
INTRODUCTION TO NUMERICAL METHODS IN FLUID
MECHANICS WITH JUPYTER NOTEBOOKS

Andrés M. Ciminoa and Gustavo J. Krausea,b

aFacultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Velez

Sarsfield 1611, X5016GCA, Córdoba, Argentina, andres.cimino@unc.edu.ar https:// fcefyn.unc.edu.ar/

bInstituto de Estudios Avanzados en Ingeniería y Tecnología (IDIT–CONICET–UNC), Córdoba,

Argentina

Keywords: Computational Fluid Mechanics, Jupyter, Numerical Methods, Teaching.

Abstract. Introducing the governing equations of fluid dynamics and their discrete numerical coun-

terparts to undergraduate students can be challenging due to their complexity, which sometimes makes

it difficult to provide examples or simple solutions. For this reason, we developed a set of interactive

notebooks that combine text, equations, and figures like in a textbook with computer code in Python. To

achieve this we used the open-source libraries developed by Project Jupyter and the notebooks “12 steps

to Navier Stokes” made by Dr. Lorena Barba as a model. Jupyter Notebooks run in any web browser and

are compatible with most Python libraries (SciPy, NumPy, SymPy, Matplotlib, etc.), allowing for much

flexibility as well as advanced functions. The use of these tools has many advantages, such as obtaining

analytical and numerical solutions simply and interactively, or allowing to break down an entire code,

explaining and executing each part separately. What is more, students may become more familiar with

Python and its libraries, and may reuse the code to solve the assignments of the course. We developed

notebooks to cover the governing equations of Fluid Dynamics, an introduction to ordinary and partial

differential equations and their numerical and analytical solutions, the Finite Difference Method for Fluid

Dynamics, the Finite Volume Method, introduction to pressure-based algorithms for flow problems and

gradient and interpolation computations for unstructured meshes. With these tools it was possible to in-

troduce these complex subjects and allow the students to gain insight by performing sensitivity analysis,

modifying code or obtaining new solutions based on the existing ones.

Mecánica Computacional Vol XL, págs. 1513-1525 (artículo completo)
F.A. Avid, L.C. Bessone, P. Gamazo, J.J. Penco, M.A. Pucheta, M.A. Storti (Eds.)

Concordia, 6-9 Noviembre 2023

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

https://fcefyn.unc.edu.ar/


1 INTRODUCTION

The governing equations of Fluid Dynamics and other mathematical models based on Partial

Differential Equations (PDEs) are sometimes difficult to grasp for students due to their com-

plexity and dependence of many variables, parameters and boundary conditions. Regarding

the physical behavior of their solution and boundary conditions they can be classified as equi-

librium problems, advance or marching problems or eigenvalue problems. Most textbooks on

Computational Fluid Dynamics address these concepts when they introduce the conservation

equations and their particular forms. The fact that the same set of equations can represent dif-

ferent physical behaviors is sometimes confusing to the students. For example, an unsteady

problem is always a marching problem, whereas a steady state problem may be an equilibrium

or a marching problem. However, from a mathematical point of view, it is possible to classify

the equations considering whether characteristics curves exist, i.e., if the PDEs can be reduced

to ODEs in some regions of the solution plane, which allows the existence of wave-like so-

lutions. For second order PDEs of two independent variables (e.g., x, t), this classification is

based on the discriminant formed by the coefficients of greater order terms, giving place to the

well known classification of hyperbolic, parabolic and elliptic equations, that is generalized to

any PDE (Hoffmann and Chiang, 2000). For this reason in the introduction of our course we

classify PDEs on physical and mathematical grounds and relate both categories with practi-

cal examples, if possible related to the Navier Stokes equations. It is also useful to introduce

different boundary conditions to a given PDE to analyze their effects on the solution. This

gives the students the possibility to estimate beforehand the extrema of the solution or to have

a qualitative notion of what to expect.

Numerical methods use a discrete and approximated version of the conservation equations.

This introduces a difference with the exact solution, which is called Truncation Error (Chapra

and Canale, 2015). In most solutions to complex engineering problems using simulations the

truncation error can only be estimated because it is not possible to find an analytical solution.

