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Abstract. One of the most important tasks in the numerical simulation of fluid flow problems 
is the reduction of numerical diffusion contained in the solution. Numerical diffusion is 
caused by the use of first order interpolation schemes in the approximation of the convective 
terms in the momentum equations. In petroleum reservoir simulation, a similar problem 
arises when the mobility is interpolated at the interfaces of the control volumes for the mass 
fluxes calculation. Depending on the interpolation function used for the mobility, the solution 
may be contaminated with the so-called grid orientation effect, a similar error as the well-
known numerical diffusion. The grid orientation effect in petroleum reservoir simulation 
causes different breakthroughs, even when the production wells are symmetrically located 
with respect to the injection well in a homogeneous media. Usually, the upwind scheme is 
employed, due to its ability of promoting numerical stability. The price one pays is the 
introduction of considerable amount of grid orientation effects. In curvilinear grids the 
problem is even more general, since the grid can be oriented according to the flow lines. In 
this work it is presented a numerical scheme, using the black-oil model, for the solution of the 
classical 3-wells and 5-spot problems with the main goal of analyzing the grid orientation 
effects. A more general interpretation for the grid orientation effect is also given. The UDS 
and some TVD schemes used for reducing this error are employed and compared. 

 

marce
309



 

1 INTRODUCTION 

The governing equations for the multiphase flow in porous media are the mass conservation 
for each component and the Darcys’s equations relating velocities with the phase potential. 
They are hyperbolic in nature and the challenging task of numerically solving these equations is 
the approximation of the convective terms. The Upstream Differencing Scheme (UDS) is the 
widely used scheme in petroleum reservoir simulation due to its simplicity and robustness of 
the resulting algorithm. However, the amount of numerical diffusion introduced in the solution 
may be prohibitive. Therefore, new algorithms should be sought for approximating the 
convective terms in the governing equations. This paper addresses this issue solving the 3-
wells-problem using the UDS scheme and three types of TVD schemes aiming the reductions 
of the grid orientation effects. The governing equations use the mass fraction of each 
component as dependent variables. This avoids the numerical difficulty caused by the 
disappearance of the gas phase, situation which happens when the gas totally dissolves in the 
oil and the formulation uses the saturation as dependent variables. 

1.1 The Grid Orientation Effect 

The grid orientation effect was primarily reported by Todd et al1. They use, for 
demonstrating the effect, the well-known five-spot problem depicted in Figure. 1(a), and the 
corresponding Cartesian grids employed in Fig. 1(b). 

 

 
Figure 1: Five Spot Problem Configuration (a) and Cartesian Grids (b) 

 
It can be seen in Figure 1(b) that, depending on the grid used, the line that joins the injection 

well and the production well is parallel (P) to the coordinate lines or diagonal (D) to the 
coordinate lines. When using only the five neighboring points, the spatial arrangement related 
to the flow direction influences the calculation of the mobility at the control volume interfaces 
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which, in its turn, influences the mass flow calculation. For example, if an Upstream 
Differencing Scheme is used in the parallel grid, both grid points used for the interpolation are 
aligned with the flow, while in the case of the diagonal grid they are inclined to the flow. This 
results in a numerical error which retards or speeds up the flow, causing different breakthrough 
at the producing well depending on the grid. 

A definitive explanation of the genesis of the grid orientation effect and its remedy is not yet 
clear in the literature related to petroleum reservoir simulation. Based on numerical analysis, 
any approximation of a partial differential equation must recover the exact solution if the 
approximation is consistent. Consistency requires that the truncation error vanish when refining 
the grid. Therefore, it would be expected that all differences between the numerical and the 
exact solution must vanish when the grid is refined. However, Brand et al2, reports that the 
grid orientation effects does not vanish with the grid refinement when large mobility rates are 
considered. They state that the solution is always contaminated with numerical diffusion and 
grid orientation effects. The former vanishes with the grid refinement, improving the sharpness 
of the front, while the latter keeps distorts the solution according to the grid directions, as the 
grid gets smaller. They interpret the effects of the grid orientation as a numerical manifestation 
of a physical instability which arises for high mobility rates. 

Yanosik and McCraken3, using a nine-point scheme for the five-spot problem, reported 
practically the same results for diagonal and parallel grids using several viscosity ratios, which 
indicates that interpolation functions involving more grid points may be efficient for reducing 
the grid orientation effect. Maliska et al4 obtained almost the same results of Yanosik and 
McCraken3 using curvilinear coordinates aligned with the flow. Since in real problems it is 
difficult to always align the grid with the flow, the difficulty with the grid orientation effect 
persists. Trying to reduce the grid orientation effects, a reasonable large body of literature 
exists where different interpolation schemes are developed. Among them, the TVD schemes, 
according to Harten et al5, is a class of methods which improves the solution quality, without 
introducing the undesirable numerical oscillations of the higher order schemes. In this direction 
Rubin and Blunt6 introduced TVD schemes in the fluxes for the black-oil model em Cartesian 
coordinates for implicit and explicit formulations. Pinto7, using non-uniform Cartesian grids 
employed TVD schemes applied directly on the relative permeability. It was demonstrated that 
there is almost no differences of applying the TVD schemes in the permeability or in the mass 
flux. Mota e Maliska8, extended the Rubin and Blunt schemes to deal with curvilinear 
coordinates, applying the interpolation in the relative permeability. 

