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Tensors 

As mentioned in the introduction, all laws of continuum mechanics must be formulated in 
terms of quantities that are independent of coordinates. It is the purpose of this chapter to 
introduce such mathematical entities. We shall begin by introducing a short-hand notation 
- the indicial notation - in Part A of this chapter, which will be followed by the concept of 
tensors introduced as a linear transformation in Part B. The basic field operations needed for 
continuum formulations are presented in Part C and their representations in curvilinear 
coordinates in Part D. 

Part A The Indicia1 Notation 

2A1 Summation Convention, Dummy Indices 

Consider the sum 

s = a p l +  as2 + a3x3 + - * + a,&,, (2A1.1) 

We can write the above equation in a compact form by using the summation sign: 
n 

s = ajxi 
i= l  

(2A1.2) 

It is obvious that the following equations have exactly the same meaning as Eq. (2A1.2) 
n 

j=l 
s = 2 ajxj (2A1.3) 

n 
s = c a m x m  

m = l  
(2A1.4) 

etc. 

3 
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The index i in Eq. (2A1.2), or j  in Eq. (2A1.3), or m in Eq. (2A1.4) is a dummy index in the 
sense that the sum is independent of the letter used. 

We can further simplify the writing of Eq.(2A1.1) if we adopt the following convention: 
Whenever an index is repeated once, it is a dummy index indicating a summation with the 
index running through the integers 1,2, ..., n. 

This convention is known as Einstein's summation convention. Using the convention, 
Eq. (2Al.l) shortens to 

s = aixi (2A1.5) 

We also note that 
aixi = amxm = a.x. = ... 1 1  (2A1.6) 

It is emphasized that expressions such as aibFi are not defined within this convention. That 
is, an index should never be repeated more than once when the summation convention is used. 
Therefore, an expression of the form 

n 2 ai bixi 
i=l 

must retain its summation sign. 
In the following we shall always take n to be 3 so that, for example, 

ai xi = a,,, x,,, = a p l +  ag2 + a3r3 

aii = a,,,, = all + a22 + a33 

aiei = a1 el + a2 e2 + a3 g 

The summation convention obviously can be used to express a double sum, a triple sum, 

3 3  (2A1.7) 
etc. For example, we can write 

C a i j x i x j  
i=l j = 1  

simply as 
aij xi xi 

Expanding in full, the expression (2A1.8) gives a sum of nine terms, Le., 

(2A1.8) 

aijXiXj  = allxlxl+ a12xix2 + ai3~ix3 + a21xg1+ a2FF2 
+ a s p 3  + a3lx$14- a3%$2 a33r3r3 (2A1.9) 

For beginners, it is probably better to perform the above expansion in two steps, first, sum 
over i and then sum over j (or vice versa), Le., 

a - x . x .  = alFlxj + a.pxgj + a 3 p ,  ' I l l  
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where 
a l jx lx j  = a l l x l x l  + ~ 1 2 x 1 ~ 2  + ~ 1 3 x 1 ~ 3  

etc. 
Similarly, the triple sum 

will simply be written as 
auk xi xj xk 

(2A1.10) 

(2Al.11) 

The expression (2Al.11) represents the sum of 27 terms. 
We emphasize again that expressions such as aiixixjxj  or aukxixixjxk are not defined in the 

summation convention, they do not represent 

2A2 Free Indices 

Consider the following system of three equations 

x i  = allxl + a l p 2  

x i  = a2lxl  

a 1 g 3  

a 2 p 2  + a 2 g 3  

= a31xl + a3$2 a33Y3 

Using the summation convention, Eqs. (2A2.1) can be written as 

x i  = a M m  

x i  = a*,,, 

x j  = a#,,, 

which can be shortened into 

xi = ai,x,,,, i = 1,2,3 

(2A2.1) 

(2A2.2) 

(2A2.3) 

An index which appears only once in each term of an equation such as the index i in 
Eq. (2A2.3) is called a “free index.” A free index takes on the integral number 1,2, or 3 one 
at a time. Thus Eq. (2A2.3) is short-hand for three equations each having a sum of three terms 
on its right-hand side [i.e., Eqs. (2A2.1)]. 

A further example is given by 
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representing 

e; = Q,,,ie,,,, i = 1,2,3 (2A2.4) 

(2A2.5) 

We note that xj = ajd,,,, j= 1,2,3, is the same as Eq. (2A2.3) and ej = Q,,,je,,,, j= 1,2,3 is the 
same as Eq. (2A2.4). However, 

ai = bj 

is a meaningless equation. Thefree index appearing in every term of an equation must be the 
same. Thus the following equations are meaningful 

ai + ki = ci 

ai + bicjdj = 0 
If there are two free indices appearing in an equation such as 

T-. ZJ =Ai,,, Ajm i = 1,2,3; j = 1,2,3 (2142.6) 

then the equation is a short-hand writing of 9 equations; each has a sum of 3 terms on the 
right-hand side. In fact, 

T l l = A d l m  = A 1 ~ 1 1 + A 1 d 1 2 + A 1 d 1 3  

T12 = A d 2 m  = A1d21 + A1d22 A 1 d 2 3  

T13 = A d 3 m  = A 1 d 3 1  A 1 d 3 2  + A 1 d 3 3  

.................................................................................... 
T33 = A3&3m = A3d31  A 3 d 3 2  A33A33 

Again, equations such as 
T.. = T. 

ZJ ik 

have no meaning. 

2A3 Kronecker Delta 

The Kronecker delta, denoted by dv, is defined as 

1 ifi=j 
ZJ {o i f ig j  
6.. = 

That is, 

(2A3.1) 
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6 1 1  = 6 2 2  = 6 3 3  = 1 

8 1 2  = 6 1 3  = 6 2 1 =  6 2 3  = 6 3 1  = 6 3 2  = 0 

In other words, the matrix of the Kronecker delta is the identity matrix, i.e., 
(2A3.2) 

We note the following: 
(a) 6 ,  = dl1  + 622 + d3, = 1 + 1 + 1 = 3 (2A3.3) 

Or, in general 

or, in general 

In particular, 

dimam = ai 

6 .  6 .=6.. im mi g 

8 .  6 6 .=&.  im mn nl q 

etc. 
(d) If el,e2,e3 are unit vectors perpendicular to each other, then 

e. .e .  = 6. .  
I I 9 

(2A3.4) 

(2A3.5) 

(2A3.6) 

(2A3.7) 

2A4 Permutation Symbol 

The permutation symbol, denoted by is defined by 

form an even (‘4 do not form a 
E U ~  = - 1 =according to whether ij,k permutation of 1,2,3 (2A4.1) 
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i.e., 
E ~ U  = ~ 2 3 1  = ~ 3 1 2  = + 1 

~ 1 3 2  = ~ 3 2 1  = ~ 2 1 3  = - 1 

Ell1 = E112 = - - - = 0 

Eiik = Ejki = Ekij = -Ejik = -Eiki = -EQi 

We note that 

If el,e2,e3 form a right-handed triad, then 

elXe2 = 3 ,  e2Xe3 = el, e2Xel = -e3, elXe1 = 0, ... 
which can be written for short as 

eiXe. = = EjGek = EGjek I 

Now, if a = aiei, and b = biei, then 

i.e., 

The following useful identity can be proven (see Prob. 2A7) 

%jrnEkIrn = diiksi,-di$jk 

2A5 

(a) Substitution 
If 

Manipulations with the lndicial Notation 

ai = Uirnbrn 

and 
bi =  vi,^,,, 

(2A4.2) 

(2A4.3) 

(2A4.4) 

(2A4.5) 

(ii) 

then, in order to substitute the hi's in (ii) into (i) we first change the free index in (ii) from i to 
m and the dummy index m to some other letter, say n so that 

brn = Vrnncn (iii) 

Now, (i) and (iii) give 
ai = UirnVrnncn 

Note (iv) represents three equations each having the sum of nine terms on its right-hand side. 
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(b) Multiplication 
If 

(ii) 

(iii) 

It is important to note thatpq f ambmcmdm. In fact, the right hand side of this expression 
is not even defined in the summation convention and further it is obvious that 

3 

m=l 
Since the dot product of vectors is distributive, therefore, if a = aiei and b = biei, then 

a - b = (aiei) (bjej) = aibj(ei * ej) (iv> 

In particular, if el,e2e3 are unit vectors perpendicular to one another, then ei* ej = 6~ so that 

( 4  a - b  = a.bd.. = a.b. = a.b. = 
1 J 9 1 1 ] I albl+a2b2+a3b3 

(c) Factoring 
If 

T p j - l n i  = 0 

then, using the Kronecker delta, we can write 
n.  = 6..n. 

1 ' I 1  

so that (i) becomes 
T..n.-AS..n. = 0 

V I  4 1  

Thus, 
(Tjj-AdU)nj = 0 

(d) Contraction 

(ii) 

(iii) 

(iv) 

The operation of identifying two indices and so summing on them is known as contraction. 
For example, Ti is the contraction of cj, 

Tji = Til+T22+T33 (i) 



i o  Indicia1 Notation 

If 

then 

(ii) 

(iii) 
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PartB Tensors 

281 Tensor - A Linear Transformation 

Let T be a transformation, which transforms any vector into another vector. If T transforms 

If T has the following linear properties: 
a into c and b into d, we write Ta = c and Tb = d. 

T(a+b) = Ta+Tb (2B 1. la) 

T(aa) = aTa (2Bl.lb) 

where a and b are two arbitrary vectors and a is an arbitrary scalar then T is called a linear 
transformation. It is also called a second-order tensor or simply a tensor? An alternative and 
equivalent definition of a linear transformation is given by the single linear property: 

T(aa+/?b) = aTa+/?Tb (2B1.2) 

where a and b are two arbitrary vectors and a and /? are arbitrary scalars. 

tensors are equal to each other, Le., Ta=Sa + T=S. 
If two tensors, T and S, transform any arbitrary vector a in an identical way, then these 

Example 2Bl.l 

Let T be a transformation which transforms every vector into a fixed vector n. Is this 

Solution. Let a and b be any two vectors, then by the definition of T, 

transformation a tensor? 

Ta = n, Tb = n and T(a+b) = n 

T(a+b) # Ta+Tb 
Clearly, 

Thus, T is not a linear transformation. In other words, it is not a tensor. 

t Scalars and vectors are sometimes called the zeroth and first order tensor, respectively. Even though they can 
also be defined algebraically, in terms of certain operational rules, we choose not to do so. The geometrical 
concept of scalars and vectors, which we assume that the students are familiar with, is quite sufficient for our 
purpose. 
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Example 2B1.2 

Let T be a transformation which transforms every vector into a vector that is k times the 

Solution. Let a and b be arbitrary vectors and a and be arbitrary scalars, then by the 
original vector. Is this transformation a tensor? 

definition of T, 

Clearly, 
Ta = ka, Tb = kb, and T(aa+@b) = k(aa+Pb) 

T(aa+Bb) = a(ka)+b(kb) = aTa+pTb 
Thus, by Eq. (2B1.2), T is a linear transformation. In other words, it is a tensor. 

In the previous example, if k=O then the tensor T transforms all vectors into zero. This 
tensor is the zero tensor and is symbolized by 0. 

Example 2B1.3 

Consider a transformation T that transforms every vector into its mirror image with respect 
to a fixed plane. Is T a tensor? 

Solution. Consider a parallelogram in space with its sides represented by vectors a and b 
and its diagonal represented the resultant a + b. Since the parallelogram remains a paral- 
lelogram after the reflection, the diagonal (the resultant vector) of the reflected parallelogram 
is clearly both T(a + b ) , the reflected (a + b) , and Ta + Tb , the sum of the reflected a and 
the reflected b . That is, T(a + b ) = Ta + Tb . Also, for an arbitrary scalar a , the reflection 
of a a  is obviously the same as a times the reflection of a (i.e., T(aa )= aTa ) because both 
vectors have the same magnitude given by a times the magnitude of a and the same direction. 
Thus, by Eqs. (2Bl.l), T is a tensor. 

Example 2B1.4 

When a rigid body undergoes a rotation about some axis, vectors drawn in the rigid body in 
general change their directions. That is, the rotation transforms vectors drawn in the rigid body 
into other vectors. Denote this transformation by R. Is R a tensor? 

