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Abstract. We deal here with a Hamilton-Jacobi-Bellman (HJB) equation with infinite
solutions. This multiplicity gives rise to a couple of closely related tasks: the identification
of an special solution among all the solutions, and the use of unconventional techniques
to obtain approximated solutions which converge to the chosen solution. In this paper we
present some results concerning the numerical solution.
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1 INTRODUCTION

Some optimal control problems leads to Hamilton-Jacobi-Bellman (HJB) equations with
infinitely many solutions, where only one of these solutions is the optimal cost of the
optimal control problem. This fact requires not only the identification of the optimal cost
among the solutions but also the use of non-classical techniques to look for approximated
solutions which converge to the solution of the original problem. When the HJB equation
has a unique viscosity solution, the results due to Barles and Souganidis1 assure that any
discretization scheme which satisfies some suitable properties (monotony, consistence and
stability) produces a sequence of “approximate solutions” which converges to the solution
of the original problem. Due to the non-uniqueness phenomenon, here it is not possible to
use directly the Barles and Souganidis techniques. The analysis of these difficulties was
started by Camilli and Grüne.2 We continue here with the numerical solution of these
problems, restricting the analysis to the optimal control problem associated to the eikonal
equation

‖∇u‖ = f, (1)

when f vanishes at some points. We have presented in Di Marco and González3 some
discretization schemes which improve those presented in Camilli and Grüne.2 In this work
we present a totally discrete procedure to compute the solution of (1). Our scheme of
approximation not only brings a sequence of convergent approximations but, in addition,
the solution of each totally discrete problem can be computed using iterative algorithms
which converge in a finite number of steps

The paper is organized as follows.
In §2, we present the original problem. In §3, we describe some approximations in the

continuum realm and its relation with the original solution. In §4, we present two aspects
of the discrete time approximation. In §5, we analyze the fully discrete problem and its
solution. Finally, in §6, we show two examples of application.

2 DESCRIPTION OF THE PROBLEM AND PRELIMINARY RESULTS

We will follow the presentation of the problem given in Di Marco and González.3

We consider a control problem with controlled dynamics




ξ
′
(t) = q(t), t ≥ 0

ξ(0) = x,
(2)

where x ∈ Ω, Ω bounded. We define the exit time τ of the trajectory with initial condition
x and velocity q(·)

τ = τ(q(·)) = inf{t > 0 : ξq(·)(t) /∈ Ω} (3)

and we restrict the control policies in the following way: q(·) ∈ Qx , where

Qx := {q(·) : (0,∞) 7→ RN , measurable with ‖q(t)‖ ≤ 1 in a.e. t, τ < ∞}.

xyz
ENIEF 2003 - XIII Congreso sobre Métodos Numéricos y sus Aplicaciones

xyz


marce
1778



The performance of the control policy q(·) is given by the functional

J(x, q) =

∫ τ

0

f(ξ(t)) |q(t)| dt + g(ξ(τ)) (4)

which is to say that, for the problems considered here, the instantaneous cost is a function
of the current state of the system and it is proportional to the absolute value of the velocity.
The optimal cost is

U(x) = inf
Qx

J(x, q) . (5)

2.1 Hypotheses

Throughout the paper, we assume the following hypotheses hold:

Ω is bounded; f(·) ∈ Lips(Ω); g(·) ∈ Lips(Ω); f(.) : Ω 7−→ R is a non negative function.

2.2 HJB equation

It can be proved that U ∈ Lips(Ω) and that U is a solution of the HJB equation associated
to this problem. The HJB equation and the boundary condition are:

‖∇U(x)‖ − f(x) = 0, a.e. x ∈ Ω

(6)

U(x) = g(x), x /∈ Ω.

Remark 1 If {x ∈ Ω : f(x) = 0} is not empty, there may exist many solutions for this
equation. Camilli and Grüne2 proved that U is the maximal solution of (6) in the viscosity
sense.

