The Elastic Solid

So far we have studied the kinematics of deformation, the description of the state of stress
and four basic principles of continuum physics: the principle of conservation of mass
[Eq. (3.15.2)], the principle of linear momentum [Eq. (4.7.2)], the principle of moment of
momentum [Eq. (4.4.1)] and the principle of conservation of energy [Eq. (4.14.1)]. All these
relations are valid for every continuum, indeed no mention was made of any material in the
derivations.

These equations are however not sufficient to describe the response of a specific material
due to a given loading. We know from experience that under the same loading conditions, the
response of steel is different from that of water. Furthermore, for a given material, it varies
with different loading conditions. For example, for moderate loadings, the deformation in
steel caused by the application of loads disappears with the removal of the loads. This aspect
of the material behavior is known as elasticity. Beyond a certain level of loading, there will
be permanent deformations, or even fracture exhibiting behavior quite different from that of
elasticity. In this chapter, we shall study idealized materials which model the elastic behavior
of real solids. The linear isotropic elastic model will be presented in part A, followed by the
linear anisotropic elastic model in part B and an incompressible isotropic nonlinear elastic
model in part C.

5.1 Mechanical Properties

We want to establish some appreciation of the mechanical behavior of solid materials. To
do this, we perform some thought experiments modeled after real laboratory experiments.

Suppose from a block of material, we cut out a slender cylindrical test specimen of
cross-sectional area A. The bar is now statically tensed by an axially applied load P, and the
elongation Al, over some axial gage length/, is measured. A typical plot of tensile force against
elongation is shown in Fig. 5.1. Within the linear portion OA4 (sometimes called the propor-
tional range), if the load is reduced to zero (i.e., unloading), then the line OA is retraced back
to O and the specimen has exhibited an elasticity. Applying a load that is greater than 4 and
then unloading, we typically traverse OABC and find that there is a “permanent elongation”
OC. Reapplication of the load from C indicates elastic behavior with the same slope as OA4,
but with an increased proportional limit. The material is said to have work-hardened.
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Fig. 5.1

The load-elongation diagram in Fig. 5.1 depends on the cross-section of the specimen and
the axial gage length /. In order to have a representation of material behavior which is
independent of specimen size and variables introduced by the experimental setup, we may plot
the stress o = P/A,, , where A, is the undeformed area of the cross-section versus the axial

strain £; = Al/l as shown in Fig. 5.2. In this way, the test results appear in a form which is not

dependent on the specimen dimensions. The slope of the line OA4 will therefore be a material
coefficient which is called the Young’s modulus (or, modulus of elasticity )

g
Ey=¢ (5.1.1)

The numerical value of Ey for steel is around 207 GPa (30X 108 psi). This means for a steel
bar of cross-sectional area 32.3 cm? & in® )that carries a load of 667,000 N (150,000 Ibs), the
axial strain is

_667200/(323x107Y) . 3 ()
g, = 5 =10

207%10

As expected, the strains in the linear elastic range of metals are quite small and we can
therefore, use infinitesimal strain theory to describe the deformation of metals.

In the tension test, we can also measure changes in the lateral dimension. If the bar is of
circular cross section with an initial diameter d , it will remain, under certain conditions
circular, decreasing in diameter as the tensile load is increased . Letting &4 be the lateral strain
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(equal to Ad/d), we find that the ratio —&,/¢, is a constant if the strains are small. We call this
constant Poisson’s ratio and denote it by v. A typical value of v for steel is 0.3.

P

0 - e=A{¢
Fig. 5.2

So far we have only been considering a single specimen out of the block of material. It is
conceivable that the modulus of elasticity Ey, as well as Poisson’s ratio ¥ may depend on the

orientation of the specimen relative to the block. In this case, the material is said to be
anisotropic with respect to its elastic properties. Anisotropic properties are usually exhibited
by materials with a definite internal structure such as wood or arolled steel plate or composite
materials. If the specimens, cut at different orientations at a sufficiently small neighborhood,
show the same stress-strain diagram, we can conclude that the material is isotropic with respect
to its elastic properties in that neighborhood.

In addition to a possible dependence on orientation of the elastic properties, we may also
find that they may vary from one neighborhood to the other. In this case, we call the material
inhomogeneous. If there is no change in the test results for specimens at different neighbor-
hoods, we say the material is homogeneous.

Previously, we stated that the circular cross-section of a bar can remain circular in the
tension test. This is true when the material is homogeneous and isotropic with respect to its
elastic properties.

Other characteristic tests with an elastic material are also possible. In one case, we may be
interested in the change of volume of a block of material under hydrostatic stress ¢ for which
the stress state is

Ty =0d; (5.1.2)



220 The Elastic Solid

In a suitable experiment, we measure the relation between o, the applied stress and e, the
change in volume per initial volume (also known as dilatation, see Eq. (3.10.2)). For an elastic
material, a linear relation exists for small e and we define the bulk modulus k, as

o

=2 (5.1.3)

A typical value of k for steel is 138 GPa (20X 10° psi).

A torsion experiment yields another elastic constant. For example, we may subject a
cylindrical steel bar of circular cross-section of radius r to a torsional moment M, along the

cylinder axis. The bar has a length / and will twist by an angle 8 upon the application of the
moment M,. A linear relation between the angle of twist 6 and the applied moment will be

obtained for small 8. We define a shear modulus x«

Ml
U=— (5.14)
1,6
where I, = 7 72 ( the polar area moment of inertia). A typical value of u for steel is 76 GPa
(11x10° psi).

For an anisotropic elastic solid, the values of these material coefficients (or material
constants) depend on the orientation of the specimen prepared from the block of material.
Inasmuch as there are infinitely many orientations possible, an important and interesting
question is how many coefficients are required to define completely the mechanical behavior
of a particular elastic solid. We shall answer this question in the following section.

5.2 Linear Elastic Solid
Within certain limits, the experiments cited in Section 5.1 have the following features in
common:

(a) The relation between the applied loading and a quantity measuring the deformation is
linear

(b) The rate of load application does not have an effect.
(c) Upon removal of the loading, the deformations disappear completely.
(d) The deformations are very small.

The characteristics (a) through (d) are now used to formulate the constitutive equation of an
ideal material, the linear elastic or Hookean elastic solid. The constitutive equation relates
the stress to relevant quantities of deformation. In this case, deformations are small and the
rate of load application has no effect. We therefore can write

T =T (E) (5.2.1)
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where T is the Cauchy stress tensor, E is the infinitesimal strain tensor, with T (0) = 0. If in
addition, the function is to be linear, then we have, in component form

T11=CunnEn + CrizEnz + ... + Cruzz Es3
Tip=Ci211 E11 + Cro12E12 + ... + C1p33E33

(5.2.2a)
T33=CpuEn + CazEz + ... + Caazz B3
The above nine equations can be written compactly as
T = Ciju Eg (5.2.2b)

Since T,j and E,-j are components of second-order tensors, from the quotient rule discussed
in Sect. 2B14, we know that Cjjy; are components of a fourth-order tensor, here known as the

elasticity tensor. The values of these components with respect to the primed basis €; and the
unprimed basis e; are related by the transformation law

Cijkt = Omi Qnj Ok Ost Cranrs (5:2.3)

(See Sect. 2B14). If the body is homogeneous, that is, the mechanical properties are the same
for every particle in the body, then Cjj; are constants (i.e., independent of position). We shall

be concerned only with homogeneous bodies.

There are 81 coefficients in Eq. (5.2.2). However, since Ej; = Ej;, we can always combine
the sum of two terms such as C1112 E12 + Cq121 E»q into one term, (C1112 + C1121 )E12 50 that
(C1112 + C1121) becomes one independent coefficient. Equivalently, we can simply take
Ci112 = C1121- Thus, due to the symmetry of strain tensor, we have

Ciit = Cijie (5.24)
Egs. (5.2.4) reduce the number of independent Cjj; from 81 to 54.
We shall consider only the cases where the stress tensor is symmetric, i.e.,
Tj =T (5.2.5)
as a consequence,
Ciit = Cjin (5.2.6)

Egs. (5.2.6) further reduce the number of independent coefficient by 18. Thus, we have for
the general case of a linear elastic body a maximum of 36 material coefficients.
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Furthermore, we shall assume that the concept of “elasticity” is associated with the
existence of a stored energy function U(Ej), also known as the strain energy function, which

is a positive definite' function of the strain components such that

T, =Y 5:2.7)

¥ 7 3E;

With such an assumption, (the motivation for Eq. (5.2.7) is given in Example 5.2.1), it can be
shown (see Example 5.2.2 below) that

Cijit = Chiij (5.2.8)

Equations (5.2.8) reduces the number of elastic coefficients from 36 to 21.

Example 5.2.1

(a)In the infinitesimal theory of elasticity, both the displacement components and the com-
ponents of the displacement gradient are assumed to be very small. Show that under these
assumptions, the rate of deformation tensor D can be approximated by DE/Dt, where E is the
infinitesimal strain tensor.

(b) Show that if Tj; is givenby T = Cjji Eiy [ Eq. (5.2.2b)], then the rate of work done P by
the stress components in a body 1s given by

P, = %}Q (5.2.9)

where U is the strain energy function defined by Eq. (5.2.7).
au, ou;
GX GX ’

DE d Du; 3 Dul av; 6vj )

Solution. (a) From 2E; = we have,

o T3X Dr ToX, D aX; ' ox;

Since x; = x;(X1, X3, X3, ), we can obtain

Wi _ Vi O OV O (i)
0X; " OX; ox, oX; oty OX;

Now, fromx,, = X, + u,,, where u,, are the displacement components, we have

+ By positive definite is meant that the function is zero if and only if all the strain components are zero, otherwise,
it is always positive.
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8x,, My, Xy duyy,
My
where —;- are infinitesimal. Thus,
oX;
av, av] v 6v] B )
axX; ox a2 Dy (iv)
That is,
D E
=y \
o = Di W)

(b) In Section 4.12, we derived the formula for computing the rate of work done by the stress
components (the stress power ) as

Py = TyD; (vi)
Using Eq. (v), we have
DE;; (vii)
P= Ty

Now if Tj; = %[Eq. (5.2.7)], then,
ij

8U DE;  3U (9E; aU DU
Pe=%E, Dt = 3E; (‘5# =% - (vi)
y X, ~fixed X,—fixed

That is , with the assumption given by Eq. (5.2.7 ), the rate at which the strain energy increases
is completely determined by the rate at which the stress components are doing work and if
Py is zero then the strain energy remains a constant (i.e., stored). This result provides the
motivation for assurning the existence of a positive definite energy function through Eq. (5.2.7)
in association with the concept of “elasticity”

Example 5.2.2

Show that if Tj; = U —— for alinearly elastic solid, then

E;

t We are dealing here with a purcly mechanical theory where temperature and entropy play no part in the model.
However, within the frame work of thermoelastic model, it can be proved that a stored energy function exists
if the deformation process is either isothermal or isentropic.
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(a)
Ciit = Criij
(b)the strain energy function U is given by

1
U = ST = 5CimkiiEn

Solution. (a) Since for linearly elastic solid Tj; = CyjEyy, therefore

3T

3, ~ Cim
U
Thus, from Eq. (5.2.7),ie., T; = Eo Ve have
ij
C.. = __62_(]._-
i = Ey O
Now, since U = o’y
’ OE,; OE;;  OEjj OEs
therefore,
Ct}rs - Crsz] or Ct]kl Cklt]
(b) From
_au
Tij h aE,'j
we have
TdE; = S 55 4By = U
ie.,

dU = CijEwdEjj

Changing the dummy indices, we obtain
au = Cklz:jEijdEkl

But, Gy = Ct]'kl’ therefore
dU = CjjuEydEy

Adding Egs. (v) and (vii), we obtain

(5.2.10)

(52.11)

(M)

(i)

(5.2.12)

(ii)

(iv)

V)

(vi)

(vii)
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24U = CijkI(EkI dEl] + El] dEy) = C,‘jk[d (E,] Ew (viii)
from which,

1
U =3 Ciju Eij Eny

In the following, we first show that if the material is isotropic, then the number of inde-
pendent coefficients reduces to only 2. Later, in Part B, the constitutive equations for
anisotropic elastic solid involving 13 coefficients (monoclinic elastic solid ) , 9 coefficients
(orthotropic elastic solid ) and S coefficients (transversely isotropic solid), will be discussed.

PART A Linear Isotropic Elastic Solid

5.3 Linear Isotropic Elastic Solid

A material is said to be isotropic if its mechanical properties can be described without
reference to direction. When this is not true, the material is said to be anisotropic. Many
structural metals such as steel and aluminum can be regarded as isotropic without appreciable
€rTor.

We had, for a linear elastic solid, with respect to the e; basis,

T = CijiiEn (i
and with respect to the ¢;’ basis,

Tj'= CyjiEn (ii)
If the material is isotropic, then the components of the elasticity tensor must remain the same
regardless of how the rectangular basis are rotated and reflected. That is

Cijut = Cyjua (5:3.1)
under all orthogonal transformation of basis. A tensor having the same components with

respect to every orthonormal basis is known as an isotropic tensor. For example, the identity
tensor I is obviously an isotropic tensor since its components 0; are the same for any

Cartesian basis. Indeed, it can be proved (see Prob. 5.1) that except for a scalar multiple, the
identity tensor is the only isotropic second tensor. From d;;, we can form the following three
independent isotropic fourth-order tensors

Ajjxs = 00y (5.32)
Bijiy = 0y 0j (5.3.3)
Hijpy = 010 (5.3.4)
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It can be shown that any isotropic fourth order tensor can be represented as a linear
combination of the above three isotropic fourth order tensors (we omit the rather lengthy proof
here. In part B of this chapter, we shall give the detail reductions of the general C; to the

isotropic case). Thus, for an isotropic linearly elastic material, the elasticity tensor Cjj; can

be written as a linear combination of A;;; , Bjjsy, and Hijy.
Cijxt = A Ajjig + @ Byjgy + B Hyy
where 4, @, and B are constants. Substituting Eq. (5.3.5) into Eq. (i) and since
Ajjg Eyg = 003y Ejg = 63 Egg = b€
Bijx By = 0 0y Ejy = Ejj
Hjj By = 05 0pEy = Eji = Ejj

we have
T CkIEkI led,]+(a + B E;

Or, denoting a + 8 by 2u , we have
Tj=Aed; +2p Ej

or, in direct notation
T=Ael+2uE

where e = Ey;, = first scalar invariant of E. In long form, Eqs. (5.3.6) are given by
Ty =A(En +Exp+Ep)+2uEy
Tp=A(En+Exp+E;3)+2uEy
T3 =A(Ey + Ex + Ex3) + 2u Egy

Tip=2pnEq
Ti3=2uEp
T23 = 2/4 E23

(5.3.5)

(iif)
(iv)
)

(vi)

(5.3.6a)

(5.3.6b)

(5.3.6¢)
(5.3.6d)
(5.3.6¢)
(5.3.60)
(5.3.6g)
(5.3.6h)

Equations (5.36) are the constitutive equations for a linear isotropic elastic solid. The two
material constants A and ¢ are known as Lame’s coefficients, or, Lame’s constants. Since Ej;
are dimensionless, A and 1 are of the same dimension as the stress tensor, force per unit area.
For a given real material, the values of the Lame’s constants are to be determined from suitable

experiments. We shall have more to say about this later.
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Example 5.3.1

Find the components of stress at a point if the strain matrix is

30 50 20
[E]= |50 40 0|x107°
20 0 30

and the material is steel with 4 =119.2 GPa (17.3 x106 psi) and u =792 GPa
(11.5x 108 psi).
Solution. We use Hooke’s law Tjj =Aed;; + 2u Ejj, by first evaluating the dilatation

e = 100x 105, The stress components can now be obtained
Tyi=Ae+2puE; =167 X 1072 GPa
Ty =Aie+2uEy =183 %1072 GPa
Tyz=Ade +2u Es3 =167 x 10" > GPa
Tip =Ty =24 Eyp =792 % 1072 GPa

Ti3=Tsy =2pEz =3.17x 107> GPa
T23 = T32 =0GPa

Example 5.3.2

(a) For anisotropic Hookean material, show that the principal directions of stress and strain
coincide.

(b) Find a relation between the principal values of stress and strain

Solution. (a) Let n; be an eigenvector of the strain tensor E (i.e., En; = Eq n; ). Then, by
Hooke’s law we have

Tny=2uEn) +Aelny = QuE{+Aie)n;
Therefore, n, is also an eigenvector of the tensor T.
(b) Let Ey, Ey, E3 be the eigenvalues of E thene = E; + E, + E3, and from Eg. (5.3.6b),
Ty =2uE +A(Ey+E)+Ej).
In a similar fashion,
T, =2uEy +A(EL + Ey + E3).
T3=2uE3+A(E1+Ey+E3).
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Example 5.3.3

For an isotropic material

(a) Find a relation between the first invariants of stress and strain.

(b) Use the result of part (a) to invert Hooke’s law so that strain is a function of stress
Solution. (a) By adding Egs. (5.3.6¢,d,e), we have

Tie=Qp+32)Ey=Q2u+31)e (5.3.7)
(b) We now invert Eq. (5.3.6b) as
AT,
E=Llr_4 1-Lg kk (5.3.8)

2u° 2pu 20 2u (2,¢+3,1)I

5.4 Young’s Modulus, Poisson’s Ratio, Shear Modulus, and Bulk Modulus

Equations (5.3.6) express the stress components in terms of the strain components. These
equations can be inverted, as was done in Example 5.3.3, to give

1 A
Ej;= —27[7',-- -37s ZﬂTkka,-,-] (5.4.1)

We also have, from Eq. (5.3.7)

1
= | 542
¢ (2/4+3/1)Tkk (5:42)
If the state of stress is such that only one normal stress component is not zero, we call it a
uniaxial stress state. The uniaxial stress state is a good approximation to the actual state of
stress in the cylindrical bar used in the tensile test described in Section 5.1. If we take the e;
direction to be axial with T1; #0 and all other T;j = 0, then Egs. (5.4.1) give

1 A Atu
= —— = 5.4.3
En=75, [Tll 3,1+2/1T11:| KGA+2uy 1t (5:43)
Ex=Ey= A Ty = g 544
33 22~ 2#(3/1'*‘2/1) 1 2(1_*_‘“)“11 (5.4.4)
E12 = E13 = E23 =0 (545)

The ratio T71/Eqy, corresponding to the ratio o/¢, of the tensile test described in
Section 5.1, is the Young’s modulus or the modulus of elasticity Ey. Thus, from Eq. (5.4.3),

_HQ@BAt2u) 4
Ey= T a (5.4.6)
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The ratio —E,y/Eq; and —E33/Eyq, corresponding to the ratio —¢,4/€, of the same tensile
test, is the Poisson’s ratio. Thus, from Eq. (5.4.4)

y=—r (5.4.7)
200 + p)

Using Egs. (5.4.6) and (5.4.7) we write Eq. (5.4.1) in the frequently used engineering form

Ejy= El; [Ty — v (T + T33)] (5.4.8a)
Ey = é’ [Ty — v (T3 + Tia)] (5.4.8b)
Eyx= E_ly [Tss — v (T11 + Tan)] (5.4.8¢)
Ep= -21—#T12 (5.4.8d)
Ep= ElﬁTB (5.4.8¢)
Eyp= 517723 (5.4.80)

Even though there are three material constants in Eq. (5.4.8) , it is important to remember
that only two of them are independent for the isotropic material. In fact, by eliminating 4 from
Egs. (5.4.6) and (5.4.7), we have the important relation

. Ey (549
F=2ad+vy
Using this relation, we can also write Eq. (5.4.1) as
1

If the state of stress is such that only one pair of shear stresses is not zero, it is called a
simple shear stress state. This state of stress may be described by T1, = Tp; =7 and

Eq. (5.4.8d) gives
T

Epp=Ey =2

(54.11)

Defining the shear modulus G, as the ratio of the shearing stress z in simple shear to the
small decrease in angle between elements that are initially in the e; and e, directions, we have
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T =
2Ep

G (5.4.12)

Comparing Eq. (5.4.12) with (5.4.11), we see that the Lame’s constant ux is also the shear
modulus G.

A third stress state, called the hydrostatic stress, is defined by the stress tensor T = ol. In
this case, Eq. (5.3.7) gives

30
=39 4.13
€T 2u+34A (54.13)

As mentioned in Section 5.1, the bulk modulus k, is defined as the ratio of the hydrostatic
normal stress o, to the unit volume change, we have

o _2u+34 2
—_—— = — 5.4.14
k " 3 ;l+3ﬂ ( )

From, Egs. (5.4.6),(5.4.7), (5.4.9) and (5.4.14) we see that the Lame’s constants, the Young’s
modulus, the shear modulus, the Poisson’s ratio and the bulk modulus are all interrelated.
Only two of them are independent for a linear, elastic isotropic material. Table 5.1 expresses

the various elastic constants in terms of two basic pairs. Table 5.2 gives some numerical values
for some common materials.

Table 5.1 Conversion of constants for an isotropic elastic material

Ap Ey,v BV Ey,u k,v
1 1 vEy 2uy H(Ey—2u) 3kv.
(1+v)(1-2v) 1-2v 3u—Ey 1+v
Ey 3k(1-2v)
# # 2(1+7) # # 2(1+v)
2 E 2u(1+v) uEy
k A+5 Y e ad LR et S k
Ea (=) 3(1-2)  3@u-Eyp
Ey pu(3A+2u) Ey 2u(1+v) Ey 3k(1-2v)
A+u
v A v v E_Y__l v

2(A+p) 2u




Table 5.2

Elastic constants for isotropic materials at room temperatures.

Material Composition Modulus of Poisson’s Shear Modulus u Lamé Constant A Bulk Modulus k
Elasticity £, Ratio v

10° psi GPa 10° psi GPa 1 psi GPa 10° psi GPa
Aluminum Pure and alloy 99-11.4 68.2-78.5 0.32-0.34 3.7-3.85 25.5-26.53 6.7-9.1 46.2-62.7 9.2-11.7 63.4-80.6
Brass 60-70% Cu,40-30% zn 14.5-15.9 99.9-109.6 0.33-0.36 536.0 36.6-41.3 10.6-15.0 73.0-103.4 14.1-19.0 97.1-130.9
Copper 17-18 117-124 0.33-0.36 5867 40.0-46.2 12.4-19.0 85.4-130.9 163.321.5 112.3-148.1
Iron,cast 2.7-36% C 13-21 90-145 0.21-0.30 5.2-82 35.8-56.5 3.9-12.1 26.9-83.4 7.4-17.6 51.0-121.3
Steel Carbon and low alloy 5.4-16.6 106.1-1144 0.34 6.0 413 12.2-13.2 84.1-90.9 16.2-17.2 111.6-118.5
Stainless steel 18% Cr, 8% Ni 28-30 193-207 0.30 10.6 73.0 16.2-17.3 111.6-119.2 23.2-24.4 160.5-168.1
Titanium Pure and alloy 15.4-16.6 106.1-114.4 0.34 6.0 413 12.2-13.2 84.1-90.9 16.2-17.2 111.6-118.5
Glass Various 7.2-11.5 49.6-79.2 0.21-0.27 3.84.7 26.2-324 2253 15.2-36.5 4.7-8.4 32.4-57.9
Methyl methacrylate 0.35-0.5 2.41-3.45 R - - - - _— -
Polyenthylene 0.02-0.055 0.14-0.38 - -— -— -= —-— -— -—
Rubber 0.00011- 000076 050 000004  0.00026- ' o o o

0.00060 0.00413 0.00020 0.00138

+ As v approaches 0.5 the ratio of k/Ey and Aju = . The actual value of k and A for some rubbers may be close to the values of

steel.

