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Abstract. We describe how we determine the stabilization parameters used in the sta-
bilized finite element formulations in fluid mechanics. These formulations include the
interface-tracking and interface-capturing techniques we developed for computation of flow
problems with moving boundaries and interfaces. The stabilized formulations we focus
on are the streamline-upwind/Petrov-Galerkin (SUPG) and pressure-stabilizing/Petrov-
Galerkin (PSPG) methods. The stabilization parameters described here are designed for
the semi-discrete and space-time formulations of the advection-diffusion equation and the
Navier-Stokes equations of incompressible flows.



�

#� �#����������
�����&��*
$�
����� ���
������� �$%&���������#�������������������������������������������������������������������������

1 INTRODUCTION

Most finite element techniques and computations reported in recent literature for compu-
tational fluid mechanics are based on stabilized formulations. The interface-tracking and
interface-capturing techniques we developed in recent years (see1–7) for flows with moving
boundaries and interfaces are also based on stabilized formulations. An interface-tracking
technique, such as the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST) for-
mulation,1 requires meshes that “track” the interfaces. The mesh needs to be updated
as the flow evolves. In interface-capturing techniques, such as one designed for two-fluid
flows, the computations are based on spatial domains that are typically not moving or
deforming. An interface function, marking the location of the interface, needs to be
computed to “capture” the interface over the non-moving mesh.

In the interface-tracking and interface-capturing techniques we developed, we use the
streamline-upwind/Petrov-Galerkin (SUPG),8 Galerkin/least-squares (GLS),9 and pressure-
stabilizing/Petrov-Galerkin (PSPG)1 formulations. In the interface-capturing techniques,
stabilized semi-discrete formulations are used for both the Navier-Stokes equations of in-
compressible flows and the advection equation governing the time-evolution of an interface
function marking the interface location. These stabilization techniques prevent numerical
oscillations and other instabilities in solving problems with advection-dominated flows
and when using equal-order interpolation functions for velocity and pressure. In these
stabilized formulations, judicious selection of the stabilization parameter, which is almost
always known as “τ”, plays an important role in determining the accuracy of the for-
mulation. This stabilization parameter involves a measure of the local length scale (also
known as “element length”) and other parameters such as the local Reynolds and Courant
numbers. Various element lengths and τs were proposed starting with those in8 and,10

followed by the one introduced in,11 and those proposed in the subsequently reported
SUPG, GLS and PSPG methods. A number of τs, dependent upon spatial and temporal
discretizations, were introduced and tested in.12 More recently, τs which are applicable
to higher-order elements were proposed in.13

Ways to calculate τs from the element-level matrices and vectors were first introduced
in.14 These new definitions are expressed in terms of the ratios of the norms of the relevant
matrices or vectors. They take into account the local length scales, advection field and
the element-level Reynolds number. Based on these definitions, a τ can be calculated for
each element, or even for each element node or degree of freedom or element equation.
Certain variations and complements of these new τs were introduced in.4,15–17 In this
paper, we describe the element-matrix-based and element-vector-based τs designed for
the semi-discrete and space-time formulations of the advection-diffusion equation and the
Navier-Stokes equations of incompressible flows. We also describe approximate versions
of these τs that are based on the local length scales for the advection- and diffusion-
dominated limits.
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2 GOVERNING EQUATIONS

Let Ωt ⊂ IRnsd be the spatial fluid mechanics domain with boundary Γt at time t ∈ (0, T ),
where the subscript t indicates the time-dependence of the spatial domain. The Navier-
Stokes equations of incompressible flows can be written on Ωt and ∀t ∈ (0, T ) as

ρ(
∂u

∂t
+ u · ∇∇∇u− f)−∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where ρ, u and f are the density, velocity and the external force, and σσσ is the stress tensor:

σσσ(p,u) = −pI+ 2µεεε(u), εεε(u) =
1

2
((∇∇∇u) + (∇∇∇u)T ). (3)

Here p is pressure, I is the identity tensor, µ = ρν is viscosity, ν is the kinematic viscosity,
and εεε(u) is the strain-rate tensor. The essential and natural boundary conditions for
Eq. (1) are represented as

u = g on (Γt)g, n · σσσ = h on (Γt)h, (4)

where (Γt)g and (Γt)h are complementary subsets of the boundary Γt, n is the unit normal
vector, and g and h are given functions. A divergence-free velocity field u0(x) is specified
as the initial condition.