3 APPROXIMATE CONTINUOUS PROBLEMS

3.1 Approximations with finite horizon

In order to develop some numerical approximation techniques, it is necessary to know
whether the infinite horizon problem can be approximated by a family of finite horizon
problems. Let T0 = max

x∈Ω
d(x, ∂Ω), then ∀T > T0 and ∀x ∈ Ω, it is possible to define the

non-empty set
QT

x = {q(·) ∈ Qx : τ(q(·)) ≤ T}. (7)

Let us define
UT (x) = inf

QT
x

J(x, q) . (8)

The following properties hold:
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Proposition 1

1. U(x) ≤ UT
′
(x) ≤ UT (x) ≤ UT0(x), ∀x ∈ Ω, ∀T ′ ≥ T ≥ T0

2. lim
T→∞

UT (x) = U(x), ∀x ∈ Ω.

3.2 Approximations by penalizations

In order to obtain convergent approximations, we must deal with penalizations of the
original problem.

Definition 1 Let be ε > 0. We define the penalized functional Jε and the optimal costs
Uε and UT

ε

Jε(x, q) =

∫ τ

0

|q(t)| max (ε, f(ξ(t))) dt + g(ξ(τ)) (9)

Uε(x) = infQx Jε(x, q), UT
ε (x) = infQT

x
Jε(x, q). (10)

The control problem associated to (9) has strictly positive instantaneous cost. In conse-
quence, the corresponding HJB equation has a unique solution, which is the optimal cost
given by (10). This penalization has been proposed by Camilli and Grüne2 . Some char-
acteristics of the convergence of functions Uε to the function U is given by the following
proposition.

Proposition 2

1. U(x) ≤ Uε(x); UT (x) ≤ UT
ε (x), ∀x ∈ Ω, ∀T ≥ T0.

2. Uε(x) ≤ UT
′

ε (x) ≤ UT
ε (x) ≤ UT0

ε (x), ∀x ∈ Ω, ∀T ′ ≥ T ≥ T0.

3. Uε(x) ≤ Uε
′ (x), ∀x ∈ Ω, ∀ε ≤ ε

′
; UT

ε (x) ≤ UT
ε
′ (x), ∀x ∈ Ω, ∀T ≥ T0, ∀ε ≤ ε

′
.

4. lim
ε→0

Uε(x) = U(x), ∀x ∈ Ω . Besides, Uε(·) ∈ Lips(Ω), then Uε(·) converges uni-

formly to U(·)

4 TIME DISCRETE PROBLEM

4.1 Control policies discretization

The complete discretization procedure comprises two steps: time discretization and space
discretization. We analyze in this section the effect of time discretization.
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Definition 2 For h > 0, we define the following elements

Qx,h = {q(·) ∈ Qx : q(·) constant in each [νh, (ν + 1)h), ν ∈ N0}, (11)

Uh(x) = inf
Qx,h

J(x, q), (12)

QT
x,h = {q(·) ∈ Qx,h : τ(q(·)) ≤ T}, (13)

UT
h (x) = inf

QT
x,h

J(x, q). (14)

For the functions Uh and UT
h , the following relations (proved in Di Marco and González3)

hold:

Proposition 3

1. U(x) ≤ Uh(x), ∀x; Uh(x) ≤ UT
h (x), ∀x, ∀T ≥ T0.

2. ∀p ∈ N, Uh
p
(x) ≤ Uh(x), ∀x; ∀p ∈ N, UT

h
p

(x) ≤ UT
h (x), ∀x, ∀T ≥ T0.

3. lim
p→∞

U
T+h

p
h
p

(x) = UT (x), ∀x; lim
p→∞

Uh
p
(x) = U(x), ∀x.

4. The function Uh verifies the following dynamical programming principle: ∀x ∈ Ω

Uh(x) = min
q∈B1(x)

(∫ h∧τ(q)

0

f(x + qs) |q| ds + Uh(x + (h ∧ τ(q)) q)

)
(15)

with boundary condition Uh(x) = g(x), ∀x /∈ Ω. Besides Uh is the maximal solution
of (15).