Solution. Consider a parallelogram embedded in the rigid body with its sides representing 
vectors a and b and its diagonal representing the resultant a+b .  Since the parallelogram 
remains a parallelogram after a rotation about any axis, the diagonal (the resultant vector) of 
the rotated parallelogram is clearly both R(a + b ) , the rotated (a + b) , and Ra + Rb , the 
sum of the rotated a and the rotated b . That is R(a + b ) = Ra + Rb . A similar argument as 
that used in the previous example leads to R(aa )= aRa . Thus, R is a tensor. 
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Example 2B1.5 

Let T be a tensor that transforms the specific vectors a and b according to 
Ta = a+2b, Tb = a-b 

Given a vector c = 2a+b, find Tc. 
Solution. Using the linearity property of tensors 

Tc = T(2a+b) = 2Ta+Tb = 2(a+2b)+(a-b) = 3a+3b 

2B2 Components of a Tensor 

The components of a vector depend on the base vectors used to describe the components. 
This will also be true for tensors. Let el, e2, e3 be unit vectors in the direction of the XI- ,  x2-, 
x3-axes respectively, of a rectangular Cartesian coordinate system. Under a transformation T, 
these vectors, el, e2, e3 become Tel, Te2, and Te3. Each of these Tei (i= 1,2,3), being a vector, 
can be written as: 

Tel = Tllel+ T2le2+ T31e3 
Te2 = T12el+ T22e2+ T32e3 
Te3 = T13el+ T23e2+ T33e3 

or 
Tei = qiej 

It is clear from Eqs. (2B2.la) that 
Tll = el-Tel, T12 = el*Te2, T2, = e2-Te1, ... 

or in general 
T.. = e.. Te. 

9 1 I 

(2B2.la) 

(2B2. lb) 

(2B2.2) 

The components qj in the above equations are defined as the components of the tensor T. 
These components can be put in a matrix as follows: 

T1l T12 T13 I 1  T31 T32 T33 
[TI = T21 7-22 T u  

L J 
This matrix is called the matrix of the tensor T with respect to the set of base vectors 

{el, e2, e3) or {ei} for short. We note that, because of the way we have chosen to denote the 
components of transformation of the base vectors, the elements of the first column are 
components of the vector Tel, those in the second column are the components of the vector 
Te2, and those in the third column are the components of Te3. 
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Example 2B2.1 

Obtain the matrix for the tensor T which transforms the base vectors as follows: 
Tel = 4el+e2 

Te2 = 2e1+3e3 
Te, = -el+3e2+e3 

Solution. By Eq. (2B2.la) it is clear that: 
4 2 -1 

[TI = [a 3” ;] 

Example 2B2.2 

Let T transform every vector into its mirror image with respect to a fixed plane. If e l  is 
normal to the reflection plane (e2 and e3 are parallel to this plane), find a matrix of T. 

Fig. 2B.1 

Solution. Since the normal to the reflection plane is transformed into its negative and vectors 
parallel to the plane are not altered: 

Tel = -el  
Te2 = e2 
T q  = e3 

Thus, 
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We note that this is only one of the infinitely many matrices of the tensor T, each depends 
on a particular choice of base vectors. In the above matrix, the choice of ei is indicated at the 
bottom right corner of the matrix. If we choose e; and e; to be on a plane perpendicular to 
the mirror with each making 45’ with the mirror as shown in Fig. 2B.1 and e; points straight 
out from the paper. Then we have 

Te; = ei 

Te; = e; 

Tej = e; 

Thus, with respect to {e; }, the matrix of the tensor is 

Throughout this book, we shall denote the matrix of a tensor T with respect to the basis 
ei by either [T 3 or [qj] and with respect to the basis ei ’ by either [T 1’ or [qi] The last 
two matrices should not be confused with [T ‘ I ,  which represents the matrix of the tensor 
T ’ with respect to the basis ei. 

Example 2B2.3 

Let R correspond to a right-hand rotation of a rigid body about the xs-axis by an angle 8. 

Solution. From Fig. 2B.2 it is clear that 
Find a matrix of R. 

Rel = coseel+sinee2 
Re2 = -sineel + cosBe2 
Re3 = e3 

Thus, 
cos0 -sine 0 

ei 
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Fig. 2B.2 

283 Components of a Transformed Vector 

Given the vector a and the tensor T, we wish to compute the components of b=Ta from the 
components of a and the components of T. Let the components of a with respect to { el,e2,e3} 
be [al, a;?, as], i.e., 

a = alel+a2ez+a3e3 ( 0  

then 
b = Ta = T(alel+aze2+a3e3) = alTel+a~Tez+a3Te3 (ii) 

Thus, 
b l  = e l -b  = al(el*Tel)+a2(el*Te2)+a3(el*Teg) 
b2 = e2* b = al(e2- Tel)+a2(e2 * Te2)+a3(e2 * Te3) 

b3 = e3.b = al(e3*Tel)+u2(”~.Te2)+a3(e3’T~) 

(iii) 

By Eq. (2B2.2), we have, 

bl  = T11al+T12@2+T1@3 
b2 = T21al+T22@2+T23a3 

b3 = T31al+T32@2+T3@3 (2B3. la) 

We can write the above three equations in matrix form as: 
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or 

tbl = [TI tal (2B3.1 c) 

We can concisely derive Eq. (2B3.la) using indicial notation as follows: From a = aiei, we 
get Ta = Taiej = ajTej. Since Tei = qiej, (Eq. (2B2.1b)), therefore, 

b - b.e - Ta.ek = a.T..e..ek = a.T.6. = a T . k -  k -  ' 111 r 11 ~k i kr 

(2B3. Id) 

Eq. (2B3.ld) is nothing but Eq. (2B3.la) in indicial notation. We see that for the tensorial 
equation b = Ta, there corresponds a matrix equation of exactly the same form, Le., [b] = [T][a]. 
This is the reason we adopted the convention that Tel = Tllel+T21e~+T31e3, etc. If we had 
adopted the convention Tel = Tllel+T12e2+T13e3, etc., then we would have obtained 
[b]=[TIT[a] for the tensorial equation b =Ta, which would not be as natural. 

Example 2B3.1 

Given that a tensor T which transforms the base vectors as follows: 
Tel = 2el-6e2+4e3 
Te2 = 3e1+4e2-e3 
Te3 = -2el+e2+2e3 

How does this tensor transform the vector a = e1+2e2+3e3? 

Solution. Using Eq. (2B3.lb) I;] = [-a -; -;]I] = 1 
or 

b = 2e1+5e2+8e3 

284 Sum of Tensors 

T + S, is defined by: 
Let T and S be two tensors and a be an arbitrary vector. The sum of T and S ,  denoted by 

(T+S)a = Ta+Sa (2B4.1) 
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It is easily seen that by this definition T + S is indeed a tensor. 
To find the components of T + S, let 

W = T + S  (2B4.2a) 

Using Eqs. (2B2.2) and (2B4.1), the components of W are obtained to be 
W- = ei.(T+S)e. = ei*Te.+ei.Sej 11 I I 

i.e., 
W.. 11 = T..+S.. 11 4 (2B4.2b) 

In matrix notation, we have 

[wl = [Tl+[Sl (2B4.2~) 

2B5 Product of Two Tensors 

Let T and S be two tensors and a be an arbitrary vector, then TS and ST are defined to be 

(TS)a = T(Sa) (2B5.1) 
the transformations (easily seen to be tensors) 

and 
(ST)a = S(Ta) (2B5.2) 

Thus the components of TS are 
(TS)ii=ei. (TS)ej=ei.T(Sej)=ei*TSm,em=Smjei-Tem=~mS,,~ 

i.e., 

(TS)ij = TimSmj (2B5.3) 

Similarly, 

(S'Vij = SimTmj 

PSI = [TIPI 

[STI = [WTI 

In fact, Eq. (2B5.3) is equivalent to the matrix equation: 

whereas, Eq. (2B5.4) is equivalent to the matrix equation: 

(2B5.4) 

(2B5.5) 

(2B5.6) 

The two matrix products are in general different. Thus, it is clear that in general, the tensor 
product is not commutative (i.e., TS f ST). 

If T,S, and V are three tensors, then 

(T(W)a  = T((m)a> = T(S(Va)) 
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and 

i.e., 
(2B5.7) 

Thus, the tensor product is associative. It is, therefore, natural to define the integral positive 
powers of a transformation by these simple products, so that 

? = TT, 9 = TTT, .... (2B5.8) 

Example 2B5.1 

(a)Let Rcorrespond to a 90'right-hand rigid body rotation about thex3-axis. Find the matrix 

(b)Let S correspond to a 90'right-hand rigid body rotation about thexl-axis. Find the matrix 

(c)Find the matrix of the tensor that corresponds to the rotation (a) then (b). 
(d)Find the matrix of the tensor that corresponds to the rotation (b) then (a). 
(e)Consider a point P whose initial coordinates are (l,l,O). Find the new position of this 

point after the rotations of part (c). Also find the new position of this point after the rotations 
of part (d). 

of R. 

of s. 

Solution. (a) For this rotation the transformation of the base vectors is given by 
Re1 = e2 
Re2 = -el 

Rq = e3 
so that, 

0 -1 0 
[RI = [A ; ;] 

(b)In a similar manner to (a) the transformation of the base vectors is given by 
Sel = el 

Se2 = e3 

Se3 = -e2 
so that, 

[SI = 0 0 -1 [: : I] 
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(c)Since S(Ra) = (SR)a, the resultant rotation is given by the single transformation SR 
whose components are given by the matrix 

(d)In a manner similar to (c) the resultant rotation is given by the single transformation RS 
whose components are given by the matrix 

(e)Let r be the initial position of the point P. Let r* and r'* be the rotated position of P 
after the rotations of part (c) and part (d) respectively. Then 

0 - 1  0 1 

0 0 0  
[r*] = [SR][r] = [: 0 -11 [ l] = [ i ]  

i.e., 

r* = -el+eg 

0 0 1  

0 1 0  
1 0 .] 0 :] = I] 

This example further illustrates that the order of rotations is important. 

286 Transpose of a Tensor 

The transpose of a tensor T, denoted by TT, is defined to be the tensor which satisfies the 

a .Tb= b-T  T a (2B6.1) 
following identity for all vectors a and b: 

It can be easily seen that TT is a tensor. From the above definition, we have 
T ei.Te. = e. .T ei I 1  

Thus, 
T.. = T.. T (2B6.2) 

4 11 

or 
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[TT] = [TIT 

i.e., the matrix of TT is the transpose of the matrix of T. 
We also note that by Eq. (2B6.1), we have 

T T  a*TTb= b*(T ) a 

Thus, b-Ta = b.(TT)Ta for any a and b, so that 

T = (TT)T 

It can also be established that (see Prob. 2B13) 

(TS)T = STTT 

(2B6.3) 

(2B6.4) 

That is, the transpose of a product of the tensors is equal to the product of transposed tensors 
in reverse order. More generally, 

(ABC ... D ) ~  = D ~ . . . c  T T T  B A (2B6.5) 

287 

which transforms an arbitrary vector c according to the rule: 

Dyadic Product of Two Vectors 

The dyadic product of vectors a and b, denoted by ab, is defined to be the transformation 

(ab)c = a(b.c) (2B7.1) 

Now, for any c, d, a and @, we have, from the above definition: 
(ab)(ac+@d) = a(b.(ac+@d)) = a((ab.c)+(gb-d)) = a(ab)c+@(ab)d 

Thus, ab is a tensor. Letting W = ab, then the components of W are: 
W- 11 = ei-We. I = ei-(ab)ej = ei*a(b-ej) = aibj 

i.e., 
W.. = a&. 

II  1 1  

In matrix notation, Eq. (2B7.2a) is 

albl alb2 alb3 
a2bl a2b2 a2b3 

a3b1 a3b2 a3b3 

(2B7.2a) 

(2B7.2b) 

In particular, the components of the dyadic product of the base vectors e; are: 

Thus, it is clear that any tensor T can be expressed as: 
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T = Tllelel+ T12ele2+. . . + T33e3e3 (2B7.3a) 

(2B7.3b) 

We note that another commonly used notation for the dyadic product of a and b is adb. 

