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Integral Formulation of General Principles 

In Sections 3.15,4.4,4.7,4.14, the field equations expressing the principles of conservation 
of mass, of linear momentum, of moment of momentum, and of energy were derived by the 
consideration of differential elements in the continuum. In the form of differential equations, 
the principles are sometimes referred to as local principles. In this chapter, we shall formulate 
the principles in terms of an arbitrary fixed part of the continuum. The principles are then in 
integral form, which is sometimes referred to as the global principles. Under the assumption 
of smoothness of functions involved, the two forms are completely equivalent and in fact the 
requirement that the global theorem be valid for each and every part of the continuum results 
in the differential form of the balance equations. 

The purpose of the present chapter is twofold:( 1) to provide an alternate approach to the 
formulation of field equations expressing the general principles, and (2) to apply the global 
theorems to obtain approximate solutions of some engineering problems, using the concept 
of control volumes, moving or fixed. 

We shall begin by proving Green’s theorem, from which the divergence theorem, which we 
shall need later in the chapter, will be introduced through a generalization (without proof). 

7.1 Green’s Theorem 

Let P(xy), dP/dx and dP/dy be continuous functions ofx andy in a closed regionR bounded 
by the closed curve C. Let n = n,el+nye2 be the unit outward normal of C. Then Green’s 
theoremt states that 

J = JPdy = J P n &  
R C C 

and 

(7.1.1) 

t The theorem is valid under less restrictive conditions on the first partial derivative. 

427 
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J %4 = - J P & = $ P n @  (7.1.2) 

where the subscript C denotes the line integral around the closed curve C in the counter- 
clockwise direction. For the proof, let us assume for simplicity that the region R is such that 
every straight line through an interior point and parallel to either axis cuts the boundary in 
exactly two points. Figure 7.1 shows one such region. Let a and b be the least and the greatest 
values of y on C (points G and H in the figure). Let x = X I @ )  and x = x20)  be equations for 
the boundaries HAG and GBH respectively. Then 

R ay C c 

Fig. 7.1 

b x26’)aP s :& = s [s Z&]dY (9 
R la x 1 0  

Now 
x 2 0  

x 1 0  
J $& = P(X,Y)Jr2Cv) = Pb20),Yl - P[xl@),Yl (ii) 

x 1 0 )  

Thus, 
b b 

R U U 

s sa = s PCr2OkYldY-s P[xl@),YldY 

= J m y - J  Pdy (iii) 
GBH GAH 



Since 

Thus 

J Pdy = -J Pdy 
GAH HAG 

J = J Pdy+J Pdy = s Pdy 
R ax GBH HAG C 
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(iv) 

Lets be the arc length measured along the boundary curve C in the counterclockwise direction 
and let x = x(s) and y = y(s) be the parametric equations for the boundary curve. Then, 
dy/ds = +nx ,Thus, 

J % d A = J P n &  
R ax C 

which is Eq. (7.1.1). 
Equation (7.1.2) can be proven in a similar manner. 

Example 7.1.1 

For P(xJ)  = xy2, evaluate P(xy)n&s along the closed path OABC (Fig. 7.2). Also, 
C 

evaluate the area integral J(dP/dr)d4. Compare the results. 
R 

Solution. We have 

J P(xy)n& = s X ( O ) ~ ( O ) & + S  by2(l)dy+J xh2(0)& 
C OA AB BC 

bh3 +J (0)y2(-l)& = J by2dy = 7 
h 

co 0 

On the other hand, 

bh3 ap 2 zd4 = J y d4 = J y2bdy = 7 
h 

R R 0 

(ii) 

Thus, 

(iii) 
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Fig. 7.2 

7.2 Divergence Theorem 

and adding, we have 
Let v = v1(xy)el+v2(xy)e2 be a vector field. Applying Eqs. (7.1.1) and (7.1.2) to v1 and v2 

(7.2. la) J (v ln l+v2n2)~ = J -+- d4 
C R (2 2) 

In indicia1 notation, Eq. (7.2.la) becomes 

&i (7.2.lb) JviniA = J --dA 
C R axi 

and in invariant notation, 

s v - d  = sd ivvd4  
C R 

(7.2. IC) 

The following generalization not only appears natural, but can indeed be proven (we omit 

avi (7.2.2a) 

the proof) 

S vinidS = $ -dV 
S R axi 

Or, in invariant notation, 
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(7.2.2b) 

where S is a surface forming the complete boundary of a bounded closed region R in space 
and n is the outward unit normal of S. Equation (7.2.2) is known as the divewnce theomm ( 
or Gausstheomm). The theorem is valid if the components of v are continuous and have 
continuous first partial derivatives in R. It is also valid under less restrictive conditions on the 
derivatives. 

Next, if qj are components of a tensor T, then the application of Eq. (7.2.2a) gives 

Or in invariant notation, 

JTndS = j divTdV 
S R 

(7.2.3a) 

(7.2.3b) 

Equation (7.2.3) is the divergence theorem for a tensor field. It is obvious that for tensor 
fields of higher order, Eq. (7.2.3b) is also valid provided the Cartesian components of divT are 
defined to be dqjkl..s / ax,. 

