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Abstract. The natural frequencies of plane anisotropic beams with shear deformation are
obtained, using a variational methodology developed by Filipich and Rosales named WEM
(Whole Element Method). The method consists in extremizing an appropriate functional after
using certain sequences that accomplish essential boundary conditions. Numerical examples
are carried out for anisotropic cantilever beams as well as simply supported beams with
narrow rectangular cross section, taking into account different fiber orientations.
Comparison is made with results from Murakami-Yamakawa beam theory and Cortinez-
Machado two-dimensional analysis.
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1 INTRODUCTION

Fiber-reinforced composites have been increasingly used over the past few decades in a
variety of structures that require high strength and stiffness, and low weight. Many structural
components made of composites have the form of beams. Accordingly, refined theories were
developed in order to achieve reliable theoretical model to predict the structural behaviour,
such as the important role of the shear deformability and the effects of anisotropy.

A theory of shear deformable orthotropic beams was developed by Nowinsky'. On the
other hand, Dharmarajan and McCutchen® have discussed a method for obtaining shear
correction factors for these types of beams. An orthotropic beam theory including normal
deformability along with the shear effect was presented by Soldatos and Elishakoff 3,

In this article, the governing equations correspond to a Timoshenko-type beam model
developed by Murakami-Yamakawa®. They obtained an anisotropic beam theory with
anisotropic coupling by using a Hamilton-type principle that incorporates Reissner’s
semicomplementary energy function. This theory allowed them to study the effect of coupling
of transverse shearing and axial stretching due to the difference between the directions of the
orthotropic material axes and axis of the beam.

The methodology used herein was developed and used for different situations by Filipich
and Rosales™. In the WEM solution an appropriate functional is extremized after proposing
suitable sequences. These extremizing sequences are extended trigonometric series. Functions
of a complete set in L, (convergent in the mean to square integrable functions) are linearly
combined with the addition of support functions, which guarantee the uniform convergence to
the continuos functions. The sequences are required to satisfy only the essential conditions. In
case they are not identically verified, the functional is extended through a very convenient
methodology of considering these restrictions by means of Lagrange multipliers. Natural
frequencies of anisotropic cantilever beams as well as simply supported beams with narrow
rectangular cross section are computed, taking into account different fiber orientations.
Comparison is made with results from Murakami-Yamakawa' beam theory and Cortinez-
Machado’ two-dimensional analysis with FEM.

2 PROBLEM FORMULATION

An anisotropic beam with a narrow rectangular cross section is considered (see Figure 1).
According to the Timoshenko-type beam model developed by Murakami-Yamakawa, the
problem is governed by means of the following equations of motion

N'—Zcpizo
M'—Q—%cw?:o (1)
0 —2¢pV =0
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where, U and V are the longitudinal and transverse beam displacement, ¢ is the rotational
beam displacement, N is the longitudinal force, M is the bending force, Q is the shear force
and p is the mass density.

~_00) —~_0()
O] X O] Py )
besides, in (1)
N:C]]U‘+C]3(¢+V'), M:CZZ(I)" Q:C13U'+C33(¢+VI) (3)
where Cy1, Ci3, Cy, Cs3 are coefficients and its definitions may be found in reference”.
u I )
. \ /
T
Figure 1: Analyzed Anisotropic Beam and Reference System.
Let us consider normal modes of vibration
Uiy =ug, cos(wt); ¢(w =@, cos(wt); Vien =V cos(wt) 4)

where ® are the sought frequencies, and uy), @k, Vi denote the amplitudes of the
displacements. Likewise we define some relationships

x:% 0<x<1; c=1; A =2pw’L %)
The substitution of (4) and (5) into (1) yields the following system
N+ u=0
. A
M —Q.L+?(p:0 (6)
0 +Av=0

