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Abstract. The semi-analytical solution of the nonlinear vibrational behavior of beams with clearance
is herein presented. A slender beam, clamped in its upper extreme models a drillstring constrained to
move inside an outer cylinder (the borehole wall) with clearance which adds a strong nonlinearity to
the problem. In a first simplification a Bernoulli-Euler beam of a Hookean material and uniform cross
section is subjected to self weight and an axial load at the bottom end to simulate the static reaction force
when the drill bit touches the formation. After the initial configuration is attained, the beam is considered
clamped at the top and hinged at the bottom. Also a dynamic perturbation moment is applied at the beam
bottom. The energy contribution of the clearance nonlinearity due to the discontinuous contact between
the beam and the borehole wall is taken into account by means of a spring and represented by power
series expansion in the lateral displacements. The solution is found by first applying a direct method
with extended trigonometric series that ensure the uniform convergence of the basic unknown functions
in the spacial domain. The resulting nonlinear differential system in the time variable is then solved by
a standard integration scheme. Deformed configurations at different times are reported. Additionally the
static state analysis and the critical load of the prestressed beam are included.
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1 INTRODUCTION

As 1s known a flexible beam subjected to axial loads may undergo of a geometrical stiffening
or softening effect, depending on the existence of tensile or compressive forces ((Shart, 1995)).
Some non-linear model of vibroimpacting structures with non-linear strain-displacement rela-
tionships are summarized and compared by (Trindade and Sampaio, 2002) and a finite element
approach is proposed. Relating drillstrings, several works have been published. (Yigit and
Christoforous, 1996) developed a model to study the transverse vibrations of drillstrings caused
by axial loading and impact with the bore hole. The Assumed Modes Methods is employed to
find the governing equations of motion. In particular a one-mode approximation is used. Other
works dealing with more complex models (non-linearities, diverse couplings) have been pub-
lished (e.g. a lumped mass model is dealt with in (Yigit and Christoforous, 1998) and an inte-
grated mathematical model(( Tucker and Wang, 1999)). In the present paper the semi-analytical
solution of a vertical rod subjected to variable normal force (due to self-weight and an axial
compressive reaction, prevailing tensile stress) restricted to move within a spatial domain with
clearances (backlash), is found by means of a variational approach. The dynamic behavior of a
uniform, very slender beam subjected to a dynamic external bending moment at its lower end
is strongly modified when the response —u(x, t)— is larger than the clearance and receives
an elastic reaction from the boundary. Although in this first study the equation of motion to
be solved by a direct method using a complete set (Whole Element Method, WEM, (Rosales,
1997; Rosales and IMilipich, 2002)) 1s linear-bending, a nonlinear problem has to be solved due
to the ”Winkler reaction” that only acts when the v(x, t) magnitude exceeds the limit of the
fixed clearance. The axial/bending coupling is not considered at this stage though the stiffness
loss known as “geometric stiffening” effect is taken into account. The nonlinear response of the
”Winkler” soil is simulated with a integer power series expansion in the elastica v(x,t). This
study is a complement of the ideas presented by (Trindade et al., 2005) in which the nonlin-
ear oscillations of drillstrings used for oilwell drilling is addressed through the finite element
method. In this paper a nonlinear problem with axial/bending coupling is tackled and boundary
elastic reaction is applied when the nodal unknowns surpass the clearance. In the present work,
the reaction of the nonlinear stiffness spring is included in the equation of motion. As may be
observed, the analogy is not complete and the authors are, at present, comparing the response
with nonlinear contributions. Unfortunately the results are not available at the time this paper 1s
written but the authors expect to show them at the ENIEF 2006.

2 MODEL FORMULATION

Let us analyze the bar depicted in Figure | subjected to self-weight that induces a tensile
state and a reaction /7 at its lower end that inputs a uniform compression. This load system
gives place to an axial stress

gy — O'o(X)thatiS
R
wo(X) — L= X) -7 m

where v is the unit weight and A is the cross-sectional area. If parameters r = R/yAL and
c = 1 — r are introduced (see Fig. 1) the stress oy may be re-written as

X
oo(X) =~vL(1 —r — f) (2)
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Figure 1: Vertical rod subjected to self weight and end reaction restrained to move in an outer cylinder and initial
stress diagram.

