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Abstract. Stress and plastic strain analysis are required to determine zones with risk of
internal cracking in the early stages of solidification in steel continuous casting processes.
The high computational cost of three-dimensional models with conveniently refined meshes
puts a severe difficulty to use them in repetitive analysis required to determine cracking
susceptibility associated with variations in metallurgical parameters.
In this work, we describe numerical schemes based on the Generalized Plane Strain hy-
pothesis, using bi-dimensional models with temporal advance along strand axis.
Solutions obtained with these models are compared with semi-analytical 1D ones,1,2 and
with solutions of axisymmetrical Eulerian-Lagrangian models for billet continuous casting
simulation.3 We find a good agreement with previous results, and a high reduction in
computation time.
Finally, we apply GPS model in slab continuous casting simulation comparing thermal
results with those obtained with three-dimensional models,3–5 describing stress and strain
results, and remarking some important issues related to crack sensitivity analysis.
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1 INTRODUCTION

Internal cracking of steel products obtained by continuous casting can easily occur in
industrial applications. Its prevention entails one of the most important issues in the
development of this technology. There is a vast literature analyzing different aspects of
this problem. Whatever the cracking criteria may be, alternative prediction models use
basically the mechanical stress-strain state at temperatures close to solidification as a
fundamental input data set.

Weiner et al.1 proposed the use of a simplified semi-analytical procedure to describe,
approximately, the evolution of stresses in this zone. Kristiansson2 presented a finite
element numerical scheme using the same fundamental hypothesis, the generalized plane
strain condition (GPS). From there, the GPS assumption has been widely used in the
literature for thermal stress evaluation in continuous casting simulations. However, models
based on this hypothesis can not reproduce, a priori, tensional state near corners, which
is a critical zone in slab continuous casting.

We propose a Generalized Plane Strain (GPS) finite element model in section 2.1.
First, it is validated with the above mentioned studies. Then, we compare its results in
a billet continuous casting simulation with an alternative eulerian-lagrangian procedure
where no GPS condition is assumed (see Fachinotti3). This allows us to get an estimation
of the GPS model validity for additional studies. Finally, in section 5 and using the GPS
model, we present detailed results of a slab continuous casting simulation.

2 DESCRIPTION OF THE MECHANICAL PROBLEM

In a first approach for thermal analysis in the solid shell, a stationarity condition could be
assumed, with an average casting velocity vc for the strand. The stress analysis proceeds
by assuming an elastoplastic or viscoplastic material behavior with parameters strongly
dependent on temperature.

Let us initially assume a Lagrangian description for the mechanical simulation of this
process (see figure:1). We consider for every body point, and its neighborhood, three
different configurations: i) the reference configuration, where the point label is assigned;
ii) the (intermediate) natural configuration corresponding to the coordinates where the
point has solidified; and iii) the actual point configuration. By denoting uo the point
displacement from the reference to the natural configuration, ut the displacement from
the reference to the actual configuration and u the displacement from the natural to the
actual configuration, it results:

ut = uo + u (1)

When a finite element procedure is used, normally the mesh is defined in the reference
configuration, as depicted schematically in figure:1-b. In this picture we represent the
reference domain (B) as the set of points at the top of the mould at time t = 0.

Let us consider that X and xo are coordinate systems in the reference and natural
configurations. The assumption of small deformation we introduce to describe the motion
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Figure 1: Reference (B), natural (Bo) and actual (Bt) body configurations

allows us to evaluate the strain ε = ∇sym
xo u, related to the motion from natural to final

configurations, by the following approaching term :

ε = ∇sym
xo u ≈ ∇sym

X
u (2)

and therefore, to admit the strain addition validity :

εt = ε+ εo (3)

where: εt = ∇sym
X

ut is the strain at the actual configuration (at time t) with respect to
the reference configuration, and εo = ∇sym

X
uo the strain in natural configuration with

respect to the reference one.
Mechanical strains εM , are computed from ε by subtracting the thermal strain εθ:

