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Abstract. Three examples of time series simulations of pressure and velocity fluctuations 
using artificial neural networks were discussed: (i) a spatial interpolation of pressure time 
series on the roof of a low building in a thick, turbulent boundary layer, (ii) a simulation of 
two velocity components at multiple spatial locations simultaneously in the turbulent far wake 
of a circular cylinder, and (iii) a simulation of pressure time series around the surface of a 
circular cylinder in a crossflow. For the spatial interpolation a backpropagation network was 
used, while for the other two simulations, the fuzzy ARTMAP neural classifier was used. It 
was shown that the fuzzy ARTMAP captured the energy of the fluctuations over a wider range 
of scales than the backpropagation network because of its architecture, even though the input 
and output types were similar. The fuzzy ARTMAP is based on a clustering-type of pattern 
recognition while the backpropagation network is more deterministic, i.e., more like an 
empirical curve-fit to the data. This appears to allow the fuzzy ARTMAP to capture the 
dynamics of the flow field to a greater extent. 
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1 INTRODUCTION 

The simulation of the spatial and temporal variations of physical variables in transient 
processes is important in many engineering applications. Examples include the active control 
of processes, prediction of system behaviour for the design of a process or product, and 
forecasting future behaviour based on the current or previous state of a system or process. 
Often, this is done by solving the equations representing the physical laws that govern the 
process or system. Other times this is done by solving engineering design equations or 
empirical models of the system. In fluid mechanics, the governing equations are difficult to 
solve directly in practical engineering situations because of the “problem” of turbulence. So, 
approximate forms of the equations are used with empirically based, or calibrated, turbulence 
models. These often work reasonably well for engineering design purposes, and experimental 
data are used to confirm the results (or at least calibrate and validate the turbulence models). 

Since experiments are often difficult and costly, it makes some sense to consider 
alternative approaches which make greater use of the data, perhaps with a loss of generality, 
but with the benefit of increased simplicity or speed. Artificial neural networks offer such 
approach and are the focus of the current paper, but there are many other methodologies 
currently under development1-4. We will focus on some applications in fluid mechanics and 
wind engineering which have interested us, mainly on time series simulations of multiple 
spatially varying variables. 

Artificial neural networks (ANN) have many inputs and outputs with nonlinear transfer 
function in the “neurons”, the connections between the inputs and outputs. Because of these 
features, they are used for solving multivariate and nonlinear problems. The main drawbacks 
are that they are costlier (in terms of computational complexity and time consumption) and 
may not be sufficiently generalized due to limitations in the input or output data, or the choice 
of these. There is no theoretical basis for determining the optimum neural network 
configuration. This has to be done on an ad-hoc basis and, therefore, requires an “expert” 
user. One of the objectives of this paper is to illustrate some of the advantages of using neural 
networks, one of those being that they can “learn” some of the underlying dynamic behavior 
and, therefore, make more accurate predictions under a wider variety of circumstances 
compared to other methods. An example is also shown where the approach did not work 
accurately because the input was not entirely appropriate to the situation. 

2 ARTIFICIAL NEURAL NETWORKS 

There is a variety of neural network models5-7. They differ in terms of structure and mode 
of operation and include multilayer networks, single layer perceptrons, Carpenter networks, 
Hamming networks and Hopfield networks. Many utilize fuzzy logic to simplify the 
calculations and inputs, such as the Fuzzy ARTMAP neural network8-12, described in more 
detail below. Probably the most widely used networks are multilayer networks with 
backpropagation learning using the gradient method. The topology of one such network is 
shown in Figure 1 for a single hidden layer. 
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Figure 1: The time-delay back propogatgion neural network (from [21]) 

2.1 Backpropagation Networks 

Backpropagation neural networks generally have a layered structure with an input layer, an 
output layer and one or more “hidden” layers between the input and output layers. Each layer 
is composed of artificial neurons (processing elements), which are represented with circles in 
Figure 1. Each neuron is connected to all neurons in the layers immediately above and below, 
via adaptive weights. The neurons in the first layer (input layer) only serve in the role of 
external stimuli, i.e., they transfer the external inputs into the neural system. The output layer 
is the final output of the ANN. Each neuron in hidden layers and output layers receive the 
weighted input from the output of other neurons from lower layers. The weights, measures of 
the strength of the connections between neurons5, are determined via the training process. 
Neurons in hidden layers and output layers play the most important role in ANN function 
because they perform the only computations (via their nonlinear transfer function). Each 
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neuron (except in the input layer) receives a set of weighted inputs from the neurons in the 
layer below and then produce a corresponding response which is fed-forward to the next 
layer. By adjusting the weights (connections), an ANN can be trained with the available 
experimental data set to generalize the functional relationship and produce the desired output 
for a given set of inputs. There are many training algorithms, but the most frequently used 
algorithm (to determine the weights) is known as Widrow-Hoff learning or backpropagation 
algorithm5,7,13. 