288 Trace of a Tensor 

The trace of any dyad ab is defined to be a scalar given by a b. That is, 
tr ab = a - b  (2B8.1) 

Furthermore, the trace is defined to be a linear operator that satisfies the relation: 
tr(aab+#?cd) = atr ab+#?tr cd (2B8.2) 

Using Eq. (2B7.3b), the trace of T can, therefore, be obtained as 
tr T = tr(cjeiej) = cjtr(eiej) =cje,-.ej = ~ J d ~  =ci 

tr T = ci = T11+ T22+ T33 = sum of diagonal elements 
that is, 

It is obvious that 
T trT =trT 

Example 2B8.1 

Show that for any second-order tensor A and B 
tr(AB)= tr(BA) 

Solution. Let C=AB, then Cq=AimBmb Thus, 

tr AB=tr C=Cii=AimBmi 

Let D=BA, thenDv=Bi,,&j, and 

tr BA=tr D=Dii=Bi,&mi 

But Bid,i=Bmdim (change of dummy indices), that is 

tr BA=tr AB 

(2B8.3) 

(2B8.4) 

(2B8.5) 

(9 

(ii) 

(iii) 
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289 Identity Tensor and Tensor Inverse 

tensor. Denoting this special tensor by I, we have, for any vector a, 
The linear transformation which transforms every vector into itself is called an identity 

Ia = a (2B9.1) 

and in particular, 
Iel = el 
Ie2 = e2 
Ie3 = e3 

Thus, the components of the identity tensor are: 
I . .=e. .Ie.=e. .e.=d..  (2B9.2a) 4 1 1  1 1  11 

i.e., 

P I  = ; : :] (2B9.2b) 
0 0 1  

It is obvious that the identity matrix is the matrix of I for all rectangular Cartesian coordinates 
and that TI = IT = T for any tensor T. We also note that if Ta = a for any arbitrary a, then 
T = I. 

Example 2B9.1 

Write the tensor T, defined by the equationTa = ka, where k is a constant and a is arbitrary, 

Solution. Using Eq. (2B9.1) we can write k a as kIa so that Ta = ka becomes 
in terms of the identity tensor and find its components. 

Ta = kIa 
and since a is arbitrary 

The components of this tensor are clearly, 
T = kI 

T,j = kdij 

Given a tensor T, if a tensor S exists such that ST=I then we call S the inverse of T or 
S=T-l. (Note: With T-lT=T-l+l=p=I, the zeroth power of a tensor is the identity 
tensor). To find the components of the inverse of a tensor T is to find the inverse of the matrix 
of T. From the study of matrices we know that the inverse exists as long as detT#O ( that is, T 
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is non-singular) and in this case, 
satisfies the following reciprocal relation: 

[TI = [TI [TI-' = [I]. Thus, the inverse of a tensor 

(2B9.3) T - ~ T  = TT-1 = I 

We can easily show (see Prob. 2B15) that for the tensor inverse the following relations are 
satisfied, 

T - 1  -1 T (2B9.4) (T ) = (T 1 

(2B9.5) 

We note that if the inverse exists then we have the reciprocal relation that 

Ta= b and a=T-'b 
This indicates that when a tensor is invertible there is a one to one mapping of vectors 
a and b. On the other hand, if a tensor T does not have an inverse, then, for a given b , there 
are in general more than one a which transforms into b . For example, consider the singular 
tensor T = cd (the dyadic product of c and d , which does not have an inverse because its 
determinant is zero), we have 

Ta = c(d.a) 3 b 
Now, let h be any vector perpendicular to d (i.e., d.  h = 0 ), then 

That is, all vectors a + h transform under T into the same vector b . 
T(a + h )  = c(d.a) = b 

2810 Orthogonal Tensor 

An orthogonal tensor is a linear transformation, under which the transformed vectors 
preserve their lengths and angles. Let Q denote an orthogonal tensor, then by definition, 
I Qa I = I a I and cos(a,b) = cos(Qa,Qb) for any a and b, Thus, 

QaqQb = a - b  (2B10.1) 

for any a and b. 

Using the definitions of the transpose and the product of tensors: 

(Qa) * (Qb) = b.QT(Qa) = b- (QTQ)a 

Therefore, 

b.(QTQ)a = a - b  = b-a  = b-Ia 

Since a and b are arbitrary, it follows that 

Q ~ Q  = I 

6) 

(ii) 

(iii) 
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This means that Q-l=QT and from Eq. (2B9.3), 

Q'Q = QQ' = I 

In matrix notation, Eqs. (2B10.2a) take the form: 

[QIIQIT = [QI'LQI = [I1 

and in subscript notation, these equations take the form: 
Q. Q.  = Q  .Q . = d . .  im lrn mi ml q 

(2B 10.2a) 

(2B 10.2b) 

(2B10.2~) 

Example 2B10.1 

The tensor given in Example 2B2.2, being a reflection, is obviously an orthogonal tensor. 

Solution. Using the matrix of Example 2B7.1: 
Verify that [T][T]'= [I] for the [TI in that example. Also, find the determinant of [TI. 

0 0 1  
The determinant of [TI is 

1-1 0 01 

Example 2B10.2 

The tensor given in Example 2B2.3, being a rigid body rotation, is obviously an orthogonal 
tensor. Verify that [R][RIT = [I] for the [R] in that example. Also find the determinant of [R]. 

Solution. It is clear that 

cos0 -sine 0 
sine cos0 0 = +1 

0 0 1  

The determinant of the matrix of any orthogonal tensor Q is easily shown to be equal to 
either + 1 or -1. In fact, 
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therefore, 

IIQIIQITI = I Q I  l Q T l  = I l l  
Now, i Q l  = l Q * I ,  and 111 = 1, therefore, l Q I 2  = 1, thus 

lQl = +1 (2B10.3) 

From the previous examples we can see that the value of + 1 corresponds to rotation and -1 
corresponds to refection. 

281 1 Transformation Matrix Between Two Rectangular Cartesian Coordinate 
Systems. 

Suppose { ei} and {e; } are unit vectors corresponding to two rectangular Cartesian coor- 
dinate systems (see Fig. 2B.3). It is clear that {ei} can be made to coincide with {e; } through 
either a rigid body rotation (if both bases are same handed) or a rotation followed by a 
reflection (if different handed). That is {ei} and {e; } can be related by an orthogonal tensor 
Q through the equations 

e; = Qei = Qmiem (2B 1 1. la) 

i.e., 

e; = Qiiei+ Q21e2+Q31e3 

62 = Qi2ei+Q22e2+Q32% 

e; = Q13ei + Q23e2+ e335 

where 

QimQjm = QmiQmj = 6~ 
or 

QQT= QTQ = I 

We note that ell= el.Qel = e1.e; = cosine of the angle between el and e;, 
Q12 = el - Qe2 = el 4 = cosine of the angle between el and e; , etc. In general, Qu = cosine 
of the angle between ei and e; which may be written: 

(2B 1 1.2) QU = cos(ei,ej) = ei-e; 

(2Bll.lb) 

The matrix of these directional cosines, Le., the matrix 

Q3i Q32 Q33 
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is called the transformation matrix between {ei} and {e; }. Using this matrix, we shall obtain, 
in the following sections, the relationship between the two sets of components, with respect 
to these two sets of base vectors, of either a vector or a tensor. 

Fig. 2B3 

Example 2Bll.l 

Let {e8! } be obtained by rotating the basis {ei} about the e3 axis through 30' as shown in 
Fig. 2B.4. We note that in this figure, e3 and e; coincide. 

Solution. We can obtain the transformation matrix in two ways. 
(i) Using Eq. (2B11.2), we have 

Qll=cos(e~,e~)=cos300=-, 0 &=cos(el,e;) =cos120 0 1  = --, Q13=cos(el,ei) =cos9Oo=0 
2 2 
1 dF Q21 = cos(e2,e;) = cos6Oo =-, Q22= cos(e2,e;) = cos3Oo =-, Q23= cos(e2,ei) =cos9Oo = 0 2 2 

Q31 =cos(q,e;) = cos9Oo = 0, Q32= cos(e3,e;) =cos9Oo = 0, Q33= cos(e3,ei) = cos0 0 = 1 

(ii) It is easier to simply look at Fig. 2B.4 and decompose each of the e; 's into its components 
in the { el,e~,eg} directions, i.e., 

! a 1  
2 2  el = -el+-e;! 

e2 = --el+-e2 l a  
2 2  
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Fig. 2B.4 

2812 Transformation Laws for Cartesian Components of Vectors 

Consider any vector a, then the components of a with respect to { ei} are 
a. = a.e. 

1 I 

and its components with respect to {e; }are 

ai = a-ei 

Now, e; = &e,, [Eq. (2Bll.la)], therefore, 

a; = a*Q,,,ie,,, = Q,,,i(a-e,,,) 

i.e., 
a; = Qmiam (2B12.la) 

In matrix notation, Eq. (2B12.la) is 

- - 
43 - -- l o  
2 2  
1 G  
2 2 0 

0 0 1  
- d 
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(2B 12.lb) E] = 1 1 2  Qii Q21 Q22 Q3i Q.1 E:] 
Qi3 Q23 Q33 

or 

[a]' = [Ql'ral (2B 12. IC) 

Equation (2B12.1) is the transformation law relating components of the same vector with 
respect to different rectangular Cartesian unit bases. It is very important to note that in 
Eq. (2B12.lc), [a]' denote the matrix of the vector a with respect to the primed basis e; and 
[a] denote that with respect to the unprimed basis ei. Eq. (2B12.1) is not the same as 
a' =QTa. The distinction is that [a] and [a]' are matrices of the same vector, where a and a' are 
two different vectors; a' being the transformed vector of a (through the transformation Q'). 

[a1 = [Ql[al' (2B12.2a) 
If we premultiply Eq. (2B12.1~) with [Q], we get 

The indicia1 notation equation for Eq.(2B12.2a) is 

ai = Qim& (2B 12.2b) 

Example 2B12.1 

Given that the components of a vector a with respect to {ei} are given by (2,0,0), (Le., 
a = 2el), find its components with respect to {e; }, where the e; axes are obtained by a 90" 
counter-clockwise rotation of the ei axes about the ej-axis. 

Solution. The answer to the question is obvious from Fig. 2B.5, that is 

a = 2el = -2ei 
We can also obtain the answer by using Eq. (2B12.2a). First we find the transformation matrix. 
With e; = e2, e; = -el and e; = e3, by Eq. (2Bll.lb), we have 

[QI = [i :] 0 -1 0 

Thus, 

i.e., 

[a]' = [QIT[a] = -1 0 0 0 = -2 [ 1: 4 r] [ I] 
a = -2e; 
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Fig. 2B.5 

2B13 Transformation Law for Cartesian Components of a Tensor 

Consider any tensor T, then the components of T with respect to the basis { ei}are: 

T.. = e..Te. 
4 1 I 

Its components with respect to {e; }are: 
I ,  qj = ei - Tej 

With e,' = Qmiem, 

T.! 9 = Qmiem * TQnjen = QmiQnj<em .Ten) 

i.e., 

T.1 11 = Q mi .Q nl .T mn 

Ti1 Ti2 Ti3 Qll 1221 1231 Ti1 Ti2 Ti3 Qii Q12 Qi3 [ ~j~ Ti2 T;] = [Q13 QB Q 3 j  [T3i T32 T 3 l  [Qx Q32 Q33l 

(2B 13. la) 

In matrix notation, Eq. (2B13.la) reads 

(2B13.lb) 
Ti1 Ti2 T& Q12 Q22 Q32 T21 T22 TU 1221 Q22 Q23 

or 

[TI' = [QlT~'4Ql (2B13.1~) 
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We can also express the unprimed components in terms of the primed components. Indeed, 
premultiply Eq. (2B13.l~) with [Q] and postmultiply it with [Q]', we obtain, since 

(2B 13.2a) 
[QIIQIT = [Ql'[Ql = [I], 

[TI = tQIITl'[QIT 

Using indicia1 notation, Eq. (2B13.2a) reads 
T , . = Q .  Q. T' (2B13.2b) 

Equations (2B13.18~ 2B13.2) are the transformation laws relating the components of the 
same tensor with respect to different Cartesian unit bases. It is important to note that in these 
equations, [TI and [Tl'are different matrices of the same tensor T. We note that the equation 
[TI' = [QIT[T][Q] differs from the equation T ' = Q'TQ in that the former relates the com- 
ponents of the same tensor T whereas the latter relates the two different tensors T and T '. 

rm In mn 

Example 2B13.1 

Given the matrix of a tensor T in respect to the basis {ei}: 

[TI = 1 i !] 
Find [TIe;, Le., find the matrix of T with respect to the {e; } basis, where {e; } is obtained by 
rotating {ei}  about e3 through 90'. (see Fig. 2B.5). 