εM = ε− εθ ; εθ = β(θ)1 (4)

with β(θ) as the thermal expansion. Stresses in the solid shell are a function of them.
Adopting the classical J2 elastoplastic theory with isotropic hardening, the stress-strain

relation results from:
σ = Ce(θ) · (εM − εpM); (5)

q̇ = −H(θ) κ̇ (6)

ε̇pM = λn ; n =
σdev
‖σdev‖

(7)

κ̇ = λ

√

2

3
(8)
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λ ≥ 0 ; φ(σ, q, θ) ≤ 0 ; φλ = 0 (9)

φ(σ, q, θ) =
√
σdev · σdev −

√

2

3
(σy(θ)− q) (10)

where Ce(θ) is the elastic constitutive tensor

Ce = λ̂(θ)(1⊗ 1) + 2µ(θ)I,

with (λ̂,µ) the Lame’s parameters, εpM the plastic strain, and 1, I the 2nd and 4th order
identity tensors. The scalar internal variables q, like a stress, describes the isotropic strain
hardening that is related to its conjugate internal variable, κ, through the plastic modulus
H (see equation (6)). Equations (7) and (8) are the classical associative flow laws defining
the evolution of the strain-type internal variables. Typically, the deviatoric stress σdev in
equation (7) defines the direction of the plastic strain rate.

Finally, expressions (9) are the consistency relations, being φ(σ, q, θ) the yield criteria
(Von Mises in our case, eq.(10), where σy(θ) is the yield stress) and λ the plastic multiplier.

2.1 Generalized plane strain model: pure lagrangian description

The instantaneous velocity of a point in the solid shell u̇t can be seen as resulting from the
addition of two terms: the average casting velocity vc in the direction of z axis (see figure
1), and a relative velocity u̇r defined with respect to an observer moving with velocity vc:

u̇t = vc + u̇r ; u̇r = (u̇r
x, u̇

r
y, u̇

r
z) (11)

The generalized plane strain condition (GPS) assumes that ε̇z = ∂u̇r
z

∂z
is uniform in

(x, y) (see figure 2), that is, this strain component does not depend on coordinates (x, y).
Furthermore, it is assumed that ε̇xz ≈ ε̇yz ≈ 0. Both conditions require the independence
of ur

x and ur
y with coordinate z. In some regions of the solid, this assumption is clearly

not convincing.
The term ε̇z can be implicitly treated in the analysis by considering the equilibrium

equation in z direction. The free traction boundary condition at the upper and bottom
part of the slab imposes, in all z-constant sections, that:

∫

A

σz(x, y)dx dy = 0. (12)

This equation makes it possible to project the 3-D model to a plane problem and its
posterior numerical treatment as if it were a pure 2-D mechanical state. We observe that
the equations of this model result from the transformation of the stationary advection
hyperbolic problem to a parabolic one where the time should be introduced as a primal
variable.
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2.1.1 Implementation of a generalized plane strain FE model

We implement the generalized plane strain condition for the modelling of a slab continuous
casting process, by adopting a reference domain lying on the plane (x, y), see figure 2.
The domain is discretized using standard bilinear quadrilateral four node elements, which
include an additional degree-of-freedom that accounts for the deformation component εz.
The strain-displacement matrix B is taken as:

B4×9 =

(

Bqst
1 Bqst

2 Bqst
3 Bqst

4 0
0 0 0 0 1

)

(13)

where Bqst
i is the ith block of the standard strain-displacement matrix of the bilinear

quadrilateral element:

Bqst
i =





∂Ni

∂x
0

0 ∂Ni

∂y
∂Ni

∂y
∂Ni

∂x





and Ni(x, y) the corresponding shape function of node i. The generalized displacement
elemental vector results :

âT = [ux
1 u

y
1 ... u

x
4 u

y
4 ε̂

z] (14)
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Figure 2: Generalized plane strain model of a slab continuous casting process.

