
                                 
ME 402/512 (CE 402)   ASSIGNMENT 1.   Due September 1, 1998

Some of these exercises draw on prerequisite knowledge not covered in lecture.

1. Print and read the homework grading policy at 
http://home.sprintmail.com/~zz/Teach/Continuum/HWpolicy.html

2. Give brief engineering definitions for any 12 of the following 16 terms:

3. Let  and . Show that [A] is a “square root” of the 2×2 

identity matrix and  is a “square root” of the 2×2 zero matrix. Find the eigenvalues and 
eigenvectors of [A] and [B].

4. Let  and . Find  and .

5. Let ,      ,      

(a) Find the cofactor matrix [A]C, and verify that [A][A]CT = det[A] I.

(b) Use the adjugate formulation to obtain .

(c) Find the solution {x} to the equation [A]{x}={b}.

6U. For the matrices in problem 4, verify that .

6G. Analytically determine the exact intersection points of the unit sphere, the y-z plane, and 
the paraboloid . Taking  as the starting guess for an 
iterative numerical solution of this problem, find the next guess using the Newton-Raph-
son method

7. Consider traditional polar coordinates:  and .

Find the following derivatives: , , , , , , 

, , , , , . If , where k is a constant, find . 

elastic material
homogeneous
anisotropic
continuous function

rigid body
scalar
vector
Poisson’s ratio

Mohr’s circle
Shear modulus
Hooke’s law of Linear 

Elasticity
stiffness

strength
velocity
speed
plane strain

A[ ] 5 2

12– 5–
= B[ ] 1 1

1– 1–
=

B[ ]

A[ ] 1 0 2

1– 1 3
= B[ ]

2 1

2– 0

4 5

= A[ ] B[ ] B[ ] A[ ]

A[ ]
2 1 1

7 1 2

21 0 4

= b{ }
1

0

2 
 
 
 
 

= x{ }

x1

x2

x3 
 
 
 
 

=

A[ ] 1–

A[ ] B[ ]( )T B[ ] T A[ ] T=

z x2 y2+= xo yo zo, ,{ } 1 1– 1, ,{ }=

x r θcos= y r θsin=

r∂
∂x

 
 

θ θ∂
∂x

 
 

r r∂
∂x

 
 

y θ∂
∂x

 
 

y y∂
∂x

 
 

θ y∂
∂x

 
 

r

r∂
∂θ

 
 

x x∂
∂θ

 
 

r r∂
∂θ

 
 

y x∂
∂θ

 
 

y y∂
∂θ

 
 

x y∂
∂θ

 
 

r
z r kθ–=

r∂
∂y

 
 

z
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ME 402/512 (CE 402)   ASSIGNMENT 2.   Due Sept. 8, 1998

1. Do problem 2A1 in text.

2. Do problem 2A2 in text.

3. Do problem 2A5 in text.

4. Do problem 2A7 in text.

5. Do problem 2A8 in text.

6. Do problem 2A11 in text.

7G. Do problem 2A4 in text.
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ME 402/512 (CE 402)   ASSIGNMENT 3.   Due Sept. 15, 1998

1. Let  and . 

Find the most general form for  such that  is perpendicular to .

2. Given , , . 

Find the components of the following scalars, vectors, or tensors: 

,    ,    ,    .

3. Show that the relation  holds for all unit vectors , and that this 

represents an alternative resolution of  into vectors parallel and perpendicular to . 

Hint: utilize an identity proved in homework #2 and our class discussion of the projection theorem.

4. Do problem 2B2 in the textbook. Tips: recall from class that  and 

. In your work, use our notation , not the book’s notation . For all 

handwritten work, indicate vectors with a single underline and tensors with a double underline (for 

word processor typesetting, use bold). The array associated with a vector v is denoted . The 

matrix associated with a tensor is denoted .

5. Do problem 2B3 in the textbook. 

Tip: recall that linearity means .

6. Do problem 2B4 in the textbook. This problem should take you less than a minute to complete if 

you recall that the columns of  are .

7U. Do problem 2B5 in the textbook. 