It is worth noting that one can write the equation for this type of network, although it is 
extremely tedious. In some sense, determining the weights is not unlike determining constants 
in a regression analysis, with this type of ANN model really being an elaborate curve fit. In 
this context, the ANN would be considered “over-parametrized” or overtrained. 

2.2 Fuzzy ARTMAP 

The Fuzzy ART architecture was designed by Carpenter et al.8-12 for multidimensional data 
clustering based on a set of features. The Fuzzy ARTMAP neural network is formed by a pair 
of fuzzy ART modules, Art_a and Art_b, linked by an associative memory and an internal 
controller. To extract structures from the turbulent wake Ferre-Gine et al.14,15 proposed a 
modified version of Fuzzy ARTMAP which was specially conceived to this purpose. The 
classification procedure of fuzzy ART is based on Fuzzy Set Theory16. The similarity 
between two vectors can be established by the grade of the membership function, which for 
two generic vectors (l, m) can be easily calculated as 

l

ml
m l )( grade

ξ

ξ∧ξ
=ξ⊂ξ          (1) 

where the “∧” is the fuzzy AND operator  and the norm, |•|, is the sum of the components of 
the vector. The mechanisms to speed up the process and to conduct the classification properly 
can be found elsewhere12, as can the details for the current applications14,15,17. 

Modifications to allow the simulation of time series were made by Giralt et al.17. Figure 2 
depicts a schematic of the network. It is worth emphasizing that the structure of this network 
is completely different than backpropagation networks, since it does not have a layered 
structure. Whereas backpropagation behaves more like nonlinear curve fits, the fuzzy 
ARTMAP relies on data clustering. The problem of determining cluster boundaries is 
illustrated in Figure 3, which shows two “natural” clusters in a two-dimensional space, easily 
identifiable by eye. Clustering is the process of separating the data points automatically into 
classes. Originally, clustering was based on the idea that one particular pattern either 
belonged or did not belong to a given cluster. Membership of a particular element in the given 
cluster was either 0 (does not belong) or 1 (does belong). This is called “hard” clustering. 
Fuzzy logic16 is a more effective approach to separate clusters. The main difference between 
fuzzy clustering and hard clustering is that each element has real membership in each cluster, 
such that the sum of its membership in all clusters is unity. 
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Figure 2: Sketch of the  predictive Fuzzy ARTMAP Neural Network (from [17]) 

For time series simulations, one network of this type was created for each sensor. All the 
networks operated synchronously and in parallel. Each individual network was first trained 
with the output in Figure 2 disconnected. The training data for each individual network in the 
velocity simulation consisted of vectors with 12 elements for the Art_a module, four temporal 
(or historical) velocity components (u and w) for the probe under consideration, plus the two 
components from each of the two spatially adjacent probes. The subsequent values of each 
velocity component in the time sequence (i.e., vectors with two elements) were used for the 
Art_b module. Thus, simultaneous space-time information was provided to the neural system 
in terms of the input to each Art_a module, with the corresponding future information for (u, 
w) given to each Art_b module. There was no other association between individual networks. 

The dimension of the input vectors to the eight neural networks and the type of 
simultaneous space-time information that they contained was decided after examination of the 
space-time correlation of the experimental data, so that relevant structural (scale) 
characteristics of the flow were provided to the system during training. The choice of four 
temporal data for each velocity component in the training input vector is consistent with 
Takens theorem30. This theorem states that good accuracy can be achieved in point-to-point 
forecasting in a system with attractors of dimension d when a function that depends at most 
on  (2d+1) past measurements is used. For the data herein, this implies using between four 
and five historical data in the training sets. Details can be found elsewhere17. 