% Partly from “an Introduction to the Mechanics of Solids,” S.H. Crandall and N.C. Dahl, (Eds.), Mcgraw-Hill, 1959. (Used
with permission of McGraw-Hill Book Company.)
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Example 5.4.1

(a) If for a specific material the ratio of the bulk modulus to Young’s modulus is very large,
find the approximate value of Poisson’s ratio.

(b) Indicate why the material of part(a) can be called incompressible.

Solution. (a) In terms of Lame’s constants, we have

k _1(A
= 5.4.15
Ey 3 ( ¥ 1) ( )
A 2v
2 - 54.16
Kk 1-2v ( )
Combining these two equation gives
k 1
L. 5.4.17
Ey 3(1-2v) ( )
k 1
Therefore, 1f ——- o, then Poisson’s ratio v— >
Ey
(b) For an arbitrary stress state, the dilatation or unit volume change is given by
T 1-2v 5.4.18)
€T3k ( Ey i (

1
Ifv-—> > then e~ 0. That is, the material is incompressible. It has never been observed in real

material that hydrostatic compression results in an increase of volume, therefore, the upper

limit of Poisson’s ratio isv = X

5.5 Equations of the Infinitesimal Theory of Elasticity

Insection 4.7, we derived the Cauchy’s equation of motion, to be satisfied by any continuum,
in the following form

0Ty

pa;=pB+—= ax, (5.5.1)

where p is the density, a; the acceleration component, p B; the component of body force per
unit volume and Tj; the Cauchy stress components. All terms in the equation are quantities
associated with a particle which is currently at the position (x1, x, x3 ).
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We shall consider only the case of small motions, that is, motions such that every particle
is always in a small neighborhood of the natural state. ' More specifically , if X; denotes the

position in the natural state of a typical particle, we assume that

x; = X;
and that the magnitude of the components of the displacement gradient du;/0Xj, is also very
small.

Since
x1=X1+tu, x=X+tuy x3=X3+us (5.5.2)

therefore, the velocity component

_ Dx1 _ (aul aul 6u1 3u1 (553)

1% +vi—tvy—tvy—
1 1ax1 26x2 33)63

“Dr —67)
x;—fixed

where v; are the small velocity components associated with the small displacement com-

ponents. Neglecting the small quantities of higher order, we obtain the velocity component

du .

vi= (—1) O
ot
x;—fixed
and the acceleration component

2 .

o |9 (i)
a = 2
x;—fixed

Similar approximations are obtained for the other acceleration components. Thus,

ou; (5.5.4)

ar*
x;—fixed

a; =

Furthermore, since the differential volume dV is related to the initial volume dV/, by the
equation [See Sect. 3.10]

dv = (1 + Ey)dv, (iii)
therefore, the densities are related by

p=Q0+E " p,=(1~Eg)p, (55.5)

+ We assume the existence of a state, called natural state, in which the body is unstressed
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Again, neglecting small quantities of higher order, we have

82u-
Pa;=po|—5 (5.5.6)
at
x;—fixed
Thus, one can replace the equations of motion
2
D u; aT,] .
_— = . — v
g D# P o o ®
with
2
94 9T (5.5.7)

_—= 4 —
po atz poBl 6x]

InEq. (5.5.7) all displacement components are regarded as functions of the spatial coordinates
and the equations simply state that for infinitesimal motions, there is no need to make the
distinction between the spatial coordinates x; and the material coordinates X;. In the following

sections in part A and B of this chapter, all displacement components will be expressed as
functions of the spatial coordinates.

A displacement field «; is said to describe a possible motion in an elastic medium with small
deformation if it satisfies Eq. (5.5.7). When a displacement field u; = 1; (xq, X3, x3, t ) is given,
to make sure that it is a possible motion, we can first compute the strain field Ej; from
Eq. (3.7.10), i.e.,

_1fon, ay
E;j = 2| ax (558)
and then the corresponding elastic stress field T;; from Eq. (5.3.6a), i.e.,
T;] =le 6,] +2u El] (5.5.9)

The substitution of ; and Tj; in Eq. (5.5.7) will then verify whether or not the given motion is
possible. If the motion is found to be possible, the surface tractions, on the boundary of the
body, needed to maintain the motion are given by Eq. (4.9.1), i.e,,

L= T,J n; (5.5.10)

On the other hand, if the boundary conditions are prescribed (e.g., certain boundaries of the
body must remain fixed at all times and other boundaries must remain traction-free at all times,
etc.) then, in order that i; be the solution to the problem, it must meet the prescribed conditions

on the boundary.
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Example 5.5.1

Combine Egs. (5.5.7),(5.5.8) and (5.5.9) to obtain the Navier’s equations of motion in terms
of the displacement components only.

Solution. From

du;  ou;
= .. =, .
Tj=Aied;+2puE;= leé,]+,u[a +6x,] @)
we have
2 2
aT; y; u; .t
-, S S Py —1 (ii)
ax; ox; oxjox;  ox; dx;
Now,
de . _ Oe
axj §- ax,- (lll)
2
Tuj _ o (%) _ e (iv)
ax]' ax; O axj ox;
Therefore, the equation of motion, Eq. (5.5.7), becomes
2
a 9y 0%u;
Bi+(A+p)y— d 5.5.11
In long form, Egs. (5.5.11) read
2
uy de ?* 8t &
Po——% =p,B1+ (A +/4)5— +u —2+—+—2 uy (5.5.11a)
ot X1 oxq axz ax3
8uy de &P
Po——> =poBz+ (,1 +;¢)a—+,u _2+_2+'_2 175) (5.5.11b)
ot X2 ox] dxp ox3
p@—pB+(/1+p)ae +u 82+62+62
0 =Po B3 e A2t 2t ol
o as Ul ad ad| (5:5.11c)

where
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Ouj _ouy  uy  dus (55.12)

e=—=—
d; ox3 dxp Ox3
In invariant form, the Navier equations of motion take the form

2

Po % =poB + (A + p)Ve + p div Vu (5.5.13)
t

e = diva (5.5.14)

5.6 Navier Equations in Cylindrical and Spherical Coordinates

In cylindrical coordinates, with «, ug, u, denoting the displacement in (r,6,z) direction,
Hooke’s law takes the form of [See Sect. 2D2 for components of Vf,Vu and diva in
cylindrical coordinates]

d
T,=le+2u o (5.6.1a)
ar
_ 10up U 5.6.1b
ng—le+2,u(’m—0—+7) ( )
Outy 5.6.1
T, =Ae +2u—= (5.6.1c)
9z
_ 16u, aug Ug _ 5 6 1d
T'ﬂ“”(r_ae““F‘T)‘To’ G019
aug 13uz 5 6 le
Toz=ﬂ('§+ﬁy)=7}o (5.6.1¢)
(%4,  Ouy) (5.6.1f)
TZ’“"(az ar)—T’z
where
du U  1(0ug) du, (5.6.1
LT AR a4 e 6.1g)
) +r+r(30)+ dz
and the Navier’s equations of motion are:
2 2 2 2
du, de du, 19u, du, 10u, 2 dug u,
p =poB,+ (A +u)y—+u - ——1 (5.6.2a)
Car 0T o Ul g Pagt gt ror p200 .2
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2
9"ug (A +,u)6e dug 19°ug dup 10ug 2 0uy uo
20 = p, By + + + (5.6.2b)
Po=op ~Pe e IR I A T
2 2 2 2
0 u ou, 10u, Jdu N 10u, (5.6.26)
P2oet  at ror

In spherical coordinates, with u, ug, uy denoting the displacement components in

(r, 6, ¢) direction, Hooke’s law take the form of [See Sect. 2D3 for components of
Vf,Vu and divu in spherical coordinates)

T, =ie+2u a‘j’ (5.6.32)

ou,
=k+2”(1aof’ ) (5.6.3b)

- 1 dup U ug cotd 5.6.3c
T k+2ﬂ(rsin03¢+r+ r ( )

To=u (1‘2‘3 "“9_”_:’) (5.6.3d)

o) oo

Tor=# (rsm()?;;’ a_uﬁ _rﬁ) (630
where

and the Navier’s equations of motion are
2
a 7 14 2
— = A+ (A+u) =

1 1 8 ur 2 9 2 ¢
+ (smG F) + (ugsing)—
ind 90 60 sin%0 3¢ r %sin@ 36 r %in6 % ]

(5.6.42)

o ug A+,u de, |18 29Ug
B+ ——)
Po— 7 o2 =Po 6 a6+ F2or (r ar
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2
19 1 O0ug 20u, 2cot0 Uy
+53g (ugsm())) + - ]
290 (51 T sin?0 0p° 200 250 0P (5.6.4b)
2
9 V¢ _ JAtude 110 (rzaug)
Po ot Po Byt S naap T 2or\’ or

2
19 1 @ u¢ 2 U, 2cotl dug

+525 (u sm0)) + + (5.6.4c)
P 90 ( n§d6*"% Z5in%0 a¢ Psind % %sino % ]

5.7  Principle of Superposition

Let u,(l) and u,(z) be two possible displacement fields corresponding to two body force fields
B,(l) and B,(z). Let 7%1) and 732) be the corresponding stress fields. Then

Pu® 674 )
Po—a— = po BN + —L @
o o
and
2 (2) 7 .
Tw” _ g, 9Ty (i)
Po ) =poBi” + a—xj

Adding the two equations we get

(u,(l) +ufy=p, BV + By + — 7<1) + 78

It is clear from the linearity of Egs. (5.5.8) and (5.5.9) that TQ) + 7(2) is the stress field
corresponding to the displacement field u,(l) + u(z) Thus, u,(l) + u( ) is also apossible motion
under the body force field (B,(l) +B,(2)). The corresponding stress fields are given by
7%1) + 7%2) and the surface tractions needed to maintain the total motion are given by
t,(l) + t,(z). This is the principle of superposition. One application of this principle is that in
a given problem, we shall often assume that the body force is absent having in mind that its

effect, if not negligible, can always be obtained separately and then superposed onto the
solution of vanishing body force.

5.8 Plane Irrotational Wave

In this section, and in the following three sections, we shall present some simple but
important elastodynamic problems using the model of linear isotropic elastic material.
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Consider the motion

uy = esin— 21 (x1 —cpt), up=0, u3=0 (5.8.1)

representing an infinite train of sinusoidal plane waves. In this motion, every particle executes
simple harmonic oscillations of small amplitude € around its natural state, the motion being
always parallel to the e; direction. All particles on a plane perpendicular to e; are at the same

phase of the harmonic motion at any one time [i.e., the same value of 2n/[)(x; —cL t)]. A
particle which attime¢ is atx; + dxj acquires ats + dt the same phase of motion of the particle
whichisatx; attime¢if (xq + dxy )—c (¢t + dt ) = x; — cp t,i.e.,dx1/dt = c;. Thuscy is known
as the phase velocity ( the velocity with which the sinusoidal disturbance of wavelength / is
moving in the e; direction). Since the motions of the particles are parallel to the direction of
the propagation of wave, it is a longitudinal wave.

We shall now consider if this wave is a possible motion in an elastic medium.

The strain components corresponding to the ; given in Eq. (5.8.1) are

Ejn=¢ (%) cos ZTn (x;—crt) (@)
Ep=Ep=E;p=E3=Ep3=0 (i)
The stress components are (note e = Eqq +0 + 0= Ey1)
ou
Tii=@+2mEy = A+ 2p)— (iii)
ax1
ad .
Ty =Ty =4Ey =At ”1 (iv)
le = T13 = T23 =( (V)
Substituting T;j and u; into the equations of motion in the absence of body forces, i.e.,
& u; 0T}
— =l 8.2

we easily see that the second and third equations of motion are automatically satisfied (0 =0)
and the first equation demands that

Po 2———@ 2)— (vi)

or
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2 2
-poe (%) duinZEGi-cn - -G+ 20e(F] snFei-an i)

so that the phase velocity c; is obtained to be

172
¢ = (‘%) (5.83)

Thus, we see that with ¢; given by Eq. (5.8.3), the wave motion considered is a possible one.
Since for this motion, the components of the rotation tensor

1(0%ui _ 9 (viii)
2 axj ox;

are zero at all times, it is known as a plane irrotational wave. As a particle oscillates, its volume
also changes harmonically [the dilatation e = Ej; = e(2n/I)cos(2n/l)(x1 — cy t)], the wave is

thus also known as a dilatational wave.

From Eq. (5.8.3), we see that for the plane wave discussed, the phase velocity c; depends

only on the material properties and not on the wave length /. Thus any disturbance represented
by the superposition of any number of one-dimensional plane irrotational wave trains of
different wavelengths propagates, without changing the form of the disturbance (no longer
sinusoidal), with the velocity equal to the phase velocity ¢y . In fact, it can be easily seen [from

Eq. (5.5.11)] that any irrotational disturbance given by
uy = uy(x,t), up=u3=20 (5.84)

is a possible motion in the absence of body forces provided that u4 (x4, ¢ ) is a solution of the
simple wave equation

2 2

Iu u

_2_1 =c _21 (5.8.5)
ot axy

It can be easily verified that u; = f(s), where s = x; *¢; ¢ satisfies the above equation for any

function £, so that disturbances of any form given by f(s) propagate without changing its form
with wave speed c; . In other words, the phase velocity is also the rate of advance of a finite

train of waves, or , of any arbitrary disturbance, into an undisturbed region.

Example 5.8.1

Consider a displacement field

ul=asin%(x1—th)+ﬂcos%(x1—th) up=uz=90 ()

for a material half-space that lies to the right of the plane x; = 0.
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(a) Determine «,pB, and [ if the applied displacement on the plane x; = 0 is given by
u = (bsin wt)e,
(b) Determine a , 8, and / if the applied surface traction onxy = 0 is given by t = (dsin wt)e,.

Solution. The given displacement field is the superposition of two longitudinal elastic waves
having the same velocity of propagation ¢y, in the positive x; direction and is therefore a

possible elastic solution.
(a) To satisfy the displacement boundary condition, one simply sets

u(0,t)y=bhsinwt (ii)
or
—a sin (anl‘ t) + B cos (2”?“ t) = bsin wt (iif)
Since this relation must be satisfied for all time ¢, we have
=0, a=-b, 1=272fL (iv)
and the elastic wave has the form
uy=—b sin% (1 - cp. 1) )

Note that the wavelength is inversely proportional to the forcing frequency w. That is, the
higher the forcing frequency the smaller the wavelength of the elastic wave.

(b) To satisfy the traction boundary condition on x; = 0, one requires that
t=T(—ey) = — (T111 + T1€; + T31€3) = (dsin wr)e; (vi)
thatis, atx; =0, Ty = ~dsinwt, Tp; = T3; = 0. For the assumed displacement field
6u1 .
Tiu=Qu+i)y—, Ty=T3=0, (vii)
axl
therefore,
~dsinwt = Qu + A a| 2| cosZe1—cr)—B| 2= | sinZxy—c10)] (viii)
l l l l x =0
ie.,
—dsinwt=(2u +l)%ln—[acos%cl‘t+ﬂsin%q‘t] (ix)

To satisfy this relation for all time ¢, we have
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a=0, f=>2 (L),w=2’“’“ ®)
2u +Al\2n I
or,
a=0, ﬂ=_(2‘ud.:ﬁ)w’ l=27:oCL (xi)
and the resulting wave has the form,
—dcg, ®
M=o T e % (xp—crt) (xii)

We note, that not only the wavelength but the amplitude of the resulting wave is inversely
proportional to the forcing frequency.

5.9 Plane Equivoluminal Wave

Consider the motion

up=0, up=¢ sin% (x1—cpt), u3=20 (5.9.1)

This infinite train of plane harmonic wave differs from that discussed in Section 5.8 in that it
is a transverse wave: the particle motion is parallel to e, direction, whereas the disturbance is

propagating in the e, direction.
For this motion, the strain components are

Eyy=Ep=Ep=E;3=E;3=0 ®

and

(SYE)

Ep= (%”—) cos%(xl —crt). (ii)

and the stress components are
Tip=ue (%) cos% (xy —crt) (iii)

Substitution of T}; and ; in the equations of motion, neglecting body forces, gives the phase
velocity crto be

cr=Va/p, (5.9.2)

Since, in this motion, the dilatatione is zero at all times, it is known as an equivoluminal wave.
It is also called a shear wave.
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Here again the phase velocity c7 is independent of the wavelength/, so that it again has the

additional significance of being the wave velocity of a finite train of equivoluminal waves, or
of any arbitrary equivoluminal disturbance into an undisturbed region.

The ratio of the two phase velocities ¢; and cris

172
‘L_ (At (5.9.3)
cT u
Since A = 2u v/(1 — 2»), the ratio is found to depend only on v, in fact
1/2
L _(20=v  _ _1 \q12 5.9.4
e [1—21»] [(1+7=%5)] (59.4)
For steel with v = 0.3, ¢;/ct = V75 = 1.87. We note that since v<% ,cg is always greater
than c7.
Example 5.9.1
Consider a displacement field
u2=asin-247—(x1—cTt)+ﬂcos%(x1—cTt), up=u3=0 (1)

for a material half-space that lies to the right of the planex; = 0
(a) Determine a , 8 and [/ if the applied displacement onx; = Q is given by u = (b sin wt)e,
(b) Determine @, 8 and [ if the applied surface traction onx; = 0 is t = (dsin wt)e,

Solution. The problem is analogous to that of the previous example.

(a) Using u; (0,t) = bsin w ¢, we have

27 "
ﬂ=01 a:—b’ l= a)CT (ll)
and
_ . W
upy = —bsin a (x1—cr?) (iii)
(b) Using t = —Ty1e, = (dsin  £)e, gives
_ _ dCT 27(67'
a=0, ,B——w, I=—5

and
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der
“2= S = (x1 = crt)

Example 5.9.2

Consider the displacement field
uz = @ cos pxzcos%(xl —ct), up=u;=0 (i)

(a) Show that this is an equivoluminal motion.

(b) From the equation of motion, determine the phase velocity ¢ in terms of p, I, p, and u
(assuming no body forces).
(c) This displacement field is used to describe a type of wave guide that is bounded by the plane
xp = *h. Find the phase velocity c if these planes are traction free.
Solution. (a) Since
duy duy

ou .t
divu=——L+-—24-"2=0+0+0=0 (ii)
dx;  Oxp  dx3

thus, there is no change of volume at any time.

(b) For convenience, let k = ZT” andw = kc = El_’ then

u3 = a cospx; cos(kx; — w t), (iii)

where k is known as the wave number and o is the circular frequency. The only nonzero
stresses are given by (note: u; = u; =0)

6u3 . .
Ti3=T3= ”E = a u k[—cospxysin(kx; — o )], (iv)

Ty = Ty = o3 2 )
= Ty =tg = pl-sinpazeos(hss - w 0},

The substitution of the stress components into the third equation of motion yields ( the first
two equations are trivially satisfied)
2

oT- oT .
T3y TR P b up? Y (—ug) = po s Y3 o oy @¥(—it3) (vi)

ax1 aX2

Therefore, with czT = u/Pos
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2
K= % w?—p’= (—“i) -p° (vi)

Since k = 2nt/1, and @ = 27ac/l, therefore

LY 13 (vii)
ol

(c) to satisfy the traction free boundary condition at x, = +h, we require that
t= xTe, = £(Tpe; + Tpey + Typey) = =T3e3 =0 (ix)
therefore, T321x2= +p = —* u p asinph cos(kx; — wt) = 0. In order for this relation to be
satisfied for all x; and ¢, we must have
sinph =0 (x)
Thus,

p=%, n=0,1.2,.. (xi)

Each value of n determines a possible displacement field, and the phase velocity ¢ correspond-
ing to each mode is given by

1

c= c,[(”al) 5 1J 2 (xii)

This result indicates that the equivoluminal wave is propagating with a speed ¢ greater than
the speed of a plane equivoluminal wave cr. Note that whenp = 0, c = cr as expected.

Example 5.9.3

An infinite train of harmonic plane waves propagates in the direction of the unit vector e,,.
Express the displacement field in vector form for (a) alongitudinal wave, (b) a transverse wave.

Solution. Let xbe the position vector of any point on a plane whose normal is e, and whose
distance from the origin is d (Fig. 5.3). Then x-e, = d. Thus, in order that the particles on
the plane be at the same phase of the harmonic oscillation at any one time, the argument of
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sine (or cosine) must be of the form (2n/[)(x « e, — ct — n), where % is an arbitrary constant.

e,
o
0

Fig. 5.3

a) For longitudinal waves, u is parallel to e, thus
u =£sin[% (x-e, —cL t—n)]e,, @)

In particular, if e, = e,

u1=£sin[—2‘lz(x1—c1_t—n)], uy=uz="0 (ii)

b) For transverse waves, u is perpendicular to e,. Let ¢, be a unit vector perpendicular to
p n t p
e,. Then

u=¢ [sin % (x e, —crt—7 )]e, (i)

The plane of ¢, and e, is known as the plane of polarization. In particular, ife, = e;, e = e,
then

(v)

uy =0, u2=esin¥(x1—cTt—1/), u3=20

Example 5.9.4

In Fig. 54, all three unit vectors e, .e,, and e, lie in the xyx, plane. Express the
displacement components with respect to the x; coordinates of plane harmonic waves for
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a) a transverse wave of amplitude £; wavelength/ p()larized inthexq x, plane and propa atin;
p 1 gthiq 1%2P £ g
in the direction of €, 1

(b) a transverse wave of amplitude £, wavelengthl, polarized in the x; x; plane and propagat-
ing in the direction of e,.

(c) alongitudinal wave of amplitude €3 wavelength /3 propagating in the direction of e,

Solution. Using the results of Example 5.9.3, we have, (a)

e, = sinaje; — cosajey, X-e, = xisinay — xpc0s@y, €, = *(cosaje; + sinzie;) @)

Thus,
11 = cos aq &1 sin[2n/lq (x1 sinay — xpcosay — crt—11 )]
u, = sin ay €y sin[2n/1y (x1 sinay — xpcosay — crt—11 )] (ii)
Uz = 0

(b)

e,, = sina@z e + cos @z €z, X-€,, = X1 5inay + x COSAy, €, = +(cosape; — sinaj ey )  (iii)

Fig. 54

U1 = €os @y &y sin[2n/1, (x4 sinay + x5c08a; ~ cTt—1, )]

up = —sina, & sin[2n/1, (x1 sina; + xpcosaty — crt—13 )] (iv)
Uz = 0

(c)
€y, =sinaze; + cosase,, X-e,, = x1 sinas + x; cosas )

uq = sin a3 &3 sin[27/13 (x4 sinas + xycosaz — ¢ t—13 )]
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uy = cos a3 €3 sin[2n/l3 (x1 sinaz + xpcosas; — ¢f t—n3 )] (vi)
usz = 0
5.10 Reflection of Plane Elastic Waves.