However, it is useful for the students to compare analytical solutions to numerical ones to gain

insight of how the truncation error grows or is distributed (e.g. with different discretizations or

boundary conditions). It is also useful to compare the estimated truncation error given by theory

with the true error obtained from the exact solution. Furthermore, some mathematical models

have stability issues when solved numerically (Hirsch, 2007). This is also an important topic

that is sometimes cumbersome to students.

The simplest PDEs to solve both analytically and numerically are those related to heat con-

duction (Coleman, 2013), both one and multidimensional, steady and unsteady. The simplest

solutions can be extended to more complex ones by adding particular solutions since the heat

conduction equation for constant parameters is linear. This allows the student to learn like

adding building blocks. The convection-diffusion equation for a scalar φ is a good benchmark

and starting point to discuss the stability of different numerical methods for fluid flow: it can be

solved in one dimension as a steady state solution or in its unsteady version analytically and nu-

merically with the Finite DIfference Method (FDM). It also may be interpreted as some sort of

generalization of the heat conduction equation. In addition, it is easy to apply Von Neumann’s

stability criterion to this solution (Pletcher et al., 2013).

The Finite Volume Method (FVM) is one of the most used techniques to solve engineering

and scientific flow problems because it is intuitively related to the conservation laws for a con-

trol volume (Versteeg and Malalasekera, 2007). It is easy to apply in the convection-diffusion

equation, and later extended to nonlinear equations like the Navier Stokes (NS) equations for

A.M. CIMINO, G.J. KRAUSE1514

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Incompressible Flow. However, the Incompressible NS equations require to solve a zero diver-

gence equation for the conservation of mass. This equation works as a defacto pressure equation

linked to the derivative of velocities that creates a coupling problem between both variables. To

solve this issue a staggered grid may be used or a interpolation for velocities (Moukalled et al.,

2016).

Taking all these issues into account, we started a course on Introduction to Computational

Fluid Mechanics for advanced undergraduate and graduate students in 2018. The aim was to

emphasize in the implementation and theory behind the models, it was designed for future PhD

candidates and MSc students who work developing code for numerical methods. Therefore,

after writing some lecture notes we started developing the notebooks as a supplementary tool,

so that the students could work in class or at home with complex examples. The idea was to use

an environment which is portable and may work in most personal computers, that is easy to use

and that is well documented and maintained. We found the lectures of Barba et al. (2014) and

took them as a starting point to develop our own. The notebooks developed were then uploaded

to GitHub with a Creative Commons License, so that they may be used by anyone (Cimino and

Krause, 2023). For the sake of brevity we comment the contents of each notebook, and any

interested reader may download them.

2 PYTHON AND ITS LIBRARIES

Python is an interpreted general purpose language specially designed to be easy to read

and learn. It is also very flexible, allowing for complex data structures, object oriented and

functional programming (Van Rossum et al., 2023). It was developed to be a platform to develop

code more quickly and efficiently integrating different libraries and systems. Nowadays it has

become very popular for data science, engineering and physics, specially because there are

many open source libraries for specific tasks. In addition, there are open source platforms such

as Anaconda (Wang et al., 2023) which include an integrated development environment (IDE),

the most important libraries for numerical and scientific calculations and visualization, as well

as Jupyter notebook. We chose this platform because it has everything we need for our course,

it is easy to install in any platform or operating system (OS) and it is supported by a large

community of users. We describe briefly the libraries we employed in the following sections.

2.1 Jupyter Notebook

Jupyter Notebook is a web based environment for teaching and scientific computing that can

run in most web browsers. It consists of an html document with a particular format, in which

there are cell blocks. These can be filled with Markdown, Python code or Raw html code. It

was developed initially as Ipython in 2014 but it currently supports many other programming

languages, such as R, Julia, C/C++, Matlab, etc. It is an open source project with many stake-

holders in enterprises, startups and universities.

The theory and figures are presented using Markdown, a simplified version of html. It allows

the simplest features of documents: headings with different hierarchies, bullets, numbering, font

size and type, etc. A cheat sheet and extra documentation may be found at Gruber et al. (2023).

Equations are written in LaTeX, and special latex commands may be defined as usual. Images

can be introduced in a simple form using the command

![image_caption](image_file_path.extention)

However, this gives no control of its size, location, aspect ratio, etc. Those parameters may be

changed using html.