Solution. Since e; = e2, e; = -el and e& = e3, by Eq. (2Bll.lb), we have 

0 - 1  0 

y] [QI = [: 
Thus, Eq. (2B13.l~) gives 

i.e., Ti, = 2, Ti2 = -1, Ti3 = 0,T;l = -1, etc. 

Example 2B13.2 

Given a tensor T and its components q,- and qj with respect to two sets of bases { ei}  and 
{e; }. Show that ci is invariant with respect to this change of bases, Le., qi = qi. 
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Solution. The primed components are related to the unprimed components by 
Eq. (2B13.la) 

qj = QmiQnjTmn 
Thus, 

Gi = QmiQniTmn 
But, QmiQ,,i = dmn (Eq. (2B10.2c)), therefore, 

qi = dmnTmn = Tmm 
i.e., 

Til+ T&+ Ti3 = Ti1 + T22+ T33 

We see from Example 2B13.1, that we can calculate all nine components of a tensor T with 
respect to e; from the matrix [TIei, by using Eq. (2B13.1~). However, there are often times 
when we need only a few components. Then it is more convenient to use the Eq. (2B2.2) 
(qj = e,' -Tej ) which defines each of the specific components. 

In matrix form this equation is written as: 

Gj = [el!IT[T][ej] (2B13.4) 

where [ e ' f  denotes a row matrix whose elements are the components of e,' with respect to the 
basis { ei }. 

Example 2B13.3 

Obtain Ti2 for the tensor T and the bases ei and e,' given in Example 2B13.1 

Solution. Since e; = e2, and e; = -el, thus 

Ti2 = e;.Te$ = e2*T(-el) =-e2.Tel = -T21 = -1 

Alternatively, using Eq. (2B13.4) 

Ti2 = [e;lTIT][e;] = [0, 1, 01 1 2 0 0 = [0, 1,0] -1 = -1 [:::][:I [I] 
2814 Defining Tensors by Transformation Laws 

Equations (2B12.1) or (2B13.1) state that when the components of avector or a tensor with 
respect to {ei}  are known, then its components with respect to any {e; } are uniquely deter- 
mined from them. In other words, the components ai or qj with respect to one set of { ei} 
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completely characterizes avector or a tensor. Thus, it is perfectly meaningful to use a statement 
such as "consider a tensor q -  meaning consider the tensor T whose components with respect 
to some set of { ei} are TU. In fact, an alternative way of defining a tensor is through the use of 
transformation laws relating the components of a tensor with respect to different bases. 
Confining ourselves to only rectangular Cartesian coordinate systems and using unit vectors 
along positive coordinate directions as base vectors, we now define Cartesian components of 
tensors of different orders in terms of their transformation laws in the following where the 
primed quantities are referred to basis {e; } and unprimed quantities to basis {ei}, the e; and 
ei are related by e;=Qei, Q being an orthogonal transformation 

a ' = a  zeroth-order tensor(or scalar) 

u,' = Qmiam 

T.! IJ- - Q mi .Q nj .T mn 

first-order tensor (or vector) 

second-order tensor(or tensor) 

c j k  = QmiQnjQrkTmnr third-order tensor 

etc. 

(a)the addition rule (b) the multiplication rule and (c) the quotient rule. 
Using the above transformation laws, one can easily establish the following three rules 

(a)The addition rule: 

If cj and SQ are components of any two tensors, then qj+Sv are components of a tensor. 
Similarly if qjk and s v k  are components of any two third order tensors, then qjk+s+ are 
components of a third order tensor. 

To prove this rule, we note that since T&=QmiQnjQrkTmnr and s&=QmiQnjQrkSln,,, we 
have, 

qjk+sik = QmiQnjQrkTmnr+ QmiQejQrksmnr = QmiQnjQrk(Tniiir+Sinnr) 
Letting Kik = q&+s& and Wmnr=Tmnr+Smnr, we have, 

W.! = Q .Q .Q W gk mi nj rk mnr 

i.e, W Q ~  are components of a third order tensor. 

@)The multiplication rule: 

Let ai be components of any vector and qj be components of any tensor. We can form many 
kinds of products from these components. Examples are (a)uiui (b)uiujuk (c) TjT'l, etc. It can 
be proved that each of these products are components of a tensor, whose order is equal to the 
number of the free indices. For example, UiUi is a scalar (zeroth order tensor), aiajuk are 
components of a third order tensor, qjTkl are components of a fourth order tensor. 

To prove that qjTk1 are components of a fourth-order tensor, let kfQkl=cjTkl, then 
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M.! ykl = T I T ' -  ij kl - QmiQnj Tmn QrkQslTrs= QmiQnjQrkQslTmn Trs 

i.e., 

Mikl= QmiQnjQfiQslMmnrs 
which is the transformation law for a fourth order tensor. 

It is quite clear from the proof given above that the order of the tensor whose components 
are obtained from the multiplication of components of tensors is determined by the number 
of free indices; no free index corresponds to a scalar, one free index corresponds to a vector, 
two free indices correspond a second-order tensor, etc. 

(c) The quotient rule: 
If ai are components of an arbitrary vector and qj are components of an arbitrary tensor 

and ai = q,bj for all coordinates, then bi are components of a vector. To prove this, we note 
that since ai are components of a vector, and qj are components of a second-order tensor, 
therefore, 

ai = Qimah (9  

and 
T . . = Q .  Q .  T' 

IJ rm In mn (ii) 

Now, substituting Eqs. (i) and (ii) into the equation ai = Z$bj, we have 
Qimah = QimQjnThtbi (iii) 

But, the equation ai = Cjbj is true for all coordinates, thus, we also have 

ah = Thnbi (iv) 

Thus, Eq. (iii) becomes 

QimThnbA = QimQjnThnbj 

Multiplying the above equation with Qik and noting that Q&,, = dkm, we get 

TAbi = QjnTAbj (vi) 

i.e., 

Th(bi-Qjnbj)=O (vii) 

Since the above equation is to be true for any tensor T, therefore, the parenthesis must be 
identically zero. Thus, 

lj; = Qjnbj (viii) 
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This is the transformation law for the components of a vector. Thus, bi are components of a 
vector. 

Another example which will be important later when we discuss the relationship between 
stress and strain for an elastic body is the following: If Tjj  and E4 are components of arbitrary 
second order tensors T and E then 

Tj = c4klEkl 

for all coordinates, then Cuk1 are components of a fourth order tensor. The proof for this 
example follows that of the previous example. 

2615 Symmetric and Antisymmetric Tensors 

T A tensor is said to be symmetric if T = T . Thus, the components of a symmetric tensor 

(2B 15.1) 
have the property, 

T.. = T.. T = T.. ‘I 9 11 

i.e., 

TI2 = T21, T13 = T3b TU = T32 

A tensor is said to be antisymmetic if T = -TT. Thus, the components of an antisymmetric 

(2B15.2) 
tensor have the property 

T.. = -T,. T = -T.. 
9 9 11 

i.e., 
Ti1 = T22 = T33 = 0 

and 

7’12 = -T21, 7‘13 = -T31, T z  -T32. 
Any tensor T can always be decomposed into the sum of a symmetric tensor and an 

T = ?+T4 (2B 15.3) 
antisymmetric tensor. In fact, 

where 

is symmetric +=y T + T ~  

and 

is antisymmetric T 4 = 7  T - T ~  

It is not difficult to prove that the decomposition is unique (see Prob. 2B27) 
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Example 2B15.1 

Show that if T is symmetric and W is antisymmetric, then tr(TW)=O. 
Solution. We have, [see Example 2B8.41 

tr(TW)=tr(TW)T=tr(WTTT) (9 

Since T is symmetric and W is antisymmetric, therefore, by definition, T=TT, W= -WT. Thus, 
(see Example 2B8.1) 

tr(TW)=-tr(WT)=-tr(TW) (ii) 

Consequently, 2tr(TW)=O. That is, 
tr(TW)=O (iii) 

2816 The Dual Vector of an Antisymmetric Tensor 

The diagonal elements of an antisymmetric tensor are always zero, and, of the six non- 
diagonal elements, only three are independent, because T12 = -T12, Ti3 = -T31 
and T, = - T32. Thus, an antisymmetric tensor has really only three components, just like a 

vector. Indeed, it does behavior like avector. More specifically, for every antisymmetric tensor 
T, there corresponds a vector e, such that for every vector a the transformed vector, Ta, can 
be obtained from the cross product of 6 with a. That is, 

(2B16.1) Ta = 6 x a  

This vector, 6, is called the dual vector (or axial vector ) of the antisymmetric tensor. The 
form of the dual vector is given below: 

From Eq.(2B16.1), we have, since a-bxc  = b-cxa, 

T12 = el.Te2 = el.PXe2 = 6.e2xel  = -P .es  = -4 
T31 = e3-Tel = e3-Pxel  = P*elxe3 = -Pee2 = -4 
T u  = e2-Teg = e2.PXe3 = P . e 3 X e ~  = - 6 . e l  = -4 

Similar derivations will give T21 = 4, Ti3 = 4,T32 = r;' and T11 = T22 = T33 = 0. Thus, on& 
an antisymmetric tensor has a dual vector defined by Eq.(2B16.1). It is given by: 

(2B16.2a) = -(T23el+T31e2+T12e3) = (T32el+T13e2+T21e3) 

or, in indicia1 notation 

26 = -&+qkei (2B 16.2b) 
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Example 2B16.1 

Given 

[TI = 1 :] 
(a)Decompose the tensor into a symmetric and an antisymmetric part. 
(b)Find the dual vector for the antisymmetric part. 

(c)Verify e a  = P x a  for a = el+e3. 

Solution. (a) [TI = [fl]+[e], where 

(b)The dual vector of is 

(c) Let b = e a ,  then 
0 - 1 1  1 

tb1= [-: : :][PI = [-i] 
i.e., 

b = el+e2-e3 

On the other hand, 

P x a  = (ez+e~)~ (e l+e3)  = -eg+el+e;! = b 

Example 2B16.2 

Given that R is a rotation tensor and that m is a unit vector in the direction of the axis of 
rotation, prove that the dual vector q of k is parallel to m. 

Solution. Since m is parallel to the axis of rotation, therefore, 

R m = m  (i) 
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Thus, (RTR)m = RTm. Since RTR = I, we have 
T R m = m  

Thus, (i) and (ii) gives 

(R-RT)m = 0 

But (R-RT)m = 2qxm, where q is the dual vector of &. Thus, 
qxm = 0 

(ii) 

(iii) 

i.e., q is parallel to m. We note that it can be shown (see Prob. 2B29 or Prob. 2B36) that if 8 
denotes the right-hand rotation angle, then 

q = (sin8)m (2B16.3) 

2817 Eigenvalues and Eigenvectors of a Tensor 

i.e., 
Consider a tensor T. If a is avector which transforms under T into a vector parallel to itself, 

Ta = La (2B17.1) 

then a is an eigenvector and L is the corresponding eigenvalue. 

If a is an eigenvector with corresponding eigenvalue L of the linear transformation T, then 
any vector parallel to a is also an eigenvector with the same eigenvalue I. In fact, for any scalar 
a, 

T(aa) = aTa = a(La) = L(aa) (i) 

Thus, an eigenvector, as defined by Eq. (2B17.1), has an arbitrary length. For definiteness, we 
shall agree that all eigenvectors sought will be of unit length. 

A tensor may have infinitely many eigenvectors. In fact, since Ia=a, any vector is an 
eigenvector for the identity tensor I, with eigenvalues all equal to unity. For the tensorF1, the 
same is true, except that the eigenvalues are all equal top. 

Some tensors have eigenvectors in only one direction. For example, for any rotation tensor, 
which effects a rigid body rotation about an axis through an angle not equal to integral multiples 
of n, only those vectors which are parallel to the axis of rotation will remain parallel to 
themselves. 

