r) O ""1 0 0 + p;$["Foo] 
0 0 0  

(ii) 

where 

(iii) do (2 r) dr 
&) = ---  = r -  

The nonzero Rivlin-Ericksen tensors are 

u("(r) o o 
[Ade,eO,e, = 44 0 0 9 [A21e,,ee,ez = [ o o 01 [: k::] 0 0 0  

(iv) 
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Comparing Eqs. (iv)(v) and (vi) with Eqs. (8.20.2), we see that the Couette flow is aviscometric 
flow. However, the basis {nl, "2, "3) with respect to which, A1 and A2 have the forms given 
in Eq. (8.20.2), is 

n1= Q, n2 = e,, n3 = e, (vi> 

8.21 Stresses in Viscometric Flow of an Incompressible Simple Fluid 

When a simple fluid is in viscometric flow, its history of deformation tensor Ct(t- t )  is 
completely characterized by the two non-zero Rivlin-Ericksen tensor A1 and A2. Thus, the 
functional in Eq. (8.14.2) becomes simply a function of A1 and A2. That is 

T = -p I + f(Al,A2) (8.21.1) 

where the Rivlin -Ericksen tensors A1 and A2 are expressible as 

A1 = k(N + NT) (8.21.2) 

A2 = 2k2NTN 

where the matrix of N relative to some choice of basis ni is 

[N] = 1 !] 
(8.21.3) 

(8.21.4) 

Furthermore, the objectivity condition, Eq. (8.14.5) demands that for all orthogonal tensors 
Q 

Qf(Ai, AdQT = f(QAiQT, QA2QT ) (8.2 1.5) 

In the following, we shall show that for a simple fluid in viscometric flow, with respect the basis 
ni, 

Ti3 = T23 = 0 
and that the normal stresses are all different from one another. 

Let us choose a orthogonal tensor Q such that 

r l o  01 

Then, 
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[Ql[Nl[QTl = 

Also 

[Ql[NTNl[QT 1 = 

i.e., for this choice of Q, 

and 

Thus, 

Q N Q ~  = N 

Q ( N ~ N ) Q ~  = N ~ N  

T T  Q A ~ Q ~  = LQ(N + N )Q = k ( ~  + N ~ )  = A, 

and 

QA2QT = ~ I c ~ Q ( N ~ N ) Q ~  = ~ C ~ N ~ N  = 

Now, from Eq. (8.21.1), we have, for this particular choice of Q, 

QTQT = -P I + f(QAIQT, QA2QT ) = -p I + f(A1, A2) 

Le., for this Q 

Q T Q ~  = T 

Thus, p 0 0 -1 :] 
Carrying out the matrix mult ilications, one obtains 

[ 2: 2 = 1 2 1  T12 T22 T13 T23] 
-T31 -T32 T33 T31 T32 T33 

The above equation states that 

Ti3 = T z  = 0 

(xi) 

(8.21.6) 
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Since A1 and A2 depend only on k, therefore, the nonzero stress components with respect 

T12 = +) (xii) 

to the basis ni are: 

(xiii) 

T22 = -P + B(k) (xiv) 

T33 = -P + Y ( N  (N 
where a, /I, and y are functions of k. Defining the normal stress functions by the equations 

~1 E Ti1 - T22 (8.21.7) 

(8.21.8) 

We can write the stress components of a simple fluid in viscometric flows as follows 
T12 = w (8.21.9) 

(8.21.9b) 

T22 = T33 + 02(k) (8.21.9~) 

and 
Ti3 = T23 = 0. (8.21.9d) 

As mentioned earlier in Section B, the function t(k) is called the shear stress function and 
the function ul(k), and 9 ( k )  are called the normal stress functions. [we recall that other 
definitions of the normal stress functions such as those given in Eq. (8.15.9) have also been 
used]. These three functions are known as the viscometric functions. These functions, when 
determined from the experiment on one viscometric flow of a fluid, determine completely the 
properties of the fluid in any other viscometric flow. 

It can be shown that 
q - k )  = -t(k) (8.21.10) 

That is, z is an odd function of k, while u1 and a2 are even functions of k. 
For the fluid in simple shearing flow, k is a constant so that all stress components are 

independent of spatial positions. Being accelerationless, it is clear that all momentum equa- 
tions are satisfied so long as k remains constant. For a Newtonian fluid, such as water, the 
simple shearing flow gives 
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t(k) = p k ,  ul(k) = 0, ~2 = 0 (8.21.13) 

For a non-Newtonian fluid, such as a polymeric solution, for small k,  the viscometric functions 
can be approximated by a few terms of their Taylor series expansion. Noting the t is an odd 
function of k ,  we have 

t(k) = p k  + p l k 3  + ... (8.21.14) 

and noting that ul and u2 are even function of k, we have 
2 u l = s l k  + ... 
2 ~ 2 = ~ 2 k  + ... 

