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Abstract. It is presented in this work a general numerical tool for the analysis of three-
dimensional bimaterial interface cracks. The proposed tool is based on a multidomain 
formulation of the Boundary Element Method (BEM), with the crack located at the interface. 
Mixed-mode stress intensity factors along three-dimensional bimaterial interface cracks are 
computed using M1-Integral methodology, which imposes the asymptotic auxiliary fields for 
the plane problem of a bimaterial interface crack along the crack front. The M1-integral is 
evaluated using a domain representation naturally compatible with the BEM, since stresses, 
strains and derivatives of displacements at internal points can be evaluated using the 
appropriate boundary integral equations. The capability of the procedure is demonstrated by 
solving an application example, namely the analysis of a fibre/matrix debond interface crack 
under transverse loading. 
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1 INTRODUCTION 

The overall mechanical properties of composite materials depend heavily on the nature of 
the bond at bimaterial interfaces. Unfortunately, interfacial delamination and fracture are 
commonly observed problems that may ultimately limit the use of these materials, which 
range from ceramic and metal matrix composites for the aerospace industry to nanoscale 
structures for microelectronics applications. The need to improve fracture their toughness has 
led to significantly progress in the area of interfacial fracture mechanics. During the past few 
decades, comprehensive analyses have been carried out, and many questions regarding the 
mechanics of interface fracture have been answered. However, progress has been generally 
mainly focused in the two-dimensional idealization of an interface crack, and limited work 
has been conducted on the three-dimensional aspect of interface fracture. This is in part due to 
the extreme complexity of such problems and the very large computational efforts required 
for their numerical analysis. However, given the material mismatch along the interface 
boundary, it is expected that the three-dimensional effects play a more significant role in a 
bimaterial structure than in a homogenous structure. 

The attraction of the BEM can be largely attributed to the reduction in the dimensionality 
of the problem; for two-dimensional problems, only the line-boundary of the domain needs to 
be discretized into elements, and for three-dimensional problems only the surface of the 
domain needs to be discretized. This means that, compared to FEM domain type analysis, a 
boundary analysis results in a substantial reduction in data preparation. At the same time, and 
due to the inherent characteristics of its formulation, the BEM provide very accurate results 
for problems containing strong geometrical discontinuities. This makes the BEM a powerful 
numerical tool for modelling crack problems1. 

 Although many authors propose displacement and stress extrapolation methods to 
determine stress intensity factors from BEM results (see for example Tan and Gao2, Yuuki 
and Cho3, Mao and Sun4 and He W.J., Lin D.S. and Ding H.J5, J-integral methods constitute a 
more robust approach. Note that BEM is specially suited for the evaluation of path 
independent integrals, since the required stresses, strains and derivatives of displacements at 
internal points can be directly obtained from their boundary integral representations. It also 
has been shown that BEM produces more accurate stresses and strains at internal points when 
compared with other numerical techniques, and therefore better results can be achieved. 
Application of the J-integral methodology for two-dimensional interface cracks can be found 
in the work by Miyazaki et al6 and de Paula and Aliabadi7. 

Among the  available schemes for the numerical computation of the J-integral in three 
dimensions, the Energy Domain Integral (EDI) due to Shih8 is employed in this work. 
Previous work by one of the authors has proved the versatility and efficiency of  the EDI in  
the three-dimensional BEM analysis of  isotropic cracked bodies9. Together with the EDI the 
interaction or M1-integral methodology due to Chen and Shield10 is employed in this work for 
decoupling the J-integral into the mixed-mode stress intensity factors. The M1-integral 
methodology is based on the superposition of two equilibrium states, given by the actual 
problem and a set of auxiliary known solutions. This approach has been recently reported in a 
number of papers using FEM to compute stress intensity factors along  three-dimensional 
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interface cracks (see Gosz, Dolbow and Moran11, Nagashima, Omoto and Tani12, and Im, Kim 
and Kim13. Using BEM the M1-integral methodology has been implemented for two-
dimensional cracks by Miyazaki et al6. 
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Figure 1: schematic of bimaterial plate with an interface crack: coordinate system in the 
region of the crack tip and remote tension and shear loading. 