Let n be a unit eigenvector, then 
(2B 17.2) Tn = In = LIn 

(T-LI)n = 0 
Thus, 

(2B17.3a) 



Part B Eigenvalues and Eigenvectors of a Tensor 39 

Tll-A T12 T13 

T31 T32 T33-A 
T21 T22-A T23 

Let n = aiei, then in component form 

(T,,-Adjj)a,- = 0 

(2B17.4b) 
= 0 

(2B17.3b) 

In long form, we have 

(Tll-L)al T192+ T13a3 = 0 
T21al+(T22-A)a2+TUa3 = 0 
T31a1+T392+(T33-A)a3 = (2B17.3~) 

Equations (2B17.3~) are a system of linear homogeneous equations in al, a2, and a3. 
Obviously, regardless of the values ofA, a solution for this system isa1=a2=q=0. This is know 
as the trivial solution. This solution simply states the obvious fact that a = 0 satisfies the 
equation Ta = Aa, independent of the value of A. To find the nontrivial eigenvectors for T, we 
note that a homogeneous system of equations admits nontrivial solution only if the determinant 
of its coefficients vanishes. That is 

I T-AI I = 0 (2B17.4a) 

i.e., 

Equations (2B17.3), together with the equation 
2 2 2  al+a2+a3 = 1 (2B17.5) 

allow us to obtain eigenvectors of unit length. The following examples illustrate how eigen- 
vectors and eigenvalues of a tensor can be obtained. 

Example 2B17.1 

If, with respect to some basis {ei}, the matrix of T is 

[TI = 1 i] 
find the eigenvalues and eigenvectors for this tensor. 

Solution. We note that this tensor is 21, so that Ta = 21a = 2a, for any vector a. Therefore, 
by the definition of eigenvector,(see Eq. (2B17.1)), any direction is a direction for an eigen- 
vector. The eigenvalues for all the directions are the same, which is 2. However, we can also 
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use Eq. (2B17.3) to find the eigenvalues and Eqs. (2B17.4) to find the eigenvectors. Indeed, 
Eq. (2B17.3) gives, for this tensor the following characteristic equation: 

(2-1)~ = 0. 
So we have a triple root A=2. Substituting L=2 in Eqs. (2B17.3c), we obtain 

(2-2)al = 0 

( 2 - 2 ) ~ ~  = 0 
( 2 - 2 ) ~ ~ ~  = 0 

Thus, all three equations are automatically satisfied for arbitrary values of al, a2, and a3, so 
that vectors in all directions are eigenvectors. We can choose any three directions as the three 
independent eigenvectors. In particular, we can choose the basis {ei} as a set of linearly 
independent eigenvectors. 

Example 2B17.2 

Show that if T21=T31=O, then +el is an eigenvector of T with eigenvalue T11. 

Solution. From Tel=Tllel+T21e2+T31e3, we have 

Tel = Tllel and T(-el) = T11(-el) 
Thus, by definition, Eq. (2B17.1), +el are eigenvectorswith T11 as its eigenvalue. Similarly, if 
T12=T32=O, then ‘e2 are eigenvectors with corresponding eigenvalue T22 and if 
T13= TB=O, then +e3 are eigenvectors with corresponding eigenvalue T33. 

Example 2B17.3 

Given that 

L J 

Find the eigenvalues and their corresponding eigenvectors. 
Solution. The characteristic equation is 

(2-L)2(3-L) = 0 
Thus, A1=3, &=A3=2. (note the ordering of the eigenvalues is arbitrary). These results are 
obvious in view of Example 2B17.2. In fact, that example also tells us that the eigenvector 
corresponding to L1=3 is e3 and eigenvectors corresponding to A2=A3=2 are el and e2 How- 
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ever, there are actually infinitely many eigenvectors corresponding to the double root. In fact, 
since Tel=2el and Te2=2e2, therefore, 

T(ael+Be2) = aTel+BTe2 = 2ael+2#?e2=2(ael+Be2) 
Le., ael+Be2 is an eigenvector with eigenvalue 2. This fact can also be obtained from 
Eq~(2B17.3~). With 11=2 these equations give 

oa1=0 
oa2=0 
a3=0 

Thus, al and a 2  are arbitrary and a3=0 so that any vector perpendicular to e3, i.e., 
n=alel+a2e2 is an eigenvector. 

Example 2B17.4 

Find the eigenvalues and eigenvectors for the tensor 

Solution. The characteristic equation gives 
2-11 0 0 

[T-AI] = 0 3-1 4 I 0 4 -3-1 

-3 :I 
= (2-11)(A2-25) = 0 

L 
Thus, there are three distinct eigenvalues, 111=2, L2=5 and 5= -5. 

Corresponding to L1=2, Eqs. (2B17.3~) give 

o a , = o  
a2+&3 = 0 
4a2-5a3 = 0 

and Eq. (2B17.5) gives 
2 2 2  al+a2+a3= 1 

Thus, a2=a3=O and a1= 2 1, so that the eigenvector corresponding to A1=2 is n1= +el. We 
note that from the Example 2B17.2, this eigenvalue 2 and the corresponding eigenvector 
'el can be written down by inspection without computation. 

Corresponding to &=5, we have 

3al= 0 
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0-L -1 0 
1 0-1 0 
0 0 1-L 

- k 2 + & 3  = O  

k 2 - 8 ~ ~ 3  =O 
Thus (note the second and third equations are the same), 

and the eigenvector corresponding to L2=5 is 
al = 0, a2 = + 2 / 6 ,  a 3  = + 1 / 6  

n2= * & ( 2 4 + e 3 )  

Corresponding to A3= -5, similar computations give 

1 
n3= +x( - e 2 + 2 e 3 )  

All the examples given above have three eigenvalues that are real. It can be shown that if a 
tensor is real @e., with real components) and symmetric, then all its eigenvalues are real. If a 
tensor is real but not symmetric, then two of the eigenvalues may be complex conjugates. The 
following example illustrates this possibility. 

= o  

2 2 2  al+a2+a3=1 
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We obtainal=O, a2=0, a3= f 1, Le., n= feg, which, of course, is parallel to the axis of rotation. 

2B18 Principal Values and Principal Directions of Real Symmetric tensors 

In the following chapters, we shall encounter several tensors (stress tensor, strain tensor, 
rate of deformation tensor, etc.) which are symmetric, for which the following theorem, stated 
without proof, is important: “the eigenvalues of any real symmetric tensor are all real.” Thus, 
for a real symmetric tensor, there always exist at least three real eigenvectors which we shall 
also call the principal directions. The corresponding eigenvalues are called the principal 
values. We now prove that there always exist three principal directions which are mutually 
perpendicular. 

Let n1 and n2 be two eigenvectors corresponding to the eigenvalues A1 and A2 respectively 
of a tensor T. Then 

Tnl = Alnl (0 

and 
Tn2 = A2n2 

Thus, 
n2-Tnl = Alnl.n2 

(ii) 

(iii) 

T The definition of the transpose of T gives n1-Tn2 = n2.T “1, thus for a symmetric tensor 
T, T=TT, so that nl’Tn2 = n2-Tnl. Thus, from Eqs. (iii) and (iv), we have 

(~142)(n1.n2> = 0 (v) 

It follows that if Al is not equal to A2, then n1 * n2 = 0, i.e., n1 and n2 are perpendicular to each 
other. We have thus proven that if the eigenvalues are all distinct, then the three principal 
directions are mutually perpendicular. 

Next, let us suppose that n1 and n2 are two eigenvectors corresponding to the same eigen- 
value A. Then, by definition, Tnl =AnlandTnz=An2 so that for any a, and @, 
T(anl+@n2) =aTnl+@Tn2=A(anl+@n2). That is anl+@n2 is also an eigenvector with the same 
eigenvalue A . In other words, if there are two distinct eigenvectors with the same eigenvalue, 
then, there are infinitely many eigenvectors (which forms a plane) with the same eigenvalue. 
This situation arises when the characteristic equation has a repeated root. Suppose the 
characteristic equation has rootsA.1 and A2=A,=A (Al distinct froml). Let n1 be the eigenvec- 
tor corresponding to A,, then n1 is perpendicular to any eigenvector of A. Now, corresponding 
to A, the equations 

(T11-A)al+T192+T13a3 = (2B18.la) 
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T21al+(T22-~)a2+T23a3 = 0 (2B18. lb) 

T31al+T3$2+(T33-A)a3 = 0 (2B18.1~) 

degenerate to one independent equation (see Example 2B17.3) so that there are infinitely 
many eigenvectors lying on the plane whose normal is "1. Therefore, though not unique, there 
again a k t  three mutually perpendicular principal directions. 

In the case of a triple root, the above three equations will be automatically satisfied for 
whatever values of (al,a2,a3) so that any vector is an eigenvector (see Example 2B17.1). 

Thus, for every realsymmetric tensor, there always akts at least one triad ofprincipal directions 
which are mutually perpendicular. 

2819 Matrix of a Tensor with Respect to Principal Directions 

We have shown that for a real symmetric tensor, there always exist three principal directions 
which are mutually perpendicular. Let n1,n2 and n3 be unit vectors in these directions. Then 
using n1,112,n3 as base vectors, the components of the tensor are 

That is 

(2B19.1) 
= i2 I] 

Thus, the matrix is diagonal and the diagonal elements are the eigenvalues of T. 
We now show that the principal values of a tensor T include the maximum and minimum 

values that the diagonal elemenis of any matrix of T can have. 

First, for any unit vector e; = anl+Bn2+yn3, 

i.e., 
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I3 = 

Without loss of generality, let 
A, 2 A2 2 A3 

then noting that a2+p2+y2 = 1, we have 
2 2  

21 = Al(a2+p +y 2 ~ 1 a ~ + ~ # ~ + ~ 3 y ~  

i.e., 

A1 2 Ti1 

Also, 
2 2  ~ 1 a ~ + ~ # ~ + ~ 3 y ~  2 ~ , ( a ~ + p  +y ) = ~3 

i.e., 

Ti1 L A3 

Thus, the [ z::} value of the principal values of T is the [ madmum} value of the diagonal 
elements of all [TI of T. 

Tll T12 T13 
T21 T22 T u  = det[T] 
T31 T32 T33 

written as 

where 

12 = 

2820 Principal Scalar Invariants of a Tensor 

The characteristic equation of a tensor T, I Tj-Adul = O  is a cubic equation in A. It can be 

Il = T11+T22+T33 = qi = tr T 

Tl1 T12 
T21 T22 
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(2B20.2) I3 = A1A$3 

Example 2B20.1 

For the tensor of Example 2B17.4, first find the principal scalar invariants and then evaluate 
the eigenvalues using Eq.-(2B20.1). 

Solution. The matrix of T is 

[TI = i 3” :] 
0 4 - 3  

Zi  = 2+3-3 = 2 

These values give the characteristic equation 
A 3 - a ~ -  252 + 50 = 0 

Of, 

( A  - 2)(A -5)(A+5) = 0 
Thus, the eigenvalues are A=2,5,-5 as previously determined. 
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Part C Tensor Calculus 

2C1 Tensor-valued functions of a Scalar 

respect to t is defined to be a second-order tensor given by 
Let T=T(t) be a tensor-valued function of a scalar t (such as time). The derivative of T with 

dT T(t + At) -T(t) (2C1.1) 

df At+o At - = lim 

The following identities can be easily established [only Eq. (2C1.2d) will be proven here]: 
d dT dS 
dt dt dt -(T+S) =-+- 

d da dT 
-(a(t)T) = -T+a- df dt dt 

d dT dS -(TS) = -S+T- dt dt dt 

d dT da -(Ta) = -a+T- dt d t d t  

T 

dt 

(2C1.2a) 

(2C1.2b) 

(2C1.2c) 

(2C 1.2d) 

(2C1.2e) 

To prove Eq. (2C1.2d), we use the definition (2Cl.l) 
d -(Ta) = lim 

At-0 dt 

= lim 
At+O 

= lim' 

T(t + Af)a(t + At)-T(t)a(t) 
At 

T(t+Af)a(t+&)-T(t)a(t)+T(t)a(t +At)-T(t)a(f +At) 
At 

T(t + At) -T(t)]a(t +At)+ lim T(t)[a(t+At) -a(t)l 
At At+O At A t + O  

Thus, 
d dT da 
-(Ta) = -a+T- dt dt dt 

Example 2C1.1 

Show that in Cartesian coordinates the components of dT/dt, Le., (dT/df)ii are given by the 
derivatives of the components, d7$dt. 



48 Tensors Calculus 

Solution. 
Tq = ei - Tej 

Since the base vectors are fixed, 

del de2 de2 
dt dt dt 
------ - - - 0  

Therefore, 

Example 2C1.2 

Show that for an orthogonal tensor Q(t), (dQ/dt)QT is an antisymmetric tensor. 

