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abstract Many problems in Economic and Ingineering involve linear systems with Toeplitz matrices. The
Preconditioned Conjugated Gradient (PCG) method for symmetric positive definite Toeplitz systems is highly
efficient when the preconditioner is well chosen. In this work we are interested in solving linear system
with matrices, which we call pseudo-Toeplitz that present certain similarity with Toeplitz Matrices. These
matrices can be seen as perturbated Toeplitz matrices. Problems with this type of matriz can be encountered
in different areas especially those expressed in Partial Differencial Equations. Applying the PGC to systems
with Pseudo-Toeplitz matrices where the preconditioner corresponds to the unperturbated Toeplitz matrices
gives very encouraging results.
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Introduction

Presentation of the problem

Let A be a symmetric definite positive matrix, and b a real vector. The Preconditioned Conjugated Gradient
algorithm to solve the linear system
Az =b (1)

is given by
1. o = 0,70 = b, Cpo = 70, 20 = Po

2. If r, =0, x =z, stop.

Othewise
_ Ark.ze)
(a) Ak = (Apr,pr)
(b) Tpy1 = Tk + arPr
(€) Th+1 =1 — arApg
(

_ {Tht1,2k41)
(e Bk+1 (Thy2k)

)
)
d) C'Zk+1 = Tht1
)
)

() Pr+1 = 241 + Brr1Pr
In this algorithm the matrix C is the preconditioner. Usually C' is chosen in a way that the linear system
of step d is easy to solve.

Case of Toeplitz matrices

A square symmetric matrix A of order n is said to be a Toeplitz matrix if there exist a;,4 = 0,...,n —1
reals such that
A”:U/‘z_]l, z,y:(),,n—l (2)

Many precoditioners have been suggested when A is a Toeplitz matrix to solve (1). Often circulant matrices
are chosen. This choice is due to the fact that the solution of the system C'z = r can be done in O(nlog, n)
operations if n is a power of 2. Other non circulant preconditioners proved their efficiency as the one given
by E. Boman and I. Koltracht based on the fast sine transform which we will use in this work.

Generally, a good preconditioner is constructed such that

1. The spectrum of C~'A is clustered.
2. C can be computed in O(nlog, n) operations

3. Solving Cr = z requires O(n log, n) operations.

Examples of preconditioners for Toeplitz Systems

Raymond and Mikhael gave a very rich list of preconditioners used for Toeplitz systems in their paper [3].
We mention some of them:
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Strang’s preconditioner

The preconditionner given by Strang [6] is the solution of the problem

in||C — A
min [|C — Allx,

where C represent the set of circulant matrices. This circulant preconditioner is given by the vector s
defined by

a; if 0<j<[n/2],
s;j =< aj—n if [n/2]<j<m,
Sn+j if 0< —] <n

Chan’s preconditioner
Another preconditioner given by Chan [4] is the solution of the problem
i —A
min [|C — Allr,
where ||.||r is Frobenius norm. The vector defining this circulant preconditioner is

(n_j)aj +jaj—n if
Cj = n

ey I 0<—j<n

Sine Transform Based Preconditioner(STBP)

As opposed to the examples given above, which are circulant, the Sine Transform Based Preconditioner
(STBP), given by E. Boman and I. Koltracht [1] is not. Let us give a detailed description of its construction.

Let S; be the sine matrix:
2 .. n
Sl = [sin( 2kl ):| .
Vnitl n+1/]; 2

and Dg, be the n dimensional vector space of matrices M such that Dg, M Dgll is diagonal.
A basis of Dg, is the set of matrices {Cp}z;é defined by:

1 if li—jl=p
. -1 if t+j5=p
ZJ = . . .
G (6,9) -1 if i+j=2n+1)—p

0 otherwise

The suggested preconditioner P is :
B
Py =" ail; ()
i=0
where a;,i = 1...0 are the coefficients of the first row of A, and g is the bandwidth of A. It is shown in
that all the conditions of preconditioner are satisfied.
Pseudo-Toeplitz matrices

Definition 0.0.1 Let A be a symmetric square matrix of order n. A is said to be pseudo Toeplitz of type 1
if there exists n coefficients co,c1,...,Cn—1 such that for all diagonal (ag,as,...,ax—1), k=0,.n—1

Vi=1,...,k a;=cpora; =0 (4)
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A is said to be pseudo-Toeplitz of type 2 if for all diagonal (ag,as,...,ax—1), k=0,...,n—1 there exists
a small e, > 0 such that
\ﬁ,j:O,...,k—l ||a,~—aj||§5k (5)

In other words, pseudo-Toeplitz matrix of type 1 is a Toeplitz matrix where some entries are replaced by 0. A
typical case where these matrices occur is in solutions of Partial Differetial Equations with Finite Difference
method. Pseudo-Toeplitz of type 2 is a sum of a Toeplitz matrix T and a matrix II, called the perturbation
matrix, such that
ax II; < ax €g.
i,jr:nl,...,n Y= kgllxn k
Note that every matrix can be considered as pseudo-Toeplitz of type 2 taking e,k =0, ...,n—1 big enough.
We find this class of matrices in Finite Element methods particularly when regular discretization is used as
we see further on.

Preconditioning pseudo-Toeplitz systems

Let A be a pseudo-Toeplitz definite positive matrix. From the previous paragraph we know that
A=T+1I (6)

where T is a Toeplitz matrix and II is the perturbation matrix. We will solve the system Az = b with
PCG using as preconditioner the one associated to the Toeplitz matrix 7. In the PCG algorithm to solve
the system T'x = b, the only step that changes is the one where the product

(T'pr, pr) (7

is computed. This number is replaced by

(Tpr,pr) + (lpk, pr)- (8)

In the next cases, we use the Sine Transform Based Preconditioner to evaluate the convergence of the PCG
for pseudo-Toeplitz systems.

