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Abstract. We address the numerical modeling of roughness effects in ultra-thin gas films.
Rarefaction (high Knudsen number) effects are dealt with using the Generalized Reynolds
Equation, which follows from kinetic gas theory (the usual Reynolds equation is its zero-
Knudsen-number limit). A homogenization procedure is proposed to rigorously account
for arbitrary roughness shapes. The homogenized coefficients are obtained by the two-scale
expansion methodology. The presentation is focused on head-disk magnetic storage devices,
but the techniques proposed are general. Rigorous convergence proofs are available, though
only for small values of the Knudsen number. Extension of the theory to arbitrary Knudsen
number is under way.

We discuss some details of the finite element implementation, in particular the use of
Taylor expansions to reduce the amount of local problems to be solved, and a consistent
way of calculating Newton updates.

The numerical tests concentrate on the moving-roughness case, and compare results ob-
tained by direct calculation of rough-disk/rough-head interaction, to those obtained from
the homogenized equation. Different transient effects are identified, which are properly
modeled by the homogenized equation.
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1. INTRODUCTION

Hard-disk interfaces are magnetic storage devices consisting of a flying head above a ri-
gid rotating disk.! The need to improve the data transfer rate has led to surface-to-surface
distances (air-gap thicknesses) of 30 Angstrom or less. The Boltzmann flow-modified Rey-
nolds equation is the model of choice for the mathematical-numerical treatment of this
physical problem. Accurate modeling must account for roughness effects because of ma-
chining imperfections and of fabricated irregularities that are used to avoid head-disk
stiction.

When both the head and the disk surfaces are rough, their relative motion leads to an
air-gap thickness that varies rapidly in space and time. If h and h? are the elevations of,
respectively, the head and the disk surfaces from a reference plane, with € the roughness
period (assumed unique for simplicity), we have that the air-gap thickness satisfies

ho(a',t') = RE (@, #') — hD (', ') (1)

Leaving aside dynamic effects leading to motions of the head, which can easily be incor-
porated, we have

hot@ 1) = h (@) + (%) (e — o2 ©)

where functions with subscript 0 refer to the slow variations of the gap thickness, while
At and kP are periodic roughness functions of period one. We denote hf (') — hP (') by
ho(z'). The movement of the disk is accounted for by the shift —¢'U, where U is the disk
speed.

The Boltzmann flow-modified Reynolds equation reads (upon normalization, in par-
ticularz =2' /¢, t =t' \U|/¢, e = €' /¢ and H = h/hpmp)

€

d(PH)
ot

—V-[(H’P+6KH*)VP] =—-A-V (HP) (3)

with boundary condition P (z) = 1 for x € 950, where 2 is the normalized domain. The
vector A, which is a bearing number, is assumed uniform; « is a coefficient, P is the local
pressure normalized with the atmospheric pressure and K is the Knudsen number. The
equation is valid up to K = 0,1. Well-posedness of this problem was proved by Chipot
and Luskin.? For the full time-dependent case, existence and uniqueness was proved by
Jai?

Remark: For higher values of K the factor H*P + 6 K H? (due to Burgdorfer*) in (3)
must be replaced by 6 K H2Q,(H P/K), with @, the Poiseuille flow factor. We concentrate
here on Burdorfer’s model, but the concepts can be extended to the generalized model.

Due to Eq. (2), the coefficients in Eq. (3) vary in both space and time with scale e.
The computing cost of resolving these scales can be large. The number of spatial nodes
in 2D grows as ¢ 2 and the number of required time steps as ¢ !. The global cost grows
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at least as e~3. Simulation strategies thus require some averaging technique to remove the
small scale € from the problem, such as those proposed by Mitsuya et al.’> They consist of
replacing H in Eq. (3) by arithmetic or harmonic averages depending on the orientation
of the roughness with respect to the flow. Averaging techniques, which date back to the
work of Elrod,® are however heuristic counterparts to a rigorous approach referred to in the
mathematical literature as homogenization.” Jai deduced the homogenization procedure
for Eq. (3) in the steady case.® The homogenization of the time-dependent problem is
a recent result of Buscaglia et al,’ and the purpose of this article is to present those
techniques in a more engineering-oriented way, to discuss their implementation, and to
validate them against quasi-exact solutions obtained on very fine computational meshes.

