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Abstract. Using a generalization of Biot’s theory, we represent wave propagation in a
porous solid saturated by a two-phase fluid. This theory predicts the existence of one shear
wave and three compressional waves (one fast wave and two slow waves). The model takes
into account capillary forces and viscous and mass coupling interaction coefficients between
the fluid phases under variable saturation and pore fluid pressure conditions. Dissipative
effects and viscoelasticity are also included in the formulation. The numerical procedure
is an iterative domain decomposition algorithm formulated in the space—frequency domain
and s specifically designed for implementation in parallel architectures. We perform nu-
merical experiments in a real sandstone saturated by two fluids (gas-water) and analyze
the wave fields obtained at ultrasonic frequencies.
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1 INTRODUCTION

An important topic in exploration geophysics is seismic forward modeling, which involves
an understanding of the seismic response of stratigraphic features in reservoirs and may
provide useful information about rocks and saturant fluid properties.

Although several authors have studied wave propagation in porous rocks saturated by
fluids,' 7 those theories do not include variable pressure conditions nor capillary pressure
effects. We present a model that is according to Biot’s theory and takes into account
capillary forces and viscous and mass coupling interaction coefficients between the fluid
phases under variable saturation and pore fluid pressure conditions. Frequency dependent
dissipative effects associated to viscous forces and viscoelasticity are also included in the
formulation.

In a porous solid saturated by a single phase fluid, the classical theory of Biot predicts
one shear wave and two compressional waves, Type I or “fast” and Type II or “slow”.!:%8
The Type II Biot wave was observed by Plona® in the laboratory and in different numerical
simulations.!013

In a porous solid saturated by a two-phase fluid, a second slow compressional mode
(Type III) can propagate. Various works'* ¢ provide evidence that for the low frequency
range, the two slow modes are diffuse waves due to viscous effects. While, under very
high frequencies, such as those used in laboratory testing, these two modes clearly are
propagating waves.

Naturally, the space—frequency domain is chosen to describe phenomena of dissipation
and anelastic attenuation suffered by the different type of waves. Moreover, this domain
allows to compute the solution at the current time without the knowledge of the time
history of the system, that is, the solution is computed for each temporal frequency and
a finite number of them are required to obtain the solution in the space—time domain via
inverse Fourier transform.!”1?

Here, the numerical procedure is an iterative nonoverlapping domain decomposition
algorithm. As it is known, domain decomposition avoids the construction of a large linear
system related to any global finite element technique and is suited to distribute data
among the processors in a distributed memory computer. This implementation is related
to numerous works on the subject.?22> We use the nonconforming rectangular finite
element presented in?® to approximate the solid displacement vector, and the vector part
of the Raviart-Thomas-Nedelec mixed finite element space of order zero to approximate
the displacement of the two fluid phases, which are conforming spaces, see.?’>%

Finally, we applied our algorithm and performed numerical experiments in a real sand-
stone saturated by two fluids (gas—water). We analyzed snapshots and traces of the wave
fields obtained in the different phases at ultrasonic frequencies. As the second slow wave
has not been observed in the laboratory yet, then this modelling method can be useful
for devising laboratory experiments appropriate to this purpose.
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2 GOVERNING EQUATIONS

The governing equations for wave propagation in the space—frequency domain are the
equations of motion given in?°

—w? (pu® + pp Spt™ + pu Swu®) — V- 7(u) = f°,
—w2 (pn Sn u® + 9n u” + Inw uw) + iw dn u” — iw d"w u” + V’];L(u) = fn’ (1)
—w2 (pw gw u’ 4+ Gnw u" + Gu uw) + iw dw u" — iw dnw u” + v%(u) = fw

In the porous solid saturated by two immiscible fluids, we consider a wetting phase and
a non-wetting one, which will be indicated with the subscripts (or superscripts) “w” and
“n”, respectively. The Fourier transform of the averaged displacement vectors for the
solid and the fluid phases at the angular frequency w are u®, v", and u®. The coefficient
p is the density of the bulk material given by p = (1 — ¢)ps + ¢ (Snpn + Swpw), where ¢
is the matrix effective porosity, p, is the mass density of the solid grains, p,, p, are the
mass densities of the fluids, with S,, and S, being the averaged fluid saturations. The
two fluid phases completely saturate the porous part of the matrix and also both fluids
are allowed to move inside the pore space.