Perturbated Toeplitz Matrices

To test the efficiency of this preconditioning method, we will introduce a perturbation on a given Toeplitz
matrix and compare the results to non preconditioned conjugated gradient and to non perturbated PCG.
The way we perturbate the Toeplitz matrix is the following. Let § be a positive real. Randomly, we generate
a symmetric matrix IT so that

. Imax |H”| :(5

%,j=1,...,n
with the risk of losing the positive definite caracter of the system matrix 7' + II. The example studied was
the Toeplitz matrix defined by :

1 n
ref L]
(|Z_.7| + ) i,j=1
The results are summarized in the table (1). Different values of n, dimension of the problem were tested
(first column). Due to the random charater of the perturbation II, for every n and § given, the program
has been run five times (third column). The fourth and fifth column represent the number of iterations

without and with the preconditioner respectively. In the last column we present the results of the PGC for
the Toeplitz system Tz = b.

1424


xyz


xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

marce
1424


A. O. Khaoua
——

Application to Finite Difference and Finite Element problems

Let us consider the elliptic problem:
to find w, solution of:
—Au+cu=f in [0, 1] x][0, 1]

(M) u=g1 in Ty
g—z = g2 in Fz

where f, g1, 92 are given functions, I';, I'; form the boundary of the square [0, 1]x [0, 1], ¢ is positve and
% is the normal derivative.

Finite Difference case

It is obvious that solving (7) with the five points scheme of Finite Difference method leads to a pseudo-
Toeplitz matrix of type 1. We discretize the edges in both x and y directions using N equidistant interior
nodes. We number the nodes from left to right and from the bottom to top. In this case :

1 if ¢+1=0[N] and j=i+1;
;=<1 if i—1=0[N] and j=1i-1; )
0 otherwise.

If z is n-vector, multilplying II by x gives :

ryi—1y if k=N@E-1)+14i=1,..,N-1,
(Hib')k = TNi+1 if k= Ni,i = 1’ ”,N —1 (10)
0 otherwise.

and
N-1

(Ilz,z) =2 Z TiNTiN+41- (11)
i=1
Hence the number of operations of (11) is enormously reduced since it requires only 2N — 2 while the
size of the matrix is N2. We used STBP for this problem. We also solved the problem using the SSOR
preconditioner with parameter w = 1 . The results obtained are summarized in table 2
Note that the smaller the ratio between the bandwidth and the matrix size is, the better the convergence
using this preconditioner becomes.

Finite Element case

We solve the problem 7 with the Finite Element method using the P1 triangle. This kind of preconditioning
is particularly useful when the triangularization is regular as given in figure (1)
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Figure 1: Regular Finite Element Discretization

By regular we mean that the triangles have the same area and can be seen as horizontal or vertical
translation of two triangles. With this type of discretization and convenient numbering of the nodes the
coefficients of the stiffness matrix often appear repeatedly along its diagonals. This property makes the
resulting matrix an excellent example of pseudo-Toeplitz matrices.

To calculate the preconditioner associated to the Toeplitz matrix we proceed by extracting from the finite
element matrix the Toeplitz matrix as follows: for every diagonal i of the matrix we choose the coefficient
a; that appears more frequently in this diagonal i = 0,...,n — 1 and then the Toeplitz matrix will be
a|,-,j‘,i,j = 0,...,”— 1.

We compared this preconditioner to the SSOR one with w = 1. We used the Finite Element Library
MODULEF to solve the problem. The results obtained are summarized in the table (3)

We see that this preconditioner is particuarly efficient for high dimension problems.

Conclusion
In this work many numerical experiments have been carried out. The idea of using the pseudo-Toeplitz
character of PDE problems is very encouraging given that some results are much better than classical

preconditioners like SSOR. Our goal in the future is to apply these experiments to other problems such
elasticity and to use the block decomposition preconditioning of the resulting linear systems.
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| n [ & [try [ CG | PCG | non perturbated PCG |

100 | 0.1 1 63 34 5
100 | 0.1 2 61 33 5
100 | 0.1 3 99 34 5
100 | 0.1 4 62 35 5
100 | 0.1 ) 64 37 5
100 | 0.01 | 1 21 7 5
100 | 0.01 | 2 21 7 5
100 | 0.01 | 3 22 7 5
100 | 0.01 | 4 22 7 5
100 | 0.01 | 5 22 7 5
500 | 0.01 | 1 31 9 5
500 | 0.01 | 2 31 9 5
500 | 0.01 | 3 30 8 5
500 | 0.01 | 4 31 9 5
500 | 0.01 | 5 31 9 5

Table 1: Results of Perturbated matrices using STBP

dimension n | Bandwidth | PCG | SSOR w =1
500 250 31 11
500 100 23 26
500 50 18 48
500 25 16 78
500 10 19 146
1000 500 50 11
1000 250 34 20
1000 100 24 55
1000 50 19 91
1000 25 19 149
1000 10 28 287
2000 1000 87 11
2000 500 54 21
2000 250 36 43
2000 100 24 111

Table 2: Results of the Finite Difference problem solved as a pseudo-Toeplitz problem using STBP compared
with the SSOR preconditioner.
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problem size n | GC | PCG (with STBP) | SSOR w =1
150 56 25 22
200 92 32 25
225 75 28 26
250 115 35 35
288 83 30 28
320 86 30 29
350 118 35 35
375 118 35 36
400 101 32 32
475 121 35 36
500 121 35 37
525 163 41 47
572 128 36 39
750 147 39 46
1250 235 49 67

Table 3: Results of PCG with (STBP) and SSOR for the Finite Element method.
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