Now, we apply the Virtual Work theorem in (6) with an arbitrary set of infinitesimal virtual
displacements du, 8¢, 6v. Then through integration by parts we may transform (6) into:
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NG, —(N.8u')+ 2 (u,8u) = 0

M), —(M,&p')—(Q.L—%w,zs@)zo )
08V, ~(0.8v) + 1 (1,8v) = 0

At this stage, according to the WEM method, we define the extremizing sequences:

u=y Asin(Bx)+Ax+A4", u' =Y AP, cos(Bx)+ 4,
i=1 i=1
¢ :zBi cos(B,x)+ By, (P’ :_zBiBiSin(Bix) (3
i=1 i=1
v="Y Dsin(Bx)+Dyx+D’", v =Y DB, cos(B,x)+D,
i=1

i=1

where Bi=in, withi=1,2,3, .., n.

For the sake of brevity the theorems and corollaries that support the theory are not include
(see for instance Filipich et als). Before insert (8) in (7), the geometric (essential) Boundary
Conditions (BC) of the beam under study are imposed to (8). In case that one or more BC are
not satisfied, (7) is extended through Lagrange multipliers to consider these restrictions.
Finally, after some algebra manipulation, the characteristic equation is obtained for each beam
case, as will be shown in the next section.

3 SOLUTION OF THE PROBLEM THROUGH WEM
3.1 Cantilever Beam
The Boundary Conditions in this case are:
Uon =0 =V =Ny =My =Qun =0 ©)

After applying this BC in our extremizing sequences (8), we note that A* = D* =0, but
the essential condition ¢(0) = 0 is not satisfied identically. So the Lagrange multiplier Z is
added to the second equation of (7), that becomes into:

—(N,8u' )+ A (u,5u) =0

—(M,S(p')—(Q.L—%*(p,S(p)—Z(ZSB,. +8B,)=0 (10)
—(0,6v)+ 1 (v,6v) =0

In order to obtain our characteristic equation, we need to replace (8) in (3)
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B

N =Y Pcos(B,x)+P,, M =Y Tsin(B,x), O =R cos(B,x)+R,
i=1 i=1 i=1
where
c, C11
P ="l L BA+ (BL+BD) , P = L AU+ 13 (B,L+D,)
C
T =——28.B.
1 L Bl 1

C C C C
R="DBA+=2(BL+BD) . Ry=="4,+—(BL+D)

an

(12)

The next step consist on substituting each term of (10) for these last relationships, which

yield:

~

(N,du') = %ZSA[BAP,. +384,P,
i=1

(u,8u) = ZBA,,[% + A1 ]+84,[> A1} + ?]
i=1 i=1

.

[ (M.50) =23 5T
M,5¢p)=— B.B.T,
(M.5¢) 22‘7 BT,

< .
(QL— <p5<p)—2253v +8BY

\_ i=l

e n
(Q,5v) = %ZSD,B,.RI. +38D,R,
i=1

n D n D
(v,8v) =Y 8D, [ DyI1}1+3D,[> DI} + TO]
i=1 i=1
where

}\‘* n
OL-Z¢= D v.Cos(B,x)+7,
i=1

* *

A A
Vi :(RiL_?B,‘) > Yo :(ROL_?Bo)

1
Il = jx.Sen( B, X)dx
0
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Finally introducing (13), (14) and (15) into (10) and grouping the variations of the unknowns,
we have the following two system of equations:

-
ZSA P+k(—+AI)]

< ZSB m%r-h]_ (18)

ZSD R +u—+01)]
k

P+ (ZA ) =
< OBy[~Z~7,]=0 (19)

8D [-R, + X' (O DI} + %)] =0
i=1

~

Once the terms between brackets are equated to zero, the characteristic equation to solve the
natural frequencies is found.