7G. Show that each term in problem #3 (above) is not linear with respect to n, but each term is 

linear with respect to v. Using exclusively direct notation, show that , 

where . Using exclusively direct notation, show that , where 

. Hint: in order to demonstrate this result without having to resort to indicial notation, 

you will need to make use of the direct notation identity given in the book’s problem 2A8 on page 

69. Keep in mind:  and .

x
˜

xie˜ i= v
˜

e
˜ 1– 4e

˜ 2 2e
˜ 3–+=

x
˜

x
˜

v
˜

u{ }
4

3

2 
 
 
 
 

= v{ }
2–

4

3 
 
 
 
 

= T[ ]
1– 2 3

3 2 1

4 3 4

=

T
˜̃

u
˜

• u
˜

T
˜̃

T• v
˜

T
˜̃

u
˜

•• u
˜

v
˜

⊗

v
˜

v
˜

n
˜

•( )n
˜

n
˜

v
˜

n
˜

××+= n
˜

v
˜

n
˜

Tij e
˜ i T

˜̃
e
˜ j••=

u
˜

v
˜

× εijku jvke
˜ i= T

˜̃
a
˜

• Ta

v{ }

T
˜̃

[ ]

T
˜̃

α1u
˜ 1 α2u

˜ 2+( )• α 1T
˜̃

u
˜ 1• α 2T

˜̃
u
˜ 2•+=

T
˜̃

[ ] g
˜

i{ } T
˜̃

e
˜ i•{ }=

v
˜

n
˜

•( )n
˜

P
˜̃

v
˜

•=

P
˜̃

nn≡ n
˜

v
˜

n
˜

×× Q
˜

v
˜

•=

Q
˜

I
˜̃

P
˜̃

–=

n
˜

n
˜

• 1= v
˜

I
˜̃

v
˜

•=
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ME 402/512 (CE 402)   ASSIGNMENT 4.   Due Sept. 22, 1998

1. Find the direct notation expressions for the tensors , , and  such that 
(i) 

(ii) 
(iii) 

Hint: for all cases, simply rearrange the identity of problem 2A8 in the book. You should not have to 
resort to indicial or matrix notation to do this problem.

2. Determine what the question marks stand for in the following identity:

Hint: recall the triple scalar product is defined .

3. Using only direct notation, show that , where k is a positive integer 
exponent. [Bonus points for anyone who proves this using proper proof by induction.]

4. (For the following problem, leave your answers in terms of .)     Suppose that the angles 
between respective base vectors in two systems are as listed in the table.

BONUS QUESTIONS:

5U. Use the ε-delta identity to determine what the question marks stand for in the following 

identity: . Comparing this formula with the result in 

problem 2A8 in the book, show that  is poor notation because it is ambiguous 

without parentheses. Explain why  is acceptable because it is not ambiguous.

5G. (i) Prove that . 
(ii) Prove that any sum of four dyads can always be reduced to the sum of three or fewer 
dyads. Hint: for our three dimensional space, any set of four vectors is always linearly dependent 
and therefore one of those four vectors can always expressed as a linear combination of the other 
three vectors; use this fact in combination with the result from part (i).

T
˜̃

S
˜̃

Y
˜̃

a
˜

b
˜

c
˜

×( )× T
˜̃

a
˜

•=

a
˜

b
˜

c
˜

×( )× S
˜̃

b
˜

•=

a
˜

b
˜

c
˜

×( )× Y
˜̃

c
˜

•=

a
˜

b
˜

×( ) c
˜

d
˜

×( )× ? ? ?, ,[ ] ? ? ? ?, ,[ ] ?–=

u
˜

v
˜

w
˜

, ,[ ] u
˜

v
˜

×( ) w
˜

•≡ εijkuiv jwk=

u
˜

v
˜

( )k u
˜

v
˜

•( )k 1– u
˜

v
˜

=

2

e
˜ 1* e

˜ 2* e
˜ 3*

e
˜ 1 90° 45° 135°

e
˜ 2 45° 60° 60°

e
˜ 3 45° 120° 120°

(a) Express each  as a linear combination of the  vectors; 
Express each  as a linear combination of the  vectors.