(8.21.15) 

(8.21.16) 

Since the deviation from Newtonian behavior is of the order of k2 for u1 and u2 and of k3 for 
t, therefore, it is expected that the deviation of the normal stresses will manifest themselves 
within the range of k in which the response of the shear stress remains essentially the same as 
that of a Newtonian fluid. 

8.22 Channel Flow 

We now consider the steady shearing flow between two infinite parallel fixed plates. That 
is, 

V l  = v(x2), "2 = v3 = 0 

with 
h v( +-) = o  2 

We saw in Section 8.20 that the basis ni for which the stress components 
Eqs. (8.21.9), is the Cartesian basis. ei. That is, with k(x2) = dv/a!q 

212 = t ( k ) ,  ti3 = tz = 0, t i l  = t 2 2  + Ul(k), t22  = t33 + 4 k )  

(8.22.1) 

(8.22.2) 

are given by 

(8.22.3) 

Substituting the above equation in the equations of motion, we get, in the absence of body 
forces, [noting that k depends only 011x2 ] 

Differentiating the above three equations with respect to xl,  we get 
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Thus, --- - a constant. Let this constant be denoted by f , which is the driving force for 

the flow, we have, 
ax, 

Now, the first equation in Eq. (i) gives 

so that 
t (k)=  -f ~2 

(8.22.4) 

(iii) 

(8.22.5) 

where the integration constant is taken to be zero because the flow is symmetric with respect 
to the plane x 2  = 0. Inverting Eq. (8.22.5), we have, 

k = t-'( 3 x 2 )  E y( 3 x 2 )  = - y ( f ~ 2 )  (8.22.6) 

where y(S), the inverse function of z(k), is an odd function because z(k) is an odd function. 
Since k(x2)  = dv /dw2 ,  therefore, the above equation gives 

(8.22.7) 

Integrating, we get 
*2 (8.22.8) 

4 x 2 )  = -$ Y(fX21dX2 
h 
2 

-- 

For agiven simple fluid with a known shear stress function t(k) , y(S) is also known, the above 
equation can be integrated to give the velocity distribution in the channel. The volume flux 
per unit width Q is given by 

h 
2 (8.22.9) 

h 
2 

- 

Q = J v(x21dx2 
_- 

Equation (8.22.9) can be written in a form suitable for determining the function y(S) from an 
experimentally measured relationship between Q and f. Indeed, integration by part gives 

h / 2  dv (iv) h / 2  h /2  

-h/2 -h/2 -h/2 
Q = x ~ v ( x ~ ) ]  - J X Z ~ V =  - J ~ 2 - d x 2  
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Using Eq. (8.22.7), we obtain 

Thus, 

-- fh f h h  a#=,( af 2 ) y (  2 )  (2) 

so that 

(8.22.10) 

(4 

(8.22.11) 

Now, if the variation of Q with the driving force f (the pressure gradient), is measured 
experimentally, then the right hand side of the above equation is known so that the inverse 
shear stress function y(S) is obtained from the above equation. 

Example 8.22.1 

Use Eq. (8.22.8) to calculate the volume discharge per unit width across a cross section of 
the channel for a Newtonian fluid. 

Solution. For a Newtonian fluid, 

(0 
S 
p 

S=t(k)  = pk, so that k = - = y(S)  

Thus, 

-fi Y ( - f i )  = 7 

and 

(ii) 

(iii) 
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8.23 Couette Flow 

Couette flow is defined to be the two dimensional steady laminar flow between two 
concentric infinitely long cylinders which rotate with angular velocities 521 and Q2. The 
velocity field is given by 

V, = 0, ve = ~ ( r )  = ~ w ( T ) ,  V, = 0 (8.23.1) 

and in the absence of body forces, there is no pressure gradient in the 0 and z directions. 
In example 8.20.3, we see that the Couette flow is a viscometric flow and with 

"1 = ee, n2=e , ,  % = e ,  (9 
the nonzero Rivlin-Ericksen tensors are given by 

where 
dw 
dr k(r) = 7 

(ii) 