In Fig. 5.5, the plane x, = Qis the free boundary of an elastic medium, occupying the lower
half-space x, 20. We wish to study how an incident plane wave is reflected by the boundary.
Consider an incident transverse wave of wavelength /1, polarized in the plane of incidence with
anincident angle a, (see Fig. 5.5). Sincex; = 01is a free boundary, the surface traction on the
plane is zero at all times. Thus, the boundary will generate reflection waves in such a way that
when they are superposed on the incident wave, the stress vector on the boundary vanishes at
all times.

Let us superpose on the incident transverse wave two reflection waves (see Fig. 5.5), one
transverse, the other longitudinal, both oscillating in the plane of incidence. The reason for
superposing not only a reflected transverse wave but also a longitudinal one is that if only one
is superposed, the stress-free condition on the boundary in general cannot be met, as will
become obvious in the following derivation.

X4
oo
ay
i Reflected

Incident Atr
Transverse Longitudinal

Reflected

Transverse

X3
Fig. 5.5

Let u; denote the displacement components of the superposition of the three waves, then
from the results of Example 5.9.4, we have

U1 = COS @1 £1 8in @1 + €OS ap &3 sin ¢, + sin a3 £3sin @3
up = sin aq €1 sin g ~- sin a; g, sin @, + cos a3 €3 sin 3 @)
Uy = 0

where
27 .
1= —l—-(xl sin@y —xpcosay —crt ~11)
1

(i)

2r .
P = T—(x1sma2 +xycosay —crt—1ny)
2
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3= zl—n(xlsina3 +x,cosa3—cpt—13)
3
On the free boundary (x, = 0), where n = —ej, the condition t = 0 leads to
Te2 =0 (lll)
ie.,
Tp=Tp=Tn=0 (iv)

Using Hooke’s law, and noting that 3 = 0 and u; does not depend on x3, we easily see that
the condition T3, = 0is automatically satisfied. The other two conditions, in terms of displace-
ment components, are

aul 6u2 _ (V)
ax2+ax1_0 on x=90
duy duy _ (vi)
(/l+2,u)ax2+ﬂ.ax1—-0 on x,=0
Performing the required differentiation, we obtain from Egs. (v) and (vi)

£ € £ i

_ll (sin2a1 - coszal Yeos o1 + 72- (c052a2 -~ sin2a2 Yeos ¢4 + 1—3 (sin2a3 )cos 3 =0 (vii)
1 2 3

€ (viii)

€ €
f,usinZal cospy + ﬁ-,u sin2a, cos ¢y — l—; A+ 2,ucosza3 Jeospz =0
1

Since these equations are to be satisfied on x, = 0 for whatever values of x; and ¢, we must
have

CosP; =Ccospy=cosp3 onxy=0 (ix)
so that they drop out from Eq. (vii) and (viii). Thus, at
x=0, p1=9¢x2pn=@3*2qn
where pandg are integers, i.e.,
2r . _ 2= . ,
T (xqsinay —crt—n) = K(xl sina, —crt—1n,')
2m . ,
=—I-;— (xisinaz—cpt—1n3") )

where 7y " = my~(2xp ) and 73" = n3—(2pl3)

Equation (x) can be satisfied for whatever values of x; and ¢ only if
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sin@; _sinap sinaz (xi)
L L L
cr _°r_°L (xii)
L L &L
and
m_m’ _n’ (xiii)
h h i
Thus,
L=h, nl=1 (xiv)
where
1_c_ (a+2u)? (V)
n - cr - M
a;=ay (XVl)
n sinaz = sin @y (xvii)
' =11, ny3’ =m (xviii)

That s, the reflected transverse wave has the same wavelength as that of the incident transverse
wave and the angle of reflection is the same as the incident angle, the longitudinal wave has a
different wavelength and a different reflection angle depending on the so-called “refraction
index n.”

With cos ¢; dropped out, and in view of Egs. (xiv) to (xviii) , the boundary conditions (vii)
and (viii) now become
e (sinla — cos2 2 a2 . = (xix)
1 (sin“aj — cos“aq)+ey (cos“ay — sin“ay ) + e3nsin2a3 =0
81(,usin2a1)+62(usin2a1)—s3n(2/tcosza3+,l)=0 (xx)
These two equations uniquely determine the amplitudes of the reflected waves in terms of the
incident amplitude ( which is arbitrary ). In fact
nsin4 a, (xxi)

83 = 81
00522a1 +n?sin2 aysin2as

cos’ 2 ay — n?sin 2 aysin2as (xxii)
€y =

o
(2

c0522a1 +n*sin2 aysin2a3
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Thus, the problem of the reflection of a transverse wave polarized in the plane of incidence is
solved. We mention that if the incident transverse wave is polarized normal to the plane of
incidence, no longitudinal component occurs. Also, when an incident longitudinal wave is
reflected, in addition to the regularly reflected longitudinal wave, there is also a transverse
wave polarized in the plane of incidence.

Equation (xvii) is analogous to Snell’s law in optics, except here we have reflection instead
of refraction. If sina;>n, then sin a3>1 and there is no longitudinal reflected wave but rather,

waves of a more complicated nature will be generated. The angle ay = sin™ Ly is called the
critical angle.

5.11 Vibration of an Infinite Plate
Consider an infinite plate bounded by the planes x; = 0 and x; = l. These plane faces may
have either a prescribed motion or a prescribed surface traction.

The presence of these two boundaries indicates the possibility of a vibration ( a standing
wave). We begin by assuming the vibration to be of the form

ui=uy (xl,t), up=u3=0 (5.11.1)
and, just as for longitudinal waves, the displacement must satisfy the equation
) 62u1 _ 62u1 (5.11.2)
‘L5 =77
axy ot

A steady-state vibration solution to this equation is of the form

uyp=(AcosAxy +Bsindxy ) (Ccoscy At + Dsincy At) (5.11.3)
where the constant A, B, C,D, and A are determined by the boundary conditions. This
vibration mode is sometimes termed a thickness stretch vibration because the plate is being

stretched through its thickness. It is analogous to acoustic vibration of organ pipes and to the
longitudinal vibration of slender rods.

Another vibration mode can be obtained by assuming the displacement field

up=uz(xyt), up=u3=0 (5.11.4)
In this case, the displacement field must satisfy the equation
cz 82u2 _ 62u2 (5115)
=
ax% a?

and the solution is of the same form as in the previous case. This vibration is termed
thickness-shear and it is analogous to the vibrating string.
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Example 5.11.1

(a) Find the thickness -stretch vibration of a plate, where the left face (x; = 0) is subjected
to a forced displacement u = (acos wt)e; and the right face (x; = /) is fixed.

(b) Determine the values of @ that give resonance.
Solution. (a) Using Eq. (5.11.3) and the first boundary condition, we have

acoswt =uq (0t) =ACcoscy At + ADsincy At @)
Therefore
AC=a, 1=2 D=0 (if)
L

The second boundary condition gives

O=u ()= (acosw—l+BCsin9—l) coswt (iii)
cr cr
Therefore
BC = —a cot ol ()
L
and the vibration is given by
sincﬂxl )
) L
uy (x1,7) =a {cos—xq — cosw ¢
[ ‘L tancﬂl ]
L

(b) Resonance is indicated by unbounded displacements. This occurs for forcing frequencies
corresponding to tan wl/c; = 0, that is, when

nmacr
w = 1 s

n=123..

Example 5.11.2

(a) Find the thickness-shear vibration of an infinite plate which has an applied surface
traction t = —(Bcoswt)e; on the plane x; = 0 and is fixed at the plane x; = .

1 These values of frequencies correspond to the natural free vibration frequencies with both faces fixed.
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(b) Determine the resonance frequencies.

Solution. The traction on x; = 0 determines the stress T12]x1= 0= Bcosw t. This shearing

stress forces a vibration of the form

Uy = (Acosd xq + Bsind x1)(CcoscrA t + DsincrA t).

Using Hooke’s law, we have

T _ duy
12 lx,=0 = # P lx,=0 =B cosw ¢

or,
g-coswt=lBCcosc7>lt+ABDsincT/1t
Thus,
,1=:’—T, D=0, BC—E%T

The boundary condition at x; =/ gives

C
ul)=0= (ACcosﬂl + &sinﬂ) coswt
cr wu cr

Thus,

C

AC = —l& tang)—l

wu

and

ﬂc wl
upy (x,t) = on (sm—x1 - tan—T- cos—Txl ) coswt

(b) Resonance occurs for
wl
tan— = o
cr
or
nurcr
—1 21 s

n=135..

(@)

(ii)

(iif)

(iv)

v)

(vi)

(vii)

We remark that these values of @ correspond to free vibration natural frequencies with one

face traction-free and one face fixed.
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5.12 Simple Extension

In this section and the following several sections, we shall present some examples of
elastostatic problems. We begin by considering the problem of simple extension. Again, in
all these problems, we assume small deformations so that there is no need to make a distinction
between the spatial coordinates and the material coordinates in the equations of motion and
in the boundary conditions.

A cylindrical elastic bar of arbitrary cross-section (Fig. 5.6) is under the action of equal and
opposite normal traction o distributed uniformly at its end faces. Its lateral surface is free from
any surface traction and body forces are assumed to be absent.

X2

X1

(iglilie

LIS .

Fig. 5.6

Intuitively, one expects that the state of stress at any point will depend neither on the length
of the bar nor on its lateral dimension. In other words, the state of stress in the bar is expected
to be the same everywhere. Guided by the boundary conditions that on the planesx; = 0 and

x1=1Ty1=0,T31 = T3; = 0 and on the planes x, = a constant and tangent to the lateral
surface, T1p = Ty = T3, = 0, it seems reasonable to assume that for the whole bar

T11 =0, T22 = T23 = le = T13 = T23 =0 (5121)

We now proceed to show that this state of stress is indeed the solution to our problem. We
need to show that (i) all the equations of equilibrium are satisfied (ii) all the boundary
conditions are satisfied and (iii) there exists a displacement field which corresponds to the
assumed stress field.

(i) Since the stress components are all constants (either o or zero ), it is obvious that in the
absence of body forces, the equations of equilibrium 47;;/dx; = 0 are identically satisfied.

(ii)The boundary condition on each of the end faces is obviously satisfied. On the lateral
cylindrical surface,

n = Oe; + nyey + n3es (i)
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and
t=Tn= nz(Tez) + n3(Te3) = n2(0) + n3(0) =0 (i)

Thus, the traction-free condition on the whole lateral surface is satisfied.

(iii) From Hooke’s law, the strain components are obtained to be

Ey = E—IY [T11 = v (Typ + T33)] = Ely (5.12.2a)
Ep= El}—, [Ty — ¥ (Taz + Tg )] = =¥ Eiy (5.12.2b)
Ep = E_IY[T33 —v(Ty + Tl = _VEO): (5.12.2¢)
Ep=Ep=Exn=0 (5.12.2d)

These strain components are constants, therefore, the equations of compatibility are automat-
ically satisfied. In fact it is easily verified that the following single-valued continuous
displacement field corresponds to the strain field of Eq. (5.12.2)

u = Z X, U= _(vl) X2 U3 = —(vl) X3 (5°12'3)
Ey EY EY

Thus, we have completed the solution of the problem of simple extension (¢>0 ) or compres-
sion (0<0). We note that Eq. (5.12.3) is the unique solution to Eqs. (5.12.2) if rigid body
displacement fields (translation and rotation) are excluded.

If the constant cross-sectional area of the bar is 4, the surface traction o on either end face
gives rise to a resultant force of magnitude

P=0cA (5.12.4)

passing through the centroid of the area 4. Thus, in terms of P and A, the stress components
in the bar are

[ p ]
" 00

[T]={0 0 0 (5.12.5)

000

Since the matrix is diagonal, we know from Chapter 2, that the principal stresses are
P/A4,0, 0. Thus, the maximum normal stress is

(T)max =

(5.12.6)

|y
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It acts on normal cross-sectional planes, and the maximum shearing stress is

(To)max = —2% (5.12.7)

and it acts on planes making 45° with the normal cross-sectional plane.

Let the undeformed length of the bar be ! and let Al be its elongation. Then Ej; = -All— and
from Eqgs. (5.12.2a) and (5.12.4), we have

Pl
=1t 12
Al=— Ey (5.12.8)

Also, if d is the undeformed length of a line in the transverse direction, its elongation Ad is
given by

'VPd
= =& 5.12.9
Ad E ( )

The minus sign indicates the expected contraction of the lateral dimension for a bar under
tension.

In reality, when a bar is pulled, the exact nature of the distribution of surface traction is
often not known, only the resultant force is known. The question naturally arises under what
conditions can an elasticity solution such as the one we just obtained for simple extension be
applicable to real problems. The answer to the question is given by the so-called St. Venant’s
Principle which can be stated as follows:

If some distribution of forces acting on a portion of the surface of body is replaced by a different
distribution of forces acting on the same portion of the body, then the effects of the two different
distributions on the parts of the body sufficiently far removed form the region of application of the
forces are essentially the same, provided that the two distribution of forces have the same resultant
force and the same resultant couple.

The validity of the principle can be demonstrated in specific instances and a number of
sufficient conditions have been established. We state only that in most cases the principle has
been proven to be in close agreement with experiments.

By invoking Saint-Venant’s principle, we now regard the solution we just obtained for
“simple extension” to be valid at least in most part of a slender bar, provided the resultant
force on either end passes through the centroid of the cross-sectional area.

Example 5.12.1

A steel circular bar, 2 ft (0.61 m) long, 1 in. (2.54 cm) radius, is pulled by equal and opposite
axial forces P at its ends. Find the maximum normal and shear stresses if P = 10,000 lbs

(44.5kN). Ey = 30x10° psi (207 GPa.) and v = 0.3.
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Solution. The maximum normal stress is

P 10,000 .
(Tp)max = 1= " x - 3180 psi. (21.9 Mpa.)
The maximum shearing stress is
3180

(Tmax = = = 1590 psi. (11.0 Mpa.)

and the total elongation is

Pl (10,000)(2%x12)
AEy 7 30x10%
The diameter will contract by an amount
vP d= (0.3)(10,000)(2)

Al = =2.54%10" 2 in. (64.5 um.)

-4.
—Ad = =0.636x10" "in. (1.61 xm.)
EyA (30x10%)(x)

Example 5.12.2

N

\ —P

N '] ¢ N

N N

) R

Pi=— p=—r — P>
Py——] P2
Fig. 5.7

A composite bar, formed by welding two slender bars of equal length and equal cross-sec-
tional area, is loaded by an axial force P as shown in Fig. 5.7. If Young’s moduli of the two

portions are Eggl) and Eg,g), find how the applied force is distributed between the two halves.

Solution. Taking the whole bar as a free body, the equation of static equilibrium requires
that
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P=P,-P, @)

Statics alone does not determine the distribution of the load (a statically indeterminate
problem), so we must consider the deformation induced by the load P. In this problem, there
is no net elongation of the composite bar, therefore

Pl Pl )
+ =0 (ii)
AEY  4EP

Combining Eqgs. (i) and (ii), we obtain

; P =_—P
1+ EP/EP) P 1+ EP/ED)

If in particular, Young’s moduli are Eg}) = 207 GPa (steel) and Eg) = 69 GPa.(aluminum),
then

P = (iif)

-P .
P1=§4—', P2='_4— (IV)

5.13 Torsion of a Circular Cylinder

Let us consider the elastic deformation of a cylindrical bar of circular cross-section (of
radius a and length/), twisted by equal and opposite end moments M, (see Fig. 5.8). We choose

the x; axis to coincide with axis of the cylinder and the left and right faces to correspond to the
plane x; = 0 and x; = [ respectively

By the symmetry of the problem, it is reasonable to assume that the motion of each
cross-sectional plane induced by the end moments is a rigid body rotation about the x; axis.

This motion is similar to that of a stack of coins in which each coin is rotated by a slightly
different angle than the previous coin. Itis the purpose of this section to demonstrate that for
a circular cross-section, this assumption of the deformation leads to an exact solution within
the linear theory of elasticity.

Denoting the small rotation angle by 8, we evaluate the associated displacement field as
u = (fe;) X r= (fe))X(xie; +xye; +x3e3) =0 (xpe3 —x3€) (5.13.1a)

or,
Uy = 0, Uy = —0x3, Uz = 9x2 (5.13.1b)

where 0 = 6 (x1)
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Fig. 5.8

Corresponding to this displacement field are the nonzero strains

1 40

Ep=En=-3%%" (5.13.2a)
1 46
E13 = E31 = Engq (5.13.2b)
The nonzero stress components are , from Hooke’s law

a6
T12 = T21 = —ux3 6— (51333)

X1

= Tar =gy 2

Tiz=Ty=#x; a1y (5.13.3b)

To determine if this is a possible state of stress in the absence of body forces, we check the
equilibrium equations 37;;/dx; = 0. The first equation is identically satisfied, whereas from

the second and third equations we have
2
(4
—px3 {i—] =0 (5.13.4a)

2
dx1

d2
+pxg || =0 (5.13.4b)
dxl
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Thus,

a‘i—e— = @' = constant. (5.13.5)
X1

Interpreted physically, we satisfy equilibrium if the increment in angular rotation (i.e, twist per
unit length) is a constant. Now that the displacement field has been shown to generate a
possible stress field, we must determine the surface tractions that correspond to the stress field.

On the lateral surface (see Fig. 5.9 ) we have a unit normal vector n = (1/a)(x,e; + x3e3).
Therefore, the surface traction on the lateral surface

) 0 Ty Tiz| |O 1172 Typ +x3T13
[t =[T][n] =~ | T2 0 O0f|x|= 2 0 (5.13.6)
T31 0 0 X3 0

Substituting from Eqgs. (5.13.3) and (5.13.5), we have
t= % (=x%30 " +x,x30)e; = 0 (5.13.7)

Thus, in agreement with the fact that the bar is twisted by end moments only, the lateral surface
is traction free.

Xy

Fig. 5.9

On the face x; = /, we have a unit normal n = e; and a surface traction
t=Te; = Tp1e; + T3183 (5.13.8)

This distribution of surface traction on the end face gives rise to the following resultant
(Fig. 5.10)
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Ry=[Tpda=0 (5.13.9a)
Ry=[Tyndd=-u6' [x3d4=0 (5.13.9b)
Ry=[Tydd=p8' [x,d4=0 (5.13.9¢)
Mi=f (ol -3 Tn)dd =o' [ +5)dd=p0', GBI
My=M;=0 (5.13.9¢)

wherel, = % a*/2isthe polar moment of inertia of the cross-sectional area. We also note that
f xpdA = f x3dA = 0 because the area is symmetrical with respect to the axes.

Fig. 5.10

The resultant force system on the face x; = 0 will similarly give rise to a counter-balancing
couple —u6 ' I,. Therefore, the resultant force system on either end face is a twisting couple
M; = M, and it induces a twist per unit length given by

6'=—1
pl,

(5.13.10)

This indicates that we can, as indicated in Section 5.1, determine the shear modulus from a
simple torsion experiment.
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In terms of the twisting couple M, the stress tensor becomes

0 _Mix; MtxZT
Ip IP
—-M;x
m=|—7= 0 0 (5.13.11)

14

M
=0 o

|

In reality, when a bar is twisted the exact distribution of the applied forces is rarely, if ever
known. Invoking St. Venant’s principle, we conclude that as long as the resultants of the
applied forces on the two ends of a slender bar are equal and opposite couples of strength
M,, the state of stress inside the bar is given by Eq. (5.13.11).

Example 5.13.1

For a circular bar of radius a in torsion (a) find the magnitude and location of the greatest
normal and shearing stresses throughout the bar; (b) find the principal direction at the position
x=0,x3=a.

Solution. (a) We first evaluate the principal stresses as a function of position by solving the
characteristic equation

2 ®
M,
pLaay] [7&] WE+x3)=0
P
Thus, the principal values at any point are
M. 172 M ..
A=0 and A== (x% +x§) =t (ii)
IP IP

where r is the distance from the axis of the bar.

In this case, the magnitude of the maximum shearing and normal stress at any point are
equal and are proportional to the distance . Therefore, the greatest shearing and normal stress
both occur on the boundary, r = a with

M;a
(T)max = (To)max = i (5.13.12)
(b) For the principal value 1 = M, a/l, at the boundary points (x1, 0, a) the eigenvector
equation becomes

Mt a Mt a _ (iii)
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Ma M;a 0 (iv)
- hy- 5 M=
IP IP
Mt a (V)
—'I— ny = 0
4

Therefore, the eigenvector is given by n = (V2/2)(e; — e, ). This normal determines a plane
perpendicular to the lateral face which makes a 45° angle with the x;-axis. Frequently, a crack

along a helix inclined at 45 to the axis of a circular cylinder under torsion is observed. This
is especially true for brittle materials such as cast iron.

Example 5.13.2

In Fig. 5.11, a twisting torque M; is applied to the rigid disc A. Find the twisting moments
transmitted to the circular shafts on either side of the disc.

M

|
|

VIIIIIII
ANNNNANRRN NN Y

X

=
—)
=
]
=)

/

Solution. Let M1 be the twisting moment transmitted to the left shaft and M, that to the
right shaft. Then, the equilibrium of the disc demands that
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In addition, because the disc is assumed to be rigid, the angle of twist of the left and right shaft
must be equal:

A (i)
pl, nl
Thus,
M111=M212 (lll)
From Egs. (i) and (iii), we then obtain
N _ (A (iv)
M, = [ll + 12] M, M= (ll + 12) M,

Example 5.13.3
Consider the angle of twist for a circular cylinder under torsion to be a function of x; and
timet,ie., 0 =0 (x1,¢t).

(a) Determine the differential equation that 6 must satisfy for it to be a possible solution in
the absence of body forces. What are the boundary conditions that 8 must satisfy (b) if the
plane x; = 0is a fixed end; (c) if the plane x; = 0O is a free end.

Solution. (a) From the displacements

ur =0, uy=—0(xy,0)x3 u3z=06(x1,8)x; (i)
we find the stress to be
a0 i
Tip=Tn=2uEpn=—px3 - (iia)
1
60 .
Ti3=Ty =2uEz=pxy — (iib)
1
and
Ti1=Tn=T33=Ty=0 (iic)
The second and third equations of motion give
o x 26 _ 0o 6 (iiia)
—px3 = — g9
ax% o3 at?
2 2
a°6 a°0
KXy~ =PoXr—5 (iiib)

axq ot



The Elastic Solid 265

Therefore, 6 (x; , ¢ ) must satisfy the equation

2 2
2 96 070 .
T3 3 (iv)
ax7 ot

where cr = Vu/p,.
(b) At the fixed end x; = 0, there is no displacement, therefore,

00,t)=0 ")
(c) At the traction-free end x; = 0,t = —Te;y = 0. Thus, T»;| 2=0=0,T3 | x=0=0, there-
fore,

0 -
5 0.0=0 v)

Example 5.13.4

A cylindrical bar of square cross-section (see Fig. 5.12) is twisted by end moments. Show
that the displacement field of the torsion of the circular bar does not give a correct solution to
this problem.