The mass coupling coefficients ¢,, g, gnw represent the inertial effects associated with
dynamic interactions between the three different phases, while the coefficients d,,, d,, and
dnw include the viscous coupling effects between the solid and fluid phases.

The external source in the solid and fluid phases are represented by f*, f™ and f%,
respectively.

The constitutive equations are given by Santos & Ravazzoli'®

7ij(u) = 2N g4 + di5(Ac ey — B1§" — B2 £Y),
Tn(u) = (5n+ﬂ+§)Pn—(,B+C)Pw=—B1€b+M1fn+M3§w, (2)
Tw(u) = (§w+C) P, — (P, = —DByey+ M3&" + My &Y,

where 7, T, and 7, are the generalized stresses of the system. The coefficients N, \., By, Ba,
M, My, Mj are the elastic moduli of the medium, depending on saturation, capillary pres-
sure, wetting fluid pressure, porosity, the bulk and shear moduli of the frame and solid
grains and the bulk moduli of both fluids. ¢;; and e, = €;; are the Fourier transforms of the
strain tensor of the solid and its linear invariant, respectively and ¢/ = —V -u? for 6 =
n,w. P, and P, denote infinitesimal changes in the pressures of the wetting and non-
wetting fluids, respectively, with respect to corresponding reference values P,, and P,
associated with the initial equilibrium state with corresponding nonwetting fluid satura-
tion S, where P, and P, are related through the capillary relation.?*? The values 3
and (¢ are related to the capillary pressure.??

We use the Correspondence Principle stated by M. Biot>® to introduce viscoelasticity,
i.e. replacing the real poroelastic coefficients in the constitutive relations by complex
frequency dependent poroviscoelastic moduli satisfying the same relations as in the elas-
tic case, with some necessary thermodynamic restrictions. Other mechanisms of wave
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attenuation are associated to viscous drag between the fluid and the solid matrix which
are also related to the relative permeability functions.!%3? The viscodynamic correction
factors for high frequencies are computed by generalizing the corresponding ones for the
single—phase fluid case.

The whole set of complex poroviscoelastic moduli and coefficients are derived in.?

3 DOMAIN DECOMPOSITION METHOD
3.1 Multi-domain formulation

Domain decomposition method is based on partitions of the computational domain into
subdomains without overlap. We assume that €2 in the (z, z)-plane is partitioned into
subdomains €2; such that Q = U7_,Q; and denote the boundaries by T'; := 92 N 9%; and
[y := 0Q; N 0LY, as the common interface between two adjoining subdomains €2; and €.

We indicate by u; the restriction to €2; of the solution u = (u®,u™,u") to (2.1), and by
vj the unit outer normal on I'j; from 2; to 2, and by v; the unit outer normal to I';.
Also indicate &; and &, the midpoints of I'; and ', respectively.

Now, we reformulate our problem in the equivalent multi-domain form: find u;(z, z, w),
forj=1,---,J

i —w? (pu§+pn S'nu;‘—i—pw S, u;”) - V-1(yj) = f°,
—w? (pn Sn S + gn U] + Gnw uf) + iw dp uf — iw dny ul + VT (us) = [T, (3)
—w* (pw Suw U5 + G U] + Gu u;”) + 1w dy U — W dpy uf + VT (uy) = 7.