From this prestressed state the equation of motion of the rod of Figure ! subjected to a
dynamic moment M (¢) applied at X = L. Then let us define the Lagrangian function £ as

L=U+Ur+U.—-T (3)

in which U is the elastic strain energy, Ur 1s the "Winkler soil” energy, U, is the energy due to
the load position and T is the kinetic energy, that arise from a generic deformation v = 0(X, t).
Then if £ 1s the Young’s modulus and .J is the moment of inertia of the uniform section of the
rod the following expressions yield

L 2o
2 = E - dX — dXdA
L di(L)
Up = Un(X, t)dX Ue = —My(t) (4)
0 dX

L ran(D)\?
o7 — pA dXx
o [ (55)

UL(X,t) is the energy per unit of length due to the nonlinear deformation of the medium
where the beam dynamically bends. That is, if 2¢ denotes the width of the empty region, the
reaction F'(v) is as shown in Figure 2

The slope tan o« depends on the stiffness kg of the surrounding soil and then

kov(X, 1), [v(X,t)] < €
F(U){ 07 |U(X,t)| <e (5)
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Figure 2: Response force model of the discontinuous soil reaction.

In this work the following series for F'(v) (origin of the strong nonlinearity)

MG
Y Gut(X o) (6)

n=1,3,5,

The (,,’s are found by a least squares with which the unit energy yields

n+1
Y G v (X, ) -

n—1,3,5, n+tl

Twelve terms were enough to yield the curve shown in Figure 3 Now it is possible to apply
Hamilton’s Principle as follows

5FJu] = 0 (8)

to
F = / Ldt
t1

The equation of motion is derived after the introduction of a proposed solution that linearly
combines a complete subset which satisfies the essential boundary conditions (BC).

where

2.1 WEM Solution

The following extended trigonometric series is proposed for the dynamic response v( X, t)

l inX. X
X, t) = Aq;(t) sin(—— —Aqo(t t 9
v(X, 1) ; 1()SIH(L)+L 10(t) + aio(t) )
Such series is, as is known, e.g. (Rosales, 1997; Filipich and Rosales, 2000; Rosales and
Filipich, 2002), uniformly convergent to the classical solution in the domain 0 < X < [;
analogously the same property holds for the first derivative. Meanwhile the second derivative
converges in Lo
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Figure 3: Energy resulting from the discontinuous soil reaction. MG=12

X

(X, 1) = ;Au(t)cos(m?)JrAm(t) (10)
M X

LY"(X,t) = —;ﬁAu(t)Sin(T) (11)

where v, = nw. Now, the statement of Hamilton’s principle requires of convergence in the
mean (in L) of the proposed series solution and the satisfaction of the geometric or stable BC.
If the WEM series do not satisfy identically the essential BC, they will have to be considered for
instance, by means of the well-known Lagrange multipliers. Given the large slenderness of the
studied rod, the qualitative difference between a clamped and a hinged end may be considered
negligible. Consequently it will assumed that the beam is hinged at both ends (X = 0 and
X = L) and the BC are

v(0,t) = 0; v(L,t) =0 (12)
from which
Alo(t) - 07 Oélo(t) =0 (13)

Then in this case, evidently the natural BC are also identically verified. Thus the series result

M oA X
o(X, 1) =) Au(t) sin(——) (14)
i=1
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2.2 Nonlinear spring representation

Before the detailed derivation of the equation of motion, the expression of F'(v) (or Uj)
is introduced in this Subsection. Let v™(X,t) be the m‘* power of the dynamic elastica (m
integer). Obviously, in the present case, the extended series for each power is (with v(0,¢) =
0, v"™(L,t) = 0Vm)