If the problem does not involve any moving boundaries or interfaces, the spatial domain
does not need to change with respect to time, and the subscript t can be dropped from
Ωt and Γt. This might be the case even for flows with moving boundaries and interfaces,
if in the formulation used the spatial domain is not defined to be the part of the space
occupied by the fluid(s). For example, we can have a fixed spatial domain, and model the
fluid-fluid interfaces by assuming that the domain is occupied by two immiscible fluids,
A and B, with densities ρA and ρB and viscosities µA and µB. In modeling a free-surface
problem where Fluid B is irrelevant, we assign a sufficiently low density to Fluid B. An
interface function φ serves as a marker identifying Fluid A and B with the definition φ =
{1 for Fluid A and 0 for Fluid B}. The interface between the two fluids is approximated
to be at φ = 0.5. In this context, ρ and µ are defined as

ρ = φρA + (1− φ)ρB, µ = φµA + (1− φ)µB. (5)

The evolution of the interface function φ, and therefore the motion of the interface, is
governed by a time-dependent advection equation, written on Ω and ∀t ∈ (0, T ) as

∂φ

∂t
+ u · ∇∇∇φ = 0. (6)

As a generalization of Eq. (6), let us consider over a domain Ω with boundary Γ the
following time-dependent advection-diffusion equation, written on Ω and ∀t ∈ (0, T ) as

∂φ

∂t
+ u · ∇∇∇φ−∇∇∇ · (ν∇∇∇φ) = 0, (7)
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where φ represents the quantity being transported (e.g., temperature, concentration), and
ν is the diffusivity. The essential and natural boundary conditions associated with Eq. (7)
are represented as

φ = g on Γg, n · ν∇∇∇φ = h on Γh. (8)

A function φ0(x) is specified as the initial condition.

3 STABILIZED FORMULATION FOR ADVECTION-DIFFUSION
EQUATION

Let us assume that we have constructed some suitably-defined finite-dimensional trial
solution and test function spaces Sh

φ and Vh
φ . The stabilized finite element formulation of

Eq. (7) can then be written as follows: find φh ∈ Sh
φ such that ∀wh ∈ Vh

φ :∫
Ω

wh

(
∂φh

∂t
+ uh · ∇∇∇φh

)
dΩ +

∫
Ω

∇∇∇wh · ν∇∇∇φhdΩ−
∫

Γh

whhhdΓ

+

nel∑
e=1

∫
Ωe

τSUPGu
h · ∇∇∇wh

(
∂φh

∂t
+ uh · ∇∇∇φh −∇∇∇ · (ν∇∇∇φh

))
dΩ = 0. (9)

Here nel is the number of elements, Ωe is the element domain, and τSUPG is the SUPG
stabilization parameter.

4 ELEMENT-MATRIX-BASED STABILIZATION PARAMETERS FOR
ADVECTION-DIFFUSION EQUATION

Let us use the notation b :
∫

Ωe(. . .)dΩ : bV to denote the element-level matrix b and
element-level vector bV corresponding to the element-level integration term

∫
Ωe(. . .)dΩ.

