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Abstract. Composite materials of polymeric base show considerable time dependence in their
mechanical properties. In the present work, the effective viscoelastic behavior of one-
directional fiber composites, based on components properties and geometry, is determined.
The numerical approach proposed is based upon the theory of periodic homogenization -
Sanchez-Palencia. We use expansions of the periodic component of displacements by means of
Fourier series or alternatively Chebyshev polynomials (modified in order to fulfill periodic
conditions).

The viscoelastic localization problem is solved as a sequence of elastic problems with initial
viscoelastic strains. The solution of each elastic problem is achieved through minimization of
a functional with respect to the coefficients of the displacement expansions (Fourier or
Chebyshev).

Results obtained for the elastic case agree with solutions in the literature. Viscoelastic results
are compared with analytical and numerical (finite element) results.

The advantage of the proposed method is its generality. In particular, it may be used with no
fundamental changes for aging viscoelastic materials.
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1 INTRODUCTION

In composite materials engineering, the material is designed concurrently with the structure. There
are as many varieties as the designer needs or can devise. Thus, the determination of constitutive
relation by physicals tests, usual for traditional materials is impractical. Micromechanics allows the
designer to represent a heterogeneous material as an equivalent homogeneous material, usually
anisotropic. There are several approaches, increasingly complex to derive micromechanical results.
In this work, the determination of constitutive relations for elastic and viscoelastic fiber composites is
tackled using Homogenization Theory - Sanchez-Palencia’,

To this effect, the localization problem for the basic cell is solved representing ~ displacements by
means of analytical expansions (Fourier series and modified - Chebyshev polynomials) and
determining the coefficients of the homogenized material by a minimization of the elastic energy over
the domain. All the process is carried on using the Matlab software.

The elastic results are validated by comparison with known results — Barbero'; it is seen that
Chebyshev polynomials provide good results with more efficiency.

The procedure is then extended to linear viscoelastic composite materials, where the minimization
process is applied incrementally to a series of elastic localization problems with initial strain. The
initial strain is the incremental time-dependent strain determined by means of a state variables
procedure.

The content of the paper is as follows. In Section 2 the localization problem in elasticity is set. In
Section 3 it is solved for the case of an elastic fiber composite and in Section 4 the procedure is
extended to the viscoelastic case. In Sections 5 and 6, examples and comparison with other results
are included.

2 SOLUTION OF THE LOCALIZATION PROBLEM IN ELASTICITY

2.1 Elementary cell

Heterogeneous materials with small scale periodic structure are considered. The
corresponding elementary cell represents the smaller volume that completely describes the structure,
Fig.1.
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Figure 1: Material with periodical heterogeneities and the corresponding elementary cell
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2.1.1 Field structure

Let o be an statically admissible stress field (S.A.) and
displacements field. (C.A.):

u a cinematically admissible
o suchthat div(c)=0 and o -r anti-periodic 1)
u suchthat u=E.x+u", u" periodic

@
v ,

u*(x)=u*)

Figure 2: Periodicity of the displacement field and anti-periodicity of the stress field.
The strain tensor is

e=E+g with g = E(gradg* + (gradg*)T) - periodic part 3)
Because of periodicity

(§>:£+<§‘>=E

E “

Vv

1 . .
where ( ) = ;j(.)d V' represents the volumetric average over the cell domain V.
Eq. (4) indicates that E is the

macroscopic strain tensor applied to the unit cell. The
macroscopic stress tensor X is defined as

£=(g) Q)

Hill’s Lemma Let us u and ¢ be admissible displacement and stress fields. Then the average of
the microscopic and microscopic virtual works are identical:

(o :g)=(a):(e)

(6)
2.2 Localization problem

The local constitutive law is

o(x)=c(x):e(x) VxeV @
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where the fourth order tensor 4 is the elastic stiffness.

The determination of the macroscopic elastic law for the periodically heterogeneous material
reduces to the solution of a boundary problem called localization problem, defined for the unit cell.

2.2.1 Displacement approach
Let £ be a given constant symmetric tensor. The localization problem consists in the
determination of the stress and displacement fields (o e u ):
o suchthat div(c)=0 and ¢ -n anti-periodic
u suchthat u=E.x+u , ¥ and periodic 8)
o

1™

Once solved this problem, the constitutive macroscopic law that relates £ with £ (as defined in

(5) and (4) ) follows.