(b) Obtain the components of the transformation matrix and 
verify that the transformation preserves handedness.

(c) Find  if 

e
˜ i* e

˜ j
e
˜ j e

˜ i*

T
˜̃

[ ]
e

T
˜̃

[ ]
e*

2 2– 0

2– 6 0

0 0 4 e*

=

a
˜

b
˜

×( ) c
˜

× ?
˜

?
˜

•( )?
˜

?
˜

?
˜

•( )?
˜

–=

a
˜

b
˜

× c
˜

×

n
˜

u
˜

× n
˜

×

a
˜

b
˜

c
˜

+( )⊗ a
˜

b
˜

⊗ a
˜

c
˜

⊗+=
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ME 402/512 (CE 402)   ASSIGNMENT 5.   Due Sept. 29, 1998

In preparation for the exam, solve any six of the following problems from the textbook:

2B6
2B7
2B8
2B9
2B10
2B11
2B14
2B15
2B17
2B19
2B26
2B27
2B28
2B30
2B34
December 9, 1998 5



ME 402/512 (CE 402)   ASSIGNMENT 6.   Due Sept. 29, 1998

Solve the following problems from the textbook:

2B20
2B22
2B23
2B35
December 9, 1998 6



ME 402/512 (CE 402)   ASSIGNMENT 7.   Due Oct. 13, 1998

1. Let . (a) Compute the characteristic equation by directly expanding 

.    (b) Compute the characteristic invariants  for the tensor . 

    (c) Verify that the formulas  and  give the same 

result. (d) Verify that the characteristic equation is indeed .

2. Using the tensor  from question #1, evaluate (a)  ,    (b)  , 
(c)  ,    (d)  ,    (e)  ,    (f) .

3. Let a be a vector that is fixed in a rigid body; i.e., , where  is the unrotated 
(initial) orientation of the vector. Suppose the rotation varies with time. Noting that the 
initial orientation  is forever constant, prove that , where 

, and the angular velocity  is the dual vector of .      (Hint: see lecture).

4. [Modified from Dynamics of Polymeric Liquids, R.B. Bird et. al]
Consider a rigid structure (such as the frame of a carnival ride) that may be approximated 
as point particles joined by massless rods. The particles are numbered 1, 2, 3, ... N, and the 
particle masses are  (p = 1,2, ..., N). The locations of the particles with respect to the cen-
ter of mass are . The entire structure rotates on an axis passing through the center of 
mass with an angular velocity . Using the result from the previous problem, show that 
the angular momentum with respect to the center of mass is

(1)

Then show that this expression may be rewritten as

(2a)

where   is the moment of inertia tensor. (2b)

Describe why Eqs. (2) might be more convenient than Eq. (1). For N=1, =1, and 

= , find the matrix of .           Defining the kinetic energy of rotation as 

 , prove that      .

T
˜̃

[ ]
1 0 1–

3 2 0

4 5 0

=

det T
˜̃

λ I
˜̃

–[ ] 0= I1 I2 I3, ,{ } T
˜̃

I2 trT
˜̃

C= I2
1
2
--- trT

˜̃
( )2 tr T

˜̃
2( )–[ ]=

λ 3 I1λ 2– I2λ I3–+ 0=

T
˜̃

T
˜̃

e
˜ 2•( ) e

˜ 1× T
˜̃

: e
˜ 1e

˜ 1( )
e
˜ 1e

˜ 2( ):T
˜̃

T
˜̃

: e
˜ 1e

˜ 2( ) T
˜̃

:T
˜̃

T
˜̃

:T
˜̃

T

a
˜

Q
˜̃

a
˜ o•= a

˜ o
Q
˜̃a

˜ o ȧ Ω
˜̃

a
˜

• ω a×= =

Ω
˜̃

Q
˜̃
˙ Q

˜̃
T•= ω Ω

˜̃

mp
R
˜̃ p

w
˜

H
˜

mp R
˜̃ p

w
˜

R
˜̃ p

×( )×[ ]
p 1=

N

∑=

H
˜

Φ
˜̃

w
˜

•=

Φ
˜̃

mp R
˜ p R

˜ p•( )I
˜̃

R
˜ pR

˜ p–[ ]
p 1=

N

∑=

m1

R
˜ 1 xe

˜ 1 ye
˜ 2 ze

˜ 3+ + Φ
˜̃

K 1
2
---m

p
R
˜
˙ p R

˜
˙ p•( )