We define the following element-level matrices and vectors:

m :

∫
Ωe

wh∂φ
h

∂t
dΩ : mV, (10)

c :

∫
Ωe

whuh · ∇∇∇φhdΩ : cV, (11)

k :

∫
Ωe

∇∇∇wh · ν∇∇∇φhdΩ : kV, (12)

k̃ :

∫
Ωe

uh · ∇∇∇wh uh · ∇∇∇φhdΩ : k̃V, (13)

c̃ :

∫
Ωe

uh · ∇∇∇wh∂φ
h

∂t
dΩ : c̃V. (14)
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We define the element-level Reynolds and Courant numbers as follows:

Re =
‖uh‖2

ν

‖c‖
‖k̃‖ , (15)

Cru =
∆t

2

‖c‖
‖m‖ , (16)

Crν =
∆t

2

‖k‖
‖m‖ , (17)

Crν̃ =
∆t

2
τSUPG

‖k̃‖
‖m‖ , (18)

where ‖b‖ is the norm of matrix b.
The components of element-matrix-based τSUPG are defined as follows:

τS1 =
‖c‖
‖k̃‖ , (19)

τS2 =
∆t

2

‖c‖
‖c̃‖ , (20)

τS3 = τS1Re =

(‖c‖
‖k̃‖

)
Re. (21)

To construct τSUPG from its components we proposed in14 the form

τSUPG =

(
1

τ r
S1

+
1

τ r
S2

+
1

τ r
S3

)− 1
r

, (22)

which is based on the inverse of τSUPG being defined as the r-norm of the vector with
components 1

τS1
, 1

τS2
and 1

τS3
. We note that the higher the integer r is, the sharper the

switching between τS1, τS2 and τS3 becomes.
The components of the element-vector-based τSUPG are defined as follows:

τSV1 =
‖cV‖
‖k̃V‖

, (23)

τSV2 =
‖cV‖
‖c̃V‖ , (24)

τSV3 = τSV1Re =

(‖cV‖
‖k̃V‖

)
Re. (25)

With these three components,

(τSUPG)V =

(
1

τ r
SV1

+
1

τ r
SV2

+
1

τ r
SV3

)− 1
r

. (26)
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Remark 1 The definition of τSUPG given by Eqs. (23)-(26) can be seen as a nonlinear
definition because it depends on the solution. However, in marching from time level n to
n + 1 the element vectors can be evaluated at level n. This might be preferable in some
cases, as it spares us from ending up with a nonlinear semi-discrete equation system.

5 STABILIZED FORMULATION FOR NAVIER-STOKES EQUATIONS

Let us assume that we have some suitably-defined finite-dimensional trial solution and
test function spaces for velocity and pressure: Sh

u, Vh
u, Sh

p and Vh
p = Sh

p . The stabilized
finite element formulation of Eqs. (1)-(2) can then be written as follows: find uh ∈ Sh

u

and ph ∈ Sh
p such that ∀wh ∈ Vh

u and qh ∈ Vh
p :∫

Ω

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − f

)
dΩ +

∫
Ω

εεε(wh) : σσσ(ph,uh)dΩ−
∫

Γh

wh · hhdΓ

+

∫
Ω

qh∇∇∇ · uhdΩ +

nel∑
e=1

∫
Ωe

1

ρ
[τSUPGρu

h · ∇wh + τPSPG∇qh] ·
[
ρ

(
∂uh

∂t
+ uh · ∇∇∇uh

)
−∇∇∇ · σσσ(ph,uh)− ρf

]
dΩ

+

nel∑
e=1

∫
Ωe

τLSIC∇∇∇ ·whρ∇∇∇ · uhdΩ = 0. (27)

Here τPSPG and τLSIC are the PSPG and LSIC (least-squares on incompressibility constraint)
stabilization parameters.
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6 ELEMENT-MATRIX-BASED STABILIZATION PARAMETERS FOR
NAVIER-STOKES EQUATIONS

We define the following element-level matrices and vectors:

m :

∫
Ωe

wh · ρ∂u
h

∂t
dΩ : mV, (28)

c :

∫
Ωe

wh · ρ(uh · ∇∇∇uh)dΩ : cV, (29)

k :

∫
Ωe

εεε(wh) : 2µεεε(uh)dΩ : kV, (30)

g :