Solution. Since QQT = I, we have 

dQT dQ T 
-+* = o  

That is 

dQT dQ T Q-ss;-=-dty 

Since 
T 

dt 

Therefore, 

But 

0)  

(ii) 

(iii) 

(9  

(ii) 

[see Eq. (2C1.2e)l 

(iii) 

[see Eq. (2B6.4)] 

therefore, 
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Example 2C 1.3 

A time-dependent rigid body rotation about a fixed point can be represented by a rotation 
tensor R(t), so that a position vector ro is transformed through rotation into I(t)=R(t)ro. Derive 
the equation 

dr - = o x r  
dt 

d R T  where o is the dual vector of the antisymmetric tensor -R . dt 
Solution. From I(t)=R(t)ro 

- d r d R  = -ro = -R ~ R T  r 
dt dt df 

a T  But, -R is an antisymmetric tensor (see Example 2C1.2) so that df 

(ii) 

(iii) 

d R T  where o is the dual vector of -R . dt 
From the well-known equation in rigid body kinematics, we can identify o as the angular 

velocity of the body. 

2C2 Scalar Field, Gradient of a Scalar Function 

Let @(r) be a scalar-valued function of the position vector r. That is, for each position 
r, @(r) gives the value of a scalar, such as density, temperature or electric potential at the point. 
In other words, @(r) describes a scalar field. Associated with a scalar field, there is a vector 
field, called the gradient of @, which is of considerable importance. The gradient of @ at a point 
ris defined to be a vector, denoted by (grad @), or by V$ such that its dot product with drgives 
the difference of the values of the scalar at r+dr and r, i.e., 

d@ = @(r+dr)-@(r) I V@-dr (2c2.1) 

If dr denotes the magnitude of dr, and e the unit vector in the direction of dr (note: e=dddr), 
then the above equation gives, for dr in the e direction, 
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(2c2.2) 

That is, the component of V$ in the direction of e gives the rate of change of $ in that direction 
(the directional derivative). In particular, the components of V$ in the el direction is given by 

Similarly, 

- = * = v$.e3 = ( ~ $ ) 3  (z) in the e3 direction ax3 

w Therefore, the Cartesian components of V$ are -, that is, 
axi 

(2C2.3) 

The gradient vector has a simple geometrical interpretation. For example, if $(r) describes 
a temperature field, then, on a surface of constant temperature (i.e., isothermal surface), $ = 
a constant. Let r be a point on this surface. Then, for any and all neighboring point r+dr on 
the same isothermal surface, d$=O. Thus, V$-dr=O. In other words, V$ is a vector, perpen- 
dicular to the surface at the point r. On the other hand, the dot product V$*dris a maximum 
when dr is in the same direction as V$. In other words, V$ is greatest if dr is normal to the 
surface of constant $ and in this case, 

@ = I V$ I, for dr in the normal direction. dr 

Example 2C2.1 

If @ = ~ 1 ~ 2 + ~ 3 ,  find a unit vector n normal to the surface of a constant $ passing through 

Solution. We have 
(2,190). 

V$ = --e1+-2+%3 w w  = x2el+xle2+e3 
ax, ax2 ax3 

At the point (2,1,0), V$=e1+2ez+e3. Thus, 

1 n = x(el+2e2+e3) 
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Example 2C2.2 

If q denotes the heat flux vector (rate of heat flow/area), the Fourier heat conduction law 
states that 

g = -kVO 
2 2  where 8 is the temperature field and k is the thermal conductivity. If 6=2(~1+xz) ,  find 8 at 

A( 1,O) and B( l / a ,  l/a). Sketch curves of constant 8 (isotherms) and indicate the vectors q 
at the two points. 

Solution. Since, 
ae ae ae 
ax, ax2 ax3 

98  = -1+--~++3 = 4x1e1+4x2e2 

therefore, 
q = -4k(xlel+x2e2) 

At point A, 
Q = -4kel 

and at point B, 
g~ = - 2 f l  k(el-te2) 

Clearly, the isotherm, Fig.2C.1, are circles and the heat flux is an inward radial vector. 

Example 2C2.3 

A more general heat conduction law can be given in the following form: 
q =  -me 
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where K is a tensor known as thermal conductivity tensor. 
(a)What tensor K corresponds to the Fourier heat conduction law mentioned in the previous 
example? 
(b)If it is known that K is symmetric, show that there are at least three directions in which heat 
flow is normal to the surface of constant temperature. 
(c)If 8 = &1+3X2 and 

[W= -1 2 0  [ x:] 
find q. 

Solution. 

(a)Clearly, K=kI, so that q= -kIV8= -kV8 
(b)For symmetric K, we know from Section 2B.18 that there exist at least three principal 
directions nl,n2 and n3 such that 

Knl = klnl 

Fig. 2C.2 

Knz = k2n2 
Kn3 = k3n3 

q1 = -We = -K(V8(nl = - IV8(Knl = -kl(V8(nl 

where kl,k2 and k3 are eigenvalues of K. Thus, for V8 in the direction of "1, 
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But nl, being in the same direction as V8, is perpendicular to the surface of constant 8. Thus, 
ql is normal to the surface of constant temperature. Similarly, Q is normal to the surface of 
constant temperature., etc. We note that if kl,k2 and k3 are all distinct, the equations indicate 
that different thermal conductivities in the three principal directions. 
(c)Since 8 = 2w1+3x2, we have 

[a=-  - 1  2 0  3 = -4 [ : -: :] [:] [ 3  
i.e., 

q = -el-4e2 
which is clearly in a different direction from the normal. 

2C3 Vector Field, Gradient of a Vector Field 

Let v(r) be a vector-valued function of position, describing, for example, a displacement or 
a velocity field. Associated with v(r), there is a tensor field, called the gradient of v, which is 
of considerable importance. The gradient of v (denoted by Vv or grad v) is defined to be the 
second-order tensor which, when operating on dr gives the difference of v at r + dr and r. 
That is, 

dv = v(r+dr)-v(r) 5 (Vv)dr (2C3.1) 

Again, let dr denote Idr I and e denote dr/dr, we have 

= (&)e ($) in e direction 

(2C3.2) 

Thus, the second-order tensor (Vv) transforms the unit vector e into the vector describing the 
rate of change v in that direction. 

Since 
av =-- - - ( W e ,  (2) in el direction ax1 

thus, in Cartesian coordinates, 

av a 
ax, ax, 

(VV),~ = el*(Vv)el = el--  = -(el-v) 

That is, 

Or, in general 
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- - 
av, av, avl 
ax, ax2 ax, 
av2 av2 av2 [W]= - - - 
ax, ax2 ax, 
av3 av3 av, 
ax, ax, ax, 

--- 

--- 
- - 

av 
axj 

=-- - - (Vv)ej 
in ej direction 

thus, 
(Vv)o = ei*(Vv)ej = ei-- av = -(ei*v) a 

axj axj 

so that the Cartesian components of (Vv ) are 

(2C3.3) 

(2C3.4) 

(2C3.5a) 

(2C3.5b) 

2C4 Divergence of a Vector Field and Divergence of a Tensor Field. 

trace of the gradient of v. That is, 
Let v(r) be a vector field. The divergence of v(r) is defined to be a scalar field given by the 

diw = tr(Vv) (2C4.1) 

With reference to rectangular Cartesian basis, the diagonal elements of Vv are - - and 
av, av2 
ax,’ ax2 

h 3  -. Thus 
8x3 

av, av2 av3 
ax, ax2 ax3 

diw = -+-+- = 
(2C4.2) 

Let T(r) be a second order tensor field. The divergence of T is defined to be a vector field, 
denoted by div T, such that for any vector a 

(divT) a 3 div(TTa) - tr(TT(Va)) (2C4.3) 
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To find the Cartesian components of the vector div T, let b=div T, then (note Vei=O for 
Cartesian coordinates), from Eq. (2C4.3), 

T T a q m  
bi = b-ei = div(T ei)-tr(T Vei) = div(Tjmem)-0 = - 

axm 
(2C4.4) 

In other words, 
a q m  (2C4.5) 

axm 
divT = --q 

Example 2C4.1 

If a=a(r)  and a=a(r), show that div(aa)=adiva+(Va) *a. 
Solution. Let b=aa. Then bi=aai and 

abi dai aa 
divb = - = a-+--ai axi axi axi 

= adiva+(Va)-a 

Example 2C4.2 

Given a(r) and T(r), show that 

Solution. We have, from Eq. (2C4.5), 
div(aT) = T(Va)+adivT 

a aa aT- 
axj axj div(aT) = -(aqj)ei = -qjei+a&i axj 

But 
aa 
axj 11 1 
-T-e. = T(Va) 

and 
a T- 

a3ei = adivT 
axj 

Thus, the desired result follows. 

2C5 Curl of a Vector Field 

dual vector of the antisymmetric part of (Vv). That is 
Let v(r) be a vector field. The curl of v is defined to be the vector field given by twice the 
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curlv I 2P 

where P is the dual vector of (Vvf. 

In a rectangular Cartesian basis, 

Thus, the curl of v is givenby [see Eq. (2B16.2)] ‘ 

(2C5.1) 

(2C5.2) 
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Part D Curvilinear Coordinates 

2D1 Polar Coordinates 

determine their components in plane polar coordinates. 
In this section, the invariant definitions of Vf, Vv, diw and divT will be utilized in order to 

Let r,8 denote, see Fig. 2D.1, plane polar coordinates such that 
2 2 112 r = ( q + x z )  

-1x2 8 =tan - 
X1 

Fig. 2D.1 

The unit base vectors e, and Q can be expressed in terms of the Cartesian base vectors 

e, = cos8el+sin8e2 (2D 1. la) 

eo = -sin8el+cos8e2 (2D 1.1 b) 

These unit base vectors vary in direction as 8 changes. In fact, from Eqs. (2Dl.la) and 

de, = de% (2D1.2a) 

dQ = -doe, (2D 1.2b) 

el and e2 as: 

(2Dl.lb), it is easily derived that 
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The geometrical representation of de, and d% are shown in the following figure where one 
notes that e,.(P) has rotated an infinitesimal angle de to become e,.(Q)=e,.(P)+de, where de, is 
perpendicular to e#) with a magnitude lde, I =(l)(dO). Similarly d Q  is perpendicular to 
Q(P) but is pointing in the negative e, direction and its magnitude is also (1)dO. 

From the position vector r=re,., we have 

dr = dre, +rde, 

Using Eq. (2D1.2a), we get 
dr = dre, +‘de% (2D1.3) 

The geometrical representation of this equation is also easily seen if one notes that dris the 
vector PQ in Fig. 2D.2. The components of Vf, Vv etc. in polar coordinates will now be 
obtained. 

Fig. 2D.2 

(i) Components of Vf 
Let f(r,O) be a scalar field. By definition of the gradient off, we have 

df = Vfedr = [ a , . e , + a ~ ~ ] ] . [ d r e , + r d ~ ~ ]  

where a, and a0 are components of Vf in the e, and % direction respectively. 

Thus, 
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df =a,dr+agdO (2D 1.4) 

But from Calculus, 

df = !$r+ge 
(2D1.5) 

Since Eqs. (2D1.4) and (2D1.5) must yield the same result for all increments dr, de, we have 
af a, = df and rag = ar 

Thus, 
af 1 af Vf = -e, + ar r 

By definition of Vv, we have 

Let T = W ,  then 
dv = (Vv)dr 

dv = Tdr = T(dre,+rdeeg) = drTe,+rdeTeg 

Now, 
Te, = T,e,+ Tg,eg and T ~ + J  = T&e,+ Tmeg 

dv = (TJr+ T,gdO)e,+ (Tg,dr+ TwdO)e+J 
Therefore, 

(2D1.6) 

(2D1.7) 

(2D1.8) 

But from Eq. (2D1.7) 
dv = dv,e,+v,de,+dvgeg+v&ee 

and from calculus, we have, 
av, av, avo avo 

dv, = -dr+-;iBde ar and dvg = -dr+wdO ar 

From the above three equations and Eqs. (2D1.2), we have 

d v =  [$dr+ ( ~ - v g ) d O ] e , +  [:dr+ ($+vJdO]eg 
(2D1.9) 

In order that Eqs. (2D1.8) and (2D1.9) agree for all increments dr,dB, we have 
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In matrix form, 

(iii) diw 
Using the components of Vv obtained in (ii), we have 

diw = tr(Vv) = T,+T@ = 

(iv) curl v 

From the definition that curlv= twice the dual vector of (Vvf, we have 

(v) Components of div T 
The definition of the divergence of a second-order tensor is 

(divT) * a = div(TTa)- tr( (Va)TT) 
for an arbitrary vector a. 