p 1=

N

∑= K 1
2
---Φ

˜̃
:w

˜
w
˜

=
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ME 402/512 (CE 402)   ASSIGNMENT 8.  . Due Oct. 27, 1998

1. For a continuous rigid body, the inertia tensor is defined , 

where  is the position vector from the center of mass to the mass element dm. Suppose 

the body is subjected to a rigid rotation  such that each X becomes .

(a) Noting that  is independent of position, prove the new inertia tensor  (defined by 

) is related to the original inertia tensor by . 

(b) Recalling , where  is the skew-symmetric angular velocity tensor, prove 

that . (This type of expression plays a key role later in the course.)

(c) Letting , where  is the dual vector of , prove that .

2. Let ,   ,   and . 

Prove that (a)     (b)     (c)     (d)     (e) 

(f) Grads only: 

3. Prove any three of the following identities; Grads prove five.

4. The second law of thermodynamics often implies that , where  is the heat 
flux vector and  is temperature. Interpret this inequality physically. Prove that 

 is a generalization of Fourier’s law ( ) and prove that the sec-
ond law demands that the conductivity tensor must be positive definite.

5. Construct a counter-example matrix [T] demonstrating that having all positive invariants 
does not necessarily make a tensor positive definite.      Hint: use a 2x2 matrix.

6. Do problem 2C2 in the text except use the point (0,1,-1) in lieu of the origin (0,0,0).

Φ
˜̃

X
˜

X
˜

•( )I
˜̃

X
˜

X
˜

–[ ] md∫∫∫=

X
˜

Q
˜̃

x
˜

Q
˜̃

X
˜

•=

Q
˜̃

Φ
˜̃

x
˜

x
˜

•( )I
˜̃

x
˜
x
˜

–[ ] md∫∫∫= Φ
˜̃

Q
˜̃

Φ
˜̃

• Q
˜̃

T•=

Q
˜̃
˙ Ω

˜̃
Q
˜̃

•= Ω
˜̃

Φ
˜̃
˙ Ω

˜̃
Φ
˜̃

• Φ
˜̃

Ω
˜̃

•–=

H
˜

Φ
˜̃

ω
˜

•= ω
˜

Ω
˜̃

H
˜
˙ Ω

˜̃
H
˜

• Φ
˜̃

ω
˜
˙•+=

∇ e
˜ k

∂     
∂xk
---------= x

˜
xie˜ i= r x

˜
x
˜

•=

∇ x
˜

I
˜̃

= ∇ x
˜

• 3= ∇ x
˜

× 0
˜

= ∇ r
x
r̃
---= ∇ 1

r
--- 

  x
˜
r3
----–=

∇ ∇ rn( ) nrn 2– n 2–( )r 2– x
˜
x
˜

I
˜̃

+[ ]=

∇ rs( ) r ∇ s s ∇ r+= ∇ sv
˜

( )× ∇ s( ) v
˜

× s ∇ v
˜

×( )+=

∇ sv
˜

( )• ∇ s( ) v
˜

• s ∇ v
˜

•( )+= v
˜

∇ v
˜

• 1
2
--- ∇ v

˜
v
˜

•( ) v
˜

∇ v
˜

×( )×–=

∇ v
˜

w
˜

( )• ∇ v
˜

•( )w
˜

v
˜

∇ w
˜

( )•+= sI
˜̃
: ∇ v

˜
( ) s ∇ v

˜
•( )=

∇ sI
˜̃

( )• ∇ s= ∇ sT
˜̃

( )• ∇ s( ) T
˜̃

• s ∇ T
˜̃

•( )+=

∇ 2 ∇ v
˜

•( ) ∇ ∇ 2• v
˜

= ∇ v
˜

w
˜

•( ) ∇ v
˜

( ) w
˜

• ∇ w
˜

( ) v
˜

•+=

∇ 2v
˜

∇ ∇ v
˜

•( ) ∇ ∇ v
˜

×( )×–= ∇ v
˜

w
˜

×( )• w
˜

∇ v
˜
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˜

∇ w
˜
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˜

∇ T• 0< q
˜T
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K
˜̃
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˜