∫
Ωe

(∇∇∇ ·wh)phdΩ : gV, (31)

gT :

∫
Ωe

qh(∇∇∇ · uh)dΩ : gT

V, (32)

k̃ :

∫
Ωe

(uh · ∇∇∇wh) · ρ(uh · ∇∇∇uh)dΩ : k̃V, (33)

c̃ :

∫
Ωe

(uh · ∇∇∇wh) · ρ∂u
h

∂t
dΩ : c̃V, (34)

γ̃ :

∫
Ωe

(uh · ∇∇∇wh) · ∇∇∇phdΩ : γ̃V, (35)

β :

∫
Ωe

∇∇∇qh · ∂u
h

∂t
dΩ : βV, (36)

γ :

∫
Ωe

∇∇∇qh · (uh · ∇∇∇uh)dΩ : γV, (37)

θ :

∫
Ωe

∇∇∇qh · ∇∇∇phdΩ : θV, (38)

e :

∫
Ωe

(∇∇∇ ·wh)ρ(∇∇∇ · uh)dΩ : eV. (39)

Remark 2 In the definition of the element-level matrices listed above, we assume that
uh appearing in the advective operator (i.e. in uh · ∇∇∇uh and uh · ∇∇∇wh) is evaluated
at time level n rather than n + 1. The definition would essentially be the same if we,
alternatively, assumed that it is evaluated at time level n+ 1 but nonlinear iteration level
i rather than i + 1. Except, in the first option, in the advective operator we use (uh)n,
whereas in the second option we use (uh)in+1. The second option can be seen as a nonlinear
definition. The first option might be preferable in some cases, as it spares us from another
level of nonlinearity coming from the way τ is defined. In the definition of the element-
level-vectors, we face the same choices in terms of the evaluation of uh in the advective
operator.
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The element-level Reynolds and Courant numbers are defined the same way as they
were defined before, as given by Eqs. (15)-(18). The components of the element-matrix-
based τSUPG are defined the same way as they were defined before, as given by Eqs. (19)-
(21). τSUPG is constructed from its components the same way as it was constructed before,
as give by Eq. (22). The components of the element-vector-based τSUPG are defined the
same way as they were defined before, as given by Eqs. (23)-(25). The construction of
(τSUPG)V is also the same as it was before, given by Eq. (26).

The components of the element-matrix-based τPSPG are defined as follows:

τP1 =
‖gT‖
‖γ‖ , (40)

τP2 =
∆t

2

‖gT‖
‖β‖ , (41)

τP3 = τP1Re =

(‖gT‖
‖γ‖

)
Re. (42)

τPSPG is constructed from its components as follows:

τPSPG =

(
1

τ r
P1

+
1

τ r
P2

+
1

τ r
P3

)− 1
r

. (43)

The components of the element-vector-based τPSPG are defined as follows:

τPV1 = τP1, (44)

τPV2 = τPV1

‖γV‖
‖βV‖ , (45)

τPV3 = τPV1Re. (46)

With these components,

(τPSPG)V =

(
1

τ r
PV1

+
1

τ r
PV2

+
1

τ r
PV3

)− 1
r

. (47)

The element-matrix-based τLSIC is defined as follows:

τLSIC =
‖c‖
‖e‖ . (48)

We define the element-vector-based τLSIC as:

(τLSIC)V = τLSIC. (49)
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Remark 3 We can also calculate a separate τ for each element node, or degree of free-
dom, or element equation. In that case, each component of τ would be calculated separately
for each element node, or degree of freedom, or element equation. For this, we first rep-
resent an element matrix b in terms of its row matrices: b1,b2, . . . ,bnex and an element
vector bV in terms of its subvectors: (bV)1, (bV)2, . . . , (bV)nex. If we want a separate τ
for each element node, then b1,b2, . . . ,bnex and (bV)1, (bV)2, . . . , (bV)nex would be the row
matrices and subvectors corresponding to each element node, with nex = nen, where nen