Rigorous homogenization is most interesting for general roughness functions. When
the roughness is either longitudinal or transverse the usual averaging techniques perform
well. Our tests thus concern obliquely striated surfaces. Homogenization procedures in
non-linear problems require multiple solutions of local problems, which are partial diffe-
rential equation problems defined on some unit cell, representative of the roughness scale
€. Techniques for alleviating the computational cost of this process were proposed by
Buscaglia and Jai'® and will also be exploited here.

2. HOMOGENIZATION OF THE TRANSIENT REYNOLDS EQUATION
2.1. Two-scale analysis

We present here the formal calculations that lead to the homogenized problem to be
solved, though rigorous proofs are available.? We follow a two-scale approach.” Introducing
the rapid variables y = % and 7 = ! we observe that

H(z,t,y,7) = Ho(z,t) + H(y) — H°(y — 7er;) (4)

where ey is the unit vector in the direction of U. In the case of a fixed attitude of
the head Hj is independent of t. We concentrate on this case later. The mathematical
results will however not be restricted to Hy independent of ¢ since if the dynamics of the
head is considered that dependence appears. The next step is to perform the following
replacements in Eq. (3):

9 9 19

a " a e (5)
1
P(z,t,y,7) +— P(z,t,y,7)+ePi(z,t,y,7) + Pz, t,y,7) + ... (7)

and then to identify the terms on the left- and right-hand sides of (3) that multiply the
same power of €. This leads, for each €”, to:

n=-—2
—V, - [(H*P+6KH?) V,P] =0
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implying that Py is independent of y.

n=—1I:
or y 0 zt 0 y 0 v oY

(8)

Averaging this equation with respect to ¥ and using the periodicity with respect to this

variable we obtain aa(lg—‘;ﬁ) = 0 where H = [,, H(y)dy/|Y| and |Y] is the surface of the
unit cell Y. But, from (4),

Jy[H"(y) — H"(y — Tev)]dy _
Y|

Sy B @)dy [, H”(y)dy

H=Ho+ v V]

Hy+

so that H does not depend on 7 (the surface-to-surface volume is independent of the
relative position of the head and disk rougllnesses), implying that Py is independent of 7.
Using now, from (4), that %—If = ey - V,HP the problem to find P; for each (z,t) reads

—V, - [(H*Py+6KH*)V,P| = V,-[(H°Py+6KH*)V,P]

—AP, -V, (H + %FID) 9)

where A = |A|, so that ey = % This problem depends on (z,t) through Py, Hy and V,F.

n = 0: The equation for n = 0, after averaging with respect to y and 7 (we denote this
double average by a double overline), reads

d(PyH)
Yo

~V,-[(H°Py + 6K H?) VJCPO} V- [Py + 6K H?) V,P| = ~A-V, (R,H)

(10)
This is the so-called “homogenized problem”, which, coupled to (9), allows us to deter-
mine P, and P;. Since the series (7) converges, one finds a rigorous approximation of
P. The coupling between (10) and (9) is very strong. In principle one should solve (9)
for each and every value of (z,¢) and iterate going back to (10) with the new value of

(H3Py + 6 K H?) until convergence. Some decoupling is however possible, as explained in
the next paragraph.