(iii) 

Thus, the stress components with respect to the basis {ni} are given by (see Section 8.21) 

tor = ~ ( k )  (8.23.2) 

(8.23.3) Z&j - Zr = q(k)  

(8.23.4) 

Zrz = Z& = 0 (8.23.5) 

where ~ ( k ) ,  q ( k ) ,  and c72(k) are the shear stress function, the first normal stress function and 
the second normal stress function respectively. These three functions completely characterize 
the fluid in any viscometric flow, of which the present Couette flow is one. For a given simple 
fluid, these three functions are assumed to be known. On the other hand, we may use any one 
of the viscometric flows to measure these functions for use with the same fluid in other 
viscometric flows. 

Let us first assume that we know these functions, then our objective is to find the velocity 
distribution, v(r) and the stress distributions q ( r )  in this flow when the externally applied 
torque M per unit height in the axial direction is given. 
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In cylindrical coordinates, the equations of motion are 

2 d~ -prw dr, 1 
dr dr - + (t, - r&))-- = 

I d  2 -(r rd) = 0 
r dr 

(8.23.6) 

(8.23.7) 

The z-equation of motion is identically satisfied, in view of Eq. (8.23.5) and the fact that tu 
does not depend on z. 

Equation (8.23.7) gives 
C rfi = - 2 r 

where C is the integration constant. The torque per unit height of the cylinders needed to 
maintain the flow is clearly given by 

M =  (23trtd)r (8.23.8) 

thus, 
M C=-- 

2 x  

Now, to find the velocity distribution v(r), from the known shear stress function t(k), we first 
note that td = t(k) so that by Eq. (8.23.8), we have 

M 
t(k) = - 

2nr2  
(vii) 

dwO in Couette flow. To do this, we let Now, we wish to determine the function k(r) Er dr 
S(r) E r(k(r)) (8.23.9a) 

(8.23.9b) 

where y(S) is the inverse of the functiont(k), and is therefore a known function when the 
function r(k)is known. 

do Since k(r) = therefore, from Eq. (8.23.9b), we have 

do r- = y ( S )  dr 

where from Eqs. (vii) and (8.23.9a), 

(viii) 
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Now, 

Thus, 

from which we have 

dw d o  
dr dS y(S) = 7 = -2s- 

do = -mdS 2s 

Integration of the above equation gives 
M - 

(xii) 

(8.23.10) 

- 
27CRi 

where SZ1 is the angular velocity of the inner cylinder. For given y(S), the above equation gives 
the desired function w(r) from which ve = m(r) can be obtained. 

Next, we wish to obtain the normal stresses T, at the two cylindrical surfaces 
r = R1 andr = R2. 
From the r-equation of motion, Eq. (8.23.6), we have 

drm 1 (xiii) 
- + ;(r, - tee) = -rpw2 dr 

That is, using Eq. (8.23.3) 

Integrating, we get 

In particular, 
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(8.23.11) 

In the right hand side of the above equation, the first term is always positive, stating that the 
centrifugal force effects always make the pressure on the outer cylinder larger than that on the 
inner cylinder. On the other hand, for a fluid which has a positive normal stress function Zfl, 
the second term in the above equation is negative, stating that the contribution to the pressure 
difference due to the normal stress effect is in the opposite direction to that due to the 
centrifugal force effect. Indeed, all known polymeric solutions have a positive B1 and in many 
instances, this normal stress effects actually causes the pressure on the inner cylinder to be 
larger than that on the outer cylinder. 

We now consider the reverse problem of determining the material function y(S) and 
therefore t(s> from a measured relationship between the torque M needed to maintain the 
Couette flow and the angular velocity difference Q2 - 52,. 

Since 
M 

tl = - 
2nR; 

therefore, 

That is 

where 

Now, from Eq. (8.23.10), we have 

t 2  = B Z l  

2 

p =  k] <1 

(xvii) 

(xviii) 

( x w  

(8.23.12) 

where 

and 

AQ = Q2 - Q2 
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M and t 2  = - tl = - M 
2ZRI 2ZR; 

Differentiating the above equation with respect to M gives 
aaa (8.23.13) m- = Y@1)-Y(Z2) aM 

Using Eq. (xix), we have 
aaa m-= ah4 r(t1)-rGszd (8.23.14) 

(8.23.15) 

we have, 
aaa (8.23.16) m-- = r(rl) aM 

i.e., 
(8.23.17) 

Equation (8.23.17) allows the determination of r(tl)from experimental results relating AS2 
with M. To obtain y(S) and therefore r(k), from r(rl), we note the following 

W l >  = Y ( Z l )  - YcBzl) (xxii) 

(xxiii) r(gt1> = r(Bz1) - rV2r1) 

Sincep < 1 ,  limp+l+O, y(BN+%l)- y(O)=O, therefore, 
N+= 

m (8.23.18) 
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Thus, from the known function r(t), the above equation allows one to obtain the inverse shear 
function y(S) from which the shear function t(S) can be obtained. 