is the number of element nodes. If we want a separate τ for each degree of freedom, then
b1,b2, . . . ,bnex and (bV)1, (bV)2, . . . , (bV)nex would be the row matrices and subvectors cor-
responding to each degree of freedom, with nex = ndof , where ndof is the number of degrees
of freedom. If we want a separate τ for each element equation, then b1,b2, . . . ,bnex and
(bV)1, (bV)2, . . . , (bV)nex would be the row matrices and subvectors corresponding to each
element equation, with nex = nee, where nee is the number of element equations. Based
on this, the components of τ would be calculated using the norms of these row matrices
or subvectors, instead of the element matrices or vectors. For example, a separate τS1 or
τSV1 for each element node would be calculated by using the expression

(τS1)a =
‖ca‖
‖k̃a‖

, a = 1, 2, . . . , nen (50)

or

(τSV1)a =
‖(cV)a‖
‖(k̃V)a‖

, a = 1, 2, . . . , nen. (51)

In flow computations, the τs calculated for the element nodes or element equations would
be used in interpolating the values of τs at the integration points.

Remark 4 The concept of calculating a separate τ for each element node or equation
can be extended to calculating a separate τ for each global node or equation. This can be
accomplished by first representing a global matrix or vector in terms of its row matrices
or subvectors associated with the global nodes or equations, and then by calculating the
components of τ using the norms of these global row matrices or subvectors. With this
approach, applying the class of stabilization techniques described in this paper to element-
free methods would become more direct.

Remark 5 We can also calculate a separate τ for each integration point by using for that
integration point the ratios of the norms of the element matrices or vectors contributed
by that integration point. For example, a separate τS1 or τSV1 for each element integration
point l would be calculated by using the expression

(τS1)l =
‖cl‖
‖k̃l‖

, l = 1, 2, . . . , nint (52)
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or

(τSV1)l =
‖(cV)l‖
‖(k̃V)l‖

, l = 1, 2, . . . , nint. (53)

Here nint is the number of integration points, cl and k̃l are the element matrices contributed
by the integration point l, and (cV)l and (k̃V)l are the element vectors contributed by the
integration point l.

7 UGN-BASED STABILIZATION PARAMETERS FORNAVIER-STOKES
EQUATIONS

For the purpose of comparison, we define here also the stabilization parameters that are
based on an earlier definition of the length scale h:11

hUGN = 2 ‖uh‖
(

nen∑
a=1

|uh · ∇∇∇Na|
)−1

, (54)

where Na is the interpolation function associated with node a. The stabilization param-
eters are defined as follows:

τSUGN1 =
hUGN

2‖uh‖ , (55)

τSUGN2 =
∆t

2
, (56)

τSUGN3 =
h2

UGN

4ν
, (57)

(τSUPG)UGN =

(
1

τ 2
SUGN1

+
1

τ 2
SUGN2

+
1

τ 2
SUGN3

)− 1
2

, (58)

(τPSPG)UGN = (τSUPG)UGN, (59)

(τLSIC)UGN =
hUGN

2
‖uh‖ z. (60)

Here z is given as follows:

z =

{ (
ReUGN

3

)
ReUGN ≤ 3,

1 ReUGN > 3,
(61)

where ReUGN = ‖uh‖hUGN

2ν
.

Comparisons between the performances of these earlier stabilization parameters and
the ones proposed here can be found in.14 These comparisons show that, especially for
special element geometries, the performances are similar.
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It was pointed out in16,17 that the expression for τSUGN1 can be written more directly
as

τSUGN1 =

(
nen∑
a=1

|uh · ∇∇∇Na|
)−1

, (62)

and based on that, the expression for hUGN can be written as

hUGN = 2‖uh‖ τSUGN1. (63)