Solution. The displacement field for the torsion of circular cylinders has already been shown
to generate an equilibrium stress field. We therefore check if the surface traction of the lateral
surface vanishes. The unit vector on the plane x3 = a is e3, so that the surface traction for the

stress tensor of Eq. (5.13.1) is given by

M t x2
IP

Similarly, there will be surface tractions in the e; direction on the remainder of the lateral

surface. Thus, the previously assumed displacement field must be altered. To obtain the actual
solution for twisting by end moments only, we must somehow remove these axial surface
tractions. As will be seen in the next section, this will cause the cross-sectional planes to warp.

t=Tez = T13e1 = e
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X2
X2
M, ala
" C gl
(4
X3
Fig. 5.12

5.14 Torsion of a Noncircular Cylinder

For cross-sections other than circular, the simple displacement field of Section 5.13 will not
satisfy the tractionless lateral surface boundary condition (see Example 5.13.4). We will show
that in order to satisfy this boundary condition, the cross-sections will not remain plane.

We begin by assuming a displacement field that still rotates each cross-section by a small
angle 6, but in addition there may be a displacement in the axial direction. This warping of
the cross-sectional plane will be defined by u; = ¢(x;,x3). Our displacement field now has

the form

up=opxz,x3), up=-x36(x1), uz=x26(x1) (5.14.1)
The associated nonzero strains and stresses are given by
' 0 14,
Tip=Tn=2uEp=—-ux36 +”£ (5.14.22)
, 0 .
Ti3=Ty3=2pEpn=px6 +#T¢; (5.14.2b)

The second and third equilibrium equations are still satisfied if @ ' = constant. However,
the first equilibrium equation requires that

o, P _, (5.143)
ol axd
X2 X3

Therefore, the displacement field of Eq. (5.14.1) will generate a possible state of stress if ¢
satisfies Eq. (5.14.3). Now, we compute the traction on the lateral surface. Since the bar is
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cylindrical, the unit normal to the lateral surface has the form n = nje; + nse3 and the
associated surface traction is given by

, J d
t=Tn=[p0'(—nyx3+n3xy) +u (Exﬂznz + Ex%n:;) ler

= [ 0'(—nzx3 + n3x3) + #(Ve)-nje; (i)

We require that the lateral surface be traction-free, i.e., t = 0, so that on the boundary the
function ¢ must satisfy the condition

d .
2% = (Vp)'n=0"'(nyx3 —n3x;)

(5.14.4)

Equations(5.14.3) and (5.14.4) define a well-known boundary-value problemf which is
known to admit an exact solution for the function ¢. Here, we will only consider the torsion of
an elliptic cross-section by demonstrating that

o =Axyx3 (5.14.5)

gives the correct solution.

Taking A as a constant, this choice of ¢ obviously satisfy the equilibrium equation [Eq.
(5.14.3)]. To check the boundary condition we begin by defining the elliptic boundary by the
equation

2 2
X2 X3 .
frz,x3)=—75+5=1 (i)
a b
The unit normal vector is given by
v _ 2 |2 .5
TV |22 (i)
and the boundary condition of Eq. (5.14.4) becomes
i 2 d 2 . 22 .
(Ex%) b xy + (3.%) a“x3=0"xx3(b"—a") (iv)
Substituting our choice of ¢ into this equation, we find that
2 2
4=g |24 (5.14.6)
a® + b?

+ It is known as a Neumann problem
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Because A does turn out to be a constant, we have satisfied both Eq. (5.14.3) and (5.14.4).
Substituting the value of ¢ into Eq. (5.14.2), we obtain the associated stresses

2
2ua . 14,

2

2ub , .14,
Ty =Ts= [—Ju—‘— ) (5.14.7b)

az-i-b2

This distribution of stress gives a surface traction on the end face, x; =/
t =Ty + T31e3 2]
and the following resultant force system
Ri=Ry=R3=M=M3=0 (vi)
2u8' [ 272 2.2
M1=f(x2T31—x3T21)dA= 2+b2 [a fx3dA+b fxsz]
a

2u6'

7 (@ Ip + b2 I33) (vii)

a +

Denoting M; = M, and recalling that for an ellipse I33 =« ab/4 and In=n b3 a/4, we
obtain

2,2
y_a +bh (5.14.8)
0'=—5—=—M,
wTa b’u

Similarly the resultant on the other end face x; = 0 will give rise to a counterbalancing
couple.

In terms of the twisting moment, the stress tensor becomes
[ o M 2Mx
nab® nd’h

] = 0 0 5.14.9
7] Jtab3 ( )
2M,
2 0 0
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Example 5.14.1

For an elliptic cylindrical bar in torsion, (a) find the magnitude of the maximum normal and
shearing stress at any point of the bar, and (b) find the ratio of the maximum shearing stresses
at the extremities of the elliptic minor and major axes.

Solution. Asin Example 5.13.1, we first solve the characteristic equation

2.2 2
13-1(%) 2,581 )
7 ab & b
The principal values are
172
2 2
2M; (x; x ..
=0, and A=:—i[—i+—j] (i)
mab |4 b
which determines the maximum normal and shearing stresses:
172
2 2
_ M (x2 x5
(Ts)max = (Tn-)max = xab (;‘{ + -b_4J (5.14.10)
(b) Supposing that b>a, we have at the end of the minor axis (x, = a, x3 = 0),
- [ (1 i
(Ts)max - (Jt ab) (a) ( )

and at the end of major axis (x; =0, x3=05)

2M, .
(Tn)max = (n_alt)) (%) (iv)

The ratio of the maximum stresses is therefore b/a and the greater stress occurs at the end of
the minor axis.

5.15 Pure Bending of a Beam

A beam is a bar acted on by forces or couples in an axial plane, which chiefly cause bending
of the bar. When a beam or portion of a beam is acted on by end couples only, it is said to be
in pure bending or simple bending. We shall consider the case of cylindrical bar of arbitrary
cross-section that is in pure bending,

Figure 5.13 shows a bar of uniform cross-section. We choose thex; axis to pass through the
cross-sectional centroids and letx; = 0 andx; = [ correspond to the left- and right-hand faces
of the bar.
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For the pure bending problem, we seek the state of stress that corresponds to a tractionless
lateral surface and some distribution of normal surface tractions on the end faces that is
statically equivalent to bending couples Mg = Mje; + M3e3 and M; = —Mpy, (note that the
M; component is absent because My is a twisting couple ). Guided by the state of stress
associated with simple extension, we tentatively assume that Ty, is the only nonzero stress
component and that it is an arbitrary function of x;.

M

Mr
:> <\J y
(4
X3 X
Fig. 5.13
To satisfy equilibrium, we require
aT-: .
Loy @)

6x1

i.e., T11 = T1q (x2,x3). The corresponding strains are

1 v ..
Ey = Ey Ty, Ep=Ex= “Ey T11, (iia)

Ep=Ep=Ep=0 (iib)

Since we have begun with an assumption on the state of stress, we must check whether these
strains are compatible. Substituting the strains into the compatibility equations [Eq. ( 3.16.7-
12) we obtain

8T 8Ty 8Ty (iii)
—2 =0, —/5=0 =0
axy ax3

dx30x; -

which can be satisfied only if 77, is at most a linear function of the form

Thn=a+Bx+vx; (iv)
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Now that we have a possible stress distribution, let us consider the nature of the boundary
tractions. As is the case with simple extension, the lateral surface is obviously traction-free.
On the end face x; = I, we have a surface traction

t=Te =T e W)
which gives a resultant force system
R1=fT11dA=afdA+ﬂfx2dA+yfx3dA=aA (vi)
R, =R3=0 (vii)
M;=0 (viii)

M2=fx3T11dA =afx3dA +,fo2x3dA +yfx§dA
=z +vIy (ix)

My = —fxz TindA = -a fxsz —ﬂfxzsz —yfx2x3dA
=—flp-yl; ®)

where A is the cross-sectional area, Iy, I3, and I3 are the moments and product of inertia of
the cross-sectional area. On the face x; = 0, the resultant force system is equal and opposite
to that given above.

we willseta = 0 to make Ry = 0 so that there is no axial forces acting at the end faces.
We now assume, without any loss in generality, that we have chosen the x; and x5 axis to

coincide with the principal axes of the cross-sectional area (e.g., along lines of symmetry) so
that I3 = 0. In this case, from Egs. (ix) and (x), we have 8 = ~M3/I33 andy = M,/I5; so that

the stress distribution for the cylindrical bar is given by
Ty = %x B %xz (5.15.1)
In Iz
and all other Tj; = 0.

To investigate the nature of the deformation that is induced by bending moments, for
simplicity we let M3 = 0. The corresponding strains are

M, b —E v M, (5.15.2a)

== X s = = X

11 InE 3 22 33 Iy Ey 3
E12 = E13 = E23 =0 (5.152b)

These equations can be integrated (we are assured that this is possible since the strains are
compatible) to give the following displacement field:
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M,
uy = Fyln X1x3 —3xy + arx3 + 0y (5.15.3a)
M,
Uy = —v Evly xyx3+tazx; —ajxz +as (5.15.3b)
M, 2 2 2
uz=-— 2y Iy [x] —v (2 —x3)] —azx; + a1 xp + ag (5.15.3¢)

where a; are constants of integration. In fact, @4, a5, ag define an overall rigid body
translation of the bar and a1, a;, a3 being constant parts of the antisymmetric part of the
displacement gradient, define an overall small rigid body rotation. For convenience, we let all
the a; = 0] note that this corresponds to requiring u = 0 and (Vu)A = 0 at the origin ]. The
displacements are therefore,

M2 v Mz
1 EYIZZ 143 2 EYI22 243
_ M, 22 5.15.4b
U3 = =g b= (g =) ( )

Considering the cross-sectional plane x; = constant, we note that the displacement perpen-
dicular to the plane is given by
Myx;
Eyly

(5.15.5)

X3

Since uq is a linear function of x3, the cross-sectional plane remains plane and is rotated about
the x, axis (see Fig. 5.14) by an angle

0= tang = - M1 (5.15.6)
x3 Eylp

In addition, consider the displacement of the material that is initially along the x; axis
(x2=x3=0)

3 My (5.15.7)
2Ey Iy

u1=u2=0, usz =

The displacement of this material element ( often called the neutral axis or neutral fiber ) is
frequently used to define the deflection of the beam. Note that since

e, = tanf (5.15.8)
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the cross-sectional planes remain perpendicular to the neutral axis. This is a result of the
absence of shearing stress in pure bending.

e
]
i Neutral Fiber
X. ||
3
H1
X I
3 I
Fig. 5.14

Example 5.15.1

Figure 5.15 shows the right end face of a rectangular beam of width 15 cm and height 20 cm.
The beam is subjected to pure bending couples at its ends. The right-hand couple is given as
M = 7000e, Nm. Find the greatest normal and shearing stresses throughout the beam.

Solution. We have

_ Maxs ®

and the remaining stress components vanish. Therefore, at any point

Moxs (i)
(Tr)max = Ty
22
and
My x3 (iii)
(T max =

2y
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15cm

X, 20cm

X3
Fig. 5.15

The greatest value will be at the boundary, i.e.,x3 = 10" m. To obtain a numerical answer,
we have

Iy = Tli (15%1072) (20x1072) = 10~ m*

and the greatest stresses are

-1
- 0O _ gy

(Tn)max

(T)max = 3.5%10° Pa

Example 5.15.2

For the beam of Example 5.15.1, if the right end couple is M = 7000 (e; + e3)Nm and the
left end couple is equal and opposite, find the maximum normal stress.

Solution. We have

I3=0563x10"*m*, I, =10"*m*
Ty = —2— — 222 = (T0x3 — 124 x,)x 10%Pa

The maximum normal stress occurs atx; = —7.5X 1072 m and x3 = 10~ m with

T11 = 16.3 MPa
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5.16 Plane Strain

If the deformation of a cylindrical body is such that there is no axial components of the
displacement and that the other components do not depend on the axial coordinate, then the
body is said to be in a state of plane strain. Such a state of strain exists for example in a
cylindrical body whose end faces are prevented from moving axially and whose lateral surface
are acted on by loads that are independent of the axial position and without axial components.

Letting the e3 direction correspond to the cylindrical axis, we have

ur=uy(x1,x), up=uz(x1,x2), uz3=0 (5.16.1)

The strain components corresponding to this displacement field are:

_ duq _ du, _ 1 (0w Oxp (5 16 2&)
Epn= o Ep= P Ep=3 [ax2 ™)
E13 = E23 = E33 =0 (5162b)

and the nonzero stress components are Ty1, T12, T2z, T33, where
T3 =v(T11 + Tx) (5.16.3)
This last equation is obtained from the Hooke’s law, Eq. (5.4.8¢) and the fact that E53 = 0 for
the plane strain problem.
Considering a static stress field with no body forces, the equilibrium equations reduce to

0Ty  9Ta _ (5.16.42)
ax1 6x2

0Tp 9Tn _ (5.16.4b)
axl 6x2

T3 _y (5.16.4¢)
6x3

Because T33 = T33(x1,x3 ), the third equation is trivially satisfied. It can be easily verified

that for any arbitrary scalar function ¢, if we compute the stress components from the following
equations

2 2 2
¢ ap p
Tin=—"F%, Tp=- , T9p=—F 5.16.5
11 o 12 Grpax, 2 o2 ( )

then the first two equations are automatically satisfied. However, not all stress components
obtained this way are acceptable as a possible solution because the strain components derived
from them may not be compatible; that is, there may not exist displacement components which
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correspond to the strain components. To ensure the compatibility of the strain components,
we obtain the strain components in terms of ¢ from Hooke’s law Eqgs. (5.4.8) [and using
Eq. (5.16.3)]

1
Ey =7

_1 2, 9% o
1—v) Ty —v(L+v)Tp]=—[(1 - —v(1+ 16.
By (A=) T —v(A+9)Tp] =g [(1 - )ax% v( 1’)ax%] (5.16.6a)

S U N 1 a5 3% .
Bn =gy (=T -v L+ Tul =gl =) S8 -1+ T8 G6e)

2
E12=:El; 1+ )Ty =— - - vy 2P (5.16.6¢)

6x1 GX2
E13 = E23 = E33 =0 (516d)

and substitute them into the compatibility equations, Egs. (3.16.7) to (3.16.12). For plane
strain problems, the only compatibility equation that is not automatically satisfied is

P°Eyy N Ey . En

= (5.16.7)
6x% ax% ‘axl aJC2
Thus, we obtain the following equation governing the scalar function ¢:
4
- =L+ 2——5"— —“1
6x1 6x1 ax2 ax2
ie.,
4
—@ + 2—ﬂ —Q =0 (5.16.8)

6x1 6x1 ax2 8x2

Any function ¢ which satisfies Eq. (5.16.8) generates a possible elastic solution. In par-
ticular, any third degree polynomial (generating a linear stress and strain field ) may be utilized.
The stress function ¢ defined by Eqs. (5.16.5) and satisfying Eq. (5.16.8), is called the Airy
Stress Function.

We can also obtain from the Hooke’s law [Eq. (5.16.6)], the compatibility equation
{Eq. (5.16.7)] and the equations of equilibrium [Egs. (5.16.4)] the following : [See Prob. 5.77]

3 &
— + | (T11+T)=0 (5.16.9)

axl 6x2

which may also be written as

V2 (T + Tpp) = 0 (5.16.10)
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where

2 2 (itic)

ax% Bx%

Example 5.16.1
Consider the Airy stress function

3
Pxy,x) = %xz

(a) Obtain the stresses for the state of plane strain;

(b) If the stresses of part(a) are those inside a rectangular bar bounded by
x1=0, xy=1, x = +(h/2) and x3 = +(b/2), find the surface tractions on the boundaries

(c) If the boundary surfaces x3 = % (b/2) are traction-free, find the solution.

Solution. (a) From Eq. (5.16.5)

Tiu=Bx, Tn=0, T=vBx (iia)
Tp=T3=T3=0 (iib)
that is,
B2 0 0 ..
m=[0 0 0 (iic)
0 0 vhr
(b) On the facex; = 0, t=T (—ey) = —fxre; (iiia)
Onthe facex; =1, t=T (e)) =P xze; (iiib)
On the facesx, = £(h/2), t=T (zey) =0 (iiic)
On the facesx3 = =(b/2), t=T(*e3) = *vfix, e3 (iiid)

We note that the surface normal stress on the side faces x3 = % (b/2)are required to prevent
them from moving in thexs direction.

(¢) In order to obtain the solution for the case where the side faces x3 = *+(b/2) are traction
-free (and therefore have non zero u3), it is necessary to remove the normal stresses from these
side faces. Let us consider the following state of stress
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00 O (iv)
m=1(00 o
00 —vBx,

This state of stress is obviously a possible state of stress because it clearly satisfies the equations
of equilibrium in the absence of body forces and the stress components, being linear inx,, give

rise to strain components that are also linear inx; so that the compatibility conditions are also

satisfied. Superposing this state of stress to that of part (a) , that is, adding Eq. (iic) and Eq.
(iv) we obtain

=
&

)

00
[T} = 00
00

[ R}

We note that this is the exact solution for pure bending of the bar with couple vectors parallel
to the direction of es.

In this example, we have easily obtained, from the plane strain solution where the side faces
x3 = * (b/2) of the rectangular bar are prevented from moving normally, the state of stress
for the same rectangular bar where the side faces are traction-free, by simply removing the
component 733 of the plane strain solution. This is possible for this problem because the T33
obtained in the plane strain solution of part (a) happens to be a linear function of the
coordinates.

Example 5.16.2
Consider the state of stress given by
00 0 )
M=100 0 (@)
0 0 G(xy,x2)

Show that the most general form of G(xy , x; ) which gives rise to a possible state of stress in
the absence of body force is

Gxp,x)=axy+Bx+v. (ii)
Solution. The strain components are

)
Ep =~ Gl %) = En (iiia)

Ez = Eiy G(x1,x2) (iiib)
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Epp=E;3=Ey=0 (iiic)

From the compatibility equations, Egs. (3.16.8), (3.16.9) and (3.16.7), we have
’G 3G _ 3G

Z=0, 2

ax% ax% ’ axl 6x2

=0 (iv)

Thus, G(x1 2 ) = ax1 + Bx; + y. Inthe absence of body forces, the equations of equilibrium
are obviously satisfied.

Example 5.16.3

Consider the stress function ¢ = a x; x% + fx1x

(a) Is this an allowable stress function?
(b) Determine the associated stresses for the plane strain case.

(c) Determine a and B in order to solve the plane strain problem of a cantilever beam with
end load P (Fig. 5.16).
X2
|

X

NN\

hi2 hi2 7

X 3-- // o X 1
hi2 hi2 %
0,

'
P

ANN\N

Fig. 5.16

(d) If the faces x3 = *+b/2 are traction-free, are the stress components given in (b) still valid
for this case if we simply remove T35 from them ?

Solution. (a) Yes, because the stress function satisfies Eq. (5.16.8) exactly.
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(b) The stress components are

2 2 2
d d p i
Iy = 2—6ax1x2,T22=—‘§=0, == =-f-3ax @
3x2 0, 1 X10X2
i.e., for the plane strain problem
2
6ax1x2 "'/3"‘3 axy 0 (ll)
[T]=|{-B-3 ax% 0 0
0 0 —-6vaxyx;
(c) On the boundaries, x; = xh/2, the tractions are
3ah’ (i)

t=x(Tpe, + Tipe1) = (- - " )e;

But, we wish the lateral surface (x, = +h/2) to be traction-free, therefore

3 12 (iv)
p=-—Fa
On the boundary x; = 0,
= —Te; = (B +3ax3)e, V)

This shearing traction can be made equipollent to an applied load Pe; by setting
—P=pfdt+3affda=pa+3al
where 4 =bhand I=bh>/12. Substituting for 8, we have

3 3
ped (z,,,,s_&) _ (&]a

4 4 2
Therefore, a = 2P/bh3’ﬁ = —3P/2bh and the stresses are
T;1 = 12Px Xy = Px X
1= 31X = XX
Y I
_3P _P 2
Tn=7%7"5%2

In order that the state of plane strain is achieved, it is necessary to have normal tractions
acting on the side faces x3 = +b/2. The tractions are in fact t = =T33e3 = 6 v ax1 X3 €.

(d) Since Tx3 is not a linear function of the coordinates x; and x,, from example 5.16.2, we
see that we cannot simply remove T33 from the plane strain solution to arrive at a the stress
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state for the beam where the side faces x3 = £b/2 are traction free. However, if b is very very
small, then it seems reasonable to expect that the application of -T33 on these side face alone
will result in a state of stress inside the body which is essentially given by

00 0 _
[T]=]00 0 (iv)
00 —Ty

(Indeed it can be proved that the errors incurred in this equation approach zero with the second
power of b as b approaches zero). Thus, the state of stress obtained in part (b), with T33 taken

to be zero, is the state of stress inside a thin beam under the same external loading as that in
the plane strain case. Such astate of stress is known as the state of plane stress where the stress
matrix given by

Ty T2 O

[T]= (T2 T2 O (5.16.11)
0 0 0

The strain field corresponding to the plane stress state is given by

1 1 d
Ep = Ey [Ty —vTy], Ex= Ey [Tp—vTnl Exz= “Ey (T + T)
Epp= % (1+v)Tiy, Ep3=Ep=0 (5.16.12)

5.17 Plane Strain Problem in Polar Coordinates

In Polar coordinates, the strain components in plane strain problem are, [with
TZZ =v (TIT + TGG)],

E,,=Eiy[(1—v2)r,,—v(1+v)r99]

Eeo=Eiy[(1—v2)Tee—v(1+v)T,,1

_ (1+v)
Eq Ey T
E,=Eg=E,=0 (5.17.1)

The equations of equilibrium are [see Eqs. (4.8.1)], (noting that there is no z dependence).

100rT,) 10Ty E‘i_
r or +r 30 =0 (5.17.2a)
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a(rzTHr) 13T (5.17.2b)

or r60 =0

1
2

The third equation is automatically satisfied, because T,9 = T,, = 0 and T, is not a function
of z.