κ∇ T–=

K
˜̃
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ME 402/512 (CE 402)   ASSIGNMENT 9.   Due Nov. 3, 1998

1. A force of magnitude F acts in a direction radially away from the origin at a point 

 on the surface of the ellipsoid . Determine the component of 

the force in the direction of the normal to the surface, taking a=1, b=2, c=–1, and F=4.

2. (a) If  is the position vector, use the divergence theorem to express  in terms of 

the volume of the region B.      (b) Actually perform the surface integral for a unit cube 
with one corner at the origin of an orthonormal laboratory coordinate system.

3. Verify that Stokes theorem holds for the plane area bounded by the square with corners 
(0,0), (β,0), (β,β), (0,β) in the -  plane if , , , 
where A,B, and C are constants.

4. For the same vector field as in problem #4 above, verify that the divergence theorem holds 
for a cube with one vertex at the origin and the opposite vertex at the point (β,β,β).

5. Use indicial notation to prove that  and that . 

6U. (a) A tensor D is called “negative definite” if and only if    is positive definite. Explain 

why D is therefore negative definite only if its invariants satisfy , , and .

(b) Find all the invariants of the following tensor .    Is B positive/negative definite?

(1)

6G. Carefully read the first three pages of the document at 
   http://me.unm.edu/~rmbrann/curvilinear.pdf   
Then solve Study Question (2.1) on page 7 of that document.

7. BONUS PROBLEM: Let r be a vector. Find the components of a fourth-order tensor  

such that , Hint: write this expression in indicial notation and then 

differentiate both sides with respect to  and again with respect to , keeping in mind: 

.You may assume without loss that  is symmetric in its first and last indices.