If the gap R2-R1 is very small, the rate of shear k will be essential a constant independent 
of r given by 

R1AQ k=- 
R2 - R1 

Thus, k = y(t1) leads to 

(8.23.19) 

By measuring the relationship betweenM and AQ, the above equation determines the inverse 
shear stress function y(S). 
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PROBLEMS 
8.1. Show that for an incompressible Newtonian fluid in Couette flow, the pressure at the outer 
cylinder (r = R, ) is always larger than that at the inner cylinder. That is, obtain 

Ri 
82. Obtain the force-displacement relationship for N-Maxwell elements connected in parallel. 
Neglect inertia effects. 
83. Obtain the force-displacement relationship for the Kelvin-Voigt solid which consists of a 
dashpot (with damping coefficient 7) and a spring (with spring constant G ) connected in 
parallel. Also, obtain its relaxation function. Neglect inertia effects. 
8.4. Obtain the force-displacement relationship for a dashpot (damping coefficient 7,) and a 
Kelvin-Voigt solid ( damping coefficient 7 and spring constant G, see the previous problem ) 
connected in series. Also, obtain the relaxation function. 
8.5. A linear Maxwell fluid, defined by Eq.(8.1.1), is between two parallel plates which are one 
unit apart. Starting from rest, at timet = 0, the top plate is given a displacement u = vo t while 
the bottom plate remains fixed. Neglect inertia effects, obtain the shear stress history. 
8.6. Obtain Eq.(8.3.1) by solving the linear, nonhomogeneous ordinary differential equation 
Eq.(S.l.lb). 
8.7. Show that for the linear Maxwell fluid defined by Eqs. (8.1.1) 

t 
J $(t-t ’)J(t ’)Lit ’ = t 
-Q) 

where $(t) is the relaxation function and J(t)  is the creep compliance function. 
8.8. Obtain the storage modulus and loss modulus for the linear Maxwell fluid with a 
continuous relaxation spectrum defined by Eq.(8.4.1). 
8.9. Show that the viscosityp of a linear Maxwell fluid defined by Eqs. (8.1.1) is related to the 
relaxation function $(t) and the memory functionf(s) by the relation 

01 00 

p = J $J(s)ds = -J sf(s)ds 
0 0 

8.10. Show that the relaxation function for the Jeffrey’s model, Eq.(8.2.5) with a2 = 0 is given 
bY 

where S(t)is the Dirac function. 
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8.11. For the following velocity field, obtain (a) the particle pathline equation using the current 
time as the reference time, (b) the relative right Cauchy-Green deformation tensor and (c) 
the Rivlin-Ericksen tensor. 

v1 = 0, v2 = V ( X l ) ,  "3 = 0 

8.12. Given the velocity field 
VI = -kx l ,  ~2 = kx2, ~3 = 0 

(a) Obtain the relative right Cauchy-Green deformation tensor. 
(b) Using Eq.(8.9.2), obtain the Rivlin-Ericksen tensors. 
(c) Obtain the Rivlin-Ericksen tensors from the recursive equation, Eq.(8.10.3). 
(d) Is this velocity field a viscometric flow? 
8.13. Do the previous problem for the velocity field 

v i  = k x l ,  ~2 = k x a  ~3 = -2ku-3 

8.14. Given the velocity field 
v1 = kx2, v2 = k x l ,  v3 = 0 

(a) Obtain the pathline equations using the current time as the reference time. 
(b) Obtain the relative right Cauchy-Green deformation tensor. 
(c) Using Eq.(8.9.2) to obtain the Rivlin-Ericksen tensor. 
(d) Using Eq.(8.10.3) to obtain the Rivlin-Ericksen tensor. 
8.15. Given the velocity field 

V I  = -kx l ,  ~2 = kx2, ~3 = 0 

(a) Obtain the stress field T for a Newtonian fluid. 
(b) Obtain the co-rotational derivative of the stress tensor T. 
(c) Obtain the upper convected derivative of the stress tensor T. 