In this paper the 3-well problem is solved using TVD schemes in the relative permeability, 
in a continuation of the work presented by Mota and Maliska8. The UDS scheme is also used 
for comparison purposes. 

 
2 MATHEMATICAL FORMULATION 

2.1 Governing Equations 

Although the test problems presented in this paper are 2D and for oil-water flow, for 
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completeness the full model considering oil, water and gas and three dimensions will be 
presented. The standard black-oil model considers the isothermal flow with immiscible water 
and oil phases, the water vapor does not take part of the gas phase and the gas is allowed to 
dissolve in the oil phase. 

The mass balances for the three components gives 
 

[ ] [ ] wwwwm mZ
t

−Φ∇∇=
∂
∂ λφρ .         (1) 

[ ] [ ] oooooooom mXX.Z
t

−∇∇=
∂
∂ Φλφρ        (2) 

[ ] [ ] gowggoowwm mmm.
t

−−−∇+∇+∇∇=
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∂ ΦλΦλΦλφρ     (3) 

owg ZZ1Z −−=           (4) 
 

where φ  is the porosity, pΦ  the phase potentials, mρ  the density of the mixture, pλ  the 
mobility of phase p , wm , om , and gm  are the water, oil and gas mass flow, respectively, iz  
the mass fraction of the i  component and, finally, oox  is the ratio of the mass of the oil 
component in the oil phase by the total mass of the oil phase. Recall that this model allows the 
gas component to be in the oil phase. The phase potentials are given by 
 

zPP wcowow γΦ +−=          (5) 
zP ooo γΦ +=           (6) 

zPP gcogog γΦ ++=           (7) 
 
where  
 

wcowo PPP =−           (8) 
gcogo PPP =+           (9) 

 
Eq. (3), the global mass conservation, is also known as the pressure equation, since in the 

iterative procedure it is used to advance this variable. Eqs. (1) and (2) give the mass fractions 
of the water and oil components, and Eq. (4) the mass fraction of the gas component, explicitly 
found after the calculation of wZ  and oZ .Introducing Eqs. (5)-(7) in Eqs. (1)-(3), the 
governing system of equation can be solved for oP , oZ  and wZ . The mobility appearing in the 
equation system is calculated by 

 

p

prp
p kk

µ
ρλ =           (10) 
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where k , rpk  and pµ  are the absolute permeability, relative permeability of the component in 
the p  phase and the viscosity of the phase p . 

2.2 Coordinate Transformation and Approximate Equations 

It is very common in the real practice of petroleum reservoir simulation the use of only 
Cartesian grids. Recently great interest in using general grids in engineering tools has emerged 
in the literature, as in Palagi9, Heinemann10, Marcondes and Maliska11, among others. The 
methodology presented in this paper uses boundary-fitted grids with the concept of solving the 
governing equations in the curvilinear coordinate system, with tra transformation shown in 
Figure 2. 

 

 
 
Figure 2: Physical and computational domains 
 
Therefore, the governing equations need to be written in the curvilinear coordinate system. 

Taking the equation for the water component as example, one has, 
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where J  is the Jacobian of the transformation and p

ijD  is a diffusion-like coefficient involving 
physical and geometrical parameters, given by 
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with 2,1j,i =  or 3 , and 321 x,x,x  are, γηξ ,, , respectively. 
The transformed equations for the oil component and for pressure (global mass 

conservation) are similar and will not be reported here. Integration of Eq. (11) in time and over 
the control volume depicted in Figure 2, considering only the term in the ξ  direction to explain 
the numerical procedure, results 
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Inspecting Eq. (13) one realizes that it is required the evaluation of i

w
w
ij x

D
∂

∂Φ  in the west 

and east faces of the elemental control volume. These three terms are, in fact, the components 
of the water flux, which involves the evaluation of the mobility and the derivatives of wΦ  at 
the interfaces. The determination of these fluxes at the interfaces, as a function of the 
parameters at the grid nodes, requires an interpolation function. This is the key question. If the 
interpolation function could be exact there would be no generation of truncation errors, as 
discussed in Maliska12, and no numerical diffusion or grid orientation effects could be present 
in the solution. Since it is impossible to obtain the exact interpolation function (to do this it 
would require the exact solution), the numerical solution is always contaminated with 
truncation errors. These truncation errors, when associated to certain terms of the partial 
differential equation receive different nominations, like numerical diffusion and grid orientation 
effects. 