2.2. Homogenized coeflicients

Let us define the following local problems, to be solved in the domain Y (the unit cell
of the roughness):

Local problems: For Hy(z,t), Py(z,t) and 7 given, find wy, wa, X1, X2, Which are the
only Y-periodic solutions of (with i =1, 2)

—Vy - [A[y)Vywi] = V,-[Aly) el (11)

0

VM@V = - (A7) - (1) B 7)) (12)
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where
Aw) = (Hy(e,0)+ B ()~ Ay 7)) Pla.1)
6K (Holz, 1) + H"(y) — H(y - T))2 (13)
These problems are small in size, since only one period of the roughness needs to be

modeled. Once w, wo, X1 and x, are obtained, we define the homogenized coefficients as
follows

Aw) (1+52)  Aw)g

é*(HO(zvt)7P0(zvt)) = (14)
Aplz A (1+%2)
H— Aly) 3 —Aly) 3
©i(Hy(z, 1), Py(z,t)) = , O5(Ho(z,t), Py(z, 1)) =
~Aly) 52 H—Aly) g2

(15)
The averages with respect to y in (14)-(15) are easily performed numerically at the time
of solving (11)-(12). In this way one obtains Y-averaged coefficients for each 7. One
then averages with respect to 7 by simply solving (11)-(12) for several equispaced values
of 7 between 0 and 1 and averaging the resulting coefficients. It should be clear from
the definition of the local problems that, since (14)-(15) are averaged with respect to
y and 7, the coefficients A", ©F and O} are functions of two parameters (i.e., two real
numbers): Hy(z,t) and Py(x,t). The dependence on these parameters is quite implicit,
since it involves the solution of partial differential equations on the unit cell. It is however
possible to apply the Taylor expansion technique of Buscaglia and Jai, so that only a few
local problems are solved.

In what follows we will consider the functions A*, ©F and O3 as given. In fact, our
technique consists of building Taylor expansions of these functions (up to order 4) by
solving local problems on the unit cell Y prior to facing the global problem (Eq. 16
below) on the domain . For details we refer the reader to Buscaglia and Jai.'

We end this section calling the reader’s attention to the right-hand side of (12). In
most transient cases the coefficient « takes the value 2A, while in the steady case (flow
between two surfaces which have zero relative velocity) « is zero. The right-hand side of
(12) thus changes from H" (y) + H”(y — 7) in the former case, to H” (y) — H”(y — 1) in
the latter. While the difference between H¥ and HP has the physical interpretation of a
distance, the sum H + HP that appears in the moving-roughness case is not physically
intuitive. It is essential, though, for the homogenized problem to be the correct limit as €
tends to zero.
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2.3. Homogenized equation and numerical details

It is easy to see, from (9) and (11)-(12), that

0P, 0P,
Pi = ——wi + ~—ws + PoAixi + Pohaxe + C(,t,7)
811?1 5:132
where C' is an arbitrary function that acts as integration constant. Replacing this into (10)
and using the definitions of the homogenized coefficients one arrives at the homogenized
equation

o(P,H)
o

to be solved for Py in €2 with boundary condition Py = 1 over the boundary 0€2. This is a
transient nonlinear convection-diffusion equation, quite similar to the Reynolds equation,
which is readily solved by numerical methods such as finite elements, finite differences,
etc. Any solver of the Reynolds equation is easily adapted to deal with Eq. 16, while the
Taylor expansions of A", ©F and O} are built in a pre-processing step, so that at runtime
the calculation of the homogenized coefficients require just the evaluation of a polynomial.

In our implementation we used a Galerkin finite element method with a Crank-Nicolson
treatment of the time dependence. We thus arrive at a nonlinear system of equations for
each time level that is dealt with using Newton-Raphson iterations. We will skip the details
here, since they are a straightforward extension to the transient case of the methodology
described in a previous article.!!

— V- [A"(Ho, Po) Vo Po] = =V [Po (MO (Ho, Po) + A:05(Ho, Fy))]  (16)

3. A TEST EXAMPLE: OBLIQUE ROUGHNESS
We consider the roughness function f(s) = tanh (5cos(27s)) + 1. We assume, for the

head, the roughness
A7 (21,75) = anf (:m - xz)

€

which is inclined by 45 degrees with respect to the x; axis, which is the direction of motion
(i.e.,Uy = 0), and varies between 0 and 2ay. The roughness of the disk will be discussed
later. As for Hy(z) we have considered a Winchester-type taper-flat slider. Its geometry
is presented in Fig. 1. The adopted data are as follows: ¢/ = 5,540 mm, b = 0,554 mm,
hmin = 0,15 microns,l, = 1,01 mm, A, = 10 microns, h. = —0,1 microns. The slider is
assumed static, so that Hj is independent of time. We also assume oo = 2, K = 0,05 and
A = 5000, and the initial condition is P = 1 throughout the domain.