Mecánica Computacional Vol XL, págs. 1513-1525 (2023) 1515

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2.2 NumPy

List, Tuples and dictionaries in Python do not follow the same rules as arrays in other scien-

tific programming languages (e.g. homogeneity of elements and dimensions, operations, etc.).

Also, most scientific calculations require linear algebra and matricial functions and operations.

For this reasons Numpy, an open source numerical calculation library, was created (Olyphant

et al., 2023). It supports all basic linear algebra operations for arrays with an implementation

of LAPACK, array derived data types like matrices. It also includes advanced linear algebra

functions like condition number, matrix factorizations, as well as statistical functions, Fourier

transforms and input-output. It is also more computationally efficient since it uses pre-compiled

vectorized C code.

2.3 SymPy

To perform symbolic calculations to obtain analytical solutions we use Sympy (Certik et al.,

2023), Python’s symbolic processor. It is an open source library still evolving and being de-

bugged to become a full fledged Computer Algebra System (CAS). It includes functions for

linear algebra, polynomials, ODEs and PDEs, roots of equations, etc. It also has utilities to

convert symbolic variables and functions to implement and evaluate them as numerical ones. It

is sometimes somewhat cumbersome to use and some bugs occur in simplification, nonetheless

it is a useful tool.

2.4 SciPy

Sometimes NumPy is insufficient to perform more complex calculations such as differential

equations, eigenvalue problems, work with sparse matrices, perform numerical integration or

optimization. For these tasks we use SciPy (Gommers et al., 2023). It uses Numpy as a basis, it

has the same high performance features and it is also an open source project with BSD license.

It also includes a module with physical and numerical constants. It has the particularity that

subpackages must be imported separately.

2.5 Matplotlib

To plot results we use the Matplotlib library (Hunter et al., 2023). The Pyplot subpackage

has an interface and commands somewhat similar to those in Octave or Matlab and allows to

create both static and dynamic figures as well as animations. It permits exporting the images

and videos in different formats easily.

3 NOTEBOOKS FOR CLASSES

In this section we comment briefly the notebooks we created and how they are integrated

with the development of the course. They are uploaded to a Github repository of the author

with Creative Commons License, so they can be freely downloaded and/or modified by any

interested user.

3.1 Governing Equations and Introduction to Partial Differential Equations

There are two sections in the first notebook. In the first one we review the basic conservation

laws for a differential control volume. We introduce the conservation of mass, momentum and

energy as well as the material derivative and the conservation law for an arbitrary scalar variable

φ. In this section no practical exercises or calculations were made. We show a snapshot of how

A.M. CIMINO, G.J. KRAUSE1516

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 1: Snapshot of the governing equations in the first notebook.

the equations and figures look like in Fig.1.

In the second section we make an introduction to partial differential equations (PDEs). We

start by making a review of of Ordinary Differential Equations (ODEs) with examples to discuss

analytical and numerical solutions for ODEs for different Initial and Boundary Conditions (ICs

and BCs). As an example of an Initial Value problem (IVP), we solve the motion of a rocket

with a purely vertical motion starting from the ground.

We also solve the temperature distribution along a bar of uniform cross section A and length

L as an example of a Boundary Value problem (BVP). We obtained analytical solutions with

SymPy and evaluated them with the Lambdify utility. We also solve this equation with Scipy’s

Odeint function and we introduce the solution with Euler’s ODE integrator to review it and to

compare intuitively truncation errors, as shown in Fig. 2a. We did the same for the Temperature

along the bar using SciPy’s solve_bvp function, introduce the solution using the FDM, and

plot the results in Fig. 2b to compare them.

3.1.1 Physical Classification of PDEs

Afterwards we introduce the physical classification of PDEs with examples: we divide them

in equilibrium, eigenvalue and advance problems.

Equilibrium Problems Equilibrium problems are those where generally two or more spatial

variables are involved (there is no time dependence) and the spatial domain is constrained by

Mecánica Computacional Vol XL, págs. 1513-1525 (2023) 1517

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(a) Motion of a rocket moving vertically. (b) Temperature distribution in a bar.