It can be easily verified that the equations of equilibrium Eq. (5.17.2a) are identically
satisfied if

T, =19 126_40 (5.17.3a)
ror 49
2
d
Top =22 (5.17.3b)
or
9 (18
To=—% (r —ag) (5.17.3¢)

where ¢ is the Airy stress function. In Section 5.16, we see that in order to satisfy the
compatibility conditions, the Cartesian stress components Ty, + 75 must satisfy
Eq. (5.16.9),i.e.,
2
2,2
8x1 axz

2
(T +Tp)= (5.17.4)

To derive the equivalent expression in cylindrical coordinates, we note that Tj1 + T, is the
first scalar invariant of the stress tensor. Therefore

14 1
Ti1+Tyn=T,+Ty= ﬁ —2 30‘0 a—g (5.17.5)
r

Also, the Laplacian operator V2= (az/ax% + az/ax% ) takes the following form in polar
coordinates
2
V2 = % + li + — 1 a
ot ror 692
Thus, the function ¢ must satisfy the biharmonic equation

2 pe)
o 19 o 1dp 19| _
(ar2+’a’+r 362][ +r6r r2892] 0 (5.17.6)

If ¢ is a function of r only, we have,
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2
_lde o _do =
T, or’ Too 2 Te=0 (5.17.7)
and
dp 200 1 1dp 13d“’ 0 (5.17.8)
@t ra® FAat P
The general solution of this equation is [See Prob. 5.78]
p=Alnr+BInr+C?+D (5.17.9)
The stress field corresponding to this stress function is
T, = éz +B(1+2lnr)+2C (5.17.10a)
r
4 10b
Tog=—>+B3+2Inr)+2C (5.17.10b)
r
Te=0 (5.17.10¢)
and the strain components are:
1 |(Q+y
”=Ef -(—rﬁ+(1 —3v—4v )B +2(1-v-2 )B Inr +2(1-v— -7 )C (5.17.11a)
1 1+v
Eg=0 (5.17.11c)
Since
Ouy 1945 5.17.12a
E”=¥, Egg—rao ( . )
_1(1%%,  Oup U 5.17.12b
E,g—z( ao+———;-) (5.17.12b)

the displacement components can be obtained by integrating the above equations. They are
[See Prob. 5.79], (ignoring the terms that represent rigid body displacements)

u, = EY M ~B(1+v)y+2B1-v—-2vV)inr

+2C(1 —v =292 )r] (5.17.13a)
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ug 43’0 (1= %) (5.17.13b)

5.18 Thick-walled Circular Cylinder under Iinternal and External Pressure

Consider a circular cylinder subjected to the action of an internal pressure p; and an external
pressure p,. The boundary conditions for the plane strain problem are:

T,=-p; atr=a (5.18.1a)
T,=-p, atr=b (5.18.1b)
These boundary conditions can be easily shown to be satisfied by the following stress field

T,=%+2C, Tp=—-2+2C, Tg=0 (5.182)
r r

These components of stress are taken from Eq. (5.17.10) with B = 0 and represent therefore,
a possible state of stress for the plane strain problem, where T,, = v (T,, + Tpg). We note that
4Br 0
Ey
from a point at @ =0, trace a circuit around the origin and return to the same point, 8 becomes
27 and the displacement at the point takes on a different value. Now applying the boundary
conditions given in Egs. (5.18.1), we find that
-1 1- (@A)
Tm = Py 1 P = @ (1832)

if B is not taken to be zero, thenug = (1—v2) which is not acceptable because if we start

G+ 1+ (@)
0¥a*) -1 " 1- (@Y
Tg=0 (5.18.3¢)

Teo = pi (5.18.3b)

We note that if only the internal pressure p; is acting, T,, is always a compressive stress and
Tgg is always a tensile stress.

The above stress components together with T,, = v (T, + Tyg) constitute the exact plane
strain solution for the cylinder whose axial end faces are fixed.

As discussed in the last section, the state of stress given by Eqgs. (5.18.3) above and with
T,, = 0, can also be regarded as an approximation to the problem of a cylinder which is very
thin in the axial direction, under the action of internal and external pressure with traction-free
end faces. However, the strain field is not given by Eq. (5.17.11 ), which is for the plane strain
case. For the plane stress case,
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1 1
E, = E—),(T” v Tgg), Egg= E—},(Teo ~vTy) (5.18.4b)

1+
E,= E”}_’ (T, + Tog), Eqg= .(TY_) To (5.18.4¢)

Example 5.18.1

Consider a thick-wall cylinder subjected to the action of external pressure p, only. If the
outer radius is much much larger than the inner radius. What is the stress field?

Solution. From Egs. (5.18.3), we have

T, = —p lm@rr

T @@

2,2

1+ (a”/r)

Toop=—po——5 3

?1-@*b?)

To=0
When b is much much larger than a, these become

T, = —po[l—(az/rz)] (5.18.5a)
Top ==poll + (a*/r")] (5.18.5b)
To=0 (5.18.5¢)

5.19 Pure Bending of a Curved Beam

Fig. 5.17 shows a curved beam whose boundary surfaces are given by r=a,r = b,
0 = *a and z = %h/2. The boundary surface r =a,>=b and z = £h/2 are traction-free.
Assuming the dimension his very small compared with the other dimensions., we wish to obtain
a plane stress solution for this curved beam under the action of equal and opposite bending
couples acting on the faces 0 = *a.
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In the following we shall show that the state of stresses given in Egs. (5.17.10) together with
T,, = 0 can be used to give the desired solution. The stress components are:

T,=4+B(+2Inr)+2C (5.19.1a)
r
—A
Teo = — + B3 +2Inr)+2C (5.19.1b)
r
T,g =0 (5191C)
Since the surfaces r = a and r = b are traction-free, the constants 4, B and C must satisfy
0=%+B(1+2na)+2C (5.19.2a)
a
0= % + B(1+2nb) +2C (5.19.2b)

On the face @ = a, there is a distribution of normal stress Tgg given by Eq. (5.19.1b ). Let us
compute the resultant of this distribution of the normal stresses:

b b
R= f nghdr=h[f7l+B(r+2rlnr) + 2Cr:| (5.19.3)
a a
In view of Egs. (5.19.2 ), we have
R=0
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That is, the resultant of the distribution of normal stresses must be a couple. Let the moment
of this couple per unit width be M as shown in Fig. 5.17, then

b
-M= f Togrdr
a
ie.,
19,
~M=[-4 ln§+B(b2—a2) + B’ Inb ~ a’Ina) + C (b ~ a”)] (5.19.42)
In view of Egs. (5.19.2), Eq. (5.19.4) can also be written as [see Prob. 5.80]
~M=[-4 1n§ ~ B Inb — a®Ina) - C (b* - &° )] (5.19.4b)

Equations (5.19.2a) (5.19.2b) and (5.19.4) are three equations for the three constants 4,B
and C. We obtain,

__MM 22, b - M2 2 5.19.5
A= Nablna B N(b a’) (5.19.52a)
= 1‘—15[1;2 ~a® +2(b*Inb —~ a’lna)] (5.19.5b)
where
N =@ -a*) - 4" (in % ) 2 (5.19.5¢)
Thus
M (®8® b 2, r . 2,4 (5.19.6a)
Tp=-—7 |7 In~+b"In;+a"In— -12ba
r a b r
Tgp= -1 —at’ In b, bl + a’In? + b% - & (5.19.6b)
66 N 7 a b r
Te=0 (5.19.6¢)

5.20 Stress Concentration due to a Small Circular Hole in a Plate under Tension

Fig. 5.18 shows a plate with a small circular hole of radius a subjected to the actions of
uniform tensile stress of magnitude ¢ on the faces perpendicular to the x direction. Let us
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consider the region between two concentric circles: r = g and r = b. The surface r = a is
traction-free, i.e.,

7,=0,Tg=0 atr=a. (i)
G c

R e ——

-] 2a —
R n

—— e

- X

9 .

m ——

- .
y

Fig. 5.18

If b is much larger than a, then the effect of the small hole will be negligible on points lying on
the surface r = b so that the state of stress at r = b as a/b—>0 will be that due to the uniaxial
tensile stress o in the absence of the hole. In Cartesian coordinates, this state of stress is
Ty1 = o with all other stress components zero. In cylindrical coordinates this same state of

stress has the following nonzero stress components

g 0 g _a
==+ 50820, Tgg=5 — =

T”22 2 2

c0s20, T,y = —% sin 20 (5.20.1)

Thus, the stress vector acting on the surface r = b has the r-component and 0—component
given by

T, =2+ Zcos20 (5.20.22)
2 2
and
=9 (5.20.2b)
To 7 Sin 26

Therefore, the solution to the problem at hand can be obtained as follows: Find the elastos-
tatically possible equilibrium plane stress field which satisfies the boundary conditions: (i) at
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r=b (>>a), T, is given by Eq. (5.20.2a) and T is given by Eq. (5.20.2b) and (ii) atr =a
T,, = T,g = 0.
First, we shall demonstrate that the stress field generated from the Airy stress function in

the form of ¢ = f(r) cos 2 0, can be used to give a stress field which satisfies the boundary
conditions

atr=b, T,= %cos 20, Tg= —% sin2 6 (5-20.32)
atr =a, T,=0, Tyg=0 (5.20.3b)
Then, to this stress field, we will superpose the stress field
2 2
=9 _a =g a = (5.204)
T,=>5(1 r2> Top=5(1+ r2> To=0
which is the solution for a hollow cylinder with a very thick wall (i.e.,.b/a-> =), acted on by a
uniform radial traction g— on the outer surface r=>b only [see Egs. (5.18.5) in Example 5.18.1].

In this way, the boundary conditions Eqgs. (5.20.2) can be satisfied..
Substituting
¢ =f(r)cos260 (5.20.5)

into the equation governing the Airy’s stress function, Eq. (5.17.6), i.e.,

2 2 2

2
& 10,18 (2 10 ia_]q,:()

= +
ot ror 2o |92 ror 2 592

we obtain that the function f(r) must satisfy the following equation

2 2
4 1d _ 4| |df_ 1df 4f|_ (5.20.6)
2t d 2 2t dr 2 |~ 0
a T4y a7 r
The general solution for this equation is [see Prob. 5.81]
fr=Aar+BF+Cc5+D (5.20.7)
r
Thus,
¢p=(Ar2+Br4+C'-1£+D>00520 (5.20.8)
r
and the corresponding stress components are [see Egs. (5.17.3)]
T,=—(24+ % + % )cos26 (5.20.9a)

r r
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6C
Tog = (24 + 12 B + & )cos 26 (5.20.9b)
To= (24 + 687 —Qr% + % )sin20 (5.20.9¢)

Using Eqgs. (5.20.9), the boundary conditions (5.20.3) become

24 + §_f. + %’ - _% (5.20.10a)
24 + 6Bb? - 6;5— - % -2 (5.20.10b)
24 + ég_ + i‘.?_ -0 (5.20.10c)
a a
24 + 6Ba® - -6—5— - 2; =0 (5.20.10d)
a a

As b= | Eq. (5.20.10a) becomes 24 = 2 , S0 that 4 = —% , Eq. (5.20.10b) becomes
6Bb% =0 sothatB = 0 and Egs. (5.20.10 ¢) and (d) become

g, 6C 4D
—at a4 + 2
_o_6C_2D_,
2 a4 a2
Thus,
o at @ (5.20.11)
=_Z’B=0’C=—TO’ D=70'

Substituting these values into Egs. (5.20.9) and superpose them onto the stress field given
in Eq. (5.20.4), we obtain

2 4 2
g a o 3a° 4a
T”_.E(l - r2> + 2(1 + Eaa ) cos 20 (5.20.12a)
2 4
o a a 3a
Too = 5(1 + > ) -3 <1 + g ) cos 20 (5.20.12b)
4 2
To=-2(1- %+ 2 ) sn20 (5.20.12¢)
r r
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Putting r = a in these equations, we find that
T,=0, Tg=0, Tgg=0—20cos20 (5.20.13)

We see therefore, at 6 = % (point m in Fig. 5. 18) and at 0 = %75 (point n in Fig. 5.18),

Tee = 30. This is the maximum tensile stress which is three times the uniform stress o applied
at the ends of the plate. This is referred to as a stress concentration.

5.21 Hollow Sphere Subjected to Internal and External Pressure

Let the internal and external radii of the hollow sphere be denoted by a; and a,, respectively
and let the internal pressure be p; and the external pressure be p,, , both pressures are assumed

to be uniform. With respect to the spherical coordinates (r, 8, ¢), it is clear that due to the
spherical symmetry of the geometry and the loading that each particle of the elastic sphere will
experience only a radial displacement whose magnitude depends only on r, that is,

up=u(r), ug=0,uy;=0 (5.21.1)

substituting Eq. (5.21.1) into the Navier equation of equilibrium in spherical coordinates, Eqgs.
(5.6.4) in the absence of body forces, we obtain

gq 1d 2
A+un) dr [dr( 2dr (r u)]] (5.21.2a)
where, see Eq. (5.6.3g)
e= Q (5.21.2b)
dr
Thus,
4+ 2% (‘;‘r‘ 2:‘) =0 (5213)
The general solution of the above equation is
w=Ar+ 132. (521.4)

r

The stress components corresponding to this displacement field can be obtained from Egs.
(5.6.3),with e =34 :

T, =ie+ 255 = (31 + 24 - 242 (5:21.5a)
r
Tog=Tpp=he + 2= (31420 )4 + 215 (5.21.5b)
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T4=Tpg=Trg=0

To determine the constants A and B, we use the boundary conditions:

Tp=-pi atr=aq;

T,=-po atr=a,

ie.,
4uB
Bi+2md -5 = p
ai
4uB
BA+2md - =55 =p,
do
Thus,
3 3 33
_ Didi — Pol B = a; ay(Pi =~ Po)
(34 + 2u)(a5 — &} ) 4 (@5~ a})
and the stress components become
33
Pzaz Poao _ ao Pi— Po
= 3 3
(ao_at) r (ao—ai)
_ Ial Poao al ao (i = Po)
Too=Tpp=—3_3 +7 3
ap — G 2r (ao -a)

We note that the stresses are not dependent on the elastic properties.

(521.5¢)

(5.21.6a)
(5.21.6b)

(5.21.7a)

(5.21.7b)

(5.21.8)

(521.9a)

(521.9b)
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Part B Linear Anisotropic Elastic Solid

5.22 Constitutive Equations for Linearly Anisotropic Elastic Solid

In Section 5. 2, we concluded that due to the symmetry of the strain and the stress tensors
Ej; and Tj; respectively, and the assumption that there exists a strain energy function U given

by U = 1/2CyE;jEy;, the most general anisotropic elastic solid requires 21 elastic constants
for its description. We can write the stress-strain relation for this general case in the following
matrix notation:

Ti1] Ciit Cu22 Cu3s Cuzs Cusz Curz || En

Ty C1122 Co222 Co233 C223 Coo13 Cro22 || E22

Ts3| _ |Cuss Cx33 C3333 Co333 Caszz Crs3 | | B33 (5.22.1)
Ty Ci123 Coz3 Ca333 C323 Coziz Crooz | |2E3 -
T3 Ci113 C213 Ci333 C2313 C1313 Cr213 | [2E31

Ty Ci112 C1222 C1233 C1223 C1213 Cr212 | |2E12

The indices in Eq. (5.22.1) are quite cumbersome, but they emphasize the tensorial character
of the tensors T,E and C. Equation (5.22.1) is often written in the following “contracted form”
in which the indices are simplified or “contracted.”

rTnW Cn C12 C13 Cua Ci5 Ci6 | | Enn

Ty C12 Cxnp Cp3 Co4 Cp5 C6 | | Ex2

T33| _ |Ci3 Co3 C33 C34 C35 C36 | | E33

Ty Cia Cp4 C34 Cag Cus Cus | |2E3 (5-222)
T3 Cis Cas5 C35 Cus Css Css | |2E31
Ty, Ci6 C26 C36 Ca6 Cs6 Ces | |2E12

or

£ C11 C12 C13 C14 C15 Cy6 | | Ex
T C12 Cp Cx3 Gy Co5 Cog | | En
T3 C13 Cp3 C33 C34 C35 C3 | | B3

Ts C15 Cas C35 Cu5 Cs5 Cs6 | |Es
Ts C16 Ca6 C36 Cas Cs6 Ces | | Es
We note that Eq. (5.22.3a) can also be written in indicial notation
Ti = Gy (5.22.3b)

However, it must be emphasized that Cj; are not components of a second order tensor and
T; are not those of a vector.
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The matrix C is known as the stiffness matrix for the elastic solid. In the notation of
Eq. (5.22.3), the strain energy U is given by

Cn Cr2 C13 C14 C15 Ci6 | |E1
Ci2 C2 Cp3 Cpq Cp5 Cp5 | | Ep
C13 Cp3 C33 C34 C35 C36 | |E3
Ciq Cyy C3g Cyq Cys Cyg E4 (5.224)
C15 Cas5 C35 Cys Css Csg | |Es
Ci6 Ca6 C36 Cas Cs6 Cos | |Es

1
U=E[E1,E2,E3,E4,E5,E6]

We require that the strain energy U be a positive definite function of the strain components.
That is, it is zero if and only if all strain components are zero and otherwise it is positive. Thus,
the stiffness matrix is said to be a positive definite matrix which has among its properties : (1)
All diagonal elements are positive, i.e., C; >0 (no sum on i )T (2) the determinant of C is

positive, i.e. detC >0, and (3) its inverse S = C L exists and is also symmetric and positive
definite. (See Example 5.22.1). The matrix S ( the inverse of C ) is known as the compliance
matrix.

As already mentioned in the beginning of this chapter, the assumption of the existence of
a strain energy function is motivated by the concept of elasticity which implies that all strain
states of an elastic body requires positive work to be done on it and the work is completely
used to increase the strain energy of the body.

Example 5.22.1

Show that (a) Cj; >0 (nosumoni) (b) the determinant of C is positive (c) the inverse
of C is symmetric and (d) the inverse is positive definite, (¢) the submatrices

Cy1 Cpp C
Cu Cr2| [|Cxp Cy CE CZ CZ
Cpp Cxn| ’|Cx Cz|’ Cis Cos Ca

etc. are positive definite.

Solution. (a) Consider the case where only Ej is nonzero, all other E; =0, then the strain

energy is U = %CHE%l. Since U>0, therefore Cq1 >0. Similarly if we consider the case

where E, is nonzero, all other E; =0, then U = %CZZE%Z and Cyy >0 etc.

t An obvious consequence of these restrictions is that in uniaxial loading, a positive strain gives rise to a positive
stress and vice versa.
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(b) Since the diagonal elements are positive, the eigenvalues of C are all positive. Thus, the
determinant of C is positive (and nonzero) and the inverse of C exists.

()FromCC =1 (cCc YT =1, thus,(C"H7CT =1, ie., (€ H = (cH™L

Now,C = C7, therefore cl= (CT)—1 = (C—I)T and C~lis symmetric.

(d) Since C is positive definite, therefore, a *C a>0 for any nonzero a. Letb = Ca and
consider b - C~1 b. We have

b-C lb=cCa-ClCa=Cara=2aCa >0

(e) Consider the case where only F; and E; are not zero, then from Eq. (5.22.4)

Cu Cp| [Ey
2U=[E; E >0
[E1 B2 Cx Cp| |E2
That is, the sub-matrix is indeed positive definite. We note that since the inverse of this
, : S S, " -
submatrix is positive definite therefore, the subrnatrix S11 S;Z is also positive definite. Now
12 2
_Cn
Su=7a;

where
2
A =CnuCp-Ci
Since both Cjiand Syqare positive, therefore Cqy Cpp — C%z >0.

Similarly, the positive definiteness of the submatrix
Cn Cy
Cy Cy
can be proved by considering the case where only E, and E5 are nonzero and the positive
definiteness of the matrix
Cuu C2 Cp3
Ciz C Cp3
Ci3 Cp3 C33
can be proved by considering the case where only £y E; and Ej are nonzero, etc.

Thus, we see that the determinant of C and of all submatrices whose diagonal elements
are diagonal elements of C are all positive definite, and similarly the determinant of S and
of all submatrices whose diagonal elements are diagonal elements of S are all positive
definite.
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5.23 Plane of Material Symmetry

Let S1 be a plane whose normal is in the direction of e;. The transformation

e’ =—e, e =e, e =e;3 (5.23.1a)

describes a reflection with respect to the plane S;. This transformation can be more con-
veniently represented by the tensor Q in the equation

e = Qe; (5.23.1b)

where
-10
QI=[Q]=| 01

0
0 (5.23.1¢)
001

If the constitutive relations for a material, written with respect to the {e;} basis, remain the
same under the transformation [Q], then we say that the plane S; is a plane of material

symmetry for that material. For alinearly elastic material, material symmetry with respect to
the S plane requires that the components of Cy; in the equation

Tyj = Ciju Ey (5.23.2)
be exactly the same as Cjj; in the equation

under the transformation Eq. (5.23.1). When this is the case, restrictions are imposed on the
components of the elasticity tensor, thereby reducing the number of independent components.
Let us first demonstrate this kind of reduction with a simpler example, relating the thermal
strain with the rise in temperature.

Example 5.23.1

Consider a homogeneous continuum undergoing a uniform temperature change
AB = 6 — 6, Let the relation between the thermal strain e;; and A6 be given by

ej = —a;(A9) ()
where ¢;; is the thermal expansion coefficient tensor.

(a) If the plane S, defined in Eq. (5.23.1) is a plane of symmetry for the thermal expansion
property of the material, what restrictions must be placed on the components of ¢;; ?

(b) If the planes S; and §3whose normals are in the direction of e, and e; respectively are also

planes of symmetry , what are the additional restrictions? In this case, the material is said to
be orthotropic with respect to thermal expansion.
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(c) If every plane perpendicular to the S3 plane is a plane of symmetry, what are the additional
restrictions? In this case, the material is said to be transversely isotropic with respect to
thermal expansion.

Solution. (a) Using the transformation law [See Eq. (2B.13.1c)]
e 1 =0 [z 1(Q] (if)
we obtain, with Q; from Eq. (5.23.1c¢)

-1 0 0| |11 212 a13q -100
[@a]’ =10 10| |@1 a2 a3||0 10
0 0 1] |@31 a3z 433 0 01

@ —G12 7413
=|-ea axn ax (iii)
—a3z a3 axy

The requirement that [a ] = [a ] results in the restriction that

ap=-ap=0, ay=-an=0 az=-a3=0 a3 =-a3=0 (iv)

Thus, only five coefficients are needed to describe the thermo-expansion behavior if there is
one plane of symmetry:

11 0 0
[a]=[a] =|0 an axn )
0 a3 asz
1 00
(b) Corresponding to the S, plane, [Q;]= {0 —1 0 (vi)
0 01
Thus, from Eq. (ii) and (vi)
a1 0 0 .
[a] = [0 an -an (vii)

The requirements that [@]' = [a ] results in
Qo3 =033 = 0 (Viii)

Thus, only three coefficients are needed to describe the thermal expansion behavior if there
are two mutually orthogonal planes of symmetry, i.e.,
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11 0 0
@]’ =[a] =0 ap O (ix)
0 0 ass

If the S5 plane is also a plane of symmetry, then with

10 0
Qi =[01 o0 ()
00 -1
one obtains from Eq. (ii) and (x) that
a1 0 0 .
[@'=|0 ap O (xi)
0 0 as3

so that no further reduction takes place. That is, the symmetry with respect to Sy and S, planes
automatically ensures the symmetry with respect to the S; plane.

() All planes that are perpendicular to the S3 plane have their normals parallel to the plane
formed by e; and e;. Let ey’ denote the normal to the Sg plane which makes an angle of 8 with

the eq axis and 5——/3 with the e; axis, then with respect to the following set of prime basis:

ey’ = cosf e; + sinfe,

ey’ = —sinfB e; + cosfe, (xii)
[

€3 =¢€3

the transformation law Eq. (ii) gives

ajy = cos? B ayy + sin? B ay (xilia)
a2 = (az — ayy)sin B cosB (xiiib)
a;=0 (xilic)
ay = ag sin® B+ay coszﬁ (xiiid)
axp =0 (xiiie)

= s (xiiif)
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In obtaining the above equations, we have made use of the fact that e;, e,, e are planes of
symmetry so that @)y = a1 = @13 = @33 = a3 = ax = 0. Now, in addition, since any Sg
plane is a plane of symmetry, therefore, [see part (a)]

ap' =0 (xiv)

so that from Eq. (xiiib)
ap =ay (xv)

Thus, only two coefficients are needed to describe the thermal expansion behavior of the a
transversely isotropic material.

Finally, if the material is also transversely isotropic with ey as its axis of symmetry, then
0y =az (xvi)
so that
ajy=an=as (xvii)
and the material is isotropic with respect to thermal expansion with only one coefficient for

its description.