Because of linearity
e=A:E (€

where: 4= A(x) represents the strain localization tensor. 4(x) depends only on geometrical and

mechanical parameters and is independent from E . Substituting (9) into (4):

(e)=(4:L)=(DE=E (10)
and recalling that de <£> =1, where [ is the fourth order identity tensor.

o and ¢ are related through the constitutive local equation

c=cie=¢id:E (1n
The average of (11)
(@)=2=(c:d:E)=(c:4): E=C":E (12)
leads to the macroscopic elasticity relation
e =(c:4) (13)
The symmetry of th", that is not apparent from (13), can be found using Hill's Lemma.
Substituting (12) into g: E:

L:E=E:C"":E (14)

From (6), (14) equals (o :£), and then
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From (14) e (15):

2.2.2 Stress approach

With a similar procedure for stress, we can obtain the expression

D""=(8":d:B)

The equivalence between the both approaches is guaranteed by the equality

Chom :Qhom =1
2.3 Macroscopic elastic potential and minimization principle

Locally, for Vxe V' the hyperelastic relation is

d¥(e)
og

g:

where W is the elastic potential. (convex in € ).

(15)

(16)

(17)

(18)

(19)

Now, let u, € and ¢ be solutions for the localization problem for the macroscopic strain £ .

And u' another displacement field admissible with £ :

u'=Ex+u", u" isperiodic (20)
Eq. (20) can be written alternatively

w'=u+d ; du'=u"—u (periodic) (2))

Using the convexity condition for ¥ , we have

o¥(e
ew) - ¥ew) = e few) -e(w) (22)
or
o¥(e
e ) - ew) = e e du) 23)
As a\P(;(u)) o s the solution for the localization problem, it is admissible . Taking the average
£
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of (23) and applying Hill's Lemma to the right side:

(e - Hew) 2 <% §(5z')> (24)
<% 19(52')> = (g :£(u)) = (o) : (e (6u) (25)

As (g(& y')> =0 due to periodicity of du', we have for (24):
()= (¥Eew) (26)
for Vu' cinematically with £ . From (26) we have, then
(W(ew)) =min{(¥(e@))/u' C.A. com E} 27)
Thus, the desired solution minimizes the localization functional (¥ (g(u))) .
2.3.1 Linear elastic case
In the linear elastic case:

gicig=—0:¢ (28)

Introducing the concept of macroscopic elastic potential Y™™ :

‘I’hum(ﬁ)=<‘P(§(Z))>=min{<‘{’(§(l£ )/ C.A com E} (29)
and substituting (28) into (29):
1 1
YN (E)=(—€g:c:e)=—(0: 30
(E) <2§g §> 2((1 g) (30)
Applying Hill’s Lemma in (30):
1 1 1
Y Ey==—(c:e)=—(c):(e)==Z:E 31
(E) z(g g) 2(2) €) SLiE €20)
Defining the tensor that relates £ and E ( g"’m) as
L=C""E (32)
Substituting (32) in (31):
\Pl1om(£) :%E :ghom . E (33)
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We observe that W™ satisfies the relation equivalent to (19) for macroscopic fields:

hom
N —cmiE-x (4)

Then, we can say that the macroscopic elastic potential is the minimum of the average of the
microscopic potential over the unit cell:

W)= B C™": E = min {(ew )/ u' C.d. com E} 35)

3 DETERMINATION OF MACROSCOPIC ELASTICITY FOR COMPOSITES
WITH UNIDIRECTIONAL FIBERS

The unit cell is shown in Figure 3.

2L
or
A? Q><
1y |
l —
N | I
T |
I | | S
___J___}_k
< BN

Figure 3: Composite unit cell with unidirectional fiber
The displacement field u” = f(x, y) is approximated with periodic functions.

3.1 Approximation with Fourier series
Fourier series allows an approximation as good as needed. We write:

i+j=p inx ]70} i+j=p i jﬂy
u* = A cos| — |[cos| —— |+ B, cos| — [sen| —— |+
o= Sl T ol S e T el

i,j=0 i,j=0

o o (36)
i+j=p . . i+j=p . .