Example 7.2.1 

Let T be a stress tensor field and let S be a closed surface. Show that the resultant force of 
the distributive forces on S is given by 

s (divT)dV 
V 

Solution. Let f be the resultant force, then 

f = JtdS 
S 

where tis the stress vector. But t = Tn, therefore from the divergence theorem, we have 

f = s tdS = STndS = J(divT)dV 
S S V 

i.e., 

(ii) 

(7.2.4a) 

(7.2.4b) 
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Example 7.2.2 

Referring to Example 7.2.1, also show that the resultant moment, about a fixed point 0, of 
the distributive forces on S is given by 

V 
J [xx(divT)+2e]dV (0 

where x is the position vector of the particle with volume dV from the fixed point 0 and fl is 
the axial (or dual) vector of the antisymmetric part of T (see Sect. 2B16). 

Solution. Let m denote the resultant moment about 0. Then 

m = Jxxtds 
S 

Let mi be the components of m, then 

mi = J Eijgjt&S = J E ~ ~ ~ T ~ ~ S  
S S 

Using the divergence theorem, Eq. (7.2.3), we have 

(ii) 

( iii) 

(iv) 

Now, 

Noting that - ~ j b T b  are components of twice the dual vector of the antisymmetric part of T 
aq 

[see Eq. (2B16.2b )], and ~ d g j ( $ )  are components of [xXdivT], we have 
P 

m = J xxtdS = J[xx(divT)+2P]dV 
S V 

(7.2.5) 

Example 7.2.3 

Referring to Example 7.2.2, show that the total power (rate of work done) by the stress 
vector on S is given by, 
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$[ (divT) v+ tr( TTVv) ]dV 
V 

where v is the velocity field. 
Solution. Let P be the total power, then 

P = $ t*vdS = $Tn-vdS 
S S 

But Tn-v = n.TTv (definition of transpose of a tensor). Thus, 

P = $ n (T=V)~S 
S 

Application of the divergence theorem gives 

P = $div(TTv)dV 
V 

Now, 

a(qjvj) - av. T div(T v) = ___ - -v.+T.-' = (divT)-v+tr(T Vv) axi axi J ]'axi 

Thus, 

P = $ t d S  = $[(divT)-v+tr(TTVv)dV 
S V 

(ii) 

(7.2.6) 

7.3 

coordinates, is given by 

Integrals over a Control Volume and Integrals over a Material Volume 

Consider first a one-dimensional problem in which the motion of a continuum, in Cartesian 

(7.3.1) 
h 

x = x(X,t), y = Y, 2 = 2 

and the density field is given by 

P = P W  
The integral 

(7.3.2) 

(7.3.3) 
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with fixed values of and d2), is an integral over a fixed control volume ; it gives the total 
mass at time t within the spatially fixed cylindrical volume of constant cross-sectional areaA 

and $2) be the material coordinates for the particles which, at time t are at x(l) 

and bounded by the end faces x = x(l) and x = x (2) . 

Let 
and d2) respectively, Le., x(l) = $ @ ) ,  t) and d2) = &d2), t) , then the integral 

(7.3.4) 

with its integration limits functions of time, (in accordance with the motion of the material 
particles which at timet are a d 1 )  is an integral over a material volume; it gives the 
total mass at time t , of that part of material which is instantaneously (at time t) coincidental 
with that inside the fixed boundary surface considered in Eq. (7.3.3). Obviously, at timet, both 
integrals, Le., Eqs. (7.3.3) and (7.3.4), have the same value. At other times, say at t+dt ,  
however, they have different values. Indeed, 

(7.3.5) 

is different from 

We note that am /at in Eq. (7.3.5) gives the rate at which mass is increasing inside the fixed 
control volume bounded by the cylindrical lateral surface and the end faces x = x(l) and 
x = x(~) ,  whereas dM /a t  in Eq. (7.3.6) gives the rate of increase of the mass of that part of 
material which at time t is coincidental with that in the fixed control volume. They should 
obviously be different. In fact, the principle of conservation of mass demands that the mass 
within a material volume should remain a constant, whereas the mass within the control volume 
in general changes with time. 

The above one dimensional example serves to illustrate the two types of volume integrals 
which we shall employ in the following sections. We shall use V, to indicate a fixed control 
volume and V, to indicate a material volume. That is, for any tensor T (including a scalar) 
the integral 

sT(x, W V  
vc 

is over the fixed control volume V, and the rate of change of this integral is denoted by 
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whereas the integral 

ST(x,t)dV 
Vm 

is over the material volume Vm and the rate of change of this integral, is denoted by 

We note that the integrals over the material volume is a special case of the more general 
integrals where the boundaries move in some prescribed manner which may or may not be in 
accordance with the motion of the material particles on the boundary. In this chapter, the 
control volume denoted by V, will always denote afied control volume; they are either fixed 
with respect to an inertial frame or fixed with respect to a frame moving with respect to the 
inertial frame (see Section 7.7). 

7.4 Reynolds Transport Theorem 

Let T(x, t) be a given scalar or tensor function of spatial coordinates ( X ~ J Z J ~  ) and time t. 
Examples of T are: density p(x, t), linear momentum p(x, t)v(x, t), angular momentum 
rx  10(4 t)v(x, t)l etc. 

Let 

be an integral of T(x, t) over a material volume Vm(t). As discussed in the last section, the 
material volume Vm(t) consists of the same material particles at all time and therefore has 
time-dependent boundary surface Sm(t) due to the movement of the material. 

We wish to evaluate the rate of change of such integrals ( e.g., the rate of change of mass, 
of linear momentum etc., of a material volume ) and to relate them to physical laws (such as 
the conservation of mass, balance of linear momentum etc.) 