3 INTERPOLATION TO INCREASE DATA RESOLUTION 

One example of the need for time series simulation is to increase the resolution of 
experimental data when the data is being used for further numerical analyses. Because of both 
increased computational and experimental capacities, numerical structural analyses of 
buildings are being performed with the input loading taken directly from experimental data. 
Currently, we have the capability to measure surface pressures at about 1000 locations 
simultaneously on the surface of a model building, greater numbers being a matter of only 
cost (equipment and the costs of running such experiments). Even though this is a large 
number, numerical (e.g., finite element) analyses of structural responses often require greater 
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resolution. Thus, interpolation techniques are required. Several approaches could be applied 
such as linear interpolation, cubic splines (e.g., as Antonia et al.18 did to increase the 
resolution of their hot-wire experiments), linear stochastic estimation19,20, etc. We have used a 
backpropagation ANN for this type of application21 as it has several advantages that will be 
discussed below. Figure 1 illustrates the structure of the network used here. 

 

 
Cluster 1 

 
 
 
 
 
 
 

Figure 3: An example of natural clusters in a two-dimensional pattern space (from [28]) 

 
Cluster 2 

Figure 4: Tap layout and numbering scheme on the roof panel (from [21]) 

Surface pressures on low buildings depend on many factors including the location on the 
surface, the building geometry and the characteristics of the upstream boundary layer. For 
interpolation, most of this information is assumed to be implicitly contained in the pressure 
data measured at taps adjacent to the location for which we want new data. Thus, these are the 
only inputs used, as implied by Figure 1, where Cp5 is the pressure coefficient of the tap we 
wish to obtain time series for, while Cp1, Cp2, Cp3, Cp4 are the pressure coefficients from the 
adjacent taps. Thus, the input is the adjacent pressure coefficients at time, t+1, plus the earlier 
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(i.e., previously forecasted) coefficients of Cp5 at t, t-1, … , t-k. The output is Cp5 at time, 
t+1. The implication is that the data at the adjacent spatial locations are correlated and that 
this is really the only relevant parameter in the analysis. This is consistent with the goal of 
interpolation, but limits the generality of the results. Scales smaller than the spatial distances 
between taps may be lost, although one would hope that these get picked up to some extent 
without considering them explicitly. Note that this is somewhat different than for linear 
interpolation where the assumption is that the new data (Cp5) is simply an average of the data 
from the adjacent points, and no small-scale features (“small” meaning smaller than the 
distance between adjacent taps) are relevant. The use of splines implies a similar assumption. 
However, the assumptions implicit to this ANN are similar to that of linear stochastic 
estimation where the covariance matrix is used explicitly19,20 so one may expect similar 
results. 

Figure 5 Time series for tap on high resolution panel (from [21]) 

Pressure time series at more than 700 locations were obtained over a small region of the 
roof of a low building of large plan dimension in a boundary layer simulating open country 
terrain. The nominal model scale was 1:50 and Figure 4 shows the equivalent full-scale 
dimensions. Figure 4 also shows a sketch of the tap locations, some of which will be 
discussed herein. Further details can be found in Chen, Kopp and Surry21. The data have been 
used by Ali and Senseny22 to perform a finite element analysis of the structural response of 
the connections between the roof cover and the structural frames (purlins). Figure 5 shows a 
segment of the actual time series at location #1715 (see Figure 4) along with the interpolated 
ANN signal and that from linear interpolation where the four adjacent taps are numbered 511, 
603, 2911, and 3003 on Figure 4. One can see that the ANN-signal “tracks” the real signal 
much more closely than that obtained by linear interpolation. The ANN-generated signal 
captures a reasonably range of the frequency content but starts falling off around 20 Hz, as 
does the autospectra from the linear interpolation, as shown in Figure 6. The spectra of the 
error from the ANN-generated signal is like that of white noise, probably due to smaller scale 
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eddies that do not influence the adjacent taps and the lack of perfect correlation between the 
interpolated location and the adjacent taps. 

Figure 6: Autospectra of pressure time series for Tap 1715 (from [#]) 

Some evidence that the ANN has learned the correlation between the adjacent taps can be 
obtained by considering the output of the same trained net at other spatial locations. In 
regions where the flow field is broadly similar, the accuracy of the interpolated time series is 
excellent. However, in the corner of the roof there are large spatial gradients, not only of the 
magnitudes of the pressure coefficients, but also higher order statistics such as the skewness 
and kurtosis. The resulting performance of the ANN drops off rapidly. Even a net re-trained 
with the data from the corner (for tap #402) could not accurately interpolate data in this 
region. The time series from adjacent taps have low correlations relative to the corner tap, 
implying that different input from that in Figure 1 is required in order to correctly capture the 
physics and interpolate the time series. 