+ Z C, sen X \eos| 222 )+ Z D, sen T \sen| L2
i.j=0 L L ij=0 L L
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where

u*(L,y)=u*(-L,y) and u*(x,L)=u*(x,~L) (37)

3.2 Approximation with (modified) Chebyshev polynomials

Polynomial (7,(x)) of the first type will be used .They represent the solutions of the differential
equation:

(1=x*)y"—xy'+n’y =0 n=0,1, 2... (38)
given by
a o [P )= 2 n g 242
T (x)=cos(ncos ™ x)=x —(2} (1-x )+[4}( (1-x")"—.. (39)
From (39):
Ty(x)=1 T(x)=x
T,(x)=2x" -1 T,(x)=4x"-3x (40)
T,(x)=8x"—8x" +1 T, (x)=16x" —20x> +5x
and we observe that
T (%) = 2xT, (x) = T, (x) (41)

Even Chebyshev polynomials satisfy naturally the periodicity criterion , as
T,(x)=Ty,(-x)  k=0,1, 2. (42)

andthus 7", (x)=T7,,(x) ,where T"'(x) is the set of polynomials to be used.
On the other hand, for the odd polynomials we have

Ty (X) = =Ty (=) (43)
and, particularly for the boundary of the unit cell
Ty (D) ==Ty (=D =1 (44)
However, using 7',,,,(x) =T,,,,(x)—T,(x) we have, from (44)
Tya (D =T", (=1)=0 (45)
With this modification we have periodicity while maintaining orthogonality, because we are adding

Chebyshev polynomials.
Then we write:
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N £ B iﬂiﬁB (2l [X (46)
u = A = |+ A | —
=z “~ [/ L J L “~ [/ L J L

4 HOMOGENIZATION IN VISCOELASTICITY

In this chapter, is presented a methodology to establish the homogenized constitutive matrix of a
composite with time dependent mechanical properties. For non aging constituents, an incremental
method is proposed.

4.1 Linear viscoelastic behavior law

The viscoelastic local constitutive law which relates stress and a prescribed history of strain is
given by

()

o(f)= jc(z 0): e = e(10):(0)- j e(r)dr A7)

The tensor ¢ (relaxation tensor) is assumed to be endowed with the same general symmetry

properties as in elasticity:
C (0,T) = €y (L,T) = € (1,T) = ¢4y, (1,T) (48)

The inverse relation are defined as follows

(1) = j Dtr): 22 ( 90 4 - = D(t,1):0()— j ). o(rydr (49)
Symmetry properties are defined for the tensor D (creep tensor):
Dy (t,1)= D, (t,7) = D,y (6,7) = Dy, (1,7) (50)

The argument ¢ in ¢ and D accounts for the instantaneous response while the argument 7

characterizes the past histories of strain and stress respectively (the dependence on 7 characterizes
the delayed response).
The particular case of non aging materials corresponds to the time dependence form

c(t,7)=c(t-1) € D(¢,7)=D(t-7) 5D
so that

c(t.n=c0)=¢,, D(t.)=D(0)=D, and ¢, =D, (52)

=0

4.2 Localization problem
Let E(t) be the prescribed history of macroscopic strain field starting at z=0. The localization
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problem defined over the unit cell, whose solution gives the microscopic fields is:
divao(t)=0, o(¢).n is antiperiodic
u(t) = E(t).x+u (1), u’(¢) is periodic (53)

o= [e(to): %m
- T

£ 1s defined for 0. The initial conditions are fixed by setting all the fields to zero for 7<0.
Once the localization problem (53) is solved, the macroscopic constitutive law relates £ and E .
The linearity of the problem is described by the relation

z _ ~hom . 0 aghom(t’T) .
20 =C"" 00 £~ [ === Byt (54)

where: C "™ (1,7) is the macroscopic relaxation tensor, and using the same principle:

E _ pyhom . h aghom(t,’[) .
E()=D""(6.0): 20~ [ === 3(dr (55)

hom

where: D™ (#,7) is the macroscopic creep tensor.