Let us start with a non-moving-roughness case, to allow for comparison. For this purpo-
se, we just set H? = 0. We set ay = 1, so that the amplitude of the roughness equals the
minimum gap thickness hnm. One may wonder whether with such a large amplitude the
Reynolds equation remains valid. To answer this, one needs to evaluate the amplitude-to-
wavelength ratio. Since we assume ayg = hpm = 0,15 microns, for the Reynolds equation
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Figura 1: Sketch of the adopted geometry. The classical Winchester slider.

to be valid one must have a roughness wavelength significantly greater than the amplitude,
greater than 1 micron for example. This implies that, if the number of roughness periods
along the head surface is smaller than 5540, as we will assume hereafter, the Reynolds
equation is indeed valid. Fabricated roughnesses reported by Mitsuya et al,? to consider
one specific case, had a length of 40 microns, giving about 140 periods along a Winchester
slider.

In a previous article we have shown that oblique roughnesses produce non-symmetric
solutions. In Fig. 2 (a) we show the steady pressure field obtained after 2.5 time units
with 80 x 8 periods. The vertical coordinate has been expanded for visualization purposes.
The lack of symmetry is evident, with the upper half at significantly higher pressure than
the lower half. In Fig. 2 (b) we show the homogenized pressure field P, obtained with
the method proposed here. The homogenization procedure correctly captures the loss of
vertical symmetry that appears in the exact case. Let us define the load capacity and the
roll moment,

W(t):/Q(P(x,t)—l) & M:/QP(x,t) (xg—%) & (17)

In Fig. 3 we compare W and M as functions of time, as calculated from the exact equation
3 with 80 x 8 periods and from the homogenized equation (16). Good agreement is found
between the two, with some discrepancies in the initial behavior. We observe a rapid
increase in W at ¢t = 0, within a time of order €, which is not predicted by the homogenized
solution. This “pressure build-up” must thus be a consequence of the finite number of
periods and disappear as € tends to zero. In the same figure the roll moment predicted
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(a) 80x8 periods, t =2.5

(b) Homogenized, t = 2.5

Figura 2: (a) Pressure field obtained at ¢t = 2,5 with the exact formulation using 80 x 8 periods in the
smooth-disk case. (b) Homogenized solution for the same case.
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Figura 3: Load capacity W (t) and roll moment M (¢) in the smooth-disk case. Shown are the results of
the exact formulation for 80 x 8 periods and those of the homogenized formulation. The left vertical axis
corresponds to W and the right one to M.

by the homogenization procedure can be compared to the actual roll moment produced
with 80 periods. A monotonously-increasing behavior is observed, and both curves tend
to approximately the same value in about the same time. Again, at t = 0 the behavior is
different, which is attributed again to the finite number of periods. Remember that this
is a non-moving-roughness case shown here just to allow for comparison.

Let us now turn to the moving-roughness case (rough-disk case). For the moving surface
we consider two roughness functions, the parallel one,

- r1— X9 —1
I

€

and the perpendicular one

- T+ 29—t
HP(z1,29,t) = —apf (%)