Figure 2: Solutions of ODEs representing initial and boundary value problems.

boundary conditions. In this case the boundary conditions act as “referees” that define which

possible solution in the domain are acceptable. Since the problem is stationary, any change in

boundary conditions or inside the domain is instantanously propagated to the entire domain. As

an example we present the temperature distribution in a plate of length L and height H , which

reduces to Poisson’s Equation. We introduce the analytical solution by separation of variables

and Fourier Series using Sympy.

κ

(

∂2T

∂x2
+
∂2T

∂y2

)

= q (1)

with boundary conditions

T (x = 0, y) = T0 T (x, y = 0) = 0 (2)

T (x, y = H) = 0 T (x = L, y) = 0 (3)

We solve for a single Nonzero Dirichlet BC to use a single Fourier Series. Proposing a

separation of variables as

T (x, y) = φ(x)ψ(y)

we obtain the solution as Fourier Series like

T (x, y) = Cn sinh
nπ(x− L)

H
sin

nπ(y)

H

where the coefficients Cn are obtained using SymPy and evaluating the Fourier coefficients of

the considered BC. This solution is useful to compare with numerical solutions in the following

notebooks, and can be shown in Fig. 3a.

Eigenvalue Problems In this section we use as an example the bucking of a beam with con-

stant cross section, even though it is an ODE. We do this to present the simplest example possi-

ble, and we solve for the eigenvalues with SymPy and SciPy, and plot the first modal form.

Advance Problems These problems usually include time as a variable, so the domain in this

dimension is generally infinite, (i.e. there is no upper bound for time). In this case we have

boundary conditions in the spatial domain (which may vary in time) and a solution which

A.M. CIMINO, G.J. KRAUSE1518

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(a) Temperature distribution in a plate. (b) Transient temperature distribution in a bar.

Figure 3: Analytical solutions for the diffusion equation.

evolves in time from its initial state (IC). This solution may reach a Steady state, a periodic

or cuasi periodic solution or it may evolve forever. In this case we set an example of the tem-

perature distribution along a bar of length L, density ρ and thermal conductivity κ

ρcp
∂T

∂t
= κ

∂2T

∂x2
(4)

with an arbitrary initial condition

T (x, t = 0) = f(x)

and boundary conditions

T (x = 0, t) = T0 (5)

T (x = L, t) = TL (6)

Once again we obtained the solutions with SymPy and evaluate them with Lambidfy,and the

solution can be shown in Fig. 3b

3.1.2 Mathematical Classification of PDEs

In this section we introduce the calculation of characteristics for partial differential equations

and systems of partial differential equations. Second order PDEs exhibit different mathemati-

cal and numerical properties depending on the value of the discriminant of their characteristic

equation. Considering a generic PDE for a scalar variable φ

a
∂2φ

∂t2
+ b

∂2φ

∂t∂x
+ c

∂2φ

∂x2
= −d

∂φ

∂t
− e

∂φ

∂x
− fφ+ g(x, t) = H(

∂φ

∂t
,
∂φ

∂x
, φ, x, t)

it may have wave-like continuous or discontinuous solutions, or it may have solutions that are

propagated instantaneously to the entire domain. To find out if discontinuous solutions are

possible we ask if the partial derivatives of the solution are discontinuous along any curve C(θ)
in the domain plane, where θ is an arbitrary parameter.

Mecánica Computacional Vol XL, págs. 1513-1525 (2023) 1519

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Some authors, such as Hoffmann and Chiang (2000) and Ferziger and Peric (2002) introduce

these concepts early on their textbooks to clarify the mathematical properties of different flow

models (e.g. boundary layer equations, Navier Stokes, Euler, etc. ). We apply this methodology

to the 2D Poisson’s equation (1), to the unsteady Heat equation along a bar (4), yielding that the

former is elliptic and the latter is parabolic. This was intuitively discussed when the analytical

and numerical solutions were analyzed.

We also apply it to the transonic potential flow equations for small disturbances (Toro, 2009),

assuming M∞ < 1
∂2φ

∂x2
−

1

1−M2
∞

∂2φ

∂y2
= 0 (7)

yielding an hyperbolic system with wave-like solutions in space, even though time is not a

variable.