Take a=e, then, the above equation gives 

(divT), = div(TTer)-tr((Ver)TT) 

To evaluate the first term on the right hand side, we note that 
T T e, = T,e,+Tdee 

so that according to Eq. (2D1.11), with v, = Tm and vg = Td 

T div(T e,) = div(T+,+Td%) = 

(2D1.10) 

(2D1.11) 

(2D1.12) 

(2D 1.13) 

To evaluate the second term, we first use Eq. (2D1.10) to obtain Ve, In fact, since 
e, = (l)e,+O%, we have, with v,= 1 and ve=O in Eq. (2D1.10), 

r 

and [Ve,][T*] = 
0 

Td - 
L r  
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Tee so that tr(Ve,TT) = 7 Thus, from Eq. (2D1.13), we have 

dr r d e  r 
dTff 1Tk.3 %-Tee (2D1.14) 

(divT), = -+-+- 

In a similar manner, (see Prob. 2D1), one can derive 
dTer 17'' T#+Tir (2D1.15) 

(divT)e = -+-+- ar r d e  r 

2D2 Cylindrical Coordinates 

In cylindrical coordinates, see Fig. 2D.3, the position of a point P is determined by (r,e,z) 
where r and 8 determine the position of the vertical projection of the point P on the xy plane 
(the point P ' in the figure) and the coordinate2 determines the height of the point P from the 
xy plane. In other words, the cylindrical coordinates is comprised of polar coordinates (r,e) in 
the xy plane plus a coordinate z perpendicular to the xy plane. 

A 

Fig.2D.3 

We shall denote the positionvector of P by R, rather than r, to avoid the possible confusion 
between the position vector R and the coordinate r (which is a radial distance in thexy plane). 
The unit vector e, and eo are on thexy plane and it is clear from the above figure that 

R = re,+ze, (2D2.1) 
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and 
dR = dre,+rde,+dze,+zde, 

In the above equation, de, is given by exactly the same equation given earlier for the polar 
coordinates, i.e., Eq. (2D1.2a). We note also that e, never change its direction or magnitude 
regardless where the point P is, thus de,=O. Thus, 

dR = dre,+rdeQ+dze, (2D2.2) 

By retracing all the step used in the section on polar coordinates, we can easily obtain the 
following results: 

(i)Components of Vf 

(iii) div v 

(iv) curl v 
av, av, (2D2.6) 

(v) Components ofdiv T 
aT, 1aTd T,-Tm aT, 

(divT), = -+-+- +- ar r a0 r az 

aTef laTm Td+Ter aT, 
ar r d e  r az 

ar r d e  az r 

(divT)o = -+-+-+- 

aT, 1aTd aT, Tu 
(divT), = -+-+- + - 

(2D2.7a) 

(2D2.7b) 

(2D2.7~) 

(2D2.3) 

(2D2.4) 

(2D2.5) 



Part D Spherical Coordinates 63 

We note that in dyadic notation, divTT is written as V-T, so that (div T)d = (V*T)en etc. 

2D3 Spherical Coordinates 

en% and e$ are unit vectors in the direction of increasing r,O,@ respectively. 
In Fig. 2D.4a, we show the spherical coordinates @,e,@) of a general point P. In this figure, 

The position vector for the point P can be written as 
r = re, (2D3.1) 

where r is the magnitude of the vector r. Thus, 

dr = dre,+rde, (2D3.2) 

To evaluate de,, we note from Fig. 2D.4b that 

e,=cosOe,+sinee,' , Q=cosee,' -sinOez (2D3.3) 

where e,' is the unit vector in the r ' (OE) direction (r ' is in the xy plane). Thus, 

de, = -sined6ez+cosOdee,' + sinede,' = de( -sinee,+cosee,' )+sinede,' 

= de% + sinede,' ( 9  

But, just like in polar coordinates, due to &, de,' =(l)&e+ therefore, 

de, = (de)Q+(sine@)e+ (2D3.4a) 
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Again, from Fig. 2D.4b, we have 
e,' =coseee+ sinee, (ii) 

therefore, 
d%=cosede,' -sinedeer' -cosOdee,= -dO(sinee,' +cosee,)+cosede,' (iii) 

that is, 
d~ = -(&)e, + (cosed@)e$ (2D3.4b) 

From Fig. 2D.4a, it is clear that de+ = &(-e,' ), therefore, 

de+ = -(sined@)e,-(cosed@)Q (2D3.4~) 

Substituting Eq.(2D3.4a) into Eq.(2D3.2), we have 
dr = dre,+r(de)ee+r(sined@)e$ (2D3.5) 

We are now in a position to obtain the components of Vf,Vv, div v, curl v and div T in 
spherical coordinates. 
(i)Components of Vf 

Let @,e,$ ) be a scalar field. By the definition of the gradient off, we have, 

df = (Vf)-dr = [(Vf),e,+(vf))eee+(Vf)+e+].[ (dr)e,+(rde)~+(rsined@)e+] (2D3.6) 

i.e., 
df = (Vf)~r+(Vf)grde+(Vf)~ined@ 

From calculus, the total derivative off is 

Comparing Eq. (2D3.7) with Eq. (2D3.8), we obtain 

(2D3.7) 

(2D3.8) 

(2D3.9) 

(ii) Components of Vv 
Let the vector field v be represented as: 

v(r,O,@) = Vk,e,@)er +ve(r,e,@)Q+V$(r,e,@)e+ (2D3.10) 

Letting T=Vv, we have 
dv = Tdr = T(dre,+rdee,+rsined@e$) = drTe,+rdeTQ+rsinOd@Te$ (2D3.11) 

Now by definition of the components of tensor T in spherical coordinates 
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(2D3.12) 

Substituting this equation into Eq. (2D3.11) and rearranging terms we have 
dv = (T&r+rT&O+rsinOT&@)e, 

+ (Te,dr+rT~O+rsinOTe+d@)% 
+ (T+~r+rT~e+rsinOTMdg5)e+ (2D3.13) 

But from Eq. (2D3.10) we have, 
dv = dvp,+v,de,+dveee + v & ~  + dv+e+ +v&e+ (2D3.14) 

and from calculus we have 
av, av, av, 

w dv, = @+=do +A@ 

(2D3.15) 

Thus, using Eqs. (2D3.15) and Eqs. (2D3.4), Eq. ( 2D3.14) becomes 

dv = [$dr+ (g-v~) dO+ ($-v+sinO) dg5] e,+ 

[:dr+ ($+vJ dO+ ($-v+cosO) dg5] %+ 

[2dr+$dO+ ($f+v+inO+vecosO (2D3.16) 

In order that Eqs. (2D3.13) and (2D3.16) agree for all increments dr, do, dg5, we have 

which we display in matrix form as 
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vv = 

(iii)div v 

95 LA+!?+- av vec0t6 
dr r a8 rsin8 @ r r 

Using the components of Vv obtained in (ii), we have 
av, l ave  1 aV$ V, vecote 

diw = tr(Vv) = -+-+ +2-+- ar r a8 rsin8 @ r r 

(iv)curl v 

(2D3.17) 

(2333.18) 

From L e  definition of the curl and Eq. (2D3.17) we have 

(v)Components of div T 

the unit base vector e, gives 
Using the definition of the divergence of a tensor, Eq. (2C4.3), with the vector a equal to 

(2D3.20) (divT), = div(TTer) - tr((Ver)TT) 

To evaluate the first term on the right-hand side, we note that 

TTe, = Tfir+ Td%+ T@e$ 
so that according to Eq. (2D3.18), with v,=T, ve=Td, T$=T@ 

(2D3.21) 

To evaluate the second term on the right-hand side of Eq. (2D3.20) we first use Eq. (2D3.17) 
with v=e, to obtain 
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so that 

0 0 0  

1 0 - 0  r 
1 0 0 ;  

and [VerTT] = 

T tr(Ve,T ) = r 

From Eq. (2D3.20), we obtain 
2 

1 a(r Tm)+ 1 d(Tdsin0) 1 aT+ T@+T* 
2 ar nine 80 +nine w r r 

- (divT), = 

In a similar manner, we can obtain (see Prob. 2D9) 

1 a(r%,er) 1 a(Tmsin0) 1 dT+ Td-Te,-T#cotO + 
3 ar nine a0 +nine w + r r 

(divT)e = 

(2D3.22) 

(2D3.23) 

(2D3.24a) 

(2D3.24b) 

(2D3.24~) 
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PROBLEMS 
2A1. Given 

[SUI = 0 1 2 and [ai] = [: :] I] 

[ai] = 11 [Bg] = 1 5 ;] [Cg] = ;] 

evaluate (a) Sij, (b) Sijsij, (c) sjkskj, (d) amam, (e) Smnaman. 

2A2. Determine which of these equations have an identical meaning with ai = Qua; 

(a) up = Qpm& 

(b) ap = eqp;, 
(c) am = aAQmn- 

2A3. Given the following matrices 

Demonstrate the equivalence of the following subscripted equations and the corresponding 
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(a) Evaluate [qj] if qj = Eij@k 

(b) Evaluate [ci] if Ci = EijkSjk 

(c) Evaluate [di] if dk = EiikQibj and show that this result is the same as dk = (a X b) - ek 

2A6. 
(a) If &ijkTjk = 0,show that qj = Tji 

(b) Show that dij~ijk = 0 

2A7. (a)Verify that 

&ijmEk1m = di@jl-di#jk 

By contracting the result of part (a) show that 

(b)Eil+nEjlm = Bij 

(C>&ijk%jk = 6 
2AS. Using the relation of Problem 2A7a, show that 

2M. (a) If Tjj  = -Tp show that Tjjuiuj = 0 

(b) If qj = -qi and Sij = Sji, show that TklSkl= 0 

2A10. Let qj = -(Sq+S’i) and Rv = -(Sy-S,i), show that 

ax(bXc) = (a-c)b-(a-b)c 

1 1 
2 2 

S.. = T..+R.. T.. = T.., and Rii = -R.. ‘I I! 11’ 21 12 11 

2All. Let f ( ~ 1 , ~ 2 , ~ 3 )  be a function of xi and V ~ ( X ~ , . X X ~ , X ~ )  represent three functions of xi. By 
expanding the following equations, show that they correspond to the usual formulas of 
differential calculus. 

2A12. Let lAv I denote the determinant of the matrix [Aq]. Show that [Aij I = ~ i j d i @ j & .  

2B1. A transformation T operates on a vector a to give Ta = -, where I a I is the magnitude 

of a. Show that T is not a linear transformation. 

2B2. (a) A tensor T transforms every vector a into a vector Ta = m Xa, where m is a specified 
vector. Prove that T is a linear transformation. 
(b) If m = el + e 2 ,  find the matrix of the tensor T 

a 
la1 
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2B3. A tensor T transforms the base vectors el and e2 so that 

Tel = el+e2 
Te2 = e1-e~ 

If a = 2e1+3e2 and b = 3e1+2e2, use the linear property of T to find 

(a)Ta (b)Tb and (c)T(a+b). 

2B4. Obtain the matrix for the tensor T which transforms the base vectors as follows: 
Tel = 2el+e3 
Te2 = e2+3e3 
T q  = -e1+3e2 

2B5. Find the matrix of the tensor T which transforms any vector a into a vector b = m(a -n) 
where 

fi fi 
2 2 m = -(e1+e2) and n = -(-el+e3) 

2B6. (a) A tensor T transforms every vector into its mirror image with respect to the plane 
whose normal is e2. Find the matrix of T. 

b) Do part (a) if the plane has a normal in the e3 direction instead. 

2B7. a) Let R correspond to a right-hand rotation of angle 8 about the XI-axis. Find the matrix 
of R. 
b) Do part (a) if the rotation is about theq-axis. 

2B8. Consider a plane of reflection which passes through the origin. Let n be a unit normal 
vector to the plane and let r be the position vector for a point in space 
(a) Show that the reflected vector for r is given by Tr = r-2(r-n)n, where T is the 
transformation that corresponds to the reflection. 

(b) Let n==(el+e2+q), find the matrix of the linear transformation T that corresponds to 
this reflection. 
(c) Use this linear transformation to find the mirror image of a vector a = e1+2e2+3e3. 

2B9. A rigid body undergoes a right hand rotation of angle 8 about an axis which is in the 
direction of the unit vector m. Let the origin of the coordinates be on the axis of rotation and 
r be the position vector for a typical point in the body . 
(a) Show that the rotated vector of r is given by R r =  (l-cos8)(m.r)m+cos8rtsin8mxr, 
where R is the transformation that corresponds to the rotation. 