3.2 Simply Supported Beam
For this case we have the following Boundary Conditions:

U(o,r) :M(o,r) V(o n = N(L,t) = M(L,r) = V(L,t) =0 (20)

Afterward of replacing this BC in the extremizing sequences (8), we notice that all the
essential conditions are satisfied identically; hence the Lagrange multiplier is not needed, as is
the case in the cantilever beam. Consequently we will use the equation (7) to solve the
problem. Besides we note that A" =Dy =D" = 0.

The procedure is analogous to developed in the above section.

4 NUMERICAL RESULTS

The natural frequencies obtained with WEM are compared with results from Murakami-
Yamakawa® (M-Y) beam theory and Cortinez-Machado’ (FEM) two-dimensional analysis
with FEM. In Cortinez-Machado, the beam was modelled by means of a plane state of stress
corresponding to an anisotropic elastic body. Natural frequencies were determined by means
of the finite element system Flex-Pde¢’.

Table 1,2,3 and 4 show the non-dimensional natural frequencies of vibration given by

o= @1)

(c/L)*.JE, /3p
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Two different material properties were considered,
Material 1: Ezz/EU: 0.1, G12/E11= 0.0333, V2= 0.3
Material 2: Ezz/EU: 0333, G12/E11: 01667, V= 0.25

Table 1 and 2 show the natural frequencies of vibration for cantilever beams, with the
slenderness ratios ¢/L = 1/10 and 1/30, as a function of the 6 angle between the strong fiber
direction of the material and the longitudinal x-axis (see Figure 1). It may be noted that the
M-Y and FEM results are practically coincident with the present ones for all the cases
analyzed. However, in the short beam case (¢/L = 1/10) with material 1 (more anisotropic),
the third frequency obtained with the present work and with the FEM model, was not detected
by the M-Y calculation. For that reason it was necessary to calculate the fourth frequency in
order to verify that this corresponds at the third of M-Y.

c/L=1/10 0° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 2,80 2,81 2,80 1,36 1,47 1,32
2 10,15 10,32 10,13 7,10 7,56 7,07
3 27.20 | 21,28 20,34 11.20 | 11.65 | 11,02
4 27.20 27,20 18,60 17,20
c/L=1/10 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 1,05 1,05 1,03 1,10 1,07 1,07
2 6,00 5,99 5,79 6,00 5,75 5,71
3 8,15 8.19 8,13 8.50 8.60 8,60
4 14,97 14,30 13,66 13,44
c/L=1/30 0° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 3,40 3,42 3,41 1,35 1,39 1,35
2 18,30 | 18,87 18,33 8,30 8,60 8,33
3 43,50 | 45,45 43,33 23,50 | 23,55 | 22,66
c/L=1/30 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 1,05 1,06 1,05 1,10 1,10 1,10
2 7,00 6,67 6,48 6,90 6,85 6,78
3 17,90 | 18,66 17,76 18,40 | 18,75 | 18,36

Table 1: Non-dimensional natural frequencies @ for cantilever beams,
material 1 with ¢/L = 1/10 and ¢/L = 1/30.
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c/L=1/10 0° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 3,30 3,32 3,31 2,55 2,61 2,56
2 16,10 | 16,29 16,08 13,70 | 13,96 | 13,64
3 27.20 | 27.22 27,20 20,70 [ 20.82 | 20,75
c/L=1/10 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 2,04 2,07 2,06 2,00 1,98 1,98
2 11,40 | 11,56 11,42 11,00 | 10,97 | 10,90
3 16.10 | 16.37 16,33 15.90 | 15.71 15,71
c/L=1/30 0° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 3,50 3,50 3,49 2,61 2,64 2,63
2 21,00 | 21,28 21,03 16,30 | 16,30 | 16,15
3 55,80 | 57,02 55,60 43,70 | 44,48 | 43,79
c/L=1/30 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 2,13 2,11 2,10 2,00 2,02 2,02
2 13,20 | 13,14 12,96 12,50 | 12,55 | 12,47
3 35,60 | 36,37 35,43 34,00 [ 34,74 | 34,02

Table 2: Non-dimensional natural frequencies @ for cantilever beams,
material 2 with ¢/L = 1/10 and ¢/L = 1/30.