It can be shown that the terms in the brackets of the right hand side of Eq. (13) can be 
written as 
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what means that the evaluation of the terms in the brackets amounts in calculating 
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and 
w

w
p

n 



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∂
r

Φλ . What it is usually done is to evaluate the gradient of the phase potential in the 

best way possible trying not to make the computational stencil too complex, and apply other 
interpolation function in the mobility. In this work the normal derivative is calculated using a 9-
point stencil and the mobility using TVD schemes and the UDS for comparisons. 

The system of equations is solved using the Newton’s method. The Taylor series expansion 
of the residue gives 
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where o,w,Pi = , and P,Z,ZX ow= , evaluated at the control volume P and its 6 direct 
neighboring control volumes. Expanding this equation for the water component one gets 
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All cross-derivatives of the type 
n




∂
∂

ξ
Φ  is treated explicitly, therefore the Jacobian matrix 

will contain seven block diagonals, instead of 19 block diagonals if all cross-derivatives were 
treated implicitly. This strategy may affect the convergence of the method, depending on the 
importance of the cross-terms, which are dependent on the non-orthogonality of the grid. All 
cross-derivative terms are zero if the mesh is orthogonal. The resulting coupled linear system 
of equation is solved using incomplete LU decomposition. 

2.3 Interpolation Schemes 

The first scheme to be used is the UDS, which allow identifying the truncation errors caused 
by this interpolation. In this scheme if 
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the mobility at the interface is given by 
w
P

w
e λλ =              (19) 

The results using UDS will be compared with some TVD schemes. TVD schemes introduce 
an anti-diffusive term to the UDS and a limiter which enforces, in regions of small gradients, a 
second order accuracy, and in regions of sharp gradients a first order approximation. As 
already state, in this work the TVD schemes are applied to the mobility. The mobility, taking 
the east face as example, can be calculated by 
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where eA , Ψ , UDS

er  and UDS
eλ  are the second order term, the flux limiter, the ratio of 

successive second order terms and the mobility immediately upstream to the face in 
consideration. The second order term and its ratio are given by 
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is the length vector em the ξ  direction related to the volume immediately upstream the east 
face, and eλ∇  is the mobility gradient at the east face. The application of this scheme is now 
exercised. If 
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For a Cartesian grid, for ( ) 1=Ψ r  one obtains a second order scheme, ( ) rr =Ψ  a two-points 
upstream scheme, ( ) 0=Ψ r a one-point upstream and for ( ) 2=Ψ r  a one point forward scheme. 
The flux limiter for a TVD with a Van Leer limiter is calculated by 
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+
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in the Sweby region given by )r2,2min()r(0 ≤≤Ψ . The TVD with a third order limiter is 
calculated by 
 

( )r2
3
1)r( +=Ψ             (29) 

 
Pinto7 has shown that the above limiter is known to be out of the Sweby region in some 

parts of the domain, and it is suggested to restrict the 3rd order limiter in the Sweby region. 
This is done is this work. Pinto6 also reports that if this is not done, it may not have the TVD 
properties. 

3 RESULTS AND DISCUSSIONS 

As a first test problem the 3-wells configuration will be solved. This problem, devised by 
Hegre et al13, is depicted in Figure 3 with the geometrical data given in Table 1. For this 
analysis, a Cartesian and a curvilinear grid are used, as shown in Figures 4 and 5 for 60o and 
80o, respectively. The Cartesian grid is a particular case of the curvilinear grid when the angle 
is 90o. This angle is measured between the horizontal line joining the production wells and the 
grid line passing by the injection well. 

 

 
Figure 3: Geometry of the 3-wells problem 
 

        Table 1: Three-wells problem data 
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It can be seen in Figure 3 that the injection and production wells are symmetrically located. 

Therefore, the breakthrough should happen at the same time for both production wells. The 
problem was solved initially with a Cartesian grid, hence symmetric with respect to the wells, 
with two grid sizes, 25x22 and 75x66. As expected, the breakthroughs at the two production 
wells are identical for each grid, since the truncation error propagates symmetrically, as shown 
in Figure 6. The solutions for two grids are, also as expected, different from each other, due to 
the grid refinement. The finer grid retards the breakthrough, what follows the right trend, since 
finer grid reduces the numerical diffusion in the propagating front. 

 
Figure 4: The 3-wells problem with 60o in the grid 
 
Figure 6 serves, therefore, to identify the truncation errors and to speculate about its nature. 