5.24 Constitutive Equation for a Monoclinic Anisotropic Linearly Elastic Solid.

If a linearly elastic solid has one plane of material symmetry, it is called a monoclinic
material. We shall demonstrate that for such a material there are 13 independent elasticity
coefficients.

Let e1 be normal to the plane of material symmetry $1. Then by definition, under the change
of basis

151 '= —eq, 92' = €y, 93' =e3 (52413)

the components of the fourth order elasticity tensor remain unchanged, i.e.,

Ciit = Cijut (@
Now, Cijtz = Omi Onj Orc Ost Crmnrs [Sect. 2B14], therefore
Cijkl = Omi an Onic Ost Crnnrs (ii)
where
-100
@Q=({0 10 (5.24.1b)
0 01

ie, O11=~1, Q2 =033 =1,and all other Q;; = 0. Thus,
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Ci12 = O11 Qu C11 922 C1112+0+0... = (=D(-D(—-D)(+1) Cy112 = —Cr112  (iid)

so that
C1112 =0 (5.24.23)

Indeed, one can easily see that all Cj;, with an odd number of the subscript 1 are all zero.
That is, among the 21 independent coefficients, the following eight (8) are zero

C1112=C1113=C1222=C1223=C1233=C1322=C1323=C1333 = 0 (5.24.3)

and the constitutive equations involve 13 nonzero independent coefficients. Thus, the stress
strain laws for a monoclinic elastic solid having the x; x3 plane as the plane of symmetry, are:

T =Cun En + Crip Exn + Crizz Es3 + 2C13 Ex3 (5.24.4a)
Ty = CrumEn1 + Coon Exn + Cypzz Ezz + 2Coap3 Ens (5.24.4b)
T33 = Criz3 E11 + Coo33 Exp + Ca333 E33 + 2C333 Ens. (5.24.4¢)
Ty =CunEn + Copz Exp + Caz Ez3 + 2C33 Ex3 (5.24.4d)
T31 =2C1013 Ep + 2C1313 Eq3 (5.24.4¢)
T12 =2C112 E12 + 2C1213 Ex3 (5.24.4f)
or
Ty [Ci111 Ciizz Ciiss Crzs 0 0 |[En
Ty Cr22 C22 Cop33 Cp23 O 0 Eqy
T33| _ |Cu33 C2233 C3333 C2333 0 0 E33 (5245)
Ty Ci123 Cozp3 Co333 Cozp3 0 0 2Ey; o
5 0 0 0 0 C1313 Ci213 | |2E31
T, 0 0 0 0 Ci213 Cr212 | |2Ep2
Or, in contracted notation , the stiffness matrix is given by
CnnCpCi3Cis 0 O
Ci2CppCpzCyy 0 O
C13 Cy3 Cz3 C 0 o0
[c]=| B B 73 73 (5:24.6)

C14 Cy C34Cay 0 O
0 0 0 0 Cs5Csg
0 0 0 0 Cs Ces

L -
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The coefficients in the stiffness matrix C must satisfy the conditions [See Sect. 5.22] that each
diagonal element C; >0(nosumoni)fori =1,2...6 and the determinant of every submatrix

whose diagonal elements are diagonal elements of the matrix C is positive definite [See
Example 5.22.1].

5.25 Constitutive Equations for an Orthotropic Linearly Elastic Solid.

If a linearly elastic solid has two mutually perpendicular planes of symmetry, say S; plane
with unit normal e; and S, plane with unit normal e, then automatically, the S3 plane with a
normal in the direction of e3, is also a plane of material symmetry [see Example 5.25.1 below].
The material is called an orthotropic material.

For this solid, the coefficient Cjjx; now must be invariant with respect to the transformation
given by Eq. (5.24.1) above as well as the following transformation

e1' =€, € "= —ey, 93' = e3. (5251)

Thus, all those Cjjy; which appear in Eq. (5.24.5) and which have an odd number of the subscript
2 must also be zero. For example

Cri3=0110110203Cus+0+ 0. =(-DD(-D)(+1)C123 = —Cr123 ()
That is, in addition to Egs. (5.24.3), we also have
Cir123=Cpp =Cp333=Cr213=0 (5.25.2)

Therefore, there are now only 9 independent coefficients and the constitutive equations
become:

Ty = Cunn En + Cun Exn + Cusz Exs (5.25.3a)
Ty = CunEn + Conky + CoiEy (5.25.3b)
T33 = Cusz E11 + Copz3 Exp + C333 E33. (5.25.3¢)
T12=2Co12E12 (5.25.34d)
T31 =2C1313E3 (5.25.3¢)
Tys = 2Co303 Eng (5.25.3f)

or,
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an [Ci111 Ciizz Crzs O 0 0 Eqn
Ty Crz Cx2 Coxzz 0 0 0 Es
T C C C 0 0 0 E
33| _ |C1133 C2233 C3333 33 (5.25.4)
To 0 0 0 Cumys 0 0 |[2En
T3 0 0 0 0 Gz O 2E3
T12 0 0 0 0 0 Ci2 ||2Ep2
and in contracted notation, the stiffness matrix is
[C11C2Ci3 0 0 0 ]
_ C13 C23 C33 0 0 0

0 6 0 0 Css O
0 0 0 0 0 Cg

where again each diagonal element C;; >0 (nosumoni)fori =1,2...6 and
Cn Cxn Cxn Cxp
det >0, det >0
lCu C» Cy C33
and
Cnn Cp2 C13
det[Cip Cxn Cy3|>0
Ci3 Cp3 C33

Example 5.25.1

(a) Show that all the components Cjjy; remain the same under the transformation

-1 0 0
Q=({0 -1 =—[I)
0 0 -1
(b) Let
-100 1 00 10 0
[Q)=]0 10|, [Q]={0-10|, [Q=]|01 0
0 01 0 0 1 00 -1
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Verify that [Q][Q;] = —[1][Q3].

Solution. (a) With
Qi = —9j
the equation

I]kI = Omi Qn] On QsI Crnrs
becomes

ku =(- 6mt)( 6n])( 6rk)( 6s1) Connrs = Cijkl

(®)

1 1

[ ]
= =]
=)

00
-10|=-
0 1

(= =N
o O =
(= )

(Q1][Q2] =| 0 -1 0(=10
0 0 1 0

That is
[Q][Q2] = —[1]1[Qs5]

From the results of (a) and (b) , we see that if the x-plane and the y-plane are planes of material
symmetry, then the z-plane is also a plane of symmetry.

5.26 Constitutive Equation for a Transversely Isotropic Linearly Elastic Material

If there exists a plane, say S3 plane, such that every plane perpendicular to it, is a plane of
material symmetry, then the material is called a transversely isotropic material. The S3 plane
is called the plane of isotropy and its normal direction ej is the axis of transverse isotropy.
Clearly, a transversely isotropic material is also orthotropic.

Let Sg represent a plane whose normal ey’ is parallel to the S3 plane and which makes an
angle of 8 with the e axis which lies in the S3 plane. Then, for every angle B, the plane Sg s,

by definition, a plane of symmetry. Thus, if C;j,'d are components of the tensor C with respect
to the basis e; 'given below:

e;' = cosf e; + sinfe,
ey’ = —sinf e; + cosfe, (5.26.1)
e3' = e3

then, from Eq. (5.24.3), we must have

C1113= C1223 = C1322=Cy333 = 0 (ia)
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C1112 = C1222= C1233= C1323= 0 (ib)

We now show that the condition given in Eq. (ia) are automatically satisfied for every 8 and
therefore do not lead to any further restrictions on Cj; whereas the conditions given in

Eq. (ib) do lead to additional restrictions, in addition to those restricted by orthotropy.

Since
013=031=023=03=0 (if)
therefore,
Cii13 = 011013 Cuant + 01102102 Ci1z2 +051011013 Coony
+ 011031033 C1133 + 051011013 Casnt + 0102102 Crzia+ 011051013 Cromn
+051011013 C2121+ 021011023 Co112+ . =0+0+...=0 (iii)
That is , C1113 = 0 is automatically satisfied together with
Ci223 = C1320= C1333 =0 @)
On the other hand, since 033 = 1, we have

Ci323 = 011 Q12C1313 + Q21 022 Co323 = 0 )

This requirement leads to
cosBsinf (C313 — Cp3p3) =0 (vi)

That is,
C1313 = C2323 (5.26.2)

Similarly, the equation C;333 = 0 leads to [See Prob. 5.85]
C1133 = Co233 (5.26.3)

Also, from Cy112,=0, we obtain

, 3 3 2 2
C1112=011912C1111 +021022C2222 + 011021022C1122+021011012C2211

2 2 2 2
+011221922C1212+ 0119210912C 1221 + 921011912C2121 + 221011022C 2112

=COSﬂ sin,B (‘—COSZﬁ C1111+Sin2ﬂC2222 + COSzﬂanz—SinzﬂC2211

2 ) ) 2 i
+c0s BC1p12—sinBCzp1 —SinBCo1 +c0s BCo112 ) = 0 (vii)

ie.,
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—coszﬂ C1111+sin2,BC2222 + (coszﬂ—sin2 ﬂ)C1122+2(c052/3 —sinzﬂ)Cuu =0 (viii)
Similarly, we can obtain from the equation [see Prob. 5.86) ] C1390 = 0
~sin’B C1111+c05"BCon — (cos® f—sin” B)Ciizp—2(cosB—sinB)Cio2 =0 ()
The addition of Eq. (viii) and Eq. (ix) gives
Ci1 =Co2 (5.26.4)

and Eq. (ix) then gives

1 5.26.5
Con= §(C1111-C1122) ( )

Thus, the number of independent coefficients reduces to S and we have for a transversely
isotropic elastic solid with the axis of symmetry in the e direction the following stress strain

laws

T Ci1 Cr2 €33 0 O 0 Ey
T Cu22 Cunn Cuzz 0 0 0 Exn
Ts3 Ci33 C1133 G333 0 0 0 E3;
Tu| =1 0 0 0 Cpps 0 0 2E,,| (-266)
lej 0 0 0 0 0 (12)Cun—Cux) ] ZEIZJ
and in contracted notation, the stiffness matrix is
[C11 €2 €13 0 0 0 ]
CpCnCis 0 0 0
Ci3Ci3Cx3 0 0 0
C1={0" 0 0 cyu 0 0 (5.26.7)
0 0 0 0 Cy 0
0.0 0 0 0 (1/Cu~Cry

In the above reduction of the elastic coefficients, we demanded that every Sp plane be a
plane of material symmetry so that Eqs. (i) must be satisfied for all 8. Equivalently, we can
demand that the elastic coefficients Cij,'(, be the same as Cyjy for all B and achieve the same
reductions.

The elements of the stiffness matrix satisfy the conditions:
Cn1 >0, Csyz >0 ,Caq >0, Ci1—Cpp >0 (5.26.78)
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Cu Ci2| _ 2 2
det {Cn Cy| = €11~ C12>0 (5.26.7b)
and
Cnn C12 Ci3 5 ) R 5
det|C1p Cy1 C13 =C11C33 — 2C12C13 - 2C11C13 — C33C1p>0. (5.26.7¢)
Ci3 C13 C33

We note also that the stiffness matrix for transverse isotropy has also been written in the
following form:

Tl [A+2ur 2 Ata 0 0 0 |[Eq
Ts A A+2uT Ata 0 0 0 Ey
T33 _ Aa A+a A+2a+4u;-2ur+f 0 0 O Ey
Tw| | 0 0 0 ur 0 0 ||2Ey,| 6268
T31 0 0 0 0 BT 0 2E31
T12 0 0 0 0 0 1228 2E12

where we note that there are five constants A, u7, ¢y, @ and 8.

5.27 Constitutive Equation for Isotropic Linearly Elastic Solids

The stress strain equations given in the last section is for a transversely isotropic elastic solid
whose axis of transverse isotropy is in the ej direction. If, in addition, e is also an axis of

transverse isotropy, then clearly we have

Con=Cs33 (Cn=0Cs33) (1)

Cinz=Cuz;z  (C2=Cr3) (ii)
(C11—Cr2)

Ci313 = Ci212 (C44 = T) (i)

and the stress strain law is
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i o |
cyCnCz O 0
Tll- C12 €11 12 0 0 0 3 EHW
Ty Exn
Ty CpCpp Ciu 0 0 0 En .
Tps) 0 0 0 (Cu—Cry 0 0 2Ex el
Ty 2 2E5;
T 0 0 0 o ufm 2B12|
o 2
Cu—Cn2
0 0 0 0 (—17—1
where
Cll > 0’ Cll"'clz > 0, C%l - C%z > 0, (5}1 +2C:}2—3C11C%2 > 0 (527'2)

The elements Cj; are related to the Lames constants Aandu as follows
Ciy1=A+2u, Cip=4 (5.27.3)

5.28 Engineering Constants for Isotropic Elastic Solids.

Since the stiffness matrix is positive definite, the stress-strain law given in Eq. (5.27.1) can
be inverted to give the strain components in terms of the stress components. They can be
written in the following form

1 v v
t FE 000
- - v 1 v -
Ey £ 000 ||y
E22 Y v 1 T22
Ex| |"EEE 000 7, (528.0)
2B 0 0 0 Loo||!= -
2E3; G T3
265 o o0 o0 oL ||Te
[ G |
1
0 0 0 0O e
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where as we already know from Section 5.4, E is Young’s modulusT, v is the Poisson’s ratio
and G is the shear modulus and

- £ (5.28.2)
G‘a1+w

The compliance matrix is positive definite, therefore the diagonal elements are all positive,
thus

E>0, G>0 (5.28.3a)
1 v
det li 1E =é(1—v2)>0,i.e., <1
_r =2 28.
EE (5.28.3b)
and
(1 v _v]
E E E
v 1 v 1 3 2 1 2
AU S U EP - =-(1 — 283
det EE E E3(1 207 = 3 E3(1 (1 +v)" >0 (5.28.3¢)
vy v 1
E E E
ie.,
1
V<2 (5.28.3d)
Thus,
—1<v<% (5.28.4)

5.29 Engineering Constants for Transversely Isotropic Elastic Solid

For a transversely isotropic elastic solid, the symmetric stiffness matrix with five inde-

pendent coefficients can be inverted to give a symmetric compliance matrix with also five
independent constants. The compliance matrix is

+ To simplify the notation, we drop the subscript Y from E.
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(1 v "a ]
E E, Es o 0 O
Yaa 1 (&3
- iR R R
Ey | E, E; E; n
Exn s Y31 4 o ) Tn
E33 _ E, E; E T3 (5.29.1)
2Ex 0 0 0 5= 0 0 T
2E3; 13 T3
2E;; 1 Ty
2] o 0o 0 050 |12
1
0 0 0 0 G J

The relations between C;; and the engineering constants can be obtained to be [See Prob. 5.88]

€= fi . 1- v%ll()El/E_o,) Cr= fi . Va1 + v%ll)(El/E3) (52920)
Ciz= E1l;’31’ Cn=Cn Cp=Cs Cu=Gp (5.29.2b)
and
Cu ; C _ G (5.29.2¢)
where
D=1—v21—2v§1 b >0
Ej (5.29.2d)
From Eq. (5.29.2), it can be obtained easily (See Prob. 5.89)
Gip = iﬁ%ﬁ (5.29.3)
According to this Eq. (5.29.1), if T33 is the only nonzero stress component, then
T3 v31733 @)

B3 = s’ En=Ep=-—%, = -v31Ex3
Thus, E3 is the Young’s modulus in the e3 direction (the direction of the axis of transverse
isotropy), w31 is the Poisson’s ratio for the transverse train in the x; orx; direction when

stressed in the x5 direction.
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If Ty, is the only nonzero stress component, then

T T Y1371
Ep = E Ey = —1’21E—1 =-vuf, Ezxz=-— E, = —vi3En (if)

and if T is the only nonzero stress component, then

Ty T2 2
Eyp= B Eq = Vg, = —v2iE2n, Ep= Vg, T —vi3En (iii)

Thus, Ej is the Young’s modulus in the e; and e, directions (i.e., in the plane of isotropy),
v,1 is the Poisson’s ratio for the transverse train in the x, direction when stressed in the x;
direction or transverse strain in the x; direction when stressed in the x, direction (ie.,
Poisson’s ratio in the plane of isotropy, v, = v,51) and vy3 is the Poisson’s ratio for the
transverse strain in the e; direction (the axis of transverse isotropy) when stressed in a direction
in the plane of isotropy. We note that since the compliance matrix is symmetric, therefore

Y13 V31
M 5.29.4
E =5 (5:29.4)

From 2E,; = In 2E3; = T T it is clear that Gy, is the shear modulus
G’ Gi3 G’

in the plane of transverse isotropy and Gy3 is the shear modulus in planes perpendicular to
the plane of transverse isotropy.

and 2E, =

Since the compliance matrix is positive definite, therefore, the diagonal elements are
positive definite. That is,

Ei >0, E5 >0, G1 >0, G;3>0 (5.29.5)
Also,
1
Ey E_ 1 2 (iv)
det vy 1 -—E%(l -v21)>0
Ey, E
ie.,
1 ¥ 1 "
E, E; _ E; E; _ 1 2 ﬂ
det vy 1 =det| . | |= EiE, (1 Vi E3) >0 )

E, Ej E; E3
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ie.,
2 E3
Vi1 <g, or wviv3<l1 (5.29.7)
Also,
[ 1 vz _va]
E, E E
va 1 val_ 1 Ei) 2 LB 2 _.2
det E, E, Es| = E%E3 [1 2 AE! 2( E. |73 vzl]
i Y3 1
2 .
=[1 -2 E’; V31'—1’21] (1 +V21) >0 (vi)

Since 1 + v; >0, therefore,

(5.28.9)

1-2v3 .| >va or 1=2vapi3 >y
3

5.30 Engineering Constants for Orthotropic Elastic Solid

For an orthotropic elastic solid, the symmetric stiffness matrix with nine independent
coefficients can be inverted to give a symmetric compliance matrix with also nine independent
constants. The compliance matrix is

1 _'a v ]
E; E, E 0 0 O
Y12 1 V32
el | = e 0 0 0 |
E11 E1 E2 E3 Tll
Ey Y13 Va3 1 Ty
—=-= = 0 0 0
Eg| _| E1 Ex E3 Ty 5301
2EZ3 0 0 0 _1_._ 0 0 T23 ( - )
2E3; Gy T3
_2E12_ 0 0 0 0 _1_._ 0 _T12_
G
1
0 0 0 0 0 —/—
i 12 |

The meanings of the constants in the compliance matrix can be obtained in the same way as
in the previous section for the transversely isotropic solid. We have, E;, E; and E3 are

Young’s moduli in the ey, e; e directions respectively, Gp3, G31 and Gy are shear moduli
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in the xax3, x1x3 andxyx; plane respectively and v;; is Poisson’s ratio for transverse strain in the
J-direction when stressed in the i-th direction.

The relationships between C;; and the engineering constants are given by

Con = L2 VBVR2 _Yatvavy _Vatvava
11 E2 E3 A 12 E2 E3 A 23 E2 E3 A (53023)
Cy = L2 V13731 _Vntrvnva _1-vpvy
22 E{E3A ’ 23 E{E5A » 33 E{E; A (5.30.2b)
Ca=G23, Cs55=G3, Ce6=0GCnp (5.30.2¢c)
where
A= 1 —v12v21 —v3¥3 — V3113 — 2V21 V3213
E\E,Es (5.30.2d)
We note also that the compliance matrix is symmetric so that
Yi2 Va1 Vi3 Va1 Va3 V3 (5.30.3)

E B E E B B

Using the same procedures as in the previous sections we can establish the restrictions for the
engineering constants:

E; >0, Ey >0, E3 >0, Gy3 >0, G31 >0, G132 >0 (5.30.4a)
E E
2 2 2 1
VY21 < E_l sy 12 < E_2 (5.30.4b)
E E.
2 3 2 2
V3, < E; ; v3 < E; (5.30.4¢)
E E
2 1), 2 _|E3
V13 < E_3 R KIS E, (5.30.4d)
Also,
1—v2va1 —v3v3 — 31713 — 2v21v32v13 >0 (5.30.4¢)

5.31 Engineering Constants for a Monoclinic Elastic Solid

For a monoclinic elastic solid, the symmetric stiffness matrix with thirteen independent
coefficients can be inverted to give a symmetric compliance matrix with also thirteen inde-
pendent constants. The compliance matrix for the case where the e plane is the plane of

symmetry can be written:
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(1 v g ]

E, E, E; G4
A e R S L A N N B
Eqy E, E; Ey Gy T
Ep| |3 Y3 1 18 , |2
Ex|_| Bt Ey E3 Ga T3 $31.1
2Ex3 M4 M4 M 1 o | (T3 (5:31.1)
2E3 Ey E, E3 G T3
2E 1 Hes T
el 1o 0 0 0 5| L

Hse 1
0 0 0 O '65— ‘é;

The symmetry of the compliance matrix requires that
Y _Ya Y _Ya Y3 _Ya (531.2a)
Ey, E’ E E3' E, Ey

M4 _Na M4 _ N2 4T3 K56 Hes (5.31.2b)
E, G E, Gy E; G; Gs Gg

If only T, is nonzero, then the strain-stress law gives

1
En=%r =", *s=7g;, ZHn=mnén ®

Ty Eqq E33 --
Exn= 5 AT By 3= g 2Ey3 = nufn (i)

etc. Thus, E; , E, and Ejare Young’s modulus in the x;,x, and x3 direction respectively and
again, vj; is Poisson’s ratio for transverse strain in the j-direction when stressed in the
i-direction. We note also, for the monoclinic elastic solid with e plane as its plane of symmetry,
a uniaxial stress in the x; direction, or x, direction, produces a shear strain in the x, x3 plane
also, with#;; as the coupling coefficients.

If only Ty, = T,y are nonzero, then,
- _ T
Ty =2GgEy; and 2E3 = FesG, (iif)

and if only Ty3 = Ty are nonzero, then,
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T31 .

Ti3=2GsEy3 and 2By =pseg ()

Thus G is the shear modulus in the plane of x; x, and G5 is the shear modulus in the plane

of x; x3. Note also that the shear stresses in the x; x, plane produce shear strain in the x; x3
plane and vice versa with x;; representing the coupling coefficients.

Finally if only T3 = T3, are nonzero,

Ty Ty Ty
Eq = g, Eyp = n2g, Eyy = 3G, T3 =2G4Ex \)

We see that G4 is the shear modulus in the plane of x, x3 plane , and the shear stresses in this
plane produces normal strains in the three coordinate directions, with #;; representing normal
stress-shear stress coupling.

Obviously, due to the positive definiteness of the compliance matrix, all the Young’s moduli
and the shear moduli are positive. Other restrictions regarding the engineering constants can
be obtained in the same way as in the previous section.