4.2.1 Particular case: nonaging material

As shown in (51), for the macroscopic relaxation tensor we have
C"Mt,r)=C""(1-T) (56)
Thus, only C "™ () must be determined and then is sufficient that
E(t)= EH (1) (57)
so that (54) to becomes
Ln=C""0):E (58)
4.3 Approximate solution (nonaging case)
In the constitutive relation (49), the strain can be divided in two parts:

£(1)=D, :0 (1), elastic part of g(¢) (59)

=

F9D(1,7) .
—J —a :0(7)dt , time dependent part of £(¢) (60)
T

70
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Therefore
g() =g () +£'(1) (61)
From the elastic part (59) is obtained (taking T as integration variable)
o(r) =D, &' =¢, @) -£' () (62)

The localization problem is solved subdividing the time interval [0;T] in increments 4. Assuming
that o(r) and &(z) are known for any 7e€[0;¢], in the interval 7e€]ts+ Ar], (61) can be

approximated, for Az sufficiently short:
o(t)=¢, :(g(r)—gv(z)) (63)

where £’ (¢) is predetermined.
Consequently, over an interval ]¢;7+ Af], formally there is an elasticity problem with initial given
strain. For V7 e]t;1 +At]:

divo(t)=0, o(t).n is antiperiodic
u(t)=E(t).x+u (), u (r) is periodic (64)
o =¢,:le@-'®)
Remarkably:
(82D)=E(r)=E, (65)

Since E and g" are not time dependent over the considered interval, u(t), o(r) and £(t) are

independent of 7. Then, the constitutive relation (63) is written:
g=c,:le-£'() (66)

According the previous Section the solution £ from (64) is determined minimizating a functional
(‘I’). The elastic potential ¥ can be defined in such way that:

MO _5op e-e) (67)
de =0
Integrating with relation to € :
\Il _1 Vy. . v _1 . . . . v 1 v, . v 68
(€)="(E-2):ig, (E-€)=TEC E-EC, 18 +7£ i, (68)

The last term of (68) is unnecessary, since it is constant. As minimization solution are obtained:

g(t+Arn)=¢ (69)
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o(t+At)=c (from (66)) (70)

To calculate " (¢ +At) state variables are used, as shown in the next Section [4.3.1].

The process is repeated over the interval ¢+ At;¢+2A¢f] taking €' (t) = €" (¢t + At) determined
for the end of the previous interval.
The matrix C "™ (t + At) is obtained from the relation

(o)=C"":E (71)

4.3.1 Representation of ¢ by means of state variables

Expression (17) be written for non aging case as

v (0D(t-7)

g0 =-]=—:amur (72)
70 aT
. . . . . oD(t—7)
Let us consider first a one dimensional case and approximate the function v by means
T
of the exponential series (often called Dirichlet-Prony series):
n -(-7)

_BD(t—r)EZ 1 e O (73)

ot Sn,

4

where: 6, = Z_ corresponding to the generalized Kelvin model (elements with elasticity E, and
viscosity 77,). Such an approximation can be as good as we like, depending on the number of terms
included. We introduce then the # values

—(=1)

8“(1)52%0):_2":'[%6 % o(r)dr (74)

The state variable ¢, has the following integral expression:

t —(t—7)

g(0)= [—e " o(t)r (75)
‘r()nf
Integrating within time interval [0; 7 + Az ], (75) may be written in the form:

11 —(t+Ar-T) t+At —(1+Ar—1)
q,.(t+At):Jn—e i G(T)d‘t'+jn—e % o()dr (76)

o 'li i
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—A

The first integral is equal to e % ¢, () ; the second one becomes, assuming o@ constant over

i

the interval:
(z+A1) +M z —Ar
o(t+ At) _[ 1 e? o (1)dT = o-(t+At)0i |—e® (77)
n; T Uk
Thus for the equation (76), with a sufficiently short Az, we have
A A ﬁ
quran=¢" g+ T2 - (78)

1

In the 3-D case (orthotropic materials), we associate different state variables to each element of
o to determine ¢ .

4.4 Description of the iterative process

hom

The problem is determinate C™"'(¢) for € [0;7]. We may divide the time interval [0;7] in such
way that
At=t,, —t, 79
To begin the process, at =0, first we calculate the instantaneous elasticity gg‘”" and then we
estimate €| , taking £” =0.
0 =0 &=0-> mn(¥) > & — 0, =¢,:

DoJot] g - min(¥) > e, > oo,=c:le,-e) - & > @)

(3]

ntl) Jtte] €, — min(¥) > g

n

— . v v hom
a0 Qo =€ '(§n+1 _gn)_) Epn ™ g ()

When ¢,+,=T the iterative process is completed.

5 EXAMPLES IN ELASTICITY

Now we present some elasticity results for a one-dimension composite.