The Reynolds Tlanspolt Theorem states that 

or 

(7.4.1) 

(7.4.2) 
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where V, is the control volume (fixed in space) which instantaneously coincides with the 
material volume V,,, (moving with the continuum), S, is the boundary surface of V, , n is the 
outward unit normal vector. We note that the notation D /Dt in front of the integral at the 
left hand side of Eqs (7.4.2) emphasizes that the boundary surface of the integral moves with 
the material and we are calculating the rate of change by following the material. 

Reynold’s theorem can be derived in the following two ways: 

(A) 
D D DT D - J T(x, t)dV = J E [T(x, t)dV] = J %dV +J T ~ ( d v )  
Dt vm(t) v, =v, VC VC 

Since [see Eq. (3.13.7) ] 
D -(dV) = (diw)dV Dt 

therefore, Eq. (i) becomes 
D 
Dt -J T(x,t)dV= 

Vm(0 

This is Eq. (7.4.2). 
In terms of Cartesian components, this equation reads, if Tis a scalar 

(ii) 

(iii) 

(7.4.2a) 

If T is a vector, we replace T in Eq. (7.4.2a) with 7;: and if T is a second order tensor, we 
replace T with 7;:j and so on. 

Since 

and from the Gauss theorem, we have 

TvkndS  = JTV*ndS 

so that, with T denoting tensor of all orders (including scalars and vectors ) 

TdV= J cdV+J T(v-n)dS &J, V, at VC 

(7.4.3) 

This is Eq. (7.4.1). 



Principle of Conservation of Mass 437 

(B) Alternatively, we can derive Eq. (7.4.2) in the following way: 
Since [see Eq. (3.29.3) ] 

dV=(detF )dV, 

where F is the deformation gradient and dV, is the volume at the reference state, therefore 

$ T(x, t)dV = $ T(x, t)(detF )dV, 
Vm V O  

Thus, 
D D -$ T(x,#)dV= s$ T(detF)dV, = $ 
Dt v, VO VO 

= $ 
VO 

But from Eq. (vi) and Eq. (ii), we have, 

therefore, 
D 
Dt -$ T(x,t)dV= $ 

VC Vm(9 

(vii) 

(viii) 

This is Eq. (7.4.2) 

7.5 Principle of Conservation of Mass 

material should remain constant at all times. That is 
The global principle of conservation of mass states that the total mass of a fixed part of 

D 
- Jp(x, t )  dV = 0 
Dt v, 

Using Reynolds Transport theorem (7.4.1), we obtain 
a $, p(x,WV= -J p(v.n)dS 

SC 
VC 

(7.5.1) 

(7.5.2a) 
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- a Jp(y)dV = -Jp(v.n)dS 
at 

VC S C  

(7.5.2b) 

This equation states that the time rate at which mass b increasing illside a control volume = the 
mass influx (i.e., net rate of mass inflow ) through the control surface. 

Substitutingp for Tin Eq. (7.4.3), we obtain from Eq. (7.5.2b) 

J [$+div@v)] dV = 0 
VC 

This equation is to be valid for all V,, therefore, we must have 

*+div@v) at = 0 

This equation can also be written as 

@ i-pdiw = 0 Dt 

This is the equation of continuity derived in Section 3.15. 

Given the motion 

and the density field 

Example 7.5.1 

x1= (l+tyu,, x2 = x2, x3 = x3 

PO p = - Go = constant) 1 +t 

(7.5.3) 

(7.5.4a) 

(7.5.4b) 

(0 

(ii) 

(a) Obtain the velocity field. 
(b) Check that the equation of continuity is satisfied. 
(c) Compute the total mass and the rate of increase of mass inside a cylindrical control volume 
of cross-sectional areaA and having as its end faces the planexl = 1 and x l  = 3. 

(d) Compute the net rate of inflow of mass into the control volume of part(c). 
(e) Find the total mass at time t of the material which at the reference time (t = 0) was in the 
control volume of (c). 
( f )  Compute the total linear momentum for the fixed part of material considered in part (e) 

Solution. (a) 
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x1 , v 2 =  0, "3 = 0 yl=---=xl=- DXl 
Dt l + t  

(iii) 

Thus, the equation of continuity is satisfied. 
(c) The total mass inside the control volume at time f is 

and the rate at which the mass is increasing inside the control volume at time t is 

am UP, - = -- 
at (l+t)2 

i..e, the mass is decreasing. 
(d) Since v2 = v3 = 0, there is neither inflow nor outflow through the lateral surface of the 
control volume. Through the end facexl= 1, the rate of inflow (mass influx) is 

On the other hand, the mass outflux through the end facexl= 3, is 

3 P J  @AV)Xl = 3 = - 
(1 +t)2' 

Thus, the net mass influx is 

2odl -- 
(l+t)2 

(vii) 

(viii) 

which is the same as Eq. (vi). 
(e) The particles which were at x1 = 1 and X I =  3 when f = 0 have the material coordinate 
XI = 1 andX1 = 3 respectively. Thus, the total mass at time t is 

P d l  x1 =3(l+t) 
--Adr1= Po 1+,[3(l+t)-(1+')1 = 2pdl 
1 +t x1 = (1 + I )  

M =  J 
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We see that this time-dependent integral turns out to be independent of time. This is because 
the chosen density and velocity field satisfy the equation of continuity so that, the total mass 
of a fixed part of material is a constant. 
( f )  Total linear momentum is, since v2 = v3 = 0, 

The fact that P is also a constant is accidental. The given motion happens to be acceleration- 
less, which corresponds to no net force acting on the material volume. In general, the linear 
momentum for a fixed part of material is a function of time. 