In the following we will investigate the effects of the disk’s roughness on the pressure
field, on the load capacity and on the roll moment. Our objective is not to characterize
these effects thoroughly, but to see whether our homogenization procedure captures them.
For this purpose, we will present numerical results of the exact case with 40 and 80
periods in the x;-direction and 4 and 8 in the xy-direction. The adopted meshes consist
of 800 x 80 and 1600 x 160 bilinear quadrilateral elements, and the time step is set to
ﬁ and ﬁ, respectively. Moreover, a 4th-order Gaussian quadrature rule is adopted.
The computational cost of these exact solutions is huge (about a month of CPU time in
a Pentium-4 at 1.4 GHz). The homogenized problem, on the other hand, is solved on a

mesh of 400 x 40 elements, using a time step of ﬁ. The complexity is thus at least a

49


xyz
49

xyz
G. C. Buscaglia, M. Jai

xyz



ENIEF 2003 - XIIl Congreso sobre Métodos Numéricos y sus Aplicaciones

factor of 256 smaller than that of the exact problem with 80 x 8 periods, and the CPU
time is reduced to a couple of hours.

3.1. Parallel oblique roughness

This case is quite interesting because H (x,t) exhibits very strong variations with time.
Consider ay = ap = a: For t = (n + 3)e, with n an arbitrary integer, the oscillatory
parts of the two roughnesses cancel out (H¥ — HP = 2a), so that H(z,t) = Hy(z) + 2a,
which is smooth. However, for ¢ = ne, the roughnesses are in opposite phases and thus
H(z,t) = Hy(z) + 2a f ((x1 — x2)/€) which varies between Hy(z) and Hy(x) + 4a with
period e. This makes W (t) to oscillate, also with period e.

In Fig. 4(a) we plot W vs. time for the two runs of the exact problem, 40 x 4 periods
(e = 55) and 80 x 8 periods (e = 55). Also shown there is W(¢) as obtained from the
homogenized problem. The oscillations in W () are evident, but their amplitude decreases
with e. The detail shown in 4(b) proves that the homogenized solution indeed predicts
the correct mean value of W(¢) if the number of periods is high enough.

Comparing to Fig. 3, one observes a decrease in W (t) when the disk is rough. The
steady value of 0.46 falls to a time-average value of 0.34 (for ¢ > 2. This is because
increasing the roughness amplitude increases the mean head-to-disk distance keeping the
minimum head-to-disk distance unchanged. The homogenized solution reproduces this
reduction in W (t) from the smooth-disk case with good accuracy.

A sensitive quantity for comparison is the roll moment, which is plotted in Fig. 5. The
most remarkable observation is that the roll moment decreases by a factor of 50 when
the roughness of the disk is parallel to that of the head and has the same amplitude. The
homogenized solution correctly captures this phenomenon. Also, in Fig. 5 one observes
that the roll moment has a maximum at ¢ ~ 1 and then decreases by about 10 percent
in the 80 x 8-period case. This feature is not present in the 40 x 4-period case and is
thus a subtle effect of the small scale. The homogenized solution captures this subtlety
remarkably well. On the other hand, the steady-state value (for ¢t > 2) of the roll moment
of the homogenized solution is closer to the mean value of the roll moment of the exact
solution for the 40 x 4-period case. This is not fully understood. It may be a consequence
of the discretization errors, since the exact solutions are not truly exact but just good
approximations.

3.2. Perpendicular oblique roughness

If the two roughnesses are in relative motion but arranged perpendicular to one another,
then the head-to-disk spacing has the same shape at all times. The points with minimal
thickness (H = H,) are arranged in a square lattice oblique to the direction z;. These
points, however, move with time along the lines zo = z; + (n+ %) €, with n an integer. As
a consequence, the load capacity W (t) is much less oscillatory than in the parallel case,
as can be seen in Fig. 6. One observes that the perpendicular roughness leads to a smaller
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Figura 4: Time evolution of W (¢) for the case of parallel oblique roughness. (a) Complete evolution.

Detail. Compared are the exact results with 40 x 4 and 80 x 8 periods to the homogenized ones.
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Figura 5: Time evolution of M (t) for the case of parallel oblique roughness. Compared are the exact
results with 40 x 4 and 80 x 8 periods to the homogenized ones.

load than the parallel one, and the homogenized solutions follow this trend.