The determination of characteristics may be extended to systems of PDEs in two different

ways: one proposed by Hirsch (2007) and another proposed by Hoffmann and Chiang (2000).

We apply both methods to Cauchy-Riemann’s equations (Hoffmann and Chiang, 2000) to Eu-

ler’s equations for inviscid incompressible flow (Toro, 2009) as well as Prandtl’s boundary layer

equations (Hirsch, 2007)

3.2 Introduction to Discretization and Numerical Methods

In the second notebook we introduce the finite difference method, starting with uniform

structured discretization of a regular domain in one or two dimensions. We make use of Taylor’s

series to define truncation error in a discrete grid

φ(x) = φ(xi) + (x− xi)
∂φ

∂x

∣

∣

∣

∣

xi

+
(x− xi)

2

2!

∂2φ

∂x2

∣

∣

∣

∣

xi

+
(x− xi)

3

3!

∂3φ

∂x3

∣

∣

∣

∣

xi

+ · · ·+
(x− xi)

n

n!

∂nφ

∂xn

∣

∣

∣

∣

xi

+H,

(8)

to derive finite difference formulas for first and second derivatives, introducing the concept of

truncation error as the remainder of the series (Chapra and Canale, 2015). We also discuss

schemes of different orders of truncation errors (i.e. centered and decentered schemes) and

their properties.

This schemes are extended to 2D domains and applied to the numerical solution of Poisson’s

equation (1), previously discussing the data structure of the algorithm. The solution is plotted in

Fig. 4a. Afterwards, we discuss numerical time integration, introducing the difference between

explicit and implicit schemes, and their stencils. We solve the unsteady temperature distribu-

tion along a bar using forward and backward Euler schemes and Crank-Nicolson, the solution is

plotted in Fig. 4b. These examples give rise to the concepts of Consistency, Stability and Con-

vergence (Versteeg and Malalasekera, 2007), which are briefly discussed. We also introduce

Von Neumann’s stability analysis.

3.3 Convection-Diffusion-Reaction Equation

In this section we apply the numerical methods and stability analysis of the previous note-

book to the unsteady convection-diffusion-reaction equation, starting from simplified versions

(e.g. steady state 1D convection diffusion) to more complex ones (unsteady 2D convection

diffusion). This equation is simple enough to break the ice but it features all the phenomena

A.M. CIMINO, G.J. KRAUSE1520

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(a) Temperature distribution in a plate. (b) Transient temperature distribution in a bar.

Figure 4: FDM solutions for equilibrium and transient diffusion problems.

present in the conservation law for a variable φ in a flow. We introduce the 1D convection-

reaction equation (Nigro and Storti, 2011)

∂φ

∂t
+ a0

∂φ

∂x
= Γ

∂2φ

∂x2
+ Sφ (9)

with BCs given by

φ(x = 0) = φin (10)

φ(x = L) = φout (11)

(12)

Once again we obtain the analytical solution with SymPy as a function of Pèclet’s number

Pex = a0 x/Γ based on the local coordinate (Pex) and on the entire domain (PeL). We then

introduce the numerical solution of the 1D steady state convection-diffusion-reaction equation

with centered and forward finite differences and different discretizations steps ∆x, as can be

seen in Fig. 5a. The smaller steps introduce instabilities in the solution with the centered dif-

ferences, which is afterwards analyzed applying Von Neunmann’s criterion (Nigro and Storti,

2011) and Scarborough’s criterion (Versteeg and Malalasekera, 2007). We also introduce the

concept of numerical diffusion and use a scheme that adds it to the physical diffusion, so as to

obtain the correct solution

−
a0
∆x

(φi − φi−1) = −
a0
2∆x

(φi+1 − φi−1) +
αnum

∆2
x

(φi+1 − 2φi + φi−1) (13)

Finally, we repeat these analyses with the unsteady version of the 1D convection-diffusion

equation using forward Euler, backward Euler and Crank-Nicolson and upwind and centered

differences in space. We produce animations of a transient rectangular wave to illustrate the

instabilities. Performing a stability analysis and defining Courant’s number CFL = a0∆t/∆x

and Fourier’s number Fo = Γ∆t/∆
2
x we get the well known stability conditions for the ex-

plicit scheme CFL ≤ 1, Fo ≤ 0.5. Then, we repeat this with the 2D version of the unsteady

convection diffusion equation, a snapshot of the solution can be seen in Fig. 5b.