Definition 3 Let P be the operator

Pw(x) = min
q∈B1(x)

∫ h∧τ(q)

0

f(x + qs) |q| ds + w(x + (h ∧ τ(q)) q), x ∈ Ω

(16)

Pw(x) = g(x), x ∈ ∂Ω

Proposition 4 P is a non-decreasing operator and P νw → Uh when ν →∞ and

w(x) ≥





T0 max
q∈B1(x),x∈Ω

f(x) |q|+ max
x∈Ω,

g(x), x ∈ Ω

g(x), x ∈ ∂Ω

(17)

Then, we have a theoretical procedure to compute Uh.
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4.2 Functional discretization

The approximation Uh is not directly implementable, because it involves the computations
of the integrals appearing in (16). To get practical methods, those integrals must also be
discretized. We use the following scheme of discretization:

Jh(x, q) =
K−1∑
ν=0

hf(ξ(νh)) |q(νh)|+ (τ(q)−Kh)f(ξ(Kh)) |q(Kh)|

+g(ξ(τ(q))). (18)

In that case, defining Vh(x) = inf
Qx,h

Jh(x, q), we may have examples where lim
h→0

Vh(x) <

U(x). To eliminate this pathology, we consider a penalization scheme with the special
parametrization ε = Lfh.

Definition 4 Let q(·) ∈ Qx,h , we define

Jh(x, q) =
K−1∑
ν=0

h (Lfh + f(ξ(νh)) |q(νh)|) + (τ(q)−Kh)f(ξ(Kh)) |q(Kh)|

+g(ξ(τ(q))), (19)

where K ∈ N0 is the maximum integer such that the image of [0, Kh) through ξ belongs
to Ω.

V h(x) = inf
Qx,h

Jh(x, q), V
T

h (x) = inf
QT

x,h

Jh(x, q). (20)

The following properties hold (the proofs can be found in Di Marco and González3).

Proposition 5

1. V h(x) ≥ U(x), ∀x; V h(x) ≤ V
T

h (x).

2. ∀p ∈ N, V h
p
(x) ≤ V h(x); ∀p ∈ N, ∀T ≥ T0, V

T
h
p
(x) ≤ V

T

h (x).

3. lim
p→∞

V
T+h

p
h
p

(x) = UT (x), ∀x; lim
p→∞

V h
p
(x) = U(x), ∀x.

The last proposition shows us that when we consider the cost functional (19), the sequence
of optimal costs converges to U . Moreover, we have that

Proposition 6 V h verifies the following dynamical programming principle: ∀x ∈ Ω

V h(x) = min
q∈B1(x),x+hq∈Ω

f(x) |q|h + Lfh
2 + V h(x + hq) (21)

with boundary condition V h(x) = g(x), ∀x /∈ Ω.
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Definition 5 We define the following operators on C(Ω):

PhΦ(x) = min
q∈B1(x), x+hq∈Ω

f(x) |q|h + Lfh
2 + Φ(x + hq), x ∈ Ω

(22)

PhΦ(x) = g(x), x ∈ ∂Ω

ΠhΨ(x) = min
q∈B1(x), x+hq∈Ω

{ϕ(q)Ψ(x + hq) + (1− ϕ(q))} , x ∈ Ω,

(23)

ΠhΨ(x) = 1− exp(−g(x)), x ∈ ∂Ω.

where ϕ(q) = exp (− (Lfh
2 + f(x) |q|h)) .

Definition 6 Let K denote the Kruzkov transformation of functions of C(Ω) and its
inverse be K−1 ∣∣∣∣∣∣

zh(x) = K [vh] (x) = 1− exp(−vh(x))

vh(x) = K−1 [zh] (x) = − ln (1− zh(x))
(24)

Lemma 1 The operator Πh defined in (23) is contractive. In addition we have: Πh◦K =
K ◦ Ph and Πh ◦K−1 = K−1 ◦ Ph.

Lemma 2 Let Zh be the unique fixed point of operator Πh. The function V h defined in
(21) is the unique fixed point of (22) and so, it verifies V h(x) = − ln (1− Zh(x)) .

Proposition 7 P ν
h Φ → V h when ν →∞ , ∀Φ ∈ C(Ω).

The last proposition gives us a theoretical procedure to compute V h.

5 FULLY DISCRETE PROBLEM AND ITS SOLUTION

To get a complete discrete procedure, we must introduce a space discretization. We
consider a mesh Ωk of size k. We will suppose that Ω is polyhedral and that Ωk ≡ Ω. Let
Sk be the set of mesh nodes and Nk = card(Sk).
We define now a control problem on Ωk. We will consider as an admissible controlled path
any finite sequence of points {x0, x1, . . . , xρ} that verify the restriction





xµ ∈ Sk ∩ Ω µ = 0, 1, ..., ρ− 1,

xρ ∈ Sk ∩ ∂Ω,

‖xµ − xµ−1‖ ≤ k2/3 µ = 1, ..., ρ.