This system requires consistency conditions that satisfy a suitable matching on I';,

s __ .8 mo, . — T .
uj—uk, uj Vi = —Uy * Vgj,

’U,?) . ij = —’U,f . I/kjv
T(u)vjk = =7 (u)vij,  Tulug) = Talur),  Tw(ug) = Tw(we)  (2,2) € Tjie

(4)

Also, we impose the first-order absorbing boundary conditions based on the conservation
of momentum

(=7 (uj)vy - v, m(ug)vy - x5, T, TY) = iwB (u;9 Vi UG X Wyt VU I/j) , (z,2) €T

()

where x; is a unit tangent on I'; so that {v;, x;} form an orthonormal system on I'; and
the symmetric positive definite matrix B is given by

B= [(A*ls)t]% A=A3Ds A3, D=A3EAD,

where A and £ are matrices whose entries depend on the physical properties of the
medium, see.?
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We will replace the expressions (3.2) by the equivalent Robin transmission boundary
conditions

(7(u3)Vjk - Vin, T(W5) i - Xjk: =T (), = Tow (115))
+iw Bk (u}9 Vjky WS Xk U © Viky UG I/jk)
= (T (ur)vis - vrj, T(Ur) ki - Xgr =T (k), =T ()
—iwPjk (U, - Vijs UR - Xkj» Up - Vij> Up - Vkj) (w,2) € I'jy C 08,

(6)

and

(T(ur)vrj - Vijs T(Ur)Vhj - Xigs —Tn(ur), —Too (k)
FiwBik (U, - Vigs U, - Xy Ul - Vijs U - Vij)
= (T(w)vjr - ik, T(w)Vjk * Xgk, —Ta (), =T (u;))

—iwﬁjk (’Uf; *Vijk, ’U,; * Xjks ’LL;L - Vjk, ’U,;) . ij) (1‘, Z) S ij C an

(7)

Here Bjy, is a positive definite matrix function defined on the interior boundaries I';; and
Xjk is a unit tangent on I';; so that {v;4, x;x} form an orthonormal system on T j.

3.2 Variational formulation and iterations

3, = (u¥,u™", u®") as the solution of the

In view of an iterative technique, we denote wu Jo U U
problem at the t-iteration level, ¢t = 0,1,2,---, and assume that the variables u; in the
Robin transmission condition are those corresponding to the previous iteration level ¢t — 1.

In order to formulate the problem in a variational way, we introduce Sobolev spaces.
H*(Q;) denotes the usual Sobolev space of functions in L*(£2;) with first derivatives in
L*(Q;) and also H(div, ;) = {v € [L*(;)]>: V-v € L*(Q;)}.

Let us denote by (-,-); the usual complex inner product in L*(Q;) and (-,-),, the
complex inner product in L?(D), being D =T'; or D = ;.

Then, the equations (3.1) are multiplied by v* € [H'(;)]?, v" € H(div,©;) and
¥ € H(div,;), respectively, integrated over €); and used integration by parts in the
terms (V- 7(u;),v°);, (VTa(uy),v"); and (V7y(u;),v");. After applying the boundary
conditions (3.3) and (3.4), we obtain the domain decomposition iteration at the differential

level: given u} € [H'(Qy)]* x H(div,Q;) x H(div,$;) for all j, for t = 1,2,3,---, find
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€ [HY())? x H(div, ;) x H(div, ;) such that

—w2 (pu;’t+p" S"u?,t_'—pw Sw U?,t’ vs)j - wZ (pn Sn uj,t"‘gn +gnw ) Un)
~w? (pw Sw “;’t + Gnw U;-L’t + Jw u;” , ) + iw (dy, u"t v").

—iw (dnw u;”t, v")j + iw (dy uju-”t, v"’) — iw (dnpw u"t V"),

+Z<TM ), €pql S)>j— (ﬁ(u;),v-v">j—<

w,t

S S T w
<Z(UB( SV, U J *Xj, U J I/J,UJ Vj)a(v “Vj, U X5, Ut Y, 'Vj)>
T

J
J

J

J
+ Z <iwﬂjk(u;’t Vjk, U, Xk, U "’ * Vjks U;-U’t Vi), (V0 v, v X, V" - v, 0% - ij)>
k r
= (f%0%); + (f" ")+ (f, 0");

. s,t—1 s,t—1 n,t—1 w,t—1
- E <2wﬂjk (Uk’ CVkj, Uy Xkgs Uyt Vkg, Uy 'ij),

k

ik

8§ s n w
(U “Vik, VU - Xk, Ut Vg, U 'ij)>
Tk

> < (= Toa (U Ykj - Vigy —Tpg (ui s - X Ta(ui™), Tu(ui™h))

k

(v° - vk, % - Xk, V" - Vg, U k) > . (080" ") € [HY Q)] x H(div, Q;) x H(div, ;).
i
(8)

3.3 Iterative domain decomposition at the finite element level

Let P" be a finite element partition of Q into rectangles ; of diameter bounded by h
that coincides with the domain decomposition partition 2;.