a
3
--- 2b

3
------ 2c

3
-----, , 

  x2

a2
----- y2

b
----- z2

c
-----+ + 1=

x
˜

x
˜

n
˜

• Sd
∂B
∫

x1 x2 v1 Ax2= v2 Ax3 Bx2+= v3 Cx1=

ϕ∇ ∇× 0
˜

= v
˜

∇×( ) ∇• 0=

D–

I1 0< I2 0> I3 0<

B

B[ ]
8 3 4

2 0 5–

1– 6 1

=

U~~~~
r
˜
r
˜

r
˜

r
˜

•( )I
˜

– r
˜

U
˜

r
˜

••=
~~~~

rα rβ

∂ri ∂r j⁄ δij= U~~~~
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ME 402/512 (CE 402)   ASSIGNMENT 10.   Due Nov. 10, 1998

1. Letting , do problem 3.3 in the book and add the following additional tasks:

(d) Find the matrix of the deformation gradient tensor . 

(e) Is the deformation homogeneous? Why or why not?

(f) For , evaluate and the deformation gradient at the material particles originally at 
(0,0,0) and (1,1,1) and sketch those two deformation gradients as though they were homo-
geneous. Are your sketches consistent with the deformed square from part (a)?

2. Solve problem 3.16 in the book. (An isotherm is a surface of constant temperature.)

3. Consider the deformation sketched below in which a bar is undergoing uniform uniaxial 
extension while simultaneously translating and rotating according to the given equations 
(in which  and  are constants). The translation is such that the vector connecting the ini-
tial origin to the current origin is , where k is a constant. The figure shows two possi-
ble ways that you might elect to set up a spatial basis. For each of the two options, 
(a) Determine the components of the displacement  with respect to the spatial  basis.
(b) Find the components of the velocity with respect to the spatial  basis.
(c) Find the mixed two-point ( ) components of the deformation gradient .
(d) Show that your answers to the above questions give sensible answers for various limit-
ing cases (When , you expect the deformation to be rotational, so you expect  to 
reduce to an orthogonal rotation tensor. When both  and , the deformation is pure 
rigid translation, so you expect  and .)

4U. Do problem 3.14 in the book.

4G. Solve Study Questions (2.2), (2.3), and (2.4) in http://me.unm.edu/~rmbrann/curvi-
linear.pdf.

k 1
2
---=

F
˜̃

t=2

ω ε̇
ktE

˜ 1

u
˜

e
˜ i

e
˜ i

e
˜ iE˜ j F

˜̃

ε̇=0 F
˜̃ω=0 ε̇=0

v
˜

=kE
˜ 1 F

˜̃
= I

˜̃

E
˜ 2

E
˜ 1

e
˜ 2

e
˜ 1

β=ωt
X1

X2

x1

x2

e
˜ 2

e
˜ 1

x1
x2

β=ωt

OPTION 1 OPTION 2
x1=X1 1 ε̇t+( ) βcos X2 βsin–

x2=X1 1 ε̇t+( ) βsin X2 βcos+
x1 X1 1 ε̇t+( )=

x2 X2=

initial configuration

current configuration
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ME 402/512 (CE 402)   ASSIGNMENT 11.   Due Nov. 17, 1998

1. Prove that .

2.  Sketch this deformation gradient tensor, including the deformation 
of an inscribed circle. Find the polar decomposition tensors  and 

. Do it two ways: (a) using the same steps as in the book’s example 
3.23.1 on page 130. (b) using the shortcut given in class. 

3. Do problem 3.37 in the book, noting that we say “vorticity” where the book says “spin.”

4. Do problem 3.34 in the book.

5U. Do problem 3.65 in the book.

5G. Solve Questions (2.5) and (3.1) in http://me.unm.edu/~rmbrann/curvilinear.pdf. 
For Question (2.5), violations of the summation convention will be graded severely.

D F
˜̃

1–
( )

Dt
------------------- F

˜̃

1–
L
˜̃

•–=

F
˜̃

[ ]
1 1– 0

3 2 0

0 0 1

= R
˜̃

V
˜̃
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ME 402/512 (CE 402)   ASSIGNMENT 12.   Due Nov. 24, 1998

In preparation for the exam, solve any six of the following problems from the textbook:

3.1, 
3.2, 3.4, 3.5, 3.6, 3.8, 3.9, 3.10, 3.11, 3.12 <--- pick no more than one from this line
3.17
3.39
3.40
3.41
3.61, 3.62, 3.63, 3.64 <--- pick no more than one from this line
3.66
December 9, 1998 12



ME 402/512 (CE 402)   ASSIGNMENT 13.   Due Dec 1, 1998

1. Let  denote the position vector. (a) Recalling that , use indicial notation to prove 
that . (b) Prove that  if and only if .

2. Let  and  denote an area elements in the reference and spatial configurations, 
respectively. Suppose that two tensors,  and , are desired to satisfy a relationship 

. Use Nanson’s relation to express  as a function of  and .

3. Consider the deformation sketched at right in 
which a bar is undergoing uniform uniaxial exten-
sion while simultaneously translating and rotating 
according to the given equations (in which  and 

 are constants). The translation is such that the 
vector connecting the initial origin to the current 
origin is , where k is a constant. The figure 
shows two possible ways that you might elect to 
set up a spatial basis. For each of the two options, 
(a) Determine the components of the displacement 

 with respect to the spatial  basis.
(b) Find the components of the velocity with 
respect to the spatial  basis.
(c) Find the mixed two-point ( ) components of 
the deformation gradient .