Table 3 and 4 show the results corresponding to simply supported beams for material 1 and
2, respectively. The comparison with the M-Y and FEM model shows a good agreement for
the long beam cases for both materials. But, there is a discrepancy with the third frequency of
M-Y results, corresponding to the short beam case (¢/L = 1/10) with material 1 (more
anisotropic).
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c/L=1/10 0° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 6,60 | 6,76 | 6,65 | 3,60 3,67 3,60
2 17,00 | 17,17 | 16,44 | 10.50 | 10.64 | 10,48
3 2740 | 27,26 | 25,98 | 12,60 | 13,48 | 12,61
4 27.47 | 27,20 26,22 | 2414
c/L=1/10 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 2,80 | 2,84 | 2,82 | 2,90 2,92 2,91
2 8.00 | 825 | 812 | 9.00 8.69 8,60
3 10,20 | 10,37 | 10,19 | 10,00 | 10,06 | 9,97
4 20,83 | 20,22 19,19 | 18,85
c/L=1/30 0° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 9,30 | 9,36 | 9.26 | 3,80 3,80 3,78
2 32,20 | 32,92 | 31,85 | 1500 | 15,01 | 14,86
3 63,21 | 59,89 | 32.20 | 31.92 | 31,51
c/L=1/30 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 2,90 | 2,94 | 2,93 | 310 3,10 3,09
2 11,87 | 11,71 | 11,56 | 1250 | 12,19 | 12,08
3 2437 | 2469 | 24,38 | 26.00 | 26,07 | 25,81

Table 3: Non-dimensional natural frequencies @ for simply supported beams,
material 1 with ¢/L = 1/10 and ¢/L = 1/30.

It should be noted that the numerical values of * were read from graphics. The discrepancy

among the results from’ and the present ones may be due to the difference in the modelization
(i.e., a 2D beam in’ and a Timoshenko beam in the present work).
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c/L=1/10 Q° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 8,75 8,81 8,78 7,00 7,00 6,93

2 27.50 | 27.49 | 27,20 | 20.50 20.60 20,43
3 27,70 | 28,66 | 27,79 | 23,85 24,95 23,88

c/L=1/10 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 5,60 5,66 5,64 5,49 5,41 5,41
2 16.25 | 16.50 | 16,30 | 16.00 15.87 15,71

3 20,20 | 20,38 | 20,14 | 19,10 19,22 19,14

c/L=1/30 0° 30°
mode M-Y FEM WEM M-Y FEM WEM
1 9,70 9,75 9,72 7,40 7,35 7,33
2 37,50 | 37,74 | 37,32 | 28,13 28,99 28,70
3 80,92 | 79,02 61.81 61,35
c/L=1/30 60° 90°
mode M-Y FEM WEM M-Y FEM WEM
1 5,90 5,89 5,88 5,70 5,67 5,66

2 23,10 | 23,34 | 23,15 | 22,50 22,41 22,25
3 48.75 | 49.46 | 48,90 | 47.50 47.60 47,12

Table 4: Non-dimensional natural frequencies @ for simply supported beams,
material 2 with ¢/L = 1/10 and ¢/L = 1/30.

5 CONCLUSIONS

The solution of the vibration problem of the plane anisotropic beams with shear
deformation has been addressed by means of a generalized solution. The eigenvalues found
via this solution are exact, as shown by Filipich et al.'’. Satisfactory accuracy was computed
increasing the number of terms to N = 3000. In the application of WEM an extremizing
sequence is proposed and introduced in the governing equations and the boundary conditions
are imposed to the sequence. After simple algebraic handling, it is possible to systematically
arrive to a sequence which involves sums of trigonometric functions. The WEM method
constitutes a suitable tool for the solution of vibration problems, among them.
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