2 CRACK TIP FIELD AND BIMATERIAL INTERFACES 

Consider the plane problem of an interface crack between two dissimilar isotropic materials 
as shown in Figure 1. For convenience, we adopt a local polar coordinate system centred at 
the crack tip, and we label the material occupying the upper half-plane as material 1 with 
Young modulus E1 and Poisson ratio ν1. The material occupying the lower half-plane has 
modulii E2 and ν2. The stress field very close to the crack front corresponds to the asymptotic 
field based on the two-dimensional (plain strain and antiplane) solutions due to Williams14. 
The form of the bimaterial stress field given by Rice, Suo and Wang15 (with the addition of 
Mode III) is 
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where r and θ are the in-plane coordinates of the plane normal to the crack front, K is defined 
as the complex stress intensity factor for the in-plane modes, K , and σ are the 
angular variations of stress components for each mode. The oscillatory index ε  is  
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Here, for plane strain and  for plane stress,  is 
the shear modulus, and the subscripts α=1,2 refer to the materials above and bellow the crack 
plane, respectively. Furthermore, β is one of Dundurs´ parameters. In two-dimensional 
problems, the solution can be characterized by the two Dundurs´ parameters, and they are 
defined as
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Unlike the two-dimensional cases, the above parameters are not sufficient to characterize 
the full-field field deformation of three dimensional boundary value problems. Note, a 
bimaterial combination yields different Dundurs´ parameters under plain-strain and plane-
stress conditions. 

 
3 THE INTERACTION INTEGRAL 

The M1-integral is based on the principle of superposition. Let us consider two equilibrium 
states with field variables denoted by the superscripts (1) and (2), respectively. Superposition 
of the two equilibrium states leads to another one, (1+2). Then the stress intensity factors 

 can be written as )21( +
jK

).,,()2()1()21( IIIIIIjKKK jjj =+=+  (6) 

The stress intensity factors can be related to the J-integral for the superimposed state (1+2) 
for a crack at the interface between two dissimilar isotropic materials under plain strain 
conditions as follows11: 
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where E* and µ* are the effective Young´s and shear modulus11, and ε stands for the 
bimaterial constant defined in Eq. (2).  Equation (7) can be rewritten in terms of the stress 
intensity factors for the equilibrium states (1) and (2),  to give 
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Then, the M1-integral is defined as 
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Finally, the M1-integral can be expressed using a domain representation using the energy 
domain integral approach17 
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For the decoupling the mixed-mode stress intensity factors, the problem under 
consideration is selected as equilibrium state (1), so that the field variables σ and  will 
be obtained in this work from the results of a boundary element analysis. On the other hand, 
the plain-strain solutions for the asymptotic crack-tip fields introduced in Section 1 with 
prescribed stress intensity factors K
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I, KII and KIII, are selected as equilibrium state (2). Then 
the field variables related with the equilibrium state (2),σ , and are calculated 
from these asymptotic solutions. Finally the M

)2*(
ij

)2(
IK

)2*(
,kju

0= K

1-integral defined in Eq.(10) can be calculated, 
using the field variables related with the equilibrium states (1) and (2). By using three sets of 
asymptotic solutions, ( , , ), ( , , ) and 
( , , ), it is possible to obtain the stress intensity factor solutions for 
individual modes from Eq.(9) as follows: 
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where , and are the values of the MaM1
bM1

cM1 1-integral calculated using the three sets of 
asymptotic solutions.  