The difference in breakthrough times can be viewed as a grid orientation effect, since when the 
grid has no preferable orientation this difference does not appears. The breakthrough time, 
however, is wrongly calculated. If the grid is refined, still for the symmetric Cartesian grid, the 
results improve, reducing the numerical diffusion effect. The grid orientation effect can be 
viewed, therefore, as a non-homogeneous numerical diffusion, at least for low mobility rates 
where physical instabilities are not present (Brand et al2). 

Porous volume 1.62x107 m3 
Porosity 0.19 
Porous volume at the well 
cells 

2.86x104 m3 

Flow rate at injector well 3.53x10-3 m3/s 
Flow rate at production 
wells 

1.84x10-3 m3/s 
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Figure 5: Curvilinear grid for 80o. 
 

 
 Figure 6: Water cut for the 3-well problem- 60o. 

 
Figure 7 shows the solution for the 3-well problem for the grid with 80o. It can be concluded 

that the finer Cartesian grid is best result, since it retards the breakthrough, as expected. The 
results for the curvilinear grid are getting closer to each other, since the curvilinear grid with 
80o show small non-symmetry of the grid. 
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  Figure 7: Water cut for the 3-well problem- 80o 

 
The second test problem is the 5-spot configuration shown in Figure 1. The geometrical data 

is given in Table 2 and the relative permeability in Table 3. The 5-spot configuration consists of 
1 well (injector or producer) surrounded by 4 wells (producers or injectors). For the diagonal 
grid the size of the domain is ( )4/1  of the 5-spot geometry and ( )2/1  for the parallel grid. 
For this reason the grid for the parallel case is 1000mx1000mx5m multiplied by a factor 2 . 
Two grid sizes were used: 10x10 and 30x30 for the diagonal grid, and 14x14 and 42x42 for 
the parallel grid, keeping the factor 2  sizing the control volumes.  

 
 

Table 2–Five-spot problem data 
Initial pressure 3000 psi 

Initial water saturation  0.0 
Tickness 0.1 m 
Lenght 1.0 m 
Width 0.1 m 

Porosity 0.3 
Density 1000== ow ρρ  kg/m3 

Viscosity 1== ow µµ cp 
Volume Formation Factor 1== ow BB  

Absolut permeability 1.013e3 mD 
Water relative permeability wS  

Oil relative permeability oS  
Injected flow rate of water 1.25e-2 STB/d 
Liquid flow rate produced 1.25e-2 STB/d 
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Table 3: Data for the 5-spot problem 
 

Oil relative permeability So 
Water flow rate injected 9.20x10-3 m3/s 
Produced liquid (oil+water) 9.20x10-3 m3/s 
Maximum time step (∆t) 10 days (8.64x105 s) 
Minimum time step (∆t) 10-8 days (8.64x10-4 s) 

 
Figure 8 compares several cases run for the 5-spot problem using UDS and TVD schemes 

with the semi-analytical solution of Le-Blanc and Claude14. In this figure PVI is the number of 
porous volume injected and is a dimensionless time step. Knowing the water flow rate and PVI 
it is possible to determine the physical time. In Figure 8 the comparison is made among the 3rd 
order TVD against the UDS scheme. It is again observed that the UDS scheme is the poorest 
one for determining the breakthrough time, persisting the differences along time in the 
predicted water cut. The 3rd order TVD scheme improves considerably the quality of the 
results for both grids. It also can be seen that the determination of the breakthrough time and 
the curve behavior for the water cut matches a lot better the semi-analytical solution. 

A detailed comparison among the TVD schemes including the Van Leer and ENO 
(Essentially non-Oscilatory) can be found in Czesnat15, where all these schemes were applied 
for Cartesian and curvilinear grids, with the formulation presented in this paper. 

 
 

 
  Figure 8: Five-Spot problem. UDSxTVD 
 

4 CONCLUSIONS 

This paper advanced a numerical formulation for three-dimensional three-phase flows 
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encountered in petroleum reservoir simulation. The methodology was applied to solve two-
dimensional problems with the main goal of analyzing the grid orientation effects. Two 
problems were solved, the 3-wells and the well-known 5-spot problem using UDS and TVD 
schemes. Some of the conclusions presented herein are based on results not shown in this 
paper. Five points UDS schemes always introduce excessive numerical diffusion anticipating 
the breakthrough time and smearing the sharp front. TVD schemes, in the other hand, show 
less numerical diffusion and are free of oscillations. For application in petroleum reservoir 
simulation they are simple to apply. An important conclusion of the study can be draw: high 
resolution five-point schemes are able to better predict the sharp fronts, but the influence of the 
grid orientation remains. This means that these schemes reduce the local numerical diffusion 
but still keeping it non-homogenous. If high resolution nine-point schemes are applied this non-
homogeneity is also reduced. This implies that the grid orientation effects are part of the 
numerical diffusion, at least for the low mobility problems solved. Therefore, the improvement 
in the flow calculation requires higher resolution schemes with more grid points involved. 
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