7.6 Principle of Linear Momentum 

The global principle of linear momentum states that the total force (surface and body 
forces) acting on any fixed part of material is equal to the rate of change of linear momentum 
of the part. That is, withp denoting density, v velocity, t stress vector, and B body force per 
unit mass, the principle states 

Now, by using Reynolds Transport Theorem, Eq. (7.4.1), Eq. (7.6.1) can be written as 

(7.6.1) 

(7.6.2) 

In words, Eq. (7.6.2) states that 
Total force exerted on a fixed part of a material instantaneously in a control volume V ,  

= time rate of change of total linear momentum inside the control volume + net outflux 
of linear momentum through the control surface S,. 

Equation (7.6.2) is very useful for obtaining approximate results in many engineering 
problems. 

Using Eq. (7.4.2) (with T replaced by p v ), Eq. (7.6.1) can also be written as 



But 

and 

- D pv =%+p- Dv 
Dt Dt Dt 

@+pdiw Dt = 0 

Therefore, Eq. (i) becomes 
Dv J p g t  dV = J tdS+J pBdV 

VC SC VC 

Since 

therefore, we have 
Dv J (pE-divT-pB) dV = 0 

VC 
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(ii) 

(iii) 

from which the following field equation of motion is obtained: 
Dv 
Dt p- = divT+pB 

(7.6.3) 

(iv) 

(7.6.4) 

(7.6.5) 

This is the same equation as Eq. (4.7.2). 
We can also obtain the equation of motion in the reference state as follows: 
Let po , dSo, and dVo denote the density, surface area and volume respectively at the 

reference time to for the differential material havingp, dS and dVat timet , then the conser- 
vation of mass principle gives 

po dVo = p dV (7.6.6) 

and the definition of the stress vector t,, associated with the first Piola-Kirchhoff stress tensor 
gives [see Section 4.101 

t,, dSo = t dS (7.6.7) 

Now, using Eqs. (7.6.6) and (7.6.7) , Equation (7.6.3) can be transformed to the reference 
configuration. That is 
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In the above equation, everything is a function of the material coordinates Xi and t, T is the 
first Piola-Kirchhoff stress tensor and no is the unit outward normal. Using the divergence 
theorem for the stress vector term, Eq. (7.6.8) becomes 

a T- 
where in Cartesian coordinates, DivT, = A. axi 

From Eq. (7.6.9) ,we obtain 
Dv 

O D t  
p -= DivTo+poB 

(7.6.9) 

(7.6.10) 

This is the same equation derived in Chapter 4, Eq. (4.11.6). 

Example 7.6.1 

A homogeneous rope of total length 1 and total mass m slides down from the corner of a 
smooth table. Find the motion of the rope and the tension at the comer. 

Solution. Let x denote the portion of rope that has slid down the corner at time t. Then 
the portion that remains on the table at time t is I-x. Consider the control volume shown as 
(Vc)l in Figure 7.3. Then the momentum in the horizontal direction inside the control volume 
at any time t is, with x denoting dr /dt: 

m 
1 -(Z-x)i 

Fig. 73 
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and the net momentum outflux is 

L A  

Thus, if T denotes the tension at the corner point of the rope at time t ,  we have 

i.e., 
m 
1 

T = -(1 -x$ 

0 )  

(ii) 

as expected. 
On the other hand, by considering the control volume (Vc)2 (see Fig. 7.3), we have, the 

momentum in the downward direction is (m /I).& and the momentum influx in the same 
direction is [(m /Z$fi. Thus, 

i.e., 
m m .. 
1 1 - T + T g  = 7 x 

From Eqs. (ii) and (iv), we have 
m m m .. 
1 1 1  - ( l -x)2 = - x g - X X  

i.e., 

x - g x = o  1 

The general solution of Eq. (vi) is 
x = C l e x p [ m t ]  +C2exp[ - v t ]  

Thus, if the rope starts from rest with an initial overhang ofx,, we have 

x, = Cl+C2 and 0 = Cl-C, 

so that C1 = C, = x, /2 and the solution is 

(iii) 

(vii) 

(viii) 

(h) 
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The tension at the corner is given by 
m 
1 I T = -(1 -xf i  = m(l -x )  

We note that the motion can also be obtained by considering the whole rope as a system. In 
fact, the total linear momentum of the rope at any time t is 

m m .  -(l-x)iel +-e2 I 1 

its rate of change is 

m ‘ 2  m ‘ 2  - [ ( l -x ) i -x  ] e l+ - (x i+x  )e2 1 1 

and the total resultant force on the rope is 

(xii) 

(xiii) 

Thus, equating the force to the rate of change of momentum for the whole rope, we obtain 

(1 -x)  i-i2 = 0 (xiv) 

and 
‘ 2  x i + ,  =gx 

‘2 Eliminatingx from the above two equations, we arrive at Eq. (vi) again. 

Example 7.6.2 

Figure 7.4 shows a steady jet of water impinging onto a curved vane in a tangential direction. 
Neglect the effect of weight and assume that the flow at the upstream region, section A, as 
well as at the downstream region, section B is a parallel flow with a uniform speed v,. Find 
the resultant force ( above that due to the atmospheric pressure) exerted on the vane by the 
jet. The volume flow rate is Q. 