The nonconforming finite element space used to obtain approximations to each compo-
nent of the solid displacement vector v} in §2; is constructed using the following reference
rectangular element

R=[-1,17 V(&) :Span{% + %m _3 ((m2 _ Oy (2= —y4)) ,

with the four degrees of freedom located at the mid points of the faces of ﬁ, i.e., the
values at the nodal points ¥ = (—1,0),¢% = (0,—1),£® = (1,0) and &7 = (0,1). For
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example the basis function ¢*(z,2) = 1 — 1z — 2 ((2? — 22*) — (2% — 22%)) is such that
oP(EY) = 1 and pL(¢Y) = 0,1 = B, R,T. Similarly we construct the other three basis
elements ¢',l = B, R,T

To approximate the fluid displacement vectors u} and u} we choose the vector part of

the Raviart-Thomas-Nedelec space of index 0 defined on R as follows:

W(E) = Span{1,z} x Span{1, z}.

The four degrees of freedom associated with each fluid displacement vector are the values

of their horizontal components at £",£% and of their vertical components at £7,&7, or

equivalently, the values of their normal components at the mid points of the faces of R.
The local basis are defined by

1/1L(5U) = 71+1‘7 ¢R(~"U) =z, ¢B(Z') :*1+Z, wT(z) =2z

Next we can construct the subspaces V;* = V/(;) and W} = W (€2;) used to represent
the approximating functions for the solid and fluid displacement vectors on each element
Q

j.

In this stage we propose the so called hybrid formulation and introduce Lagrange
multipliers, 7, = (77;';9”7 n;;cx, % M) for each subdomain associated with the values of the
generalized forces at the mid points &;; of I';; that are used to “glue” the values in the

interfaces:

M ~ (T(w)vi - vie) &), MR~ 7w - X (i)

Mk ~ Ta(ug) (i) My ~ Twluy) (i)

This new set of Lagrange multipliers is:

©)

A= {n: My, = mye € [Po(Ty)]* = AL, V{j,k}},

where Py(T;x) denotes the constant functions on I'j.
The boundary integrals will be computed approximately using the mid—point quadra-
ture: for D =T'; and D =I'j; we approximate (u,v),, by

((u, v))r; = (u0) (&) [T

where |I'j| is the measure of I'j.

If, fort =0,1,2,--- we represent the finite element approximations of the displacement
U; * Uf’t, Uy " to u;’t, u?’t, u}f”t and the Lagrange multipliers, 7}, at the t—iteration level,
we can finally define the three steps of our algorithm using (3.6), (3.4) and (3.7):

(1) Choose an initial guess (U}, 7%) € [V]? x W x W' x Al
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(2) For all j, compute (U}, n%) € [V]']? x W' x W} x Al as the solution of the equation

—w’ (p U;’t + Pn S'HU;”t + puw Su U;"’t, vs)] w? (pn Sn U} T4, U"t + 9w U} ¢ v”)J
—w? (puw Su Ujs’t + Gnw Uf’t + Gu U;‘”t, ) +iw (d, U} o),
—iw (dnw U;-”’t, v”)j + iw (duy U;”’t, w)] — iw (dnw U"t, ¥ ;

)
+3 (m@eme) = (B0 907) - (R, 7o)