Once again, the roll moment is another good quantity for comparison. In Fig. 7 we plot
M (t) in the perpendicular-roughness case, for 40 and 80 periods. M is smaller than in the
smooth-disk case, by about 50 percent. This reduction is consistent with the reduction in
W. All these features are correctly captured by the homogenized solution. On the other
hand, the discrepancies in the initial behavior (¢ < 1) between the exact and homogenized
solutions are again present here, as in the smooth-disk case.

3.3. Pressure fields

We end up this section displaying a few pressure fields. In Fig. 8 (left) we show contour
plots calculated at ¢ = 2,5 for the exact problem with 80 x 8 periods (a), and for the
homogenized problem (b), in the case of parallel oblique roughness. The z, coordinate
has been expanded by a factor of 10 to ease the visualization.

By direct comparison to Fig. 2 one observes that the relative motion of head and
disk greatly modifies the pressure field. Moreover, the homogenized pressure field is an
excellent approximation to the exact one. Analogous plots are shown in Fig. 8 (right)
for the case of perpendicular oblique roughness. Comparing to the previous figure, it is
clear in the exact solutions that the orientation of the disk’s roughness greatly affects the
pressure field. It is also clear that the homogenization procedure presented here provides
a suitable approximation in all cases.

4. CONCLUSIONS

In this article we have tried to motivate the use of rigorous homogenization proce-
dures in the analysis of lubrication problems in which roughness effects are significant.
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Figura 6: Time evolution of W (t) for the case of perpendicular oblique roughness. Compared are the
exact results with 40 x 4 and 80 x 8 periods to the homogenized ones.
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Figura 7: Time evolution of M(t) for the case of perpendicular oblique roughness. Compared are the
exact results with 40 x 4 and 80 x 8 periods to the homogenized ones.
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(a) 80x8 periods, t = 2.5 (a) 80x8 periods, t =2.5

(b) Homogenized, t = 2.5 (b) Homogenized, t = 2.5

Figura 8: Contour zones of the pressure field at t = 2,5. Left: Parallel roughness case. Right: Perpendicular
roughness case. (a) Exact solution with 80 x 8 periods. (b) Homogenized solution.
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Standard averaging techniques are conceptually simpler, since they rely upon explicit
analytical solutions. These analytical solutions correspond to the one-dimensional para-
llel and transverse roughnesses. However, the generalization of averaging techniques to
arbitrary roughness shapes is not straightforward. Moreover, when the roughness shape
is oblique to the flow direction significant errors may be introduced by the averaging
techniques which are automatically avoided when homogenization is used.

Direct simulation of lubrication problems accounting for the precise shape of each roug-
hness feature takes of course averaging or homogenization techniques out of the picture.
For the magnetic head-disk contact problem direct simulation is nowadays affordable,
though not yet inexpensive, when the disk is smooth. When both surfaces are rough their
relative motion makes direct simulations much more burdensome. As a consequence, ave-
raging and homogenization will remain necessary for some time in the analysis and design
of hard-disk interfaces.

In this article, we have presented the formal derivation of a homogenization proce-
dure for the moving-roughness compressible lubrication problem. This procedure was ri-
gorously justified in a recent mathematical article.® The numerical implementation has
been briefly discussed, and numerical results shown. The numerical results, which corres-
pond to obliquely-striated surfaces for both the head and the disk, put forward signifi-
cant and quite unexpected effects of special roughness shapes. They also show that the
proposed homogenization procedure captures both qualitatively and quantitatively the
main roughness-induced phenomena that arise in the head-disk contact problem. To the
authors’ knowledge, no averaging method would perform as well as the proposed homoge-
nization method, in particular in the prediction of the roll moment on the head. It would
be interesting that other groups benchmark novel averaging methods in the obliquely-
striated-roughness case, which has proved to be quite challenging.

This work was partially supported by ANPCyT through grans PICT 12-6337 and 12-
09848, and by a Bonus Qualité Recherche awarded by the INSA de Lyon.
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