Solution. Let us take as control volume that portion of the jet bounded by the planes atA 
and B. Since the flow at A is assumed to be a parallel flow, therefore the stress vector on the 
planeA is normal to the plane with a magnitude equal to the atmospheric pressure which we 
take to be zero. [We recall that in the absence of gravity, the pressure is a constant along any 
direction which is perpendicular to the direction of a parallel flow (See Section 6.7)]. Thus, 
the only forces acting on the material in the control volume is that from the vane to the jet. 
Let F be the resultant of these forces. Since the flow is steady, the rate of increase of momentum 
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inside the control volume is zero. The rate of outflow of linear momentum across B is 
pQv,(cost9el+sint9e2) and the rate of inflow of linear momentum acrossA is pQv,el. Thus 

F = pQ[v,(cosO- l)el+v,sint9e~] (0  

F, = -p~,( i -cose)  (iia) 

F,, = pQvosinO (iib) 

and the force components on the vane by the jet are equal and opposite to F, and F). 

Fig. 7.4 

Example 7.6.3 

For boundary layer flow of water over a flat plate, if the velocity profile and that of the 
horizontal components at the leading and the trailing edges of the plate respectively are 
assumed to be those shown in Fig. 7.5, find the shear force acting on the fluid by the plate. 
Assume that the flow is steady and that the pressure is uniform in the whole flow. 

Solution. Consider the control volumeABCD. Since the pressure is assumed to be uniform 
and since the flow outside of the boundary layer 6 is essentially uniform in horizontal velocity 
component in x direction with very small vertical velocity components (so that the shearing 
stress on BC is negligible), therefore, the net force on the control volume is the shearing force 
from the plate. Denoting this force (per unit width in z direction ) by Fel, we have from the 
momentum principle, Eq. (7.6.2) 

F = net out flux of x -momentum through ABCD 
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i.e., 
6 

F = $ vl@v-n)dS = -$ii@ii)dy+$ i i @ v 2 ~ ~  + 
sc 0 BC 

( 9  6 

+$ ( 9 ) P  (9) dY + $ ( O W  
0 AD 

where U denotes the uniform horizontal velocity of the upstream flow and the uniform 
component of velocity at the trailing edge, V I ,  and v2 are the velocity components of the fluid 
particles on the surface S, and 6 is the thickness of the boundary layer. Thus, 

-2 p u -  -2 (ii) 
F = -pu 6+ +US @~2)dS 

3 BC 

Fig. 7.5 

From the principle of conservation of mass, we have 
6 6 -  (iii) 

$ @v2)dS-$piidy+$p5Jdy = 0 

$(pV2)dS = p;&pud = pud 

BC 0 0 

i.e., 

(iv) 
2 2 

BC 

Thus, 
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(v> - 2 - 2  

3 2  6 
-2 Pu+P 6 --e& F = -PU d +  

That is, the force per unit width on the fluid by the plate is acting to the left with a magnitude 

O f e .  

7.7 Moving Frames 

There are certain problems, for which the use of a control volume fixed with respect to a 
frame moving relative to an inertial frame, is advantageous. For this purpose, we derive the 
momentum principle valid for a frame moving relative to an inertial frame. 

Fig. 7.6 

Let F1 and F2 be two frames of references. Let r denote the position vector of a 
differential mass dm ina continuum relative toF1 and let x denote the position vector relative 
to F2 (see Fig. 7.6). Then the velocity of dm relative to F1 is 

(2) = "F, ( 7-1) 
F1 

and the velocity relative to F2 is 
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Since 

thus, 

i.e., 

r=%+x 

($)Fl = (%)Fl+ (2) F1 

But, from a course in rigid body dynamics, we learned that for any vector b, 

( $ ) F l =  ($) + o X b  
F2 

Where o is the angular velocity of F2 relative to F1. Thus, 

(2) Fl = (2) +oxx  = (v)*,+oxx 
F2 

Therefore, 

vF1 (vo)F1+vF2+o 

(7.7.2) 

(7.7.3) 

( 9  

(ii) 

(iii) 

(7.7.4) 

Now, the linear momentum relative to F1 is J v F ~ ~  and that relative to F2 is s..,d.l. 
These rates of change of linear momentum are related in the following way: (for simplicity, 
we drop the subscript of the integral V, ) 

Now, again, using Eq. (iii) for the vector J v F ~ ~ ~ ,  we have 

(7.7.5) 
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and 

(E) (0xJxdm) = 1XJXdrn+OX (E) (Jxdm) 
Fl Fl 

= 1xJxdm+0xJvF2 dm+fDX(oxJxdm) 

Thus, 

+1xJxdm+ox (mXJxdm) 

Now, let Fl be an inertial frame so that the momentum principle reads 

Using Eq. (7.7.6), the momentum principle [Eq. (7.7.7)] becomes 

(7.7.6) 

(7.7.7) 

(7.7.8) 

wherem = Jh. 

Equation (7.7.8) shows that when a moving frame is used to compute momentum and its 
time rate of change, the same momentum principle for an inertial frame can be used provided 
we add those terms given inside the bracket in the right-hand side of Eq. (7.7.8) to the surface 
and body force terms. 