1 
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1 (b) Let m=n(el+e2+e3), find the matrix of the linear transformation that corresponds to 
this rotation. 
(c) Use this linear transformation to find the rotated vector of a = e1+2e2+3e3. 

2B10. (a) Find the matrix of the tensor S that transforms every vector into its mirror image in 
a plane whose normal is e2 and then by a 45' right-hand rotation about the el-axis. 

(b) Find the matrix of the tensor T that transforms every vector by the combination of first the 
rotation and then the reflection of part (a). 
(c) Consider the vector el+2e2+3e3, find the transformed vector by using the transformations 
S. Also, find the transformed vector by using the transformation T . 
2Bll. a) Let R correspond to a right-hand rotation of angle 8 about the xs-axis. 

(a)Find the matrix of R2. 

(b)Show that R2 corresponds to a rotation of angle 28 about the same axis. 
(c)Find the matrix of R" for any integer n. 
2B12. Rigid body rotations that are small can be described by an orthogonal transformation 
R = I+eR*, where P O  as the rotation angle approaches zero. Considering two successive 
rotations R1 and R2, show that for small rotations (so that terms containinge2can be neglected) 
the final result does not depend on the order of the rotations. 
2B13. Let T and S be any two tensors. Show that 

(a) T'is a tensor. 

(b) TT+ST = (T+S)T 

(c) (TS)T = STTT. 
2B14. Using the form for the reflection in an arbitrary plane of Prob. 2B8, write the reflection 
tensor in terms of dyadic products. 
2B15. For arbitrary tensors T and S, without relying on the component form, prove that 

-1 T T - 1  (a) (T 1 = (T 1 
(b) (TS)-' = S-lT-l. 

2B16. Let Q define an orthogonal transformation of coordinates, so that e,! = entiem. Consider 
e; .e,! and verify that QmiQmj = 60. 

2B17. The basis e,! is obtained by a 30" counterclockwise rotation of the ei basis about e3. 

(a) Find the orthogonal transformation Q that defines this change of basis, Le., e; = Qmiem 
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(b) By using the vector transformation law, find the components of a = f ie ,+e2 in the primed 
basis (i.e., find a;) 

(c) Do part (b) geometrically. 

2B18. Do the previous problem with e; obtained by a 30" clockwise rotation of the ei-basis 
about e3. 

2B19. The matrix of a tensor T in respect to the basis { ei} is 

[TI = 5 0 0 

Find Til ,  Ti2 and T& in respect to a right-hand basis e; where e; is in the direction of 
-e2+2e3 and e; is in the direction of el 

2B20. (a) For the tensor of the previous problem, find [fij] if e; is obtained by a 90" right-hand 
rotation about the %-axis. 

(b) Compare both the sum of the diagonal elements and the determinants of [TI and [TI'. 
2B21. The dot product of two vectors a = aiei and 4. = biei is equal to aibi. Show that the dot 
product is a scalar invariant with respect to an orthogonal transformation of coordinates. 
2B22. (a) If qj are the components of a tensor, show that qjqj is a scalar invariant with respect 
to an orthogonal transformation of coordinates. 
(b) Evaluate cjqj if in respect to the basis ei 

[-: : -:] 

(c) Find [TI' if e; = Qei and 

[QI = [E 8 i] 
T;,,T;,, = qjq. 

ei 

(d) Show for this specific [TI and [TI' that 

2B23. Let [TI and [TI' be two matrices of the same tensor T, show that 

det [TI = det [TI'. 
2B24. (a) The components of a third-order tensor are Ruk. Show that Riik are components of 
a vector. 
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(b) Generalize the result of part (a) by considerin the components of a tensor of nth order 
Riik.. . Show that Rjik.. . are components of an (n-2) order tensor. 

2B25. The components of an arbitrary vector a and an arbitrary second-order tensor T are 
related by a triply subscripted quantity Riik in the manner ai = Riikqk for any rectangular 
Cartesian basis {el,e2,e3}. Prove that Rvk are the components of a third-order tensor. 

2B26. For any vector a and any tensor T, show that 

(a) a TAa = 0, 

(b) a-Ta = a-fla. 
2B27. Any tensor may be decomposed into a symmetric and antisymmetric part. Prove that 
the decomposition is unique. (Hint: Assume that it is not unique.) 
2B28. Given that a tensor T has a matrix 

%I 

[TI = 1 i] 
(a) find the symmetric and antisymmetric part of T. 

(b) find the dual vector of the antisymmetric part of T. 
2B29 From the result of part (a) of Prob. 2B9 , for the rotation about an arbitrary axis m by 
an angle 8, 

(a) Show that the rotation tensor is given by R = (l-co.s8)(mm)+sinOE , where E is the 
antisymmetric tensor whose dualvector is m. [note mm denotes the dyadic product of m with 
m I. 
(b) Find d , the antisymmetric part of R . 
(c) Show that the dual vector for @ is given by sinem 
2B30. Prove that the only possible real eigenvalues of an orthogonal tensor are A= 2 1. 

2B31. Tensors T, R, and S are related by T = RS. Tensors R and S have the same eigenvector 
n and corresponding eigenvalues q and SI. Find an eigenvalue and the corresponding eigen- 
vector of T. 
2B32. If n is a real eigenvector of an antisymmetric tensor T , then show that the corresponding 
eigenvalue vanishes. 
2B33. Let F be an arbitrary tensor. It can be shown (Polar Decomposition Theorem) that any 
invertible tensor F can be expressed as F = VQ = QU, where Q is an orthogonal tensor and 
U and V are symmetric tensors. 

(b) Show that W = FFTand UU = FTF. 
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(c) If A, and ni are the eigenvalues and eigenvectors of U, find the eigenvectors and eigenvec- 
tors of V. 
2B34. (a) By inspection find an eigenvector of the dyadic product ab 
(b) What vector operation does the first scalar invariant of ab correspond to? 
(c) Show that the second and the third scalar invariants of ab vanish. Show that this indicates 
that zero is a double eigenvalue of ab.  What are the corresponding eigenvectors? 
2B35. A rotation tensor R is defined by the relations 

Re1 = e2, Re2 = e3, Re3 = e l  

(a) Find the matrix of R and verify that RR' = I and det I RI = 1. 

(b) Find the angle of rotation that could have been used to effect this particular rotation. 

2B36. For any rotation transformation a basis e; may be chosen so that e; is along the axis of 
rotation. 

(a) Verify that for a right-hand rotation angle 8, the rotation matrix in respect to the e; basis 
is 

cos0 -sin8 0 
[R]'= sin0 cos8 0 [ 0 o l :  

(b) Find the symmetric and antisymmetric parts of [R]'. 

(c) Find the eigenvalues and eigenvectors of Rs. 
(d) Find the first scalar invariant of R 

(e) Find the dual vector of d. 

ei 

( f )  Use the result of (d) and (e) to find the angle of rotation and the axis of rotation for the 
previous problem. 
2B37. (a) If Q is an improper orthogonal transformation (corresponding to a reflection), what 
are the eigenvalues and corresponding eigenvectors of Q? 
(b) If the matrix Q is 

1 2 2  
5 -5 -3 

I__ 2 2 1  -- 
3 3 3  

L 

find the normal to the plane of reflection. 
2B38. Show that the second scalar invariant of T is 
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by expanding this equation. 
2B39. Using the matrix transformation law for second-order tensors, show that the third scalar 
invariant is indeed independent of the particular basis. 
2B40. A tensor T has a matrix 

[TI= 4 -1 0 
I o  o 31 
L J 

(a) Find the scalar invariants, the principle values and corresponding principal directions of 
the tensor T. 
(b) If n1,n2,n3 are the principal directions, write [TIni. 

(c) Could the following matrix represent the tensor T in respect to some basis? 

2B41. Do the previous Problem for the matrix 

2B42. A tensor T has a matrix 

L J 

Find the principal values and three mutually orthogonal principal directions. 
2B43. The inertia tensor I, of a rigid body with respect to a point 0, is defined by 

- 
I, = J(r21-m)pdV 

where r is the position vector, r= I rl ,p= mass density, I is the identity tensor, and dV is a 
- differential volume. The moment of inertia, with respect to an axis pass through 0, is given by 
Inn = "*Ion, (no sum on n), where n is a unit vector in the direction of the axis of interest. 

(a) Show that I, is symmetric. 

(b) Letting r = xel+ye2+ze3, write out all components of the inertia tensor I,. 
(c) The diagonal terms of the inertia matrix are the moments of inertia and the off-diagonal 
terms the products of inertia. For what axes will the products of inertia be zero? For which 
axis will the moments of inertia be greatest (or least)? 
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Let a coordinate frame el,e2,e3 be attached to a rigid body which is spinning with an angular 
velocity o. Then, the angular momentum vector H,, in respect to the mass center, is given by 

H, = Ip 
- 

and 
dei 
- = a x e i .  dt 

(d) Let o = wiei and demonstrate that 

and that 
- - - d  

dt H, = -H, = I@ +a X (Ip) 

2C1. Prove the identities (2C1.2a-e) of Section 2C1. 

2C2. Consider the scalar field defined by@ = x2+3xy+22. 
(a) Find a unit normal to the surface of constant @ at the origin (O,O,O). 
(b) What is the maximum value of the directional derivative of @ at the origin? 
(c) Evaluate d@/dr at the origin if dr = &(el+%). 

2C3. Consider the ellipsoid defined by the equationx /a +y /b +z /c - 1. 

Find the unit normal vector at a given position (xyp). 

2C4. Consider a temperature field given by 8 = 3.y. 
(a) Find the heat flux at the pointA(1,1,1) if q = -kV6. 
(b) Find the heat flux at the same point as part (a) if q = -We, where 

2 2  2 2  2 2 -  

2C5. Consider an electrostatic potential given by 4 = a[xcos8+ysin6], where a and 6 are 
constants. 
(a) Find the electric field E if E = -V@, 

(b) Find the electric displacement D if D = &E, where the matrix of E is 

[El = 1 E; &!I 
(c) Find the angle 8 for which the magnitude of D is a maximum. 



Tensors 71 

2C6. Let @(xy,z) and q(xy,z) be scalar fields, and let v(xy,z) and w(xy,z) be vector fields. By 
writing the subscripted component form, verify the following identities: 

(a) V(@+V) = V@+W 
Sample solution: 

a w- [V(@+lY)li = -@+V) = G+Z - (V@)i+(VV)i 

(b) div(v+w) = diw+divw , 
(c) div(@v) = (V@).v+@(diw), 
(d) curl(V@) = 0 ,  
(e) div(cur1v) = 0. 

2C7. Consider the vector field v = x2e1 + z2e2 + y2e3 . For the point (1, 1,O): 

(a) Find the matrix of Vv. 
(b) Find the vector (VV)~. 
(c) Find div v and curl v. 
(d) if dr = &(el + e2 + e3) , find the differential dv. 

2D1. Obtain Eq. (2D1.15) 
2D2. Calculate div u for the following vector field in cylindrical coordinates: 

2 (a)u, = ue = 0 ,  u, = A  + Br , 

(b)u, =r) ue= 0 ,  u,= 0, sine 

1 1 2  (c)u, =y sine?, ue = -cos6r , ,uz = 0, 

(db, = 2, ue = -- 

2D3. Calculate div u for the following vector field in spherical coordinates: 

2 

sin6 case , u, = 0. 
r r 

B 
r 

u , = A r + - ,  2 ue=u+=O 

2D4. Calculate Vu for the following vector field in cylindrical coordinate 
A 
r u,=-, u g = B r ,  vz=O 

2D5. Calculate Vu for the following vector field in spherical coordinate 
B 
r 

u , = A r + - ,  2 u e = u + = O  
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2D6. Calculate div T for the following tensor field in cylindrical coordinates: 

T , = - - -  AZ 3r22 Tee',, Az T - = - [ ; ; j + ; ] ,  Az 32 T n = - F + $ ]  R3 R5' R 
2 TB = Td = 0, where R2 = r2 + z 

2D7. Calculate div T for the following tensor field in cylindrical coordinates: 
B B 
r r 

T, = A  + 3, Tee = A  - 3, T, = constant, Td = T, = T& = 0 

2D8. Calculate div T for the following tensor field in spherical coordinates: 
2B B T m = A - -  3 ,  T m = T M = A + - j .  
r r 

Tor = T+r = TH = 0 
2D9. Derive Eq. (2D3.24b) and Eq. (2D3.24~). 