A rationale for τSUGN1 given by Eq. (62) was provided in.17

8 DISCONTINUITY-CAPTURING DIRECTIONAL DISSIPATION
(DCDD)

As a potential alternative or complement to the LSIC stabilization, we proposed in4,15,17

the Discontinuity-Capturing Directional Dissipation (DCDD) stabilization. In describing
the DCDD stabilization, we first define the unit vectors s and r:

s =
uh

‖uh‖ , r =
∇∇∇‖uh‖

‖ ∇∇∇‖uh‖ ‖ , (64)

and the element-level matrices and vectors cr, k̃r, (cr)V, and (k̃r)V:

cr :

∫
Ωe

wh · ρ(r · ∇∇∇uh)dΩ : (cr)V , (65)

k̃r :

∫
Ωe

(r · ∇∇∇wh) · ρ(r · ∇∇∇uh)dΩ : (k̃r)V . (66)

Then the DCDD stabilization is defined as

SDCDD =

nel∑
e=1

∫
Ωe

ρνDCDD∇∇∇wh :
([
rr− (r · s)2ss] · ∇∇∇uh

)
dΩ, (67)

where the element-matrix-based and element-vector-based DCDD viscosities are:

νDCDD = |r · uh| ‖cr‖
‖k̃r‖

, (68)

(νDCDD)V = |r · uh| ‖(cr)V‖
‖(k̃r)V‖

. (69)

An approximate version of the expression given by Eq. (68) can be written as

νDCDD = |r · uh|hRGN

2
, (70)
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where

hRGN = 2

(
nen∑
a=1

|r · ∇∇∇Na|
)−1

. (71)

A different way of determining νDCDD can be expressed as

νDCDD = τDCDD‖uh‖2
, (72)

where

τDCDD =
hDCDD

2‖U‖
‖ ∇∇∇‖uh‖ ‖ hDCDD

‖U‖ . (73)

Here U represents a global velocity scale, and hDCDD can be calculated by using the
expression

hDCDD = 2
‖cr‖
‖k̃r‖

, (74)

or the approximation

hDCDD = hRGN . (75)

Combining Eqs. (72) and (73), we obtain

νDCDD =
1

2

(‖uh‖
‖U‖

)2

(hDCDD)
2 ‖ ∇∇∇‖uh‖ ‖ . (76)

9 UGN/RGN-BASED STABILIZATION PARAMETERS FOR
NAVIER-STOKES EQUATIONS

In,4,17 we proposed to re-define τPSPG and provided the reason for doing that. We described
how we re-define τPSPG by modifying the definitions of τP3 and τPV3 given by Eqs. (42) and
(46). We proposed to accomplish that by using the expressions

τP3 = τP1

‖c‖
ν ‖k̃r‖

, τPV3 = τPV1

‖c‖
ν ‖k̃r‖

, (77)

or the approximations

τP3 = τP1 Re

(
hRGN

hUGN

)2

, τPV3 = τPV1 Re

(
hRGN

hUGN

)2

. (78)
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In,4 we further stated that these modifications can also be applied to τS3 and τSV3 given
by Eqs. (21) and (25). In,17 we wrote those expressions explicitly as follows:

τS3 = τS1

‖c‖
ν ‖k̃r‖

, τSV3 = τSV1

‖c‖
ν ‖k̃r‖

, (79)

τS3 = τS1 Re

(
hRGN

hUGN

)2

, τSV3 = τSV1 Re

(
hRGN

hUGN

)2

. (80)

We noted in17 that if we are dealing with just an advection-diffusion equation, rather than
the Navier-Stokes equations of incompressible flows, then the definition of the unit vector
r changes as follows:

r =
∇∇∇|φh|

‖ ∇∇∇|φh| ‖ . (81)

We also proposed in16,17 to re-define τSUGN3 given by Eq. (57) as follows:

τSUGN3 =
h2

RGN

4ν
. (82)

Furthermore, we proposed in16,17 to replace (τLSIC)UGN given by Eq. (60) as follows:

(τLSIC)UGN = (τSUPG)UGN ‖uh‖2
. (83)

We further commented in16,17 that the “element length”s hUGN (given by Eq. (54)) and
hRGN (Eq. (71)) can be viewed as the local length scales corresponding to the advection-
and diffusion-dominated limits, respectively.