7.8 Control Volume Fixed with respect to a Moving Frame 

If a control volume is chosen to be fixed with respect to a frame of reference which moves 
relative to an inertial frame with an acceleration a,, an angular velocity o and angular 
acceleration 1, the momentum equation is given by Eq. (7.7.8). If we now use the Reynold's 
transport theorem for the left-hand side of Eq. (7.7.8) , we obtain 

[-ma, - 20 x J"F2dm -ci, x Jxdm -O x (0 x Jxdm)] (7.8.1) 
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In particular, if the control volume has only translation (acceleration = a,)with respect to the 
inertial frame and no rotations, then we have 

J d t @ v ~ ~ ) d ~ + J p v ~ 2 ( v ~ 2 . . " ~ ~  a = J tdS+J p&tV-rna, (7.8.2) 

VC SC sc v c  

Example 7.8.1 

A rocket of initial total mass M, moves upward while ejecting a jet of gases at the rate of 
y unit of mass per unit time. The exhaust velocity of the jet relative to the rocket is v, and the 
gage pressure in the jet of area A isp. Derive the differential equation governing the motion 
of the rocket and find the velocity as a function of time. Neglect drag forces. 

Fig. 7.7 

Solution. Let V, be a control volume which moves upward with the rocket. Then relative to 
V, the netx momentum outflw is -pe. The motion of gases due to internal combustion does 
not produce any net momentum change relative to the rocket, therefore, there is no rate of 
change of momentum inside the control volume. The net surface force on the control volume 
is an upward force of pA and the body force is (M,-yt)g downward. However, since the 
control volume is moving with the rocket which has an acceleration x , therefore, the term 
x(M-yf)  is to be added to the other force terms [See Eq. (7.8.2)]. Thus, 

- pe = pA - (M, - yt )g - (M, -yf $! (9  



Principle of Moment of Momentum 451 

This equation can be written 

If at t = 0, X = 0, then 

(ii) 

(ii) 

(iii) 

7.9 

The global principle of moment of momentum states that the total moment about a fixed 
point, of surface and body forces on a fixed part of material is equal to the time rate of change 
of total moment of momentum of the part about the same point. That is, 

Principle of Moment of Momentum 

q x xpvdV = J ( x  x t )dS+Jx x p w v  
SC VC 

Dt 
Vm 

(7.9.1) 

where xis the position vector for a particle. 

Using the Reynold's transport theorem, Eq. (7.4.2) , the left side of Eq. (7.9.1) becomes 

D 
Dt -s x xpvdV = s Xpv)+(x xpv)(div v)  
Vm VC 

Since 
D D v  D v  
Dt Dt Dt Dt Dt -(x xpv)  = v xpv+x X Q  v+x xp- = x x*v+x xp- 

therefore the integrand in Eq. (i) becomes 
D v  D v  

x X @+pdiv v v+x xp- = x xp- ( D t  ) Dt Dt 

Thus 

(ii) 

(iii) 

(iv) 

Also, from Example 7.2.2 of this chapter, we have 
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J(x X t )dS = J [. x(divT )+2 ‘1 dV 
SC VC 

Therefore, Eq. (7.9.1) becomes 

(7.9.2) 

where 

term in Eq. (7.9.2) vanishes because of Eq. (7.6.5), therefore, t! = 0 and the symmetry of the 
stress tensor 

is the axial vector of the antisymmetric part of the stress tensor T. Now the first 

T = T  T (7.9.4) 

is obtained. 

of Eq. (7.9.1), we obtain 
On the other hand, if we use the Reynold’s transport theorem, Eq. (7.4.1)’ for the left side 

That is, the total moment about a fured point due to surface and body forces acting on the 
material instantaneously inside a control volume = total rate of change of moment of 
momenta inside the control volume + total net rate of outflow of moment of momenta across 
the control surface 

If the control volume is fixed in a moving frame, then the following terms should be added 
to the left side of Eq. (7.9.4) 

- ( J x h )  x a,-Jxx (h X x)dm - Jxx [OX (o Xx)]dm -2sxX (o x v) dm (7.9.5) 

where o and t i  are absolute angular velocity and acceleration of the moving frame (and of the 
control volume), the vector x of (dm) is measured from the arbitrary chosen point 0 in the 
control volume, a, is the absolute acceleration of point 0 and v is the velocity of (dm) relative 
to the control volume. 

Example 7.9.1 

Each sprinkler arm in Fig. 7.8 discharges a constant volume of water Q and is free to rotate 
around the vertical center axis. Determine its constant speed of rotation. 
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Fig. 7.8 

Solution. Let V, be a control volume that rotates with the sprinkler arms. The velocity of 
water particles relative to the sprinkler is (Q /A)el inside the right arm and (Q /A)(  -e l )  inside 
the left arm. If p is density, then the total net outflu of moment of momentum about point 
0 is +Q(Q /A)sinOroe3. The moment of momentum about 0 due to weight is zero. Since the 
pressure in the water jet is the same as the atmospheric pressure, taken to be zero gage 
pressure, there is no contribution due to surface force on the control volume. Now, since the 
control volume is rotating with the sprinkler, therefore, we need to add those terms given in 
Eq. (7.9.5) to the moment of forces. With x measured from 0, the first term of Eq. (7.9.5) is 
zero, with o a constant, the second term of Eq. (7.9.5) is zero, with x=xel and o = 0e3, the 
third term of Eq. (7.9.5) is zero. Thus, the only nonzero term is 

-2JXX(”XV)drn ( 0  

which is the moment due to the Coriolis forces. Now, for the right arm, v = (Q /A)el, 
therefore, 

Q wQ (ii) O X v  = @t?3XA+1 = Te2 

and 

xx(oxv) = xelx-e2 wQ = ?e3 (iii). 
A 

Thus, the contribution from the fluid in the right arm to the integral in Eq. (i) is 

‘0 (iv) 
- 7 e J  X ~ A ~ U )  = -o@r2e3 

0 
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Including that due to the left arm, the integral has the value of -2m@rzq. Therefore, from 
the moment of momentum principle for a moving control volume, we have 

from which 
Q sin0 0 = -- 
A ra 

7.10 Principle of Conservation of Energy 

The principle of conservation of energy states that the time rate of change of the kinetic 
energy and internal energy for a fixed part of material is equal to the sum of the rate of work 
done by the surface and body forces and the heat energy entering the boundary surface. That 
is, if v2 denotes v-v, u the internal energy per unit mass, and q the rate of heat flow vector 
across a unit area, then the principle states: 

(7.10.1) 

the minus sign in the last term is due to the convention that n is an outward unit normal vector 
and therefore -q-n represents inflow. 