Mecánica Computacional Vol XL, págs. 1513-1525 (2023) 1521

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(a) 1D convection-diffusion equation. (b) 2D convection-diffusion equation.

Figure 5: FDM solutions for convection-diffusion problems.

3.4 Introduction to the Finite Volume Method and the Pressure Velocity Coupling Prob-

lem

In this section we introduce the integral 1D conservation law for a scalar variable and derive

the Finite Volume Method (FVM) from it, and how BCs are implemented. To do this we define

the convective and diffusive Fluxes

F = ρAu, D =
Γ

δx
(14)

We prove that the FVM formulation coincides with the solution of the FDM if the coeffi-

cients of the conservation law are constant and the problem is one dimensional. We relate the

FVM schemes to how the fluxes in the interfaces of the control volumes are evaluated, and we

implement the numerical solution. We show that the results are the same as with the FDM

method.

Afterwards we formulate the unsteady form of the FVM using both explicit integration (for-

ward Euler) and implicit (backward Euler) (3.4), obtaining the solutions shown in Fig. 6:

ρφn+1

i −

(

F n+1

i−1/2φ
n+1

i−1 − F n+1

i+1/2φ
n+1

i

) ∆t

∆x

−

[

Dn+1

i+1/2(φ
n+1

i+1 − φn+1

i )−Dn+1

i−1/2(φ
n+1

i − φn+1

i−1 )
] ∆t

∆x
= ρφn

i (15)

Then, we introduce the FVM for the Navier Stokes Equations for Incompressible Flow (Ver-

steeg and Malalasekera, 2007)

∂(ρuu)

∂x
+
∂(ρuv)

∂y
=

∂

∂x

(

µ
∂u

∂x

)

+
∂

∂y

(

µ
∂u

∂y

)

−
∂p

∂x
(16)

∂(ρuv)

∂x
+
∂(ρvv)

∂y
=

∂

∂x

(

µ
∂v

∂x

)

+
∂

∂y

(

µ
∂v

∂y

)

−
∂p

∂y
(17)

When we use the discrete form of these equations based on the FVM, we notice that if the

pressure field has the form pi = 5 for even i, pi = 10 for odd i, the pressure field is oscillating

A.M. CIMINO, G.J. KRAUSE1522

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(a) Explicit solution. (b) Implicit solution.

Figure 6: FVM solutions for the convection-diffusion equation.

Figure 7: CVs for pressure and velocity for the SIMPLE scheme in a 1D nozzle.

but the derivative of the pressures at interfaces is zero. This gives rise to spurious solutions,

so a staggered grid arrangement is proposed (Versteeg and Malalasekera, 2007). Taking this

into account we present the Semi-Implicit Method for Pressure Linked Equations (SIMPLE)

(Patankar and Spalding, 1971) and apply it to an example taken from Versteeg and Malalasekera

(2007): a 1D nozzle with inviscid flow with some particularities.

dρAu

dx
= 0 (18)

ρuA
du

dx
= −A

dp

dx
(19)

The problem rendered some instabilities, which were corrected with approximated relaxation

factors. The solutions are shown in Fig. 8 and the discretization in Fig. 7.

Finally we explain the interpolation method of Rhie and Chow (1983) for collocated grids

with examples from Moukalled et al. (2016). We apply it to the 1D Nozzle, obtaining a solution

as accurate and more robust as the traditional staggered grid scheme.

3.5 Advanced and Complementary Topics

In this notebook we introduce gradient computation (Green Gauss cell centered, Green Gauss

vertex centered and Least Squares) and non orthogonal corrections for unstructured grids as

presented in Moukalled et al. (2016). We do this to develop a code for unstructured grids for

teaching, a task currently underway. We also present some more advanced methods like the

PISO algorithm (Issa, 1985).

Mecánica Computacional Vol XL, págs. 1513-1525 (2023) 1523

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



(a) Estimated and corrected velocities. (b) Estimated and corrected pressures.

Figure 8: Numerical results for a 1D nozzle using the SIMPLE algorithm.