(25)
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Given the initial position x0, the cost of a trajectory that ends at xρ is:

Fk(x0, x1, . . . , xρ) = g(xρ) +

ρ∑
ς=1

(
Lf k2/3 + f(xς−1)

) ‖xς − xς−1‖ . (26)

We define wk(x0) as the optimal cost when the process starts at the initial position x0,
i.e.

wk(x0) = min
x1, ..., xρ

Fk(x0, x1, . . . , xρ). (27)

We define the operator Pk

PkΦ(x) =





min
{
Φ(y) +

(
Lf k2/3 + f(x)

) ‖y − x‖ :
y ∈ Sk, ‖y − x‖ ≤ k2/3

}
x ∈ Sk ∩ Ω,

g(x), x ∈ Sk ∩ ∂Ω.
(28)

The relation between the optimal cost wk and the operator Pk is given by the following
poposition:

Proposition 8 wk is the unique solution of the equation

Φ = PkΦ. (29)

Proof. It is similar to those related to the operator Ph and the Kruskov transformation.

Remark 2 The equation Φ = PkΦ is the Bellman dynamical programming equation as-
sociated to the optimal control of a deterministic Markov chain.

Corollary 1 wk = lim
µ→∞

(Pk)
µ Φ(x) ∀Φ ∈ RNk .

Proof. It follows at once when we introduce the Kruskov transformation.

Remark 3 The previous result gives an iterative procedure to get wk. In fact, it converges
in a finite number of iterations. In the numerical applications we have found that the best
starting function Φ is (+∞)Nk .

Proposition 9 lim
k→0

wk(x) = U(x).

Proof
Let wk be the unique solution of the equation (29). So, given x ∈ Ω , ε > 0, there exists
a control qε(·) ∈ Qx with exit time T (qε) such that

J(x, qε(·)) ≤ U(x) + ε. (30)
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Let ξx,ε(·) be the trajectory generated by qε(·), then ξx,ε(0) = x.

We can assume w.l.g. that the chosen control is piecewise constant and then the tra-
jectory is piecewise linear. So, let tν be the switching times of qε(·), ν = 1,...,ν.

t0 = 0, tν+1 = T (qε).

We define p̂ = [2 T (qε) k−2/3]+1, when 2 T (qε) k−2/3 is not an integer; and p̂ = 2 T (qε) k−2/3

otherwise. Clearly, it holds that ξx,ε(
p

2
k2/3) ∈ Ω, ∀p = 0, 1, ..., p̂− 1.

We construct ξk
x,ε(·), a trajectory close to ξx,ε(·), which joins nodes of Ωk in the fol-

lowing form:

Let us define

xp = arg min
{∥∥∥ξx,ε(

p

2
k2/3)− y

∥∥∥ : y ∈ Sk ∩ Ω
}

∀p = 0, 1, ..., p̂− 1.

xbp = arg min {‖ξx,ε(T (qε))− y‖ : y ∈ Sk ∩ ∂Ω}
(31)

It is clear that ∥∥∥ξx,ε(
p

2
k2/3)− xp

∥∥∥ ≤ k ∀p = 0, 1, ..., p̂, (32)

then, ∀p = 1, ..., p̂

‖xp − xp−1‖ ≤
∥∥∥∥ξx,ε(

p

2
k2/3)− ξx,ε(

p− 1

2
k2/3)

∥∥∥∥ + 2 k ≤ k2/3

2
+ 2 k. (33)

In the same way we have

‖xp − xp−1‖ ≥
∥∥∥∥ξx,ε(

p

2
k2/3)− ξx,ε(

p− 1

2
k2/3)

∥∥∥∥− 2 k ≥ k2/3

2
− 2 k. (34)

For any interval (
p− 1

2
k2/3,

p

2
k2/3) where there is not any tν , we have that the cost

associated to the continuous trajectory is

p
2

k2/3∫

p−1
2

k2/3

f(ξx,ε(t))dt

and the term associated to the discrete trajectory is

(
Lf k2/3 + f(xp−1)