Again, using the Reynold's transport theorem Eq. (7.4.2), we have 

1 2 2 

- D J p(k+u)dV = J dV 
Dt 

vm VC 

(9  1 D v2 2 D v2 1 i [ D t  2 Dt 2 
= J [ p- (-+u)+(y+u)(@+pdiw) dV = p- (-+u) dV 

2 Dt 
VC VC 

In Example 7.2.3 we obtained that 

/t.vdS = J[(divT)-v + tr (TTVv)]dV 
SC VC 

Also, the divergence theorem gives 
Jq-ndS = Jdiv qdV 
SC VC 

Thus, using Eqs. (i)(ii) and (iii), Eq. (7.10.1) becomes 

(ii) 

(iii) 
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[(divT+pB)-v+tr(TTVv)-divqldV (7.10.2) 

Since 

Dv 1 Dv2 (divT+pB)-v = p--v = y- Dt Dt 

Therefore, Eq. (7.10.2) becomes 
s p ~ d V =  Du s [tr(TTVv)-div q]dV 

VC v c  

Thus, at every point, we have 
Du T 
Dt p- = tr(T Vv)-div q 

For a symmetry tensor T , this equation can also be written 
Du p- Dt = tr(TVv)-div q 

(7.10.3b) 

Equations (7.10.3a) or (7.10.3b) is the energy equation. A slightly different form of 
Eq. (7.10.3b) can be obtained if we recall that Vv = D+W, where D, the symmetric part of 
Vv is the rate of deformation tensor, and W, the antisymmetric part of Vv, is the spin tensor. 
We have 

tr(TVv) = tr(TD+TW) = tr(TD)+tr(TW) (vi) 

But tr(TW) = T-W- 11 I' = T..W- I' 11 = T-Wo 9 = -qjWji , so that 

tr(TW) = 0 (vii) 

therefore, we rediscover the energy equation in the following form: 
Du 

p- Dt = tr(TD)-divq (7.10.4) 

On the other hand, if we use the Reynold's theorem in the form of Eq. (7.4.1), we obtain 
n 

Equation (10.5) states that the time rate ofwork done by surface and body forces in a control 
volume + rate of heat input = total rate of increase of internal and kinetic energy of the 
material inside the control volume + rate of outflow of the internal and kinetic energy across 
the control surface 
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Example 7.10.1 

A supersonic one-dimensional flow in an insulating duct suffers a normal compression 
shock. Assuming ideal gas, find the pressure after the shock in terms of the pressure and 
velocity before the shock. 

Fig. 7.9 

Solution For the control volume shown, we have, for steady flow: 
(1) Mass outflux = mass influx, that is 

P l A  v1= P 2 A  v2 ( 9  

i.e., 
Pl v1= P2V2 (ii) 

(2) Force in x direction = net momentum outflux in x direction 

P l A  - P2A = @2A v2) v2-@1A Vl) Vl (iii) 

i.e., 

( P l - P 2 ) = P 2 v 2 - P l v l  2 2 (iv) 

(3) Rate of work done by surface force = net energy (internal and kinetic) outflux. That is 

21 (v) 

u ,e(+ (vi) 

1 
P l A  v1 - P2A v2 = [@2A v2 )u2-@1A v1 lull + *@2A v2 )v; - 5@1A Vl >Vl [' 

For ideal gas, the internal energy per unit mass is given by, [see Eq. (6.26.10)] 

P y - 1  

where y = cp IC, is the ratio of specific heats. Thus, Eq. (v) becomes 
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Or, 

that is 

Y 1 3  Y 1 3  
- Y l v l + ~ l v l  Y - 1  = 3P2V2+5P2V2 

In view of Eq. (ii), this equation becomes 

Y e+&: = Y !!?+I,; 
y - l P 1  2 y - l P 2  2 

(vii) 

(viii) 

We note here that this is the same energy equation derived in Chapter 6 (Example 6.28.1) 
using differential forms of energy equation for an inviscid nonheat-conducting fluid. From 
Eqs. (ii)(iv) and (x) we obtain 

1 2 (4 
P2 = Y + 1 [ 2 0 1 V l  - (Y - 1lPll 
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PROBLEMS 
7.1. Verify the divergence theorem for the vector field v = &el + z e;? , by considering the 
region bounded byx = 0 ,  x = 2, y = 0, y = 2 ,  z = 0 ,  z = 2. 
7.2. Show that 

J x*ndS=3V 
S 

where Vis the volume enclosed by the boundary S. 
73. (a) Consider the vector field v = (pa, where (p is a given scalar field and a is an arbitrary 
constant vector (independent of position). Using the divergence theorem, prove that 

J V p d V = J  (pndS 
V S 

(b) Show that for any closed surface S that 

JndS=O 
n J 

7.4. A stress field T is in equilibrium with a body force pB. Using the divergence theorem, 
show that for any volume V, and boundary surface S , that 

J tdS + J p B d V =  0 
S V 

That is, the total resultant force is equipollent to zero. 