10 DEFORMING-SPATIAL-DOMAIN/STABILIZED SPACE-TIME
(DSD/SST) FORMULATION

In the DSD/SST method,1 the finite element formulation of the governing equations is
written over a sequence of N space-time slabs Qn, where Qn is the slice of the space-time
domain between the time levels tn and tn+1. At each time step, the integrations involved
in the finite element formulation are performed over Qn. The space-time finite element
interpolation functions are continuous within a space-time slab, but discontinuous from
one space-time slab to another. The notation (·)−n and (·)+n denotes the function values
at tn as approached from below and above. Each Qn is decomposed into elements Qe

n,
where e = 1, 2, . . . , (nel)n. The subscript n used with nel is for the general case in which
the number of space-time elements may change from one space-time slab to another. The
Dirichlet- and Neumann-type boundary conditions are enforced over (Pn)g and (Pn)h, the
complementary subsets of the lateral boundary of the space-time slab. The finite element
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trial function spaces (Sh
u)n for velocity and (Sh

p )n for pressure, and the test function spaces
(Vh

u)n and (Vh
p )n = (Sh

p )n are defined by using, over Qn, first-order polynomials in both
space and time. The DSD/SST formulation1,16,17 is written as follows: given (uh)−n , find
uh ∈ (Sh

u)n and ph ∈ (Sh
p )n such that ∀wh ∈ (Vh

u)n and qh ∈ (Vh
p )n:∫

Qn

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ+

∫
Qn

εεε(wh) : σσσ(ph,uh)dQ

−
∫

(Pn)h

wh · hhdP +

∫
Qn

qh∇∇∇ · uhdQ+

∫
Ωn

(wh)+n · ρ (
(uh)+n − (uh)−n

)
dΩ

+

(nel)n∑
e=1

∫
Qe

n

1

ρ

[
τSUPGρ

(
∂wh

∂t
+ uh · ∇wh

)
+ τPSPG∇qh

]
· [PL(ph,uh)− ρfh

]
dQ

+

nel∑
e=1

∫
Qe

n

τLSIC∇∇∇ ·whρ∇∇∇ · uhdQ = 0, (84)

where

PL(qh,wh) = ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
−∇∇∇ · σσσ(qh,wh), (85)

and τSUPG, τPSPG and τLSIC are the stabilization parameters (see16,17). This formulation is
applied to all space-time slabs Q0, Q1, Q2, . . . , QN−1, starting with (uh)−0 = u0. For an
earlier, detailed reference on the DSD/SST formulation see.1

11 ELEMENT-MATRIX-BASED STABILIZATION PARAMETERS FOR
THE DSD/SST FORMULATION

For extensions of the τ calculations based on matrix norms to the DSD/SST formula-
tion, in17 we defined the space-time augmented versions of the element-level matrices and
vectors given by Eqs. (29), (33), and (37) as follows:

cA :

∫
Qe

n

wh · ρ
(
∂uh

∂t
+ uh · ∇∇∇uh

)
dQ : (cA)V, (86)

k̃A :

∫
Qe

n

(
∂wh

∂t
+ uh · ∇∇∇wh

)
· ρ

(
∂uh

∂t
+ uh · ∇∇∇uh

)
dQ : (k̃A)V, (87)

γA :

∫
Qe

n

∇∇∇qh ·
(
∂uh

∂t
+ uh · ∇∇∇uh

)
dQ : (γA)V. (88)

The components of element-matrix-based τSUPG were defined in17 as follows:

τS12 =
‖cA‖
‖k̃A‖

, (89)

τS3 = τS12

‖cA‖
ν ‖k̃r‖

, (90)
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where k̃r is the space-time version (i.e. integrated over the space-time element domain
Qe

n) of the element-level matrix given by Eq. (66). To construct τSUPG from its components
we proposed in17 the form