) ‖xp − xp−1‖ .
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So, the difference between homologous terms is

∣∣∣∣∣
∫ p

2
k2/3

p−1
2

k2/3

f(ξx,ε(t))dt− (
Lf k2/3 + f(xp−1)

) ‖xp − xp−1‖
∣∣∣∣∣

≤
p
2

k2/3∫

p−1
2

k2/3

|f(ξx,ε(t))− f(xp−1)| dt

+

∣∣∣∣f(xp−1)
k2/3

2
− (

Lf k2/3 + f(xp−1)
) ‖xp − xp−1‖

∣∣∣∣

≤
p
2

k2/3∫

p−1
2

k2/3

Lf ‖ξx,ε(t)− xp−1‖ dt

+f(xp−1)

∣∣∣∣
k2/3

2
− ‖xp − xp−1‖

∣∣∣∣ + Lf k2/3 ‖xp − xp−1‖

≤
p
2

k2/3∫

p−1
2

k2/3

Lf |k + t| dt + Mf 2k + Lf k2/3

(
k2/3

2
+ 2k

)

≤ Lf

(
k +

k2/3

4

)
k2/3

2
+ Mf2k + Lf

(
k2/3

2
+ 2k

)
k2/3.

Then, for k small enough
∣∣∣∣∣∣∣

p
2

k2/3∫

p−1
2

k2/3

f(ξx,ε(t))dt− (
Lf k2/3 + f(xp−1)

) ‖xp − xp−1‖

∣∣∣∣∣∣∣
≤ 3Mf k.

For any interval
(

p−1
2

k2/3, p
2

k2/3
)

which contains one or more switching points, the dif-

ference between homologous terms is bounded by 2Mf k2/3. The same bound holds for

the final interval
(
bp−1
2

k2/3, T (qε)
)

.

Taking into account the inequality

‖ξx,ε(T (qε))− xbp‖ ≤ k,

we have that the difference between the final costs is bounded by Lgk.

So, finally we get

|J(x, qε(·))− F (x0, x1, . . . , xbp)| ≤ Lgk + 2Mf (ν + 1) k2/3 + 6T (qε)Mf k1/3.
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From here we obtain

wk(x0) ≤ U(x) + ε + Lgk + 2Mf (ν + 1) k2/3 + 6T (qε)Mf k1/3.

By computing the limit when k goes to zero and taking in mind the arbitrariness of ε, we
obtain the following result

lim
k→0

wk(x0) ≤ U(x).

On the other hand, let x a state and x0 like in (25). It is clear that if q is a piecewise
constant strategy and xj the switching points of the trajectory,

J(x, q(·)) ≤ F (x0, x1, . . . , xbp) + Mfk.

Then, U(x) ≤ F (x0, x1, . . . , xbp) + Mfk and so,.

U(x) ≤ wk(x0) + Mfk.

Since (27), we have that
U(x) ≤ lim

k→0
wk(x0).

¤

6 EXAMPLES

6.1 Example 1

Let Ω = [0, 1] × [0, 1], f(x1, x2) = |x1 − x2| . We take k = 1
111

. We show in the following
figure the approximate solution wk.
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Figure 1: Approximate solution

xyz


xyz
S. C. Di Marco, R. L. V. González

marce
1787



6.2 Example 2

Let Ω = [0, 1]× [0, 1], f(x1, x2) = min (|x1 − .5| , |x2 − .5|) . We take k = 1
111

. We show in
the following figure the approximate solution wk.
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Figure 2: Approximate solution

CONCLUSIONS

We have presented above a complete discrete procedure to approximate the optimal cost
of a singular optimal control problem. We have shown that using penalization, finite
horizon or discrete time controls we get convergent approximations. This convergence
may be lost once the discretization of the dynamic of the system is introduced. In order
to recover the convergence property we can use a penalization of the instantaneous cost.
This is done in this paper using a penalization of order h, being h the time-step employed.
Finally, after having introduced the space discretization (a mesh of size k for the set Ω),
we have presented a scheme of approximation that converge in a finite number of steps.
In addition, we have proved the convergence of the discrete solutions to the maximum
solution of (1). We also have shown some numerical examples.
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