7.5. Let u * define an infinitesimal strain field E * = -(Vu* + (VU*)=) and let T** be in 

equilibrium with a body forcep B** and a surface traction t**. Using the divergence theorem, 
verify the identity (theorem of virtual work ) 

1 
2 

S V V 
7.6. Using the equations of motion and the divergence theorem, verify the following rate of 
work identity 

7.7. Consider the velocity and density fields 
-t v=xle l ,  p =poe 

(a) Check the equation of mass conservation. 
(b) Compute the mass and rate of increase of mass in the cylindrical control volume of 
cross-section A and bounded byxl= 0 andxl = 3. 
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(c) Compute the net mass inflow into the control volume of part (b). Does the net mass inflow 
equal the rate of mass increase? 
7.8. (a) Check that the motion 

x1 = x1 e t - ' O ,  x;? = x,, xz = X, 
corresponds to the velocity field of Prob. 7.7. 

(b) For a density field p = po e-(t-to), verify that the mass contained in the material volume 
that was coincident with the control volume of Prob. 7.7 at time to , remain a constant. 

(c) Compute the total linear momentum for the material volume of part (b). 

7.9. Do Problem 7.7 for the velocity field v = x1 e l  and the density field p = - and for the 

cylindrical control volume bounded byxl = 1 and x1 = 3. 

7.10. The center of mass +, of a material volume is defined by the equation 

Po 

X1 

Demonstrate that the linear momentum principle may be written in the form 

where a,, is the acceleration of the mass center. 

7.11. Consider the following velocity field and density field 

(a) Compute the total linear momentum and rate of increase of linear momentum in a 
cylindrical control volume of cross-sectional area A and bounded by the plane x l  = 1 and 
X I =  3. 

(b) Compute the net rate of outflow of linear momentum from the control volume of part (a). 
(c) Compute the total force on the material in the control volume. 
(d) Compute the total kinetic energy and rate of increase of kinetic energy for the control 
volume of part (a). 
(e) Compute the net rate of outflow of kinetic energy from the control volume. 
7.12. Consider the velocity and density fields 

v = xlel, p = po e-t 
For an arbitrary time t, consider the material contained in the cylindrical control volume 
bounded by x1= 0 and x1 = 3. 
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(a) Determine the linear momentum and rate of increase of linear momentum in this control 
volume. 
(b) Determine the outflux of linear momentum. 
(c) Determine the net resultant force that is acting on the material contained in the control 
volume. 

7.13. Do Problem 7.12 for the same velocity field, with p = - and the cylindrical control 

volume bounded byxl= 1 andxl= 3. 

7.14. Consider the flow field v = xel - ye2 with p = constant. For a control volume defined 
by x = 0 , x  = 2 ,  y = 0 , y  = 2 ,z = 0 ,  z = 2 determine the net resultant force and couple that 
is acting on the materia1 contained in this volume. 
7.15. Do Problem 7.14 for the control volume defined by x = 2 ,  y = 2 ,  xy = 2 ,  z = 0 , z = 2. 
7.16. For Hagen-Poiseuille flow in a pipe 

Po 
X 1  

2 2  v = C(ro - r )el 
calculate the momentum flux across a cross-section. For the same flow rate, if the velocity is 
assumed to be uniform, what is the momentum flux across a cross section ? Compare the two 
results. 
7.17. A pile of chain on a table falls through a hole from the table under the action of gravity. 
Derive the differential equation governing the hanging length x. 
7.18. A water jet of 5 cm. diameter moves at 12 m/sec, impinges on a curvedvane which deflects 
it 600 from its direction. Neglect the weight. Obtain the force exerted by the liquid on the 
vane. 

7.19. A horizontal pipeline of 10 cm. diameter bends through 9$, and while bending, changes 
its diameter to 5 cm. The ressure in the 10 cm. pipe is 140 kPa. Estimate the resultant force 
on the bends when 0.05 m /sec of water is flowing in the pipeline. 
7.20. Figure P7.1 shows a steady water jet of area A impinging onto the flat wall. Find the 
force exerted on the wall. Neglect weight and viscosity of water. 
7.21. Frequently in open channel flow, a high speed flow “jumps” to a low speed flow with an 
abrupt rise in the water surface. This is known as a hydraulic jump. Referring to Fig.P7.2, if 
the flow rate is Q per unit width, find the relation betweeny1 and y2. Assume the flow before 
and after the jump is uniform and the pressure distribution is hydrostatic. 
7.22. If the curved vane of Example. 7.6.2 moves with a velocity v<vo in the same direction as 
the oncoming jet, find the resultant force exerted on the vane by the jet. 
7.23. For the half-arm sprinkler shown in Fig.W.3, find the angular speed if Q = 0.566 m3/sec. 
Neglect friction. 

P 
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7.24. The tank car shown in Fig.P7.4 contains water and compressed air which is regulated to 
force a water jet out of the nozzle at a constant rate of Q m3/s. The diameter of the jet is d cm. 
the initial total mass of the tank car is M,. Neglecting frictional forces, find the velocity of the 
car as a function of time. 

FigP7.1 Fig. P7.2 

Fig. P7.3 Fig.P7.4 