The additional degree-of-freedom ε̂z is shared by all elements in the mesh. It is num-
bered as the last global discrete system d.o.f.. In this way, the coupling introduced by
the equilibrium equation (12) does not substantially change the skyline of the structural
stiffness matrix, and therefore, the computational cost is similar to a 2-D analysis.
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The strain εo is stored at the finite element Gauss points as an additional tensorial
internal variable in the first time step where all nodal temperatures of the element fall
below the zero strength temperature (ZST).

Changes in the solid shell domain introduce difficulties concerning the mesh definition.
The implemented procedure defines a mesh that describes the complete domain, including
liquid and mushy zones. Nodes in the mushy zone are initially fixed and without stiffness.
In subsequent time steps, when the nodal temperature falls below the ZST, they are freed.

The above described numerical model does not predict a correct displacement field
inside the solid shell. However, displacements of the shell surface points are well approxi-
mated, which is important for a correct prediction of the strand-mould air gap formation.
In the surface of a billet, for instance, differences between displacements calculated with
GPS and eulerian-lagrangian models are lower than 5%.

2.2 Mechanical model based on an eulerian-lagrangian description

An alternative model is used to compare GPS results in billet continuous casting simula-
tion, where symmetry of revolution in the thermal and mechanical problem is assumed.
This model removes the hypothesis of ε̇z uniformity in z-constant planes, typical from
the GPS one. The reference configuration is a 2-D domain as shown in figure:3 that only
represent the solid shell. The x-coordinate represents the billet radial direction.
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Figure 3: Eulerian-lagrangian model for simulating the billet continuous casting.

From the numerical point of view, this model is easily implemented in a standard
elastoplastic finite element code using structured meshes. It is necessary, for every element
in the mesh, to include a pointer to a preceding element belonging to the same streamline
Γ, to construct a relationship between a Gauss point and its homologue in the previous
element. The constitutive model equations uses this relation to obtain the historical
variables at the previous time.

The discrete equilibrium equations are solved using a standard Newton method. The
Jacobian matrix corresponds to that obtained from an equivalent elastoplastic quasi-static
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incremental problem, and is not consistent with the numerical integration scheme, but we
have obtained converged solutions using rather adjusted tolerances without an excessive
number of Newton iterations. A detailed formulation of this model, including a consistent
matrix and its numerical performance, was presented in Fachinotti.3

3 VALIDATION OF THE NUMERICAL MODEL

Let us consider the early stage of a slab continuous casting process such as that shown in
fig.2, and particularly the region corresponding to the wide side central part of the solid
shell. Thermal stresses can be evaluated by assuming generalized plane strain condition
in z and x directions because there exists free traction condition on all vertical slab sides.
Of course, this hypothesis neglects any shell curvature effect on stresses.

x

y

Shell
surface

100 Quad4_GPS elements

GPS3 elements

2 y

Figure 4: Finite element model for the 1-D numerical validation test (see figure 2)

Following this particular assumption, Weiner et al.1 determined a simplified 1-D semi-
analytical solution. The thermal problem corresponds to the Neumann’s classical one,
a phase change with uniform initial temperature T s (solidus) and fixing a temperature
T o on one end (shell surface in fig.2). For the mechanical problem, they took an elastic-
perfectly plastic material model, with a constant Young modulus E and yield stress σy

varying linearly with temperature:

σy(T ) = σo
y

T s − T

T o
; T ≤ T s (15)

where σo
y is the yield stress at temperature T o.