Component propetties:
Matrix: E =312 GPa v, =0,38
Reinforcement: E =724 GPa v, =022

n is the volumetric relation between the reinforcement and the unit cell
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5.1 Comparison Data

PMF — Periodic Microstructure Formulation (E. J. Barbero)
Halpin-Tsai — only E,
EF — Finite Element — only E, and G,,

(The Finite Element model is composed by 200 unit cells in the direction transversal to the fibers;
plane stress — analysis with software Ansys.

For E, — 10x20 cells — unit traction - vertical direction

For G,, — 10x20 cells — unit shear - largest dimension

Due the reduced number of cells to represent the composite periodicity these are approximate
models.

5.2 Procedures and Results

First, the relative efficiency of Fourier Chebyshev expansions is analyzed comparing expansions
with the same number of terms.

Fourier: Chebyshev: p=3 (2 terms )
p=5 (6 terms)
p=7 (12 terms)
p=9 (20 terms)

The following graphics are normalized with relation to the matrix properties.

Ex/Em - Fourier

20
| ——PMF
15 : o=1
b
10 : I/ p=2
5 I /r/ ] — p=3
— p=4
0 t t t t

Figure 4: Transversal Elasticity Modulus (Fourier)
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Ex'Em - Chebyshev

20
—=—PMF

15
| p=3
10 1 p=5
5 | —=—p=7

T
< ‘ ——p=9
ob—r—t—t—T1 | |

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Figure 5: Transversal Elasticity Modulus (Chebyshev)

We notice that for transverse elastic modulus Chebyshev polynomials converge faster than
Fourier series to the PMF results. Shear moduli show similar behavior. The longitudinal elastic
modulus is linear with respect to » and it is independent to the expansion.

Chebyshev polynomials have computational advantages; the integration process is easier and
faster.

Now we present the calculated results with p=13 (polynomials up to 13" degree or less). It is a
good approximation for »n <0,6. Polynomials with higher degree are needed for higher values of
n.

Ez/Em - Chebyshev

20
15 —

—=—PMF
10 13
5 —
0 |

Figure 6: Longitudinal Elasticity Modulus
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ExEm - Chebyshev

J —=— PMF

/«// ——p=13
&‘V ——FEF

IVZJI ,_T/T/ Halpin-Tsai

o N B O

Figure 7: Transversal Elasticity Modulus

Gxy/Gm - Chebyshev

5
.

4 ]

5 /'/ [ |[—=—PMF

2 —1 = ——p=13

——EF
1 /ﬁ%%’
0

Figure 8: Transversal Shear Modulus
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Gxz/Gm - Chebyshev

s —=—PMF
—+—p=13

O =~ NWH»TO

Figure 9: Longitudinal Shear Modulus

6 EXAMPLES IN VISCOELASTICITY

Now we present an academic example. The fiber is considered elastic: E, =72,4 GPa. The
matrix is modeled as a Maxwell material: £, = 3,12 GPa ; 1, = 31,12 GPa.day. With the Poisson
coefficient taken as zero, the behavior should correspond to a Zener model, which is used as
comparison.

Figure 10 shows the evolution of the convergence (relaxation function) with the size of Ar,
without fiber (Maxwell model).

Matrix Relaxation Function

3.5
— ZENEP
3‘? A A=5
Ar=1
— A1=0.1
2.5

C(GPa)
[

ol
7

A\
0.5
AN
A
0 i N s S A
0 10 20 30 40 50

time(days)

Figure 10: Convergence evolution with Az (days)
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Figure 11 shows the inclusion of fiber aspect. It is used A¢=0.1day ; n is the volumetric relation
between the fiber and the unit cell

Unit Cell Relaxation Function

25
-~ n=0
Zener n=0
. n=0.1
20 —— Zener n=0.1 |
n=0.2
—— Zener n=0.2
\x ......... n=0.3
< 15 Zener n=0.3 [
o
g
N
? to R
—
5
0 - :
0 10 20 30 40 50

time(days)

Figure 11: Inclusion of fiber

7  CONCLUSIONS

A procedure for the determination of homogenized properties of fiber composites has been
presented. The use of Fourier series follows the work of Maghous®. The use of Chevishev
polynomials, that seems to be new for this application, gives the same results with more efficiency.
Results are validated by means of comparison with other references. The procedure seems to be an
efficient alternative to Finite Element procedures, particularly in the viscoelastic case.
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