Part C Constitutive Equation for Isotropic Elastic Solid Under Large Deformation

5.32 Change of Frame

In classical mechanics, an observer is defined as a rigid body with a clock. In the theory of
continuum mechanics, an observer is often referred to as a frame. One then speaks of “a change
of frame” to mean the transformation between the pair {xt} in one frame to the pair {x"" }
of a different frame, where x is the position vector of a material point as observed by the
un-starred frame and x * is that observed by the starred frame and¢ and ¢ are times in the two
frames. Since the two frames are rigid bodies, the most general change of frame is given by
[See Section 3.6}

X =c(t)+Q(t)(x—%,) (5.32.1a)
t'=t-a (5.32.1b)

where c (¢) represents the relative displacement of the base point x, , Q(¢) is a time-dependent

orthogonal tensor, representing a rotation and possibly reflection also (the reflection is
included to allow for the observers to use different handed coordinate systems), a is a constant.

Itis important to note that a change of frame is different from a change of coordinate system.
Each frame can perform any number of coordinate transformations within itself, whereas a
transformation between two frames is given by Egs. (5.32).
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The distance between two material points is called a frame-indifferent (or objective) scalar
because it is the same for any two observers. On the other hand, the speed of a material point
obviously depends on the observers as the observers in general move relative to each other.
The speed is therefore not frame indifferent (non-objective). We see therefore, that while a
scalar is by definition coordinate-invariant, it is not necessarily frame-indifferent (or frame-
invariant).

The position vector and the velocity vector of a material point are obviously dependent on
the observer. They are examples of vectors that are not frame indifferent. On the other hand,
the vector connecting two material points, and the relative velocity of two material points are
examples of frame indifferent vectors.

Let the position vector of two material points be x;, X, in the unstarred frame and x], %;
in the starred frame, then we have from Eq. (5.32.1a)

x| = ¢+ Q)X %) (@)
X = e+ Q) (%)) (i)
Thus,
=% = Qt)(x %) (5:32.2)
or,
b* = Q)b (5.32.3)

where b and b* denote the same vector connecting the two material points.

Let T be a tensor which transforms a frame-indifferent vector b into a frame-indifferent
vector ¢, i.e.,

c=Tb (iiia)
let T * be the same tensor as observed by the starred- frame, then
¢ =T (iiib)
Now since ¢* = Qc¢, b* = Qb, therefore,
*=Qc = QTb = QTQb* (iv)
ie.,
T'b = QTQTb*
Thus,

T* =QrQ’ (5.32.4)

Summarizing the above, we define that, in a change of frame,
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a=a" for indifferent (or objective ) scalar
b* = Q(t)b for indifferent (or objective ) vector
T* = Q)TQ () for indifferent (or objective ) tensor
Example 5.32.1

Show (a) dx is an objective vector (b) ds is an objective scalar
Solution. From Eq. (5.32.1)

X" =c(t) + Q1) (x—%,)
we have
X +dx" = ¢(t) +Q(t)(x+dx—%,)
therefore
dx* =Q(t)dx

so that dx is an objective vector
(b) From Eq. (5.32.6),

2
ds* = ax"-dx" = Q(t)dx- Q(f)dx=dx- Q7 Qdx = dx-dx = ds*

that is, ds is an objective scalar.

Example 5.32.2

(5.32.52)
(5.32.5b)
(5.32.5¢)

®

(i)

(5.32.6)

(iif)

Show that in a change of frame, (a) the velocity vector v transforms in accordance with the

following equation and is therefore not objective

V' = Q) v+ QU)(x-%,) + &)

(5.32.7)

(b)the velocity gradient transform in accordance with the following equation and is also not

objective
* * T 7
Vv =Q(W)Q +QQ
Solution. (2) From Egs. (5.32.1)
X =¢(t)+ Q) (XX

(5.32.8)

(@)
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£ =t-a (i)
therefore,
e = O =0+ Q%) + Qv o
That is
v = Q) v + &) + Q)(x—%,) (iv)

This is not the transformation law for an objective vector. Therefore the velocity vector is
non-objective as expected.

(b) From the result of part (a), we have

V(X *+dx *)=Q(E)v(x+dx) +&(f) + Q) (x+dx—X,) )
and
v (x*)=Q(OV(X)+ () + Q(1)(x—x,) (vi)
Subtraction of the above two equations then gives
(VX" = QE)(VW)dx + Q()dx (vii)
But dx" = Qdx, therefore
[(V'V)Q - Q(VY) — Q()ldx = 0 (vili)
Thus,
Vv = Q(vwQ! + QQ7 (ix)
Example 5.32.3

Show that in a change of frame, the deformation gradient F transforms according to the
equation

F*=Q(F (5.32.9)
Solution. We have, for the starred frame
dx"=F"ax" ®
and for the unstarred frame
dx=FdX (ii)
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In a change of frame, dx and dx" are related by Eq. (5.32.6), i.c.,
dx’ = Q(t)dx (iii)
therefore, using Egs. (i) and (iii), we have
Q(t)dx = F*dX" (@iv)
Using Eq. (ii), the above equation becomes
Q()FdX = F*aX" \))

Now, both dX and dX* denote the same material element at the fixed reference time Lo
therefore, without loss of generality , we can take Q(¢,) = I, so that

dX = dX* (vi)
Thus,
QY)F =F" (vii)
which is Eq. (5.32.9).
Example 5.32.4

Derive the transformation law for (a) the right Cauchy-Green deformation tensor and (b)
the left Cauchy-Green deformation tensor

Solution.
(a)The right Cauchy-Green tensor C is related to the deformation gradient F by the equation

C=F'F (5.32.10)
Thus, from the result of the last example, we have
C'=F*F *=[Q@)F)TQ()F = =FTQTQF=F’F @
i.e, in a change of frame
Cc*=C (5.32.11)

That is, the right Cauchy-Green deformation tensor is not frame-indifferent (or, it is non-ob-

jective ).

(b) The left Cauchy-Green tensor B is related to the deformation gradient F by the equation
B=FF! (5.32.12)
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Thus, from the result of the last example, we have
B*=F'F " = QFQ®F) =QWFF Q’(1) (i)
i.e, in a change of frame
B *=Q()BQ () (5.32.13)

Thus, the left Cauchy-Green deformation tensor is frame-indifferent (i.e., it is objective).

We note that it can be easily proved that the inverse of an objective tensor is also objective
and that the identity tensor is obviously objective. Thus both the left Cauchy Green deforma-

tion tensor B and the Eulerian strain tensore = %(I—B_ 1) are objective, while the right Cauchy

. . . 1 —
Green deformation tensor C and the Lagrangian strain tensor E = E(C—I) are non-objective.

We note also that the material time derivative of an objective tensor is in general non-ob-
jective.

5.33 Constitutive Equation for an Elastic Medium under Large Deformation.

As in the case of infinitesimal theory for an elastic body , the constitutive equation relates
the state of stress to the state of deformation. However, in the case of finite deformation, there
are different finite deformation tensors (left Cauchy-Green tensor B, right Cauchy-Green
tensor C, Lagrangian strain tensor E, etc. ,) and different stress tensors (Cauchy stress tensor
and the two Piola-Kirchhoff stress tensors) defined in Chapter 3 and Chapter 4 respectively.
It is not immediately clear what stress tensor is to be related to what deformation tensor. For
example, if one assumes that

T =T(C) @)

where T is the Cauchy stress tensor, and C is the right Cauchy-Green tensor, then it can be
shown [see Example 5.33.1 below] that this is not an acceptable form of constitutive equation
because the law will not be frame-indifferent. On the other hand if one assumes

T=T(B) (ii)

then , this law is acceptable in that it is independent of observers, but it is limited to isotropic
material only (See Example 5.33.3).

The requirement that a constitutive equation must be invariant under the transformation
Eq. (5.32.1) (i.e., in a change of frame), is known as the principle of material frame indif-
ference. In applying this principle, we shall insist that force and therefore, the Cauchy stress
tensor be frame-indifferent. That is in a change of frame

T* =QrQ’ (5.33.1)
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Example 5.33.1

Assume that for some elastic medium, the Cauchy stress T is proportional to the right
Cauchy-Green tensor C. Show that this assumption does not result in a frame-indifferent
constitutive equation and is therefore not acceptable.

Solution. The assumption states that ,

for the starred frame: T =aC” @)
and for the un-starred frame: T=aC (ii)

where we note that since the same material is considered by the two frames, therefore the
proportional constant must be the same. Now,

T* = QTQ T [See Eq. (5.33.1)] and C * = C [See Eq. (5.32.11)]
therefore, from Eq. (i)
QrQ 7’ =aC (iii)
so that from Eq. (ii) for all Q(¢)
T = QTQ". (iv)
The only T for the above equation to be true is T =1I. Thus, the law is not acceptable.

More generally, if we assume the Cauchy stress to be a function of the right Cauchy Green
tensor, then for the starred frame T * = f(C *), and for the un-starred frame, T = f(C), where

again, f is the same function for both frames because it is for the same material. In a change
of frame,

QrQ” = K(C) )
That is, again
QTQ’=T (vi)
So that Eq. (i) is not acceptable.
Example 5.33.2

If we assume that the second Piola-Kirchhoff stress tensor T is a function of the right
Cauchy-Green deformation tensor C. Show that it is an acceptable constitutive equation.

Solution. We have, according to the assumption
T = f(C) (5.33.2a)
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and

T"=f(C") (5.33.2b)

where we demand that both frames (the unstarred and the starred) have the same function f
for the same material. Now, in a change of frame, the deformation gradient F and the Cauchy
stress tensor T transform in accordance with the following equation:

F* = QFand T* = QTQY (5.333)

Thus, the second Piola-Kirchhoff stress tensor transforms as [See Prob.5.98]

T'=T (5.33.4)
Therefore, in a change of frame, the equation
T*=f(C" (5.33.5a)
transforms into
T =£(C) (5.33.5b)

which shows that the assumption is acceptable. In fact, it can be shown that Eq. (5.33.5) is the
most general constitutive equation for an anisotropic elastic solid [See Prob. 5.100].

Example 5.32.3

If we assume that the Cauchy stress T is a function of the left Cauchy Green tensor B, is it
an acceptable constitutive law?

Solution. For the starred frame,
T =f(B") (5.33.6a)
and for the un-starred frame,

T=1B) (5.33.6b)

where we note both frames have the same function f. In a change of frame, (see
Example 5.32.4, Eq. (5.32.13)),

T*=QTQ’ and B'=QBQ’
Thus,

QTQ=1(QBQ") (5.33.7)
That is
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Qf(B)Q”=RQBQ) (533.8)

Thus, in order that Eq. (5.32.6) be acceptable as a constitutive law, it must satisfy the condition
given by Eq. (5.32.8). Now, in matrix form, the equation

T =1(B) (5.33.6b)
becomes
[T] = [f([B])] (5.33.9)
and the equation
Q1Q” = QBQ7) (5.33.10)
becomes
[QITIQ) = [R(QIBIQI)] (5.33.11)

Now, if we view the above two matrix equations, Eqs. (5.33.9) and (5.33.11), as those cor-
responding to a change of rectangular Cartesian basis, then we come to the conclusion that
the constitutive equation given by Eq. (5.33.6) describes an isotropic material because both
Eqgs. (5.33.9) and (5.33.11) have the same function f.

We note that the special case
T=aB (5.32.12)

where a is a constant, is called a Hookean Solid.

5§.34 Constitutive Equation for an Isotropic Elastic Medium
From the above example, we see that the assumption that T is a function of B alone leads
to the constitutive equation for an isotropic elastic medium under large deformation.

A function such as the function f, which satisfies the condition Eq. (5.33.8) is called an
isotropic function. Thus for an isotropic elastic solid, the Cauchy stress tensor is an isotropic
function of the left Cauchy-Green tensor B.

It can be proved that in three dimensional space, the most general isotropic function f(B)
can be represented by the following equation

f(B)=agl + a;B + a,B> (5:34.1)

where a, , a1 and a, are scalar functions of the scalar invariants of the tensor B, so that the
general constitutive equation for an isotropic elastic solid under large deformation is given by

T=a,] +a; B +a,B* (534.2)
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Since a tensor satisfies its own characteristic equation [See Example 5.34.1 below], there-
fore we have

B>-I;B? + LB — ;1 = 0 (5.34.3)
or,

B>=IB- LI+ ;B} (5.344)
Substituting Eq. (5.34.4) into Eq. (5.34.2), we obtain

T=g,+¢;B+pB? (5.34.5)

where ¢, , ¢1 and ¢, and ¢, are scalar functions of the scalar invariants of B. This is the

alternate form of the constitutive equation for an isotropic elastic solid under large deforma-
tions.

Example 5.34.1
Derive the Cayley-Hamilton Theorem, Eq. (5.34.3).

Solution. Since B is real and symmetric, there always exists three eigenvalues correspond-
ing to three mutually perpendicular eigenvector directions.[See Section 2B18]. The
eigenvalues 4; satisfies the characteristic equation

B-nai+nLi-L=0 i=123 (5.34.6)
The above three equations can be written in a matrix form as
2,0 01 a0 01 [am o0 o
0 Ay Of =0 4y Of +1,{0 4 O(-13=0 (5.34.7)
0 0 A3 0 0 Ay 0 0 A3

Now, the matrix in this equation is the matrix for the tensor B using its eigenvectors as the
Cartesian rectangular basis. Thus, Eq. (5.34.7) has the invariant form

B>-I;B?> + LB — ;I = 0 (5.34.8)

Equation (5.34.2) or equivalently, Eq. (5.34.5) is the most general constitutive equation for
an isotropic elastic solid under large deformation.

If the material is incompressible, then the constitutive equation is indeterminate to an
arbitrary hydrostatic pressure and the constitutive equation becomes

T=-pl+¢;B+¢,B! (5.34.9)
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If the functions ¢, and ¢, are derived from a potential functionA4 of the invariants /; and
I such that

_ .4 o,
P1=25 —and ¢ =257, (5.34.10)
then the constitutive equation becomes
N SRR gt
T=-pl+25, B-25.B (5.34.11)

and the solid is known as an incompressible hyperelastic isotropic solid.

5.35 Simple Extension of an Incompressible Isotropic Elastic Solid

A rectangular bar is pulled in the x; direction. At equilibrium, the ratio of the deformed
length to the undeformed length (i.e., the stretch) is A; in the x; direction and 4, in the
transverse direction. Thus, the equilibrium configuration is given by

=X, n=hX, x3=AX; Ii3=1 (535.1)

where the condition 44 l% =1 describes the isochoric condition (i.e., no change in volume ).

The left Cauchy-Green deformation tensor B and its inverse are given by

Lo
2 A
20 0 .
B]=|o0 ,1% 0 [B"l] =10 E 0 (5.35.2)
0 0 A3 1
0 0 )
A
From the constitutive equation
T = —pl + p;B + p,B! (5.35.3)
we have
2 1 i
Ty=-p+e1M+e25 @
A1
1 .
Ty =Ty =-p+p1A5+ 4021—2 (i)
2
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Since these stress components are constants, therefore the equations of equilibrium are clearly
satisfied. Also, from the boundary conditions that on the surface x, = b, T», = 0 and on the

surface x3 = ¢, T33 = 0, we obtain
Tp=T3=0 (5.35.4)

everywhere in the bar. From these equations, we obtain ( noting that 111/1% =1)

2,92 _¥1 5.35.5
p= 90112+g =7, T2t ( )

Thus, the normal stress Ty; needed to stretch the bar (which is laterally unconfined) in the
x7 direction is given by

21 P2 (5.35.6)
= (11 - 11) (‘Pl - 11)

5.36 Simple Shear of an Incompressible Isotropic Elastic Rectangular Block

The state of simple shear deformation is defined by the following equations relating the
spatial coordinates x; to the material coordinates X :

x1=X1+KXp, %p=X; x3=X; (5.36.1)
The deformed configuration of the rectangular block is shown in plane view in Fig. 5.19, where
one sees that the constant K is the amount of shear

The left Cauchy-Green tensor B and its inverse are given by

2
1 Kol (100 1+K" K 0
Bl=(FIFF =0 10/ |[K10[=] kK 10 (5.36.2)
001|001 0 01
1 -K 0
B=1-K 1+K 0 (5363)
0 0 1
The scalar invariants are
L=3+K, L=3+K) L=1 (5.36.4)
Thus, from Eq. (5.34.9), we have
Ty=-p+pi(1+ K + ¢, Tyy=-p+eo1+e(1+ K*) (@)

T3 =~p+¢1+ 92, Ti2 = K(p1 - ¢2), Ti3=Tp=0 (ii)
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Let
P=-p+pi+e; (iii)
then
Ti1=-P+ (lez Typy=—-P+ ¢2K2 T33=—-P (5.36.5a)
Tp=Klp1—¢2) Tiz=T3=0 (5.36.5b)

where ¢, and ¢, are function of K.

Fig.5.19

The stress components are constants, therefore, the equations of equilibrium are clearly
satisfied.

If X3 = constant plane is free of stress, then
P=0 (iv)
so that
Ti=¢K: Trn=p,K, Ti=0 Tip=Kep;—92) (5.36.6)

where (p1 — ¢, ) is sometimes called the generalized shear modulus in the particular undis-
torted state used as reference. It is an even function of K, the amount of shear. The surface
traction needed to maintain this simple shear state of deformation are as follows:
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On the top face in the Fig. 5.19, there is a normal stress (g02K2 ) and a shear stress,
(K(p1 — ¢2))- On the bottom face, an equal and opposite surface traction to that on the top
face is acting. On the right face, which at equilibrium is no longer perpendicular to the x axis,
but has a unit normal given by

_ (e1 - Kez) (536.7)

therefore, the surface traction on this deformed surface is given by

t="Tn= 7 2lpoKe; + (p1 — (L + K2 )es ] (5.36.8)
Thus, the normal stress on this surface is
T,=tn=- 1;(2 (1 — C+K)p, ] (5.36.9)
: o (Kep + ¢)
and the shear stress on this same surface is, with ey = ViT R
Ty=ter= (p1—92) (5.36.10)

14K?
We see from the above equation that, in addition to shear stresses, normal stresses are needed
to maintain the simple shear state of deformation.
We also note that
Tn—Tzz = KT12 (53611)

This is a universal relation, independent of the coefficients ¢; of the material.

5.37 Bending of a Incompressible Rectangular Bar.

It is easy to see that the deformation of a rectangular bar into a curved bar shown in Fig. 5.20
can be described by the following equations

r=QaX+pY? 6=cv, z=2 a=% (5.37.1)

where (X,Y,Z) are Cartesian material coordinates and (r, 8,z ) are cylindrical spatial coor-
dinates. Indeed, the boundary plane X = —a and X =a deform into cylindrical surfaces
ri=V—2aa+p and r, =V2aa + B and the boundary planes Y = =b deform into the

planes 6 = *cb .
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Y
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1 1
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Fig.5.20

The left Cauchy-Green tensor B corresponding to this deformation field can be calculated
using Egs. (3.30.12): [Note I3 =ac = 1]

a7 0 ol &2 0 o0
Bl=| 0 A 0/=| 0 a0 (5:37.2)
0 0 1 0 0 1
The inverse of B can be obtained to be

e 0 0 2t 00

B =] 0 2P ol=| 0 &40 (5.37.3)
0 0 1 0 0 1
The scalar invariants of B are
2 2
11=97+’_2+1=1, L=1 (5.37.4)
r a

We shall use the constitutive equation for a hyperelastic solid for this problem. Thus, from
Eq. (5.34.11), we have

T, =-p+ 22%34 _2%ad (5.37.5a)
7 2ol 2ol
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_ 2204 2 04
Too = —P + 2051 ~ 2 241, (5.37.5b)
34 oA
Tz=-p+ 2 ~ Iy, (5.37.5¢)
To=T,=Tp=0 (5.37.5d)
The equations of equilibrium are
M Ir—Tow _, (5.37.6a)
or r
ATy
_ 5.37.6b
55 =0 ( )
Tz _ (5.37.6¢)
az

From Eq. (5.37.6b) and (5.37.6¢), we have, since A(I1(r), I2(r)) is function of r only,

p =p@) (5.37.7)
Since
da _aadly  aadh ==2(—_OR+L [gfi M) Tr—Top 0
dr dlydr  dl,dr e IR L)) r
Thus, from Eq. (5.37.6a), we have
dT, dd _ )
dr dr (i)
and
T,=A@r) +K (5.37.8)
Furthermore, Eq. (5.37.6a) and Eq. (5.37.8) give
Too=rg + Ty = 7, = Spae) + (5379)
r dr
The boundary conditions are :
Atr=r;,T,=0 andat r=ry,T,=0 (5.37.10)

Thus,
A(ri)+K=0, A(@r)+K=0 (iii)
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so that
A(ry) = A(r) (iv)
But,
A=A(I1(r), [, () )
where
11=12=%22—+;—22+1 (vi)
therefore
a—22+r—%2+1=a—22+r—%2+1 (vii)
rn a r;, a
or,
2 (-15 - —12-J -5(3-4) (viii)
ri rn; a
which leads to
a=rnr (5.37.11)

The normal force on the end plane 8 = +cb is given by (see Eq. (5.37.9) and (i))

7'2 I'2
[ Toodr =[rAQ) + K] =nfAGD+K] —r[A(r) + K] =0 (537.12)
n n
Thus, at the end plane, there is a flexural couple. Let M denotes the flexural couple per unit
width, then

I r
M=f2rT99dr=f2(drA +Kr)dr
n

" dr
) ry ry Kr2r2 ) ry Kr% Kr%
=PA@) ~J ra@ydr + =) = kA + KA - [ rApdr+ 57 - G3713)
non n n

i.e.

)
M =2KG} - )= [ rAGydr (5.37.14)

n
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We note that with z = Z, the bar is in a plane strain state.