4 CONCLUSIONS

The development of these notebooks was long but it helped create a tool to teach a lab of

Computational Fluid Mechanics without using more advanced software. The fact that it could

be run in almost any computer and that the codes developed are simple and straightforward

simplified the assignment of homework: most of the times the student has to extend or modify

the code to include more features or a different algorithm. Furthermore, they are a viable tool to

introduce the students to LaTeX and Python if they are not familiarized with them. This article

is also a way to publicize them so that they hopefully may be used or improved by others.

REFERENCES

Barba L. et al. 12 steps to navier stokes. lecture notes in computational fluid mechanics. 2014.

Certik O. et al. The scipy library. https://www.sympy.org/en/index.html, 2023. Accessed:

2023-08-25.

Chapra S.C. and Canale R. Numerical Methods for Engineers and Scientists. McGraw Hill,

2015.

Cimino A.M. and Krause G.J. Github repo for notebooks for introduction to computational

fluid mechanics. https://github.com/andrescimino/jupyter_cfd_fcefyn-unc, 2023.

Coleman K.A. An Introduction to Partial Differential Equations with MATLAB. CRC Press,

2013.

Ferziger J.H. and Peric M. Computational Methods for Fluid Dynamics. Springer, 2002.

Gommers R. et al. The scipy library. https://scipy.org/, 2023. Accessed: 2023-08-25.

Gruber J., Swartz A., et al. https://www.markdownguide.org/cheat-sheet/, 2023. Accessed:

2023-08-25.

Hirsch C. Numerical Computation of Internal and External Flows, volume I. Butterworth

Heinemann, 2007.

Hoffmann K.A. and Chiang S. Computational Fluid Dynamics, volume I. Engineering Educa-

tion System, 2000.

Hunter J. et al. https://matplotlib.org/, 2023. Accessed: 2023-08-25.

Issa R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal

of Computational Physics, 1985.

Moukalled F., Mangani L., and Darwish M. The Finite Volume Method in Computational Fluid

A.M. CIMINO, G.J. KRAUSE1524

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

https://www.sympy.org/en/index.html
https://github.com/andrescimino/jupyter_cfd_fcefyn-unc
https://scipy.org/
https://www.markdownguide.org/cheat-sheet/
https://matplotlib.org/


Dynamics. An Advanced Introduction with OpenFOAM and Matlab. Springer, 2016.

Nigro N. and Storti M. Métodos Numéricos en Fenómenos de Transporte. CIMEC, 2011.

Olyphant T. et al. The numpy library. https://numpy.org/, 2023. Accessed: 2023-08-25.

Patankar S. and Spalding E. A calculation procedure for heat, mass and momentum transfer in

three dimensional parabolic flows. International Journal of Heat and Mass Transfer, 1971.

Pletcher R.H., Tannehill J.C., and Anderson D.A. Computational Fluid Mechanics and Heat

Transfer. CRC Press, 2013.

Rhie C.M. and Chow W.L. Numerical study of the turbulent flow past an airfoil with trailing

edge separation. AIAA/ASME Third Joint Thermophysics, Fluids, Plasma and Heat Transfer

Conference, 1983.

Toro E. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, 2009.

Van Rossum G. et al. The python language. 2023.

Versteeg H.K. and Malalasekera W. An Introduction to Computational Fluid Dynamics. THE

FINITE VOLUME METHOD. Prentice Hall, 2007.

Wang P., Oliphant T., et al. https://www.anaconda.com/about-us, 2023. Accessed: 2023-08-25.

Mecánica Computacional Vol XL, págs. 1513-1525 (2023) 1525

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

https://numpy.org/
https://www.anaconda.com/about-us

	INTRODUCTION
	PYTHON AND ITS LIBRARIES
	Jupyter Notebook
	NumPy
	SymPy
	SciPy
	Matplotlib

	NOTEBOOKS FOR CLASSES
	Governing Equations and Introduction to Partial Differential Equations
	Physical Classification of PDEs
	Mathematical Classification of PDEs

	Introduction to Discretization and Numerical Methods
	Convection-Diffusion-Reaction Equation
	Introduction to the Finite Volume Method and the Pressure Velocity Coupling Problem
	Advanced and Complementary Topics

	CONCLUSIONS