(d) Obtain the lower convected derivative of the stress tensor T. 
8.16. Do the previous problem for the following velocity field 

VI = k x l  , ' 2  = kx2, ~3 = -2 kx3 
8.17. Given the velocity field 

V I  = -kx l ,  ~2 = kx2, ~3 = 0 
(a) Obtain the stress field T for a second-order fluid. 
(b) Obtain the co-rotational derivative of the stress tensor T. 
(c) Obtain the upper convected derivative of the stress tensor T. 
(d) Obtain the lower convected derivative of the stress tensor T. 
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8.18. Do the previous problem for the following velocity field 
v1 = k x l ,  v2 = kx2, v3 = -2  kx3  

8.19. Derive Eq~(8.8.4). 
8.20. Derive Eqs. (8.8.9b) and (8.8.9e). 
8.21. Derive Eq. (8.10.3). 
8.22.Derive Eq. (8.18.5) 
8.23. Show from Eq.(8.18.15), that Oldroyd‘s upper convected derivative is objective. 
8.24. The Reiner-Rivlin fluid is defined by the constitutive equation 

T = - ~ I + T  

= @1(12J3ID + @2(12J3jD2 

where Zi are the scalar invariants of D. Obtain the stress components for this fluid in a simple 
shearing flow. 
8.25. The exponential of a tensor A is defined as 

00 

expA=I+z-An  1 
n !  

1 

If A is an objective tensor, is exp A also objective? 
8.26. Why is it that the following constitutive equation is not acceptable? 

T = - p I + r  
T = a ( V v )  

where v is the velocity vector and a is a constant. 
8.27. Let da and dA denote the differential area vector at time t and at timet respectively. For 
an incompressible fluid, show that 

ON CY1 
= dA. [--4 dA = -dA-l&dA 

r=t 

where du is the magnitude of dA. and the tensor MN are known as the White-Metzner 
tensors 
8.28. (a) Verify that Oldroyd’s lower convected derivatives of the identity tensor are the 
Rivlin-Ericksen tensors AN. 

(b) Verify that Oldroyd’s upper convected derivatives of the identity tensor are the negative 
White-Metzner tensors (see Prob. 8.27). 
829. Show that the derivative given in Eq.(xviii) of Section 8.18 is objective. 
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830. Obtain Eq. (8.18.12) for Oldroyd's lower convected derivative. 
831. Obtain Eq.(8.18.18) for Oldroyd's upper convected derivative. 
832. Show that the lower convected derivative of the first Rivlin-Ericksen tensor A1 is the 
second Rivlin-Ericksen tensor A2. 

833. Consider the following constitutive equation 

+ a(D r + z D) and a is a constant. Obtain the shear stress function where -= - 
and the two normal stress functions for this fluid. We note that a = 1 corresponds to 
Eq.(8.18.4) and = -1 corresponds to Eq.(8.18.20). 
834. Let Q be a tensor whose matrix with respect to the basis ni is 

D * r  Dcrr 
Dt Dt 

r -10  01 
[QIni = 0 1 0 

I o 0 1 1  
L J 

(a) Verify the following relations for the tensor N whose matrix with respect to ni is given by 
Eq.(8.20.5): QNQT = -N and QNTNQ = NTN 

(b) For A, and A2 given by Eq.(8.20.3) and Eq.(8.20.4), verify the relations 
T QAIQT= -A1 and QA2Q = A2 

(c) From T = -PI + f(A1, A2) where Ax, and A2 are given by Eq.(8.20.3) and (8.20.4) and 

Q f(A1,A2)QT = f(QAiQT, QA2QT) 
show that 

Q T ( ~ ) Q ~  = T(+) 

t(k) = -t( -k), q ( k )  = a1( -k), 02(k) = 02( -k)  

(d) From the results of part (c), show that the viscometric functions have the properties 

835. For the velocity field given in Example 8.20.2, Le., 

(a) Obtain the stress components in terms of the shear stress function t ( k )  and the normal 
stress functions al(k) and 9 ( k )  , where k = dv/dr. (b) Obtain the following velocity distribu- 
tion for the Poiseuille flow under a pressure gradient of -f: 

vr = 0, V@ = 0, v, = v(r), 



536 Problems 

where y is the inverse shear stress function 
(c) Obtain the relation 

where Q is the volume flux. 