τSUPG =

(
1

τ r
S12

+
1

τ r
S3

)− 1
r

. (91)

The components of the element-vector-based τSUPG were defined in17 as

τSV12 =
‖(cA)V‖
‖(k̃A)V‖

, (92)

τSV3 = τSV12

‖cA‖
ν ‖k̃r‖

. (93)

From these two components,

(τSUPG)V =

(
1

τ r
SV12

+
1

τ r
SV3

)− 1
r

. (94)

The components of element-matrix-based τPSPG were defined in17 as follows:

τP12 =
‖gT‖
‖γA‖ , (95)

τP3 = τP12

‖cA‖
ν ‖k̃r‖

, (96)

where gT is the space-time version of the element-level matrix given by Eq. (32). To
construct τPSPG from its components, we proposed in17 the form

τPSPG =

(
1

τ r
P12

+
1

τ r
P3

)− 1
r

. (97)

The components of the element-vector-based τPSPG were defined in17 as follows:

τPV12 =
‖gT

V‖
‖(γA)V‖ , (98)

τPV3 = τPV12

‖cA‖
ν ‖k̃r‖

. (99)

From these components,

(τPSPG)V =

(
1

τ r
PV12

+
1

τ r
PV3

)− 1
r

. (100)
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The element-matrix-based τLSIC was defined in17 as

τLSIC =
‖cA‖
‖e‖ , (101)

where e is the space-time version of the element-level matrix given by Eq. (39).
The element-vector-based τLSIC was defined in17 as

(τLSIC)V = τLSIC. (102)

12 UGN/RGN-BASED STABILIZATION PARAMETERS FOR
THE DSD/SST FORMULATION

The space-time versions of τSUGN1, τSUGN2, τSUGN3, (τSUPG)UGN, (τPSPG)UGN, and (τLSIC)UGN,
given respectively by Eqs. (55), (56), (82), (58), (59), and (83), were defined in16,17 as
follows:

τSUGN12 =

(
nen∑
a=1

∣∣∣∣∂Na

∂t
+ uh · ∇∇∇Na

∣∣∣∣
)−1

, (103)

τSUGN3 =
h2

RGN

4ν
, (104)

(τSUPG)UGN =

(
1

τ 2
SUGN13

+
1

τ 2
SUGN3

)− 1
2

, (105)

(τPSPG)UGN = (τSUPG)UGN , (106)

(τLSIC)UGN = (τSUPG)UGN ‖uh‖2
. (107)

Here, nen is the number of nodes for the space-time element, and Na is the space-time
interpolation function associated with node a.

13 CONCLUDING REMARKS

We described how we determine the stabilization parameters (“τ”s) and element length
scales used in stabilized finite element formulations of flow problems. These stabilized for-
mulations include the interface-tracking and interface-capturing techniques we developed
for computation of flows with moving boundaries and interfaces. The interface-tracking
techniques are based on the DSD/SST, where the mesh moves to track the interface.
The interface-capturing techniques, typically used with non-moving meshes, are based
on a stabilized semi-discrete formulation of the Navier-Stokes equations, combined with
a stabilized formulation of an advection equation. The advection equation governs the
time-evolution of an interface function marking the interface location. As specific stabi-
lization methods, we SUPG and PSPG methods. For the Navier-Stokes equations and the
advection equation, we described the element-matrix-based and element-vector-based τs
designed for semi-discrete and space-time formulations. These τ definitions are expressed
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in terms of the ratios of the norms of the relevant matrices or vectors. They take into
account the local length scales, advection field and the element-level Reynolds number.
Based on these definitions, a τ can be calculated for each element, or for each element
node or degree of freedom or element equation. Furthermore, based on these definitions,
a τ can be calculated for each element integration point. We also described certain varia-
tions and complements of these new τs, including the approximate versions that are based
on the local length scales for the advection- and diffusion-dominated limits.
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