+<<in(Uj’t-I/j,U;’t~Xj,U]”’t-I/j,U;”’t-uj), (v° - vy, 0% - X, 0" - vy, 0 >>

J

+Z<<Wﬂjk( Vi, UP' - s U v, U vje), (0° - i, 0° - X 0 Vi, 07 - Vi >>
k
= (f*, v%); + (f", v"); + (f, 0"

s,t—1 $,t— n,t—1 w,t—1
- E <<Wﬂgk (U o, US Y xg, Ut g, U 'ij)7

k
S S n w
(U *Vjk, U7 Xk, U - Vi, U 'ij)>> ,
r

ik
- Z <<( 772]” ' ﬂk}xt 17 77:; la ﬁ;t;t 1)7 (US Uik, U Xy V" + Vi, 0 ij)>> )
k Tk
(v, 0", 0") € [V x W] x W x Al
(10)
(3) Update the Lagrange multipliers 7},.
b st it 2 L et el -1
(gt =gt =) = (oo = )
— wpy (U;-’t v u T g udt e e X,

, 41 1
u;.” i+ uptT vy, ug” Ut +upt kj> (&x)
(11)

The convergence for this iterative procedure is a consequence of the arguments given
i 35,36
m.=

4 NUMERICAL RESULTS

Numerical results were obtained with a basic bidimensional model, a square of side length
6 cm, with 640 subdomains in both directions.
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To simulate an experiment of ultrasonic wave transmission in a porous saturated rocks,
we consider the following point source located at the center of the domain:

iz, 2,w) = f5F (2, 2,w) + f55(z, 2,w)

adz—zs,z—zs aézfzs,zfzs adzfzs,zfzs aé‘zfzs,zfzs
a ( or ’ 0z ) g(w) + ( 0z ’ or ) 9(w)

a(szfms,zfzs 65@'7@‘5%723
P, 2,0) = (0, 2,0) = (T, St n) (),

where f*F(z,2,w) and f*°(x, z,w) represent the compressional and shear parts applied
to the solid matrix and fy denotes the principal frequency of the external source chosen
to be 500 KHz. Here g(w) is the Fourier transform of

g(t) = —26(t — to)e =1,

The displacements u®(z, z,t), u™(z, z,t) and u*(z, z,t) were calculated using the itera-
tive method (3.8)—(3.9) for 100 frequencies in the interval (0, 1000) KHz. The solution in
the space-time domain was obtained through the discrete inverse Fourier transform and
the error of this approximation is proportional to (h + (Aw)?).1®

We consider propagation of waves in a sample of Nivelsteiner sandstone whose material
properties are given in Table 1,,'? the viscoelastic parameters that describe the dissipative
behaviour and the physical properties of the saturant fluids are also indicated. The
reference fluid pressure is 30 MPa, corresponding to the normal hydrostatic pressure at a
burial depth of about 3 km.

The capillary pressure function and the permeability functions are taken from the
article by Douglas et al.3” who correlated experimental data for a variety of porous rocks.

The phase velocities and attenuation coefficients at the principal frequency f, are
given in Table 2, where we compare the values corresponding to the poroelastic and
poroviscoelastic formulations. Here, the pore space is assumed to be filled by 90% water
(as the wetting phase) and 10 % of hydrocarbon gas.

A snapshot of the vertical component of the particle velocity (V (z, z,t) = %) at a
propagating time of 0.018 msec for the solid matrix is shown in Figure 1. The wavefronts
related to the three compressional modes (labeled P1, P2 and P3) and the shear mode
(labeled S) can be observed. This figure also illustrates the effectiveness of the absorbing
boundary conditions since the Type I-wave front is passing through the domain without
artificial reflections.

In addition, the analysis of different snapshots showed that the amplitudes of the two
slow modes (Type II and Type III) are much stronger in the fluid media and the amplitude
of Type III waves decrease notably with respect to the amplitude of Type II waves while
time pass.
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Table 1: Material properties for Nivelsteiner sandstone

Grain density, ps 2.65 gr/cm?
bulk modulus 36 GPa

Matriz porosity, ¢ 33 %
bulk modulus 6.21 GPa

absolute permeability 5000 mDarcy
shear modulus, N 4.55 GPa

bulk loss, Qp 30
shear loss, Qs 20
Gas density, p, 0.1 gr/cm?
viscosity 0.00015 Poise
bulk modulus 0.022 GPa
Water density, pu 1 gr/em®
viscosity 0.01 Poise
bulk modulus 2.223 GPa

Table 2: Phase velocities and attenuation coefficients at 500 KHz and gas saturation 10 %