4 SIMULATION OF TURBULENT VELOCITY FLUCTUATIONS 

The dynamics of turbulence involves the interaction of “eddies” of different scales, which 
results in a transfer of energy from the mean flow primarily to the large scales (or large 
eddies). Energy is then transferred to correspondingly smaller eddies by the larger ones until 
it is ultimately dissipated at the smallest (Kolmogorov) scales23. In fully developed, plane, 
turbulent wakes, the large eddies are random variables, but have a particular, repeated shape. 
The available experimental evidence indicates that they are the controlling factor for the 
spread rate of the turbulence and the overall rates of entrainment or mixing24-26. In order to 
determine these characteristics, we have taken the approach of developing and applying 
pattern recognition techniques14,15,27,28. The task is reasonably complex because turbulent 
velocity signals have energy at scales varying by several orders of magnitude. Figure 7 shows 
time series from segments of 16 sensors (hot-wires) in the wake of circular cylinder, 420 
diameters downstream of the cylinder. The basic experimental set-up showing the sensors are 
shown in Figure 8. Figure 9 shows the autospectra for the velocity data measured at two of 
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the sensors. 

 
Figure 7: Time series from 16 sensors in a turbulent wake (from [17]) 

 
Figure 8: Sketch of the experimental set-up with the sensor (X-wire) locations 

Embedded within these seemingly random signals are the large scale eddies which play a 
key role in the dynamics of the turbulence. Our goal was to simulate these time series by 
using our knowledge of this, but without using the governing (Navier-Stokes) equations. 
Giralt and co-workers14,15 applied Fuzzy ARTMAP to identify and classify the patterns in 
these data and modified the network architecture to simulate time series. The idea was simple: 
since the Fuzzy ARTMAP had already classified the patterns, it should be able to reconstruct 
a pattern from partial velocity information of the pattern given what it had “learned” in the 
classification stage. So, if the re-configured net, shown in Figure 2, was given an initial 
condition it generated velocity data at the next moment in time, and with that, the next, and so 
on. The results were reported in Giralt et al.17, where further details can be found, and are 
briefly summarized here. Essentially, the modified fuzzy ARTMAP neural classifier learned 
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the dynamics of the turbulent velocity fluctuations since it was able to capture the turbulence 
energy at even the smallest scales even though it was only trained using the classification of 
the largest scale eddies. The match between the autospectra from the simulated and actual 
time series, shown in Figure 9, is good. The spatial correlations, shown in Figure 10, are not 
matched quite as well. Clearly, the integral scales are a bit smaller in the simulation than 
those from the experiments since only information from adjacent probes was considered to 
train each network. 

 

Figure 9: Autospectra of the experimental and simulated (a) streamwise and (b) spanwise velocity components 
(from [17]) 

 

Figure 10: Correlation of the streamwise velocity fluctuations from the (left) experiment and (right) simulation 
(from [17]) 

It is interesting to compare the results from this simulation with those for the interpolation 
with the backpropagation ANN presented in section 3, in particular the autospectra presented 
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in Figures 6 and 9, acknowledging the completely different flows being examined. The main 
difference in the results is that the fuzzy ARTMAP is much more able to capture the energy 
content, in this case, over three orders of magnitude (see Figure 9), compared to less than two 
for the backpropagation ANN (see Figure 6). We attribute this to the differences in the 
architecture of the networks; a multilayer perceptron network has a distributed memory while 
fuzzy ARTMAP is a cognitive classifier with long memory span. The fuzzy clustering aspect 
of fuzzy ARTMAP possibly allows a wider range of realistic output for a given input pattern 
because of the independence of the output and input clusters (but which are linked) and the 
fuzzy membership in those clusters. The backpropagation net is much more deterministic in 
this regard and we think that adding layers or nodes (the only choice in this form of ANN) 
cannot overcome this main deficiency (when a higher level of accuracy is desired throughout 
the spectral range of the data) as it is limited by the stability-plasticity dilemma8-11. At this 
point, one should be reminded that the inputs and output of these two examples are similar. 