It is important to point out that the present implementation of the M1-integral approach is 
only valid for straight crack fronts. For the application of the M1-integral along curved crack 
fronts extra terms need to be included in Eq.(10). At he same time it is worth to note that 
because the M1-integral is based upon the assumption that the near-crack tip fields asymptote 
to the plane strain fields, it is not strictly applicable at the intersection of the crack front with 
a free surface. It turns that out that at the intersection of the crack front and the free surface, 
the singularity in the stress field is more severe than the usual r1 singularity18.  
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4 MULTIDOMAIN BEM FORMULATION 

Considering a body with domain Ω(X) surrounded by a boundary Γ(x) (see Figure 2a), the 
displacement boundary integral equation relating the boundary displacements u(x) with the 
boundary traction t(x) in the absence of body forces can be written for three-dimensional 
problem as,  

∫∫ ΓΓ
=Γ=Γ+ 3,2,1,)()()´,()()()´,()'()'( ** jixdxtxxUxdxuxxTxuxc jijjijiij  (12) 

where and are, respectively, the fundamental displacement and traction 
solutions due to a unit load placed at a location x´. These solutions are provided in Ref.

),'(* xxTij ),'(* xxUij
1.  
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Figure 2: (a) Three dimensional body with volume Ω and boundary Γ,  (b) Schematic 
of the multidomain technique for nonhomogeneous body. 

 
 
 

 
Because Eq.(12) is derived for a homogeneous material, a multidomain technique is used to 
solve the interface crack problems. As shown in Figure 4b, the whole domain is divided into 
two domains ΩI(X) and ΩII(X), which are both homogeneous. The boundary element 
technique is applied to each domain resulting in the following matrix equations 
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for domain I, and 
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for domain II. Matrices H and G in Eqs. (13) contain integrals of the kernel functions 
and U respectively, while u and t are vectors with the nodal displacements and 

tractions on the boundary. Here the subscript 2 indicates the common interface boundary Γ
),'(* xxTij ),'(* xxij

12 
of each domain (see Figure 2), while subscript 1 stands for the rest of the boundary. If the 
equilibrium and continuity conditions are enforced at the common interface give 

III uu 22 =  (14a) 
and 

III tt 22 −= . (14b) 
Incorporating Eqs. (14a) and (14b) into Eqs. (13a) and (13b) results in the following matrix 
equations: 































−
=































II

I

I

IIII

II

II

I

I

IIII

II

1

2

1

12

21

1

2

1

12

21

0
0

0
0

t

t

t

GG
GG

u

u

u

HH
HH

 (15) 

The problem boundary conditions are then applied to the system of equation (15). If the 
displacements are known on certain portion of the model boundary the traction can be found 
and vice versa. This implies that the system of Eq.(15) can be reordered in such a way that all 
the unknowns are written on the left hand-side vector resulting in 

[ ][ ] [yxA = ]  (16) 

where x is the vector of unknown displacement and traction boundary values including the 
common interface. 
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Figure 3: Schematic of the volume cells in the crack front region illustrating the 

virtual crack extensions for a corner node, a mid-node and a surface node. 
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5 BOUNDARY ELEMENT IMPLEMENTATION 

The computation of the M1-integral methodology was implemented in the BEM code as a 
post-processing procedure, and so it could be applied to the results from a particular model at 
a later stage. This procedure requires the evaluation of a volume integral within closed 
domains that enclose a segment of the crack front Lc. A natural choice here is to make the 
evaluation point η coincident with the element nodes on the crack front, while Lc is taken as 
the element or element sides at which points η lies (see Figure 3). The portion of the model 
domain in which the volume integrals are evaluated is discretized using 27-noded 
isoparametric (brick) cells, over which stresses, strains and displacements derivatives are 
approximated by products of the cell interpolation functions Ψi and the nodal values of 

, and .Volume discretization is designed to have a web-style geometry around the 
crack front, while the integration volumes are taken to coincide with the different rings of 
cells. This is illustrated in Figure 4, where one of the model faces has been removed to show 
the crack and the integration domains. The procedures for the computation of the nodal values for 

,ε and u  are the same to those employed in Ref 

ijσ

ijσ

ijε

ij

jiu ,

ji,
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integration 
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interface 

crack front 
crack face 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: (a) Boundary Element discretization,  (b) Integration domains  
 
In this work q is defined to vary quadratically in the directions tangential and normal to the 

crack front. This bi-quadratic definition of  q has been employed with excellent results in the 
computation of EDI for cracks in homogeneous materials in a previous work by one of the 
authors9. Within this approach, and considering that the evaluation point η is at the middle of 
the crack front segment Lc, and r0 is the radius of the integration domain, the function q is 
written as: 
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where  is the distance from the evaluation point η in the local direction tangential to the 
crack front.  