(d) Find the rate of deformation and vorticity.
(e) Find the Lagrange and Euler strain tensors.
(f) Show that your answers to the above questions 
give sensible answers for various limiting cases for 
which you know what the answer should be.

4U. Show that  is a strain measure of the Seth-

Hill form with . In other words, show that it 

generalizes the uniaxial strain measure .

4G. Solve problems (3.2) and (3.4) in http://me.unm.edu/~rmbrann/curvilinear.pdf. 

It is not necessary to show your work for Study Question (3.2). Your grade is based solely on whether you get the entries 
right or wrong. Problem (3.3) has been skipped because both (3.3) and (3.4) deal with situation of different tensors hav-
ing identical components with respect to different bases. Understanding these problems is essential for you to communi-
cate effectively with researchers who prefer to work exclusively in general curvilinear coordinates.
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ME 402/512 (CE 402)   ASSIGNMENT 14.   Due Dec. 8, 1998

1. A function  is called homogeneous of degree  if

      (2)

Let  denote the derivative of the function  with respect to .
(a) Prove that  is homogeneous of degree y-1.
(b) Differentiate both sides of (2) with respect to α and use (a) to prove that 

.

2. Prove that the rate of Lagrange strain is .

3. (a) Prove that the Euler strain  (denoted  in the book) is related to the spatial displace-
ment gradient  according to the formula . 
(b) Consider a material element  in the reference configuration that deforms to 

 in the current configuration, prove that .
(c) Find the mistakes(s) on page 142 in the book.
(d) Consider simple shear (with ). Find the 
matrix for  in the limits that  and , and compare 
with the similar results derived in class for Lagrange strain. 
(e) The figure at right shows simple shear of a unit cube at 
the instant when . If  is a material element 
that is instantaneously vertical as shown, accurately draw the material element . Use 
a ruler (yuk!) to actually measure the lengths  and  and verify the result from (b).

4. Construct a basis  such that  makes equal angles with the three principal 
directions of stress (choose  and  based on convenience). The plane spanned by  
and  is called the octahedral plane. (a) Find an expression for the traction vector  on 
this plane in terms of principal values of . (b) Show that the octahedral normal stress, 

. (c) Express the octahedral shear stress, defined  as a func-
tion of the principal stresses.

5. Do problem 7.7 in the book. For this problem, the “cylindrical control volume” is Eulerian, 
not Lagrangian, and it therefore can increase in mass via flux through the boundary.

6. Do problem 7.8 in the book.

7G. Solve problems (3.5) and (4.1) in http://me.unm.edu/~rmbrann/curvilinear.pdf.
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ME 402/512 (CE 402)   BONUS . Due Dec 18 (or Dec. 20 if faxed to 505-844-5095), 1998

1. (a) Prove that 

(b)Recall that mechanical power is defined . By a 

change of variables, show that . Following the 

methods used in class for the spatial expression, apply the divergence theorem, and use 

the reference form of Cauchy’s first law to prove that , where  is 

the kinetic energy and the stress power is . Incidentally, because of this rela-

tionship, the PK1 stress is said to be “work conjugate” to the deformation gradient .

2. Consider a closed line integral  where  represents the increment around 

a closed curve . If the vector  is the velocity, then  is called the “circulation.” Suppose, 

for this problem, that the curve  moves with the material. Then  is a spatial material 

element and can be written . For this case, perform an appropriate change of variables 

to convert the spatial integral to a reference integral (permitting you to bring the rate 
inside the integral — why?) and then convert back to spatial form to demonstrate that 

, where  and  is the velocity gradient. 

3. Page 319 in the book states that the material time derivative of an objective tensor is in 

general non-objective. Let  denote the “unrotated” Cauchy stress, where  

denotes the rotation tensor from the polar decomposition. Show that  is a material ten-

sor. Let  denote the material time rate of the Cauchy stress and let . Prove 

that , where  is called the polar “rate” of stress. 

Explain why the polar rate can be interpreted as the part of the stress rate not attributable 
to rigid rotation. What connection (if any) does the polar “rate” have with part (b) of ques-
tion #1 in homework assignment 8?

4U. Solve problems 4.12 and 4.41 in the book.

5U. Solve problems (4.2), (4.3), and (4.4) in 
http://me.unm.edu/~rmbrann/curvilinear.pdf
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