5.38 Torsion and Tension of an Incompressible Solid Cylinder
Consider the following equilibrium configuration for a circular cylinder
r=MR, 6=O©+KZ, z2=13Z MBiy=1 (5.38.1)

where (r, 0,z ) are the spatial coordinates and (R,0,Z)are the material coordinates for a
material point, A1 and 13 are stretches for elements which were in the radial and axial direc-

tions.
The left Cauchy-Green tensor B and its inverse can be obtained from Eq. (3.30.8) as

% 0 0
A2 0 0 1 .
Bl=|0 1+7K rKis|, [B71=|0 3 K (5382)
1

2
0 rKis 4 0 -k A+2KPA

The scalar invariants of B are

=222+ PR + 22 =%+rZK2+l§, (5.38.3a)

2 4 Kr 1 22
=2+ (1+50) =25+ 5 (14K74), B=1 5.38.3b
2=t A ( 2 ) =24 22 ( 3), I ( )

Now, from the constitutive equation T = —pl + ¢ B + go2B_1 , we obtain

P2 1
T,=-p+p Al +—= =-p+ T el (5.38.42)
¥
Tog = —p + 91001 + P K )+ 2P +‘P1(,11 +P°K ) +pady  (5.38:4b)
1

T, ="P+¢’113+‘P2(11+11Kr)——p+go1).3+7[—( + K ) (5.38.4¢)

To=T,=0 (5.38.4d)
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Te, = K13 (p1 “%)r

The equations of equilibrium are:
oy , Tn=Top

or r =0
ATy
5 —0
T,
T 0

(5.38.4¢)

(5.38.5a)

(5.38.5b)

(5.38.5¢)

Noting that I; and I, ( and therefore ¢; and ¢,), are functions of r only, we obtain, from the

second and the third equations of equilibrium,

That is, p is a function of r only. Thus,
p=p{)
From the first equation of equilibrium, we have
dT,,
r— = =Ty = Top)

The total normal force N on a cross sectional plane is given by

rO
N = [ T,2nrdr

o

(@)

(5.38.6)

(ii)

(5.38.7)

To evaluate the integral, we first need to eliminate p from the equation for T, . This can be

done in the following way:
With
Tpy=-P+%;, Tp,=-p+7t,, Teg=-p+7T
we have
2T, = =2p + 2t,, = (T,—7,,) + (Teg—Tgg) + 273,
=T, + Teg+ 21, — Ty — Teg

Now, in view of Eq. (ii), we have

dT, 1d , >
2Tzz=2T,,+r~T+2122—r,,—rgg=r—d—r(r T,) + 2T, — T, — Tep

d

(5.38.8)

(iii)

(iv)
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Thus, from Eq. (5.38.7),

7o To (V)
N= :rrzT,T] +x f (2t,,—7,,—Tgg) rdr
4 o
With T,,(r,) = 0, we have
(5.38.9)

N=n f (2r,,—T,—Tgg) rdr
o
From Egs. (5.38.4) and (5.38.8), we have
2 1 P2 22 2p (vi)
ZTZZ — Ty —Tgg = 2 (13—g) ((pl—E) - Kr (¢1—T3)

Thus,

N=2m13 (13 —;12-)

Q “—myo"

<¢p1 - f—;) rdr

3
To 2 (5.38.10)
2 P2, 3
-z K 01—~ 7 \rdr
/ ,,( 15 )
Since r = A1 R, therefore,
rdr = A2RdR = 2-RAR (vii)
A3
Thus,
1, ¢ P2
N=2x (l3-3) [ ¢1- 75 )RR
=) (=)
2 R
aK ° 2 3
L — 5\ RUUR (5.38.11)
2 0(‘01 A3 >
Similarly, the twisting moment can be obtained to be
M= frngandr— ”Kf( ‘02>R3dR (5.38.12)

InEgs. (5.38.11) and (5.38.12) ¢ and ¢, are functions of I, and I; and are therefore functions
of R (see Eq. (5.38.3).
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If the angle of twist K is very small, then I; and I and therefore ¢, and ¢, may be regarded
as independent of R and the integrals can be integrated to give

N = a3 (3 - é) (gol—-%) +O(K?) (5.38.18)

and

4
_KnRo P2 5
M—1—3 5 ((pl ,13)+O(K)

We see therefore, that if the bar is prevented from extension or contraction (i.e., i3 = 1),
then twisting of the bar with a K approaching zero, gives rise to a small axial force N which
approaches zero with K2.On the other hand if the bar is free from axial force (i.e, N = 0), then
as K approaches zero, there is an axial stretch 43 such that (13 -1) approaches zero with K.

Thus, when a circular bar is twisted with an infinitesimal angle of twist, the axial stretch is
negligible as was assumed earlier in the infinitesimal theory.

From Egs. (5.38.18) and (5.38.19), we can obtain
M_R, N (5.38.20)

K 2 1
(5-5)

Equation (5.38.20) is known as “Rivlin’s Universal relation”. This equation gives, for small
twisting angle, the torsional stiffness as a function of 13, the stretch in the axial direction. We
see, therefore, that the torsional stiffness can be obtained from a simple-extension experiment
which measures N as a function of the axial stretch 45 .

(5.38.19)
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PROBLEMS
5.1. Show that the null vector is the only isotropic vector.

(Hint: Assume that a is an isotropic vector, and use a simple change of basis to equate the
primed and the unprimed components)

5.2. Show that the most general isotropic second-order tensor is of the form a I, where @ is a
scalar and I is the identity tensor.

5.3. Show that for an anisotropic linear elastic material, the principal directions of stress and
strain are usually not coincident.

54. If the Lame constants for a material are
A = 119.2 GPa (17.3x10° psi), u = 79.2 GPa (11.5%10° psi),
find Young’s modulus, Poisson’s ratio, and the bulk modulus.

5.5. Given Young’s modulus Ey = 103 GPa and Poisson’s ratio v = 0.34, find the Lame
constants A and . Also find the bulk modulus.

5.6. Given Young’s modulus Ey = 193 GPa and shear modulus x = 76 GPa, find Poisson’s
ratio v, Lame’s constant A and the bulk modulus &

5.7. If the components of strain at a point of structural steel are
Eq =36x107%, Ep =40x107%, Es=25%107°
Epp=12x10"%, Ey=0, E;3=30x107°
find the stress components, A = 119.2 GPa(17.3 x 10° psi), # = 79.2 GPa (11.5x106 psi).
5.8. Do Problem 5.7 if the strain components are
Ep =100x107%, Ep=-350x10"%, Es3=200x10"°
Epp = —100x10"%, Ep=0, E;3=0

5.9. (a) If the state of stress at a point of structural steel is

100 42 6
[T]=|42 -2 0|MPa
6 0 15

what are the strain components? Ey = 207 GPa, x = 79.2 GPa,v = 0.30

(b) Suppose that a five centimeter cube of structural steel has a constant state of stress given
in part (a). Determine the total change in volume induced by this stress field.

5.10. (a) For the constant stress field below, find the strain components

6 2 0
T]=1{2 -3 0| MPa
0 0O
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(b) Suppose that a sphere of 5 cm radius is under the influence of this stress field, what will be
the change in volume of the sphere? Use the elastic constants of Prob.5.9.

5.11. Show that for an incompressible material (v = 1/2 ) that

(2)

(b) Hooke’s law becomes
T=2yE+%(Tkk)I

5.12. Given a function f(a , b) = ab and a motion
x1=X1+k(X1+X3)
X=X + k(X ~ X3),

where k = 10™*
(a) Show that f(X7 , X, ) = f(x1,x2).
(b) Show that
oftxr,x2) _ 9fiX1,X2)
axy ). ¢
and

of(xy,x2) - of(X1,X2)
6x2 6X2

5.13. Do the previous problem for f(a , b) = a® + b
5.14. Given the following displacement field

m =k Xy, up=IXs Xy, u3=k(Xi—%3), k=107"
(a) Find the corresponding stress components.
(b) In the absence of body forces, is the state of stress a possible equilibrium stress field?
5.15. Repeat Problem 5.14, except that the displacement components are

u = kX2X3, Uy = kX1X3, Uz = kX1X2’ k= 10_4

5.16. Repeat Problem 5.14, except that the displacement components are:

U= —kX3X2, u2=kX1X3, u3=ksinX2, k= 10-4

5.17. Calculate the ratio of ¢; /c for Poisson’s ratio equal to % , 0.49, 0.499
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5.18. Assume an arbitrary displacement field that depends only on the field variable x, and
time ¢, determine what differential equations the displacement field must satisfy in order to
be a possible motion (with zero body force).

5.19. Consider a linear elastic medium. Assume the following form for the displacement field

up=¢e[sinfxz—ct) +asinfxz+ct)l, up=uz=90
(a) What is the nature of this elastic wave (longitudinal, transverse, direction of propagation)?

(b) Find the associated strains, stresses and determine under what conditions the equations of
motion are satisfied with zero body force.

(c) Suppose that there is a boundary at x3 = 0 that is traction-free. Under what conditions will
the above motion satisfy this boundary condition for all time?

(d) Suppose that there is aboundary atx3 = [ thatis also traction-free. What further conditions
will be imposed on the above motion to satisfy this boundary condition for all time?

5.20. Do the previous problem if the boundary x3 = 0 is fixed (no motion) and x3 =/ is still
traction-free.

5.21. Do problem 5.19 if the boundaries x3 = 0 and x3 = / are both rigidly fixed.
5.22. Do Problem 5.19 if the assumed displacement field is of the form
uz=sinB(x3—ct)+asinf (x3 +ct),
uy=uy=0.

5.23. Do Problem 5.22 if the boundary x3 = 0 is fixed(no motion) and x3 = [ is traction-free (
t=0).

5.24. Do Problem 5.22 if the boundary x3 = 0 and x3 = [ are both rigidly fixed.

5.25. Consider an arbitrary displacement field u = u(x;, ¢ ).

ou;
(a) Show that if the motion is equivoluminal (a—xf = () that w must satisfy the equation
(]

azu,' 32 u;
= p a
ax]' 6){]' o 6t2
. L . ou; oy . ) du;
(b) Show that if the motion is irrotational (— = —2) that the dilatation e = — must satisfy
axj ox; ax;
the equation
2 2

4

2u+ Ay =p, L E
( /‘ )axl axl pO atz .
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5.26. (a) Write a displacement field for an infinite train of longitudinal waves propagating in
the direction 3 ey + 4e,.

(b) Write a displacement field for an infinite train of transverse waves propagating in the
direction 3 e + 4e; and polarized in the x; x; plane.

5.27. Consider a material with Poisson’s ratio equal 1/3 and a transverse elastic wave (as in
Section 5.10) of amplitude £; and incident on a plane boundary at an angle ay. Determine the

amplitudes and angles of reflection of the reflected waves if

(@aa1=0

(b) @y = 15°.

5.28. Consider an incident transverse wave on a free boundary as in Section 5.10. For what
particular angles of incidence will the only reflected wave be transverse? ( Take v = 1/3).

5.29. Consider a transverse elastic wave incident on a traction-free plane surface and polarized
normal to the plane of incidence. Show that the boundary condition can be satisfied with only
areflected transverse wave that is similarly polarized. what is the relation of the amplitudes,
wavelengths, and direction of propagation of the incident and reflected wave?

5.30. Consider the problem of Section 5.10 and determine the characteristics of the reflected
waves if the boundary x, = 0 is fixed (no motion). How are the results different from the case

of a free boundary.
5.31. A longitudinal elastic wave is incident on a fixed boundary

(a) Show that in general there are two reflected waves, one longitudinal and the other
transverse (polarized in plane normal to incident plane).

(b) Find, as in Section 5.10, the amplitude ratio of reflected to incident elastic waves.
5.32. Do the previous problem for a free boundary.

5.33. Verify that the thickness stretch vibration given by Eq. (5.11.3) does satisfy the lon-
gitudinal wave equation.

5.34. Do Example 5.11.1 if the right face x; = lis free.

5.35. (a) Find the thickness stretch vibration if the x; = 0 face is being forced by a traction
t = (8 cos w t )e; and the right-hand face xy = [ is fixed.

(b) Find the resonant frequencies.

5.36. (a) Find the thickness-shear vibration if the left-hand face x; = 0 has a forced displace-
ment u = (@ cos w ¢ }e3 and the right-hand face x; = /is fixed.

(b) Find the resonant frequencies.

5.37. Do the previous problem if the forced displacement is given by
u=a(coswtey+sinwtes). Describe the particle motion throughout the plate.
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5.38. Determine the total elongation of a steel bar 76 cm long if the tensile stress is 0.1 GPa
and Ey =207 GPa.

5.39, A cast iron bar, 4 ft (122 cm) long and 1.5 in.(3.81 cm) in diameter is pulled by equal and
opposite axial forces P at its ends.

(a) Find the maximum normal and shearing stresses if P=20,000 Ib (89000 N).

(b) Find the total elongation and lateral contraction ( Ey = 15x10 6 psi (103 GPa),
v =0.25).

5.40. A steel bar (Ey = 207GPa ) of 6 cm? cross-section and 6 m length is acted on by the
indicated (Fig.P5.1) axially applied forces. Find the total elongation of the bar.

0.4 MN ——§ —= 0.5MN lw— (.1MN

Fig. P5.1

5.41. A steel bar of 10 ft (3.05 m) length is to be designed to carry a tensile load of 100,000 Ib
(444.8 kKN). What should the minimum cross-sectional area be if the maximum shearing stress
should not exceed 15,000 psi (103 MPa)and the maximum normal stress should not exceed
20,000 psi (138 MPa)? If it is further required that the elongation should not exceed 0.05
in(0.127 ¢cm), what should the area be?

5.42. Consider a bar of cross-sectional area 4 that is stretched by a tensile force P at each end.
(a) Determine the normal and shearing stresses on a plane with a normal vector that makes
an angle a with the cylindrical axis. For what values of @ are the normal and shearing stresses
equal?

(b) If the load carrying capacity of the bar is based on the shearing stress on the plane defined
by @ = a, remaining less than 7, sketch how the maximum load will depend on the angle &,,.

5.43. Consider a cylindrical bar that is acted upon by an axial stress 717 = 0,

(a) What will the state of stress in the bar be if the lateral surface is constrained so that there
is no contraction or expansion?

(b) Show that the effective Young’s modulus Ey’ = T4/Eq; is given by

o (d-v)
Ey _(1—2v)(l+v)EY'
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(c) Evaluate the effective modulus for Poisson’s ratio equal to 1/3 and 1/2.
5.44. Let the state of stress in a tension specimen be given by Ty; = 0, all other Tj; = 0.

(a) Find the components of the deviatoric stress T = T — -;— e

(b) Find the scalar invariants of T°

5.45. Three identical steel rods support the load P, as shown in Fig.P5.2. How much load does
each rod carry? Neglect the weights of the rod and the rigid bar.

s s

N[

a
a 3 |

5.46. Solve the previous problem if the cross-sectional area of the middle bar is twice that of
the left- and right-hand bars.

5.47. Let the axis of a cylindrical bar be vertical and initially coincide with the x; axis. If
x1 = 0 corresponds to the lower face, then the body force is given by pB = —p ge;. Assume
that the stress distribution induced by the body force alone is of the form

Tiu=pgx
and all other T = 0.
(a) Show that the stress tensor is a possible state of stress in the presence of the body force
mentioned above.

(b) If this possible state of stress is the actual distribution of stress in the cylindrical bar, what
surface tractions should act on the lateral face and the pair of end faces in order to produce
this state of stress.

5.48. A circular steel shaft is subjected to twisting couples of 2700 N-m. The allowable tensile
stress is 0.124 GPa. If the allowable shearing stress is 0.6 times the allowable tensile stress,
what is the minimum allowable diameter?
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5.49. A circular steel shaft is subjected to twisting couples of S000 ft-1b (6780 N - m). Determine
the shaft diameter if the maximum shear stress is not to exceed 10,000 psi(69 MPa) and the

angle of twist is not to exceed 1.5 ® in 20 diameters of length. £ = 12X 10° psi (82.7 GPa).

5.50. Demonstrate that the elastic solution for the solid circular bar in torsion is also valid for
a circular cylindrical tube in torsion. If a is the outside radius and b is the inside radius, how
must Eq. (5.13.10) for the twist per unit length be altered?

5.51. In Example 5.13.2, if the radius of the left portion is a; and the radius of the right portion
is a, what is the twisting moment produced in each portion of the shaft? Both shafts are of
the same material.
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Fig. P53

5.52. Solve the previous problem ifa; = 3.0cm,a; =2.5cm, Iy =l = 75 cm, and M; = 700 N-m.

5.53. For the circular shaft shown in Fig.P5.3, determine the twisting moment produced in each
part of the shaft.

5.54. A circular bar of one-inch (2.54 cm) radius is under the action of an axial tensile load of
30,000 1b(133 kN) and a twisting couple of 25,000 in-1bs(2830 N -m).

(a) Determine the stress throughout the bar.

(b) Find the maximum normal and shearing stress that occurs over all locations and all
cross-sectional planes throughout the bar.

5.55. Show that for any cylindrical bar of non-circular cross-section in torsion that the stress
vector at all points along the lateral boundary acting on any of the normal cross-sectional planes
must be tangent to the boundary.

5.56. Demonstrate that the displacement and stress for the elliptic bar in torsion may also be
used for an elliptic tube, if the inside boundary is defined by

3 B
a b
where k<1.
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5.57. Compare the twisting torque which can be transmitted by a shaft with an elliptical
cross-section having a major axis equal to twice the minor axis with a shaft of circular
cross-section having a diameter equal to the major axis of the elliptical shaft. Both shafts are
of the same material. Also compare the unit twist under the same twisting moment.

5.58. Repeat the previous problem, except that the circular shaft has a diameter equal to the
minor axis of the elliptical shaft.

5.59. (a) For an elliptic bar in torsion, show that the magnitude of the maximum shearing stress
varies linearly along radial lines x, = kx5 and reaches a maximum on the outer boundary.

(b) Show that on the boundary the maximum shearing stress is given by

2M,
(Ts ) max = 2t3\/bé+x§(aL_b‘)
wa b

so that the greatest shearing stress does occur at the end of the minor axis.

5.60. Consider the torsion of a cylindrical bar with an equilateral triangular cross-section as in
Fig.P54.

(a) Show that a warping function¢ = a (3x%x3 - x% ) generates an equilibrium stress field.

(b) Determine the constant a in order to satisfy the traction-free lateral boundary condition.
Demonstrate that the entire lateral surface is traction-free.

(c) Write out explicitly the stress distribution generated by this warping function. Evaluate
the maximum shearing stress at the triangular corners and along the line x3 = 0 in a cross-sec-
tion. Along the line x3 = 0 where does the greatest shearing stress occur?

X3

P

X2

(-2a,0)\ (a,0)

\

Fig. P54

5.61. An alternate manner of formulating the problem of the torsion of a cylinder of noncircular
cross-section employs a stress function ¥ (x5, x3 ) such that the stresses are given by
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d
T12=§;%, Tyy= —5;/)—2

and all other Tj; = 0
(a) Demonstrate that the equilibrium equations are identically satisfied for any choice of .

(b) Show that if v satisfies the equation

2, 2
a—% + 6—% = constant
dxy  ox3

then the stress will correspond to a compatible strain field for simply-connected cross-sectional
areas.

(c) Show that the lateral boundary condition requires that Vi be in the same direction as the
outward normal. In other words, the values of ¥ on the outer boundary is a constant.

5.62. A beam of circular cross-section is subjected to pure bending. The magnitude of each
end couple is 14,000 N-m. If the maximum normal stress is not to exceed 0.124 GPa, what
should be the diameter?

5.63. The rectangular beam of Example 5.15.1 has awidth b and a height 1.2b. If the right-hand
couple is given by M = 24,000e, ft-1b (32,500 N -m), determine the dimension b in order that
the maximum shearing stress does not exceed 600 psi (4.14 MPa).

5.64. Let the beam of Example 5.15.1 be loaded by both the indicated bending moment and a
centroidally applied tensile force P. Determine the magnitude of P in order that T712=0.
5.65. Verify that if ¢ (x1, x3) satisfy Eq. (5.16.7), than it does correspond to a compatible strain
field.

5.66. Show that if the bending moment applied to a bar in pure bending is not referred to
principal axes, then the flexural stress will be
My, + M3 1, Ml + M5 1,
2z 2 Dy - 2 Z Y,
Iy — I Iy — Iy
5.67. Figure P5.5 shows the cross-section of a beam subjected to pure bending. If the end
couples are given by + 10* N-m, find the maximum normal stress.

Iy = 2
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Fig. P5.5

5.68. Consider the stress function
0 = a1 X} + agyxy + a3 i
(a) Verify that this stress function is a possible one for plane strain.
(b) Determine the stresses and sketch the boundary tractions on the rectangular boundary,
x1=0, xq=a,x=0, xo=>b.
5.69. Consider the stress functionp = @ x% X7
(a) Is this a possible stress function for plane strain?
(b) Determine the stresses.
(c) Determine and sketch the boundary traction on the boundary defined by
x1=0, xy=a, x=0, x,=>.
5.70. Consider the stress function ¢ = ax‘f +8 xg.
(a) Is this a possible stress function for plane strain?

(b) Determine and sketch the boundary tractions on the rectangular boundary of the previous
problem.

5.71. Consider the stress function ¢ = ax; x% + B x1x) 3
(a) Is this a possible stress function for plane strain?
(b) Determine the stresses.

(¢) Find the condition necessary for the traction on x, = b to vanish and sketch the stress
traction on the remaining boundariesx; = 0, x1 =0, x{ =a.

§.72. By integration, obtain Eq. (5.17.13)
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5.73. From Egs. (5.19.2), show that Eq. (5.19.4) can also be written as:
b
~M = [ Tyyhdr
a

= [—Aln%—B(bzlnb ~a*lna) —C(bz—az)]

5.74. Obtain the general solution of Eq. (5.20.6) as

f(r)=Ar2+Br4+cr12+D

5.75. A hollow sphere is subjected to an internal pressure p; only.

(a)Show that T,, is always negative (i.e., compressive ) and Tgg is always positive (tensile).
(b) Find the maximum Tpg.

(c) If the thickness ¢ = a, —a; is small, show that the equation obtained in (b) reduces to

PiGo
2t

5.76. Using Eq. (5.16.6) in Eq. (5.16.7) to obtain Eq. (5.16.8).
5.77. Derive Eq. (5.16.9).

5.78. Obtain the solution for the differential equation, Eq. (5.17.8).
5.79. Obtainu, and uy from Egs. (5.17.11) and (5.17.12).

5.80. Verify Eq. (5.19.4)

5.81. Find the general solution for Eq. (5.20.6)

5.82. Write stress strain laws for a monoclinic elastic solid whose plane of symmetry is the
x1 x3 plane in contracted notation.

5.83. Write stress strain laws for a monoclinic elastic solid whose plane of symmetry is the
x3x1 plane in contracted notation.

5.84. Verify any one of the equations in Eqs(iv) of Section 5.26 on transversely isotropic elastic
solid.

5.85. Show from the equation Cyy33 = 0 that Cjy33 = Cyp33 for a transversely isotropic
material [See Section 5.26]
5.86. Referring to Section 5.26, for a transversely isotropic elastic solid, obtain Eq. (ix)

5.87. In Section 5.26 we obtained the reduction in the elastic coefficients for a transversely
isotropic elastic solid by demanding that each Sg plane is a plane of material symmetry. We

can also obtain the same reduction by demanding that C,-j,'d be the same for all . Verify that
the two procedures lead to the same elastic coefficients.
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5.88. Verify the relations between C;; and the engineering constants given in Eqs. (5.29.2a)
5.89. Obtain Eq. (5.29.3) from Eq. (5.29.2)

5.90. Derive the inequalities expressed in Eq. (5.30.4)

5.91. Write down all the restrictions for the engineering constants for a monoclinic elastic solid.

5.92. Show that if a tensor is objective, then its inverse is also objective.
5.93. Show that the rate of deformation tensor D = %[(Vv) + (Vv)T] is objective

5.94. Show that in a change of frame, the spin tensor W transforms in accordance with the
equation W* = QWQ” + QQ7
5.95. Show that the material derivative of an objective tensor T is in general non-objective
5.96. The second Rivlin-Ericksen tensor is defined by
Ay =Ap+ A (W) + (WA,

where A; = 2D [See Prob. 5.93]. Show that A, is objective.
5.97. The Jaumann derivative of a second order tensor T is

T + TW-WT
where W is the spin tensor [see Prob. 5.94]. Show that the Jaumann derivative of T is objective.
5.98.1In a change of frame, how does the first Piola-Kirchhoff stress tensor transform ?
5.99. In a change of frame, how does the second Piola-Kirchhoff tensor transform?
5.100. (a) Starting from the assumption that

T = H(F)

and

T =H'(F"),
show that in order that the constitutive equation be independent of observers, we must have

QTQ”=H(QF)
(b) Choose Q=RT to obtain
T=R H(U)R?

where R is the rotation tensor associated with the deformation gradient F and U is the right
stretch tensor.

(¢) Show that
T = h(U)
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where
h = UHU)UT
Since C = U2, therefore we may write
T =RC)