*
3x

Function q is specified at all nodes within the integration volumes. Consistent with the 
isoparametric formulation, these q-values are given by 

∑
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where Ψi are the shape functions defined within each volume cell and Qi are the nodal values 
for the ith node.  
If Gaussian integration is used, the discretized forms for the M1-integral is given by  
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respectively, where m is the number of Gaussian points per cell, and wp are the weighting 
factors. 
 
6 APPLICATION EXAMPLE: FIBRE/MATRIX INTERFACE CRACK UNDER 
TRANSVERSE LOADING  

6.1 Boundary Element Model 

Figure 5 illustrates the strategy proposed for the idealization of the BEM model. Figure 5(a) 
corresponds to a micrograph in the direction transversal to the fibres in unidirectional 
glass/epoxy laminate. It can be observed that although the fibres are distributed almost 
homogeneously, there are regions of the laminate that are rich in matrix. It is assumed in this 
work that the fibres are packed in a periodic square array, and that the damage takes place in 
one of the fibres by a pair of symmetric cracks running circumferentially between the fibre 
and the matrix (see Figure 5(b)). At the same time the behaviour of  the remaining portion of 
the laminate is idealized as transversely isotropic, with its isotropy plane perpendicular to the 
direction of the fibres (plane xy in the figure). This results in a BEM model composed by 
three regions with two planes of symmetry as depicted in Figure 5(c). Regions I and II 
(isotropic) are used to model the representative volume element given by the fibre and the 
matrix around it, while Region III (transversely isotropic) models the effect of the remaining 
portion of the laminate and provides boundary conditions to the zone of  interest.  
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Figure 5: Schematics of the BEM model: (a) micrograph in the direction transversal to the 
fibres in unidirectional glass/epoxy laminate , (b) square cell with symmetric 
debond cracks, (c) model dimensions and boundary conditions 
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Model dimensions are given in Figure 5(c) as a function of the radius of the fibre R, and in 
such a way that the fibre volume fraction represents 60% of the representative volume 
element. Model thickness is t =1.5 R. The debond angle is selected α=37º in order to avoid 
the crack face contact. Elastic properties of the fibre are Ef = 7.80 1010 MPa and νf = 0.22, and 
Em= 2.79 109 MPa and νm= 0.33 for the matrix. The oscillatory index for this bimaterial 
combination is ε =0.074. The properties for the transversely isotropic material are  E1 = 8.9 
109 MPa and  ν1 =0.27, and E2 = 43 109 MPa and v2 =0.06 for the isotropy plane and the 
direction of the fibres respectively. The discretized model geometry is illustrated in Figure 6. 
It consists of 291 elements and 1353 nodes. Forty-nine elements are used for the crack face 
discretization. Four rings of cells with radii r/a = 0.18, 0.28, 0.39 and 0.46 are employed for 
J-integral and stress intensity factor computations. The number of cells used with this purpose 
is 252.  

Figure 6: Boundary element model for the fibre/matrix interface crack  

The model is analysed considering five different material combinations. The first case is 
devised for validation purposes and to allow comparison with two-dimensional results. With 
this idea all the three regions of the model are considered isotropic and with identical material 
properties (note that this assumption reduces the problem to that of a circular arc crack in an 
homogeneous panel). At the same time the displacements in the direction of the thickness 
restricted in order to obtain plane strain conditions. The other four cases are devoted to study 
the influence of the material properties of Region III on the fibre/matrix interface crack 
behaviour. Thus, in the second case the event of single fibre in a homogeneous panel is 
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considered, and so the elastic properties for Region III are set identical to those of the matrix 
material (Region II). Cases three to five assume a transversely isotropic behaviour for Region 
III. In case three, elastic properties of Region III are those of the glass/epoxy laminate given 
in the previous paragraph, while cases four and five consider the two limiting cases for which 
the elastic properties of the isotropy plane coincide with those of the fibre (E1 = Ef, ν1 =νf) 
and the matrix (E1 = Em, ν1 =νm) respectively. 