Wave Poro-elastic phase velocity, [km/sec] Poro-elastic attenuation factor, [DB]
P1 2.5454028 0.10571459

P2 0.27500635 1.3678229

p3 0.41792553 2.4865442

S 1.5323432 0.12485457

Wave Poro-viscoelastic phase velocity, [km/sec] Poro-viscoelastic attenuation factor, [DB]
P1 2.5299388 1.2232244

P2 0.27498727 1.3839098

P3 0.41790992 2.4968665

S 1.5212897 1.4605364
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In the next figure, we plot traces of the vertical component of the total particle velocity
VI =V 4+ 8,V"+ S,V¥ at a receiver located at x = 4 ¢cm, z = 3.5 cm with normalized
amplitude. Our aim is to analyze the influence of the porosity on the amplitudes of the
different waves. From the figures 2 a) and b) we observe that an increment in porosity
from 0.33 to 0.55 produces greater amplitudes in the slow modes. The differences in the
arrival times due to the changes of phase velocities can also be noted.

In the figures 3 and 4 we show traces of the divergence of the particle velocities of
the solid, nonwetting and wetting fluid phases for two different saturations. We restrict
our attention to the slow waves for analyzing the relative motion between the different
phases. Figure 3 a) and b) illustrates the normalized traces of the solid vs. the nonwetting
fractions (first normalized to the maximum value of the fluid phase, and then, the solid-
phase trace is scaled by factors of 282 for S, = 0.1 and 4240 for S,, = 0.4), where in both
we can see the motion in opposite phase for the Type IT and III waves.

Finally, in figure 4 a) and b) we plot the normalized traces of the wetting vs. the
nonwetting fluids (first normalized to the maximum value of the non-wetting phase, and
then, the wetting-phase trace is scaled by a factor of 3.5 for S,, = 0.1 and 5.5 for S,, = 0.4)).
It must be remarked that for the slowest mode (Type II) both fluids move in phase and
the contrary holds for the other mode. For this reason we conclude that this Type II
wave corresponds to the classic slow Biot’s wave. Moreover, the greater content of gas
increases notably the amplitudes of the Type III wave in both fluids while the opposite
effect can be observed in the other slow wave.

5 CONCLUSIONS

We have proposed an algorithm formulated in the space—frequency domain to simulate
the propagation of waves in a bounded poroviscoelastic solid saturated by two immiscible
fluids. The model is a generalization of the classical Biot’s theory for single-phase fluids
taking into account capillary forces and viscous and mass coupling interaction coefficients
between the fluid phases under variable saturation and pore fluid pressure conditions with
corrections for high frequencies.

In the space—frequency domain each temporal frequency could be solved independently
of the other frequencies and the time-domain solution was obtained by an approximate
inverse Fourier transform.

We implemented an iterative nonoverlapping domain decomposition method that em-
ploys an absorbing boundary condition in order to minimize spurious reflections from the
artificial boundaries and that is specifically designed for parallel architectures.

The numerical simulation of waves in a real sandstone saturated by gas—water showed
the existence of a second slow compressional wave (called Type III) at ultrasonic frequen-
cies under normal hydrostatic fluid pressures. In these experiments we observed that the
two slow compressional waves have phase velocities on the same order of magnitude. In
addition, our results demonstrated the great influence of parameters such as porosity and
saturation on the amplitudes and the arrival times of the different kind of waves.
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It is remarked that this modelling method may be useful for developing suitable labo-
ratory experiments and so the second slow wave should be observed.
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Figure 1: Snapshot of the vertical component of the particle velocity of the solid part at time ¢ = 0.018
msec
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a) Porosity=0.33
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Figure 2: Normalized traces of vertical component of the total particle velocity at a receiver located at
z=4cm, z=3.5cm
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a) Gas saturation = 10 %
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Figure 3: Traces of divergence of the particle velocity of the solid and nonwetting fluid phases at a receiver
located at z =4 cm, z = 3.5 cm
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Figure 4: Traces of divergence of the particle velocity of the wetting and nonwetting fluid phases at a
receiver located at x =4 ¢cm, z = 3.5 cm
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