5 SIMULATION OF PRESSURE TIME SERIES 

Based on the success in simulating the velocity time series in a turbulent wake, we thought 
it would be relatively straightforward to simulate the surface pressure fluctuations around a 
circular cylinder since the range of scales of the energy content of pressure fluctuations is 
significantly reduced compared to velocities. Galsworthy made his pressure data29 around the 
surface of a circular cylinder at high Reynolds number (Re = 106) available to us. At this 
Reynolds number the flow has a relatively strong vortex shedding as indicated by the spectra 
of the lift force29. The vortex shedding means two things: the flow field is quasi-periodic and 
is dominated by large-scale motions, similarly to the fully developed wake considered above. 
Figure 11 depicts the pressure fluctuations at several locations around the cylinder along with 
a segment of the lift time series. The lift signal, in particular, shows the vortex shedding 
frequency (e.g., around 4.2 sec), although there are moments when it appears more erratic 
(just after 4.3 sec). The pressure time series indicate that the frequency is less pronounced 
individually except around the separation points (between 90o – 120o and 250o – 270o, where 
the angle is measured clockwise from the leading edge, 0o; see Figure 12). Perhaps what is 
most surprising is that the flow at the trailing edge (180o) exhibits little periodicity, 
completely different than the flow at lower Reynolds numbers, e.g., Re = 104. At lower 
Reynolds numbers, where most wind tunnel experiments are made, the flow is periodic 
downstream of the separation point and the level of fluctuations is similar. Clearly, this is not 
the case here as the vortex shedding has been significantly affected by the fact that the 
boundary layers growing on the surface of the cylinder are turbulent prior to separation. This 
turbulence apparently mitigates the “communication” between the two separated shear layers 
so that the periodicity is not transmitted uniformly around the leeward side of the cylinder. 

The same modified fuzzy ARTMAP neural architecture as for the velocity simulations 
(section 4) was used, and the pressure time series were simulated. For this problem, there 
were 32 networks trained, one for each tap measured. Each net was trained with information 
from the tap it represented, along with data measured at the same instant in time at its four 
nearest neighbouring pressure taps. Information at the three previous instants for the main tap 
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was also used as input, so that there were eight inputs to each network. For example, the ANN 
for tap 1 (at the leading edge) used the pressure coefficients Cp1(t), Cp2(t), Cp3(t), Cp31(t), 
Cp32(t), Cp1(t-1), Cp1(t-2), and Cp1(t-3) for training. In the simulation stage, Cp1(t+1) was the 
output from this net, with the data for Cp2(t), etc. coming from the ANN simulations at the 
other taps so that all data was simulated (except for the initial condition. Note that if we had 
used entirely experimental data for all prior points, this would be a forecasting problem and 
the comparison would be with the forecasted and actual measured time series. Since we are 
running this as a simulation, we can only compare statistics.) 
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Figure 11: Selected pressure and lift time series around a circular cylinder at Re=106. 

 
Figure 12. Definition sketch of the flow around the circular cylinder 

Selected results are shown in Figure 13. Basically, neural network underestimates the 
experimentally measured fluctuations and captures incorrect frequency information as well, 
since it locks onto one of the harmonics. This is most clearly illustrated in the segment of the 
lift time series. We think that this is due to insufficient temporal information in the training 
data although there is the possibility that the current data are also insufficient to capture the 
physics (i.e., the boundary layer turbulence) properly (and we are currently investigating this). 
The choice of using four adjacent taps and three previous temporal points was based on the 
spatial and auto-correlations, as was done in the earlier velocity simulation. Takens30 work 
provides justification for the use of slightly more historical (temporal) points based on the 
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fractal dimension of the data. However, this limits the patterns being classified to those with 
lengths less than one period. Therefore, it appears that only the harmonics are being classified 
since one period of shedding is about 12 points long, not the four used here. Our current work 
is trying to understand the physical significance of these patterns so that we can use this 
method with a greater deal of reliability. 
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Figure 13: Selected pressure and lift time series around a circular cylinder from the ANN simulation. 

6 CONCLUSIONS 

Three examples of time series simulations using artificial neural networks were examined. 
It was shown that performance depended strongly on the type of network, with the fuzzy 
ARTMAP being superior to the more common backpropagation networks, probably because 
the former is based on a fuzzy clustering type of pattern recognition, rather than the more 
deterministic multi-layered backpropagation network. Nevertheless, such a network is useful 
in applications such as the interpolation problem presented here where a lesser degree of 
“learning” is required, i.e., no long memory span is required. In addition, the choice of the 
input and output variables also strongly affects the performance. Basically, the choice of 
inputs and outputs is determined by the physics of the problem studied, which has to be 
properly understood if accurate and trustworthy extrapolations are required. 
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