6.2 Results and discussion 

J-integral results obtained along the crack front for the five material combinations are plotted 
in Figure 7. The origin of the normalized coordinate z/t corresponds to the specimen mid-
plane, and all values are normalized with respect to the J-integral result for a crack in an 
infinite bimaterial plate Jo=(K)2/[E*cosh2(πε)], where K=σ∞[(1+4ε2)πa] 1/2 and E* is the 
effective elastic modulus for the fibre/matrix bimaterial combination. As it is expected, the 
plane-strain homogeneous model results in a constant J-integral value along the complete 
crack front. On the other hand, the model of the single fibre presents the most marked 
variation along the crack front, with its largest value at the free surface (z/t=0.5). If the effect 
of the fibres in the laminate is considered (results labelled as “fibre in laminate” in Figure 7), 
the large stiffness of the specimen in the direction of the thickness makes the crack to behave 
as in the plain strain model, and a constant J-integral value is obtained along the complete 
crack front. The two other sets of results correspond to the limiting cases for which the elastic 
properties of the isotropy plane are taken the same to those of the matrix and the fibre 
respectively. When the elastic properties are those of the matrix, the J-integral value is almost 
the same to that obtained for the single fibre example at the interior of the specimen, but it 
drops at the free surface. Finally, when the elastic properties of the isotropy plane are those of 
the fibre (the most rigid of all cases analysed) J-integral presents its lowest level, and 
similarly to the homogeneous case it presents a constant value along the complete crack front. 
The above results allow explaining experimental observations as those reported by Meurs[19], 
who tested a single glass-fibre-reinforced specimen in transverse loading and observed that 
crack initiates at the specimen surface, where the maximum J-integral value is achieved. It is 
also worth to note that this analysis for single fibre can be assimilated to the situation in an 
actual laminate for which an irregular packing of fibres due to inhomogeneous fibre 
distribution leads to a zone rich in matrix. 

Stress intensity factor results are presented for the three modes of cracking in Figures 8 to 
10. Results are normalized with respect to aπ∞σ . Figure 8 allows to observe that  the 
behaviour of KI along the crack front is very similar to that exhibited by the J-integral, that is,  
the maximum KI values are obtained for the cases with the largest material mismatch between 
the fibre and the surrounding material (i.e. the case of the  single fibre, and the limiting case 
for which the elastic properties of the isotropy plane are taken coincident with those of the 
matrix). Similar results are obtained for KII, with the only difference that K  values tend now 
to increase towards the free surface for both, the case of the single fibre, and when the elastic 
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properties of the isotropy plane are those of the matrix. It is also worth to note that the KII 
level for this two cases is very close to that of the two-dimensional homogeneous case.  
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Figure 7:  J-integral  along the crack front for the fibre/matrix interface crack 
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Figure 9:  KII  along the crack front for the fibre/matrix interface crack 
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7 CONCLUSIONS 

In this paper, a boundary element methodology for the three-dimensional analysis of 
bimaterial interface cracks has been presented. 

The interface crack analysis is addressed using a multidomain BEM formulation in order to 
account for the different material properties at both sides of the crack. Fracture mechanics  
parameters, namely J-integral and stress intensity factors, are computed along the crack front 
using the Energy Domain Integral and the M1-integral methodologies. These are implemented 
as a post-processing technique, and so it can be applied to the results from a particular model 
at a later stage. The implementation takes advantage of the efficiency of the boundary integral 
equation to directly obtain the required displacement derivatives, stress and strain fields from 
their boundary integral representations. The efficiency and accuracy of the proposed 
implementation is demonstrated by analysing a number of examples, and their results 
compared with those available in the bibliography. 

The analysis of an application example consisting in interface crack formed after the 
fibre/matrix debonding closes the chapter. Obtained results show the key role played by the 
bimaterial properties and the three-dimensional effects in the state of mixed mode fracture. In 
view of determining the fracture behaviour, these effects are very critical since they influence 
not only the variation of energy release rate, but also all three modes of fracture along the 
crack front. 
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