Neumann’s solution introduces a characteristic length ȳ = p
√

(t), where t is the time
and p the parameter given by:

p = 2Ksγ ; Ks =
κ

ρCp

; γ ≈
√

T oCp

2L
(γ2 ¿ 1); (16)

where the thermal diffusivity Ks is the ratio of conductivity (κ) with density (ρ) and with
specific heat (Cp), while L is the latent heat.
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Weiner et al. also introduced the dimensionless quantities:

ŷ =
y

ȳ
; T̂ =

T − T s

T o

σ̂ =
(1− ν)σ

αET o
; σ̂y =

(1− ν)σy

αET o
= −mT̂ ; m =

(1− ν)σo
y

αET o

where α is the thermal expansion coefficient and ν the Poisson’s ratio.
We have solved this problem assuming GPS condition in directions z and x. The FE

mesh, as shown in figure: 4, consists of 100 Quad4 GPS elements. The GPS condition in
the x-direction (εx = constant ) is imposed via Lagrange multipliers.
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Figure 5: Analytical vs. numerical stress distribution along the ŷ-coordinate, 1-D problem.1

Figures 5 compare the semi-analytical results and the numerical ones. The curves
plot the non-dimensional stress component σ̂xx(= σ̂zz) along the non-dimensional ŷ-line
(surface shell depth) for different values of m and γ parameters. The agreement of the
numerical FE solutions with the semi-analytical ones is evident from the figure.

This solution gives a constant maximum tensile (compressive) stress along the time.
This behavior is due to the particular thermal boundary conditions adopted (similarity
solution) in the study. However, they show a stress distribution trend similar to that
observed in more complex solidification problems.

4 BILLET CONTINUOUS CASTING ANALYSIS

In this section we analyze the early stage of a billet continuous casting process, including
the mould exit zone. We compare FE results obtained either by imposing the GPS
condition or by using the eulerian-lagrangian axisymmetric model of section 2.2.

Tests were made using 0.3%C carbon steel. Material parameters and problem data are
specified in Table 1 (taken from Perez et al.6):
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Parameter Symb. Value Parameter Symb. Value
Density ρ 7200[kg/m3] Solidus temp. Ts 1490[oC]

Specific Heat Cp 680[J/kgoC] Liquidus temp. Tl 1501[oC]
Latent Heat L 272000[J/kg] Zero Strength temp. ZST 1495[oC]

Conductivity (solid) κs 34[W/moC] Pouring temp. Tp 1530[oC]
Conductivity (liq.) κl 68[W/moC]

Table 1: Material and problem data for the analyzed billet continuous casting process

Following Kelly et al.,7 the liquid conductivity κl is larger than the solid conductivity
κs because of turbulence in the liquid pool. The casting speed vc was assumed to be 1.6
[m/s], and the thermal boundary conditions are:

a) prescribed flux in the mould–slab interface (using Savage-Pritchard law8,9):

q[MW/m2] = −
(

3.071− 0.361

√

∆z

vc

)

, (17)

where ∆z[m] is the z-distance from the meniscus;

b) convective flux, due to sprays,10 below the mould exit (using a convection coefficient
hs = 0.5[MW/(m2 oC)] and Tspray = 40[oC]).

q[MW/m2] = hs(Tsurface − Tspray), (18)

A J2 plasticity model with isotropic hardening11 is used. Figure 6-a is a schematic
diagram of the problem geometry while Figure 6-b displays the material parameters as
function of temperature.

4.1 Comparison between the GPS and eulerian-lagrangian models

The GPS scheme is solved using a mesh of 75 Quad4 axisymmetric elements (fig.6), and
GPS condition is imposed via Lagrange multipliers (GPS3 elements). The incremental
time step is defined to match the axial discretization of the eulerian-lagrangian scheme.
The eulerian-lagrangian model uses a 2D mesh with the 75 elements in the radial direction,
and 100 elements in the axial direction.

Comparing axial (or circumferential) stresses, see figure 7-a, we find a good agreement
between both results, except in sections near the mould exit. There, it is expected an
incorrect stress prediction of the GPS model because of the sudden change of thermal
boundary conditions. The same behavior is found for radial stresses (even considering that
radial stresses are one order of magnitude lower than axial or circumferential stresses).
Figure 7-b shows a noticeable difference in the peak stress predicted in the mould exit
zone, but it happens in a very thin superficial region.
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Figure 8 shows a good agreement for the plastic strains prediction. This observation
have important consequences when the crack criterion is based on the total applied strain
(see Yamanaka et al.12).

.: Eulerian-Lagrangian

: GPSx

A: 0.3 m below meniscus
B: 0.6 m below meniscus (mould exit)
C: 0.9 m below meniscus

Figure 8: Billet continuous casting simulation. Comparison of computed plastic strains

5 APPLICATION TO A SLAB CONTINUOUS CASTING PROCESS

Figure 9 displays the schematic diagram and geometrical data of the simulated problem.
Casting material is low carbon steel.13

Parameter Symb. Value Parameter Symb. Value
Density ρ 7200[kg/m3] Solidus temp. Ts 1518[oC]

Specific Heat Cp 680[J/kgoC] Liquidus temp. Tl 1532[oC]
Latent Heat L 272000[J/kg] Zero Strength temp. ZST 1518[oC]

Conductivity (solid) κs 34[W/moC] Pouring temp. Tp 1562[oC]
Conductivity (liq.) κl 68[W/moC]

Table 2: Material and problem data of the slab continuous casting simulation.

Casting speed is 1.0 [m/s] and thermal boundary conditions are:

a) prescribed flux in the mould–slab interface (using Savage-Pritchard law8,13)

q[MW/m2] = −(2.68− 2.58
√
∆z), (19)

Remark: following Thomas et al.,13 in a band of 31 mm wide from the slab corner,
we decrease this flux value by 0.67, because of the gap increment in this zone.
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Figure 9: Slab continuous casting process. Schematic diagram.
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Figure 10: Slab continuous casting problem: a) evolution of σx stress component in the wide face mid-
section (every 0.1[m]); b) comparison of σx and σz stress components in the wide face mid-section.
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Figure 11: Slab continuous casting problem. Evolution of σz stresses during solidification.

b) convective flux due to sprays10 (using hs = 0.5[MW/(m2 oC)] and Ts = 40[oC]).

q[MW/m2] = hs(Tsurface − Tspray), (20)

As shown in figure 10-a, the stress evolution component σx in the upper zone of the
mould, where the slab surface temperature drops significantly, is very different from that
predicted by Weiner’s model. The difference is less important in zones where surface
temperatures are more uniform. Calculated values of σx and σz in the wide face mid-
section are very similar, as can be seen in Figure 10-b.

Figure 11 show a detail of the axial stress distribution (σz) in three different sections of
the slab corner along the strand. We note that tensile stresses appear in the shell surface,
even though in the remaining part of the slab surface we observe compressive stresses.

The analysis of plastic strains in fig.13 and fig.12 shows values which are two times
larger in the corner zones than in the face mid-section ones. Moreover, we see plastic
strain peaks appearing in two bands, parallel to corner’s edge. Experimental evidence
shows that this zone is prone to imperfections.

6 CONCLUSIONS

We conclude:

a) The semi-analytical solution of Weiner et al. describe a correct tendency for stress
distribution, at least in the billet and center of wide side slab cases; however the
peak stresses, a fundamental result for crack analysis, are not correctly predicted.
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Figure 12: Slab continuous casting problem. Evolution of the wide face mid-section plastic strains.

b) The solution obtained with our GPS model agrees well with results of the eulerian-
lagrangian model in billet continuous casting simulation. Thermal results match
very well, and mechanical results show good agreement except in a small zone close
to the mould exit.
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Figure 13: Slab continuous casting problem. Evolution of plastic strains close to the slab corner.

The agreement degree between the mechanical GPS model results and the eulerian-
lagrangian ones gives a good basis to apply the first procedure in the slab continuous
casting process simulation.

A remarkable characteristic of the GPS model is its low computational cost. This makes
the GPS model suitable for future research works involving determination of parameters
for cracking susceptibility.
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