) = S Al sin(?) (m—1,2,) (15)

=1

In what follows the expression that relate each A,,;(¢) with the main unknowns A;;(¢) of the
problem under study are introduced. In effect, since

(X ) =0 IX DX L) (m>qg>1) (16)

and with the following definition (7, 7, k integers)

1 Y X | gaX | knX
Pyr = — / sin = sin 275 sin o X (17)
L/ L L L
is simply deduced that
Ani=2) ) PitAwm-gidge  (m>q>1) (18)

=1 k=1

The value of ¢ > 1 is arbitrary and here ¢ = 1 was chosen. Now if the following notation is
introduced

i [1—(~ 1) HR] . .
w =4 e kA 1)
yi[1—(~ 1)t ] . .
wy =4 A JTRAI 20)
Then
wy —w
Pijk - ! 2 2 (21)

2.3 Derivation of equation of motion

After the replacement of the above-stated series in the expressions of U, Ug, U, and T’ it may
be concluded that

to
t1
Thus if a1,(¢) are admissible directions, the space of admissible directions is given by
,Da(f) — /Da[f(Ah] — {au(tl) — 0, au(tg) — 0} (23)
and p
¢ e=0

Copyright © 2006 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXV, pp. 1781-1792 (2006) 1787

E P R. R; Ry L ko ¢ R
GPa | kg/m® | m m m m | N/m | kNm | kN
210 | 7850 | 0.064 | 0.054 | 0.156 | 2000 | 10°® 50 1200

Table 1: Geometrical and material data for illustration

Thus the first variation of the energy functional writes

4 1 —

- 23 2
VA% Y val-pAip} (25)
p=1
where
Yip = E%‘% 2i><<: by
wp Vi /(I:/iQ,ﬁ/Q)Q ’ i 7& P
Also bl
0
0Ur = =5~ Z ai(t) Y GaAu(t) (26)
=1 n=1,3,5,--
—M(1) i
0V = — Z;ah-(t)(—l) s (27)
AL x— | :
6T = E= Zj (1) Ani(t) (28)

The ordinary differential system that governs the problem is found after the imposition of
the stationary of the functional F[A ;| and integration by parts 07" in the time variable keeping
in mind that the solution is within the space of admissible directions and that the factors of each
ap; (1 =1,2,...) are set null. Then

. B~
pALA; + {—% +(A)(1 - 7’)} A(t) —

3
29 A Y wYpAp(t) Fhol Y GuAu(t) =
p=1 n=1,3,5,...
Mt
e )
(i=1,2,3,...)
3 EXAMPLE

This system has been solved in this study by means of a standard integration technique
(Runge-Kutta) and the results are shown in Figures 4 to 6. An illustration is carried out with the
data shown in Table 1. The dynamic moment is My(t) = C' sin 27t.

The results shown have been found using 60 terms in the spatial series (M = 60), i.e. a
resulting first order ODE of order 120. The soil response was assumed with MG = 17 terms.
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Figure 4: Variation of last coefficients of the spatial series with time. Ass, Asg and Agg.

In Fig. 4 the variation of the last coefficients of the series (Ass, Asg and Agp) with the time is
shown. As may be observed, the values are convergent. Also the evolution of the displacement
at location X = 1000 m (v(1000, ¢)) is depicted in Fig. 5.

The elastica at three different intermediate times is included in Fig. &. The dynamic moment
effect 1s evident at the region close to X = 2000 m.

A different approach was used to solve the derived governing equations of the system. The
FlexPDE software was employed to find the numerical solution of the governing equation. The
space domain was modeld with a finite element grid of 110 cubic elements. By default the
software uses Newton time steps. Figure 7 depicts the output for this example. The comparison
of the results can be made qualitatively since the latter model has to be adjusted. The contact
is modeled in each node of the beam unlike the semi-analytical model herein presented that
assumes eventual contact at each point.

4 STATIC PROBLEM

In order to fix ideas the solution of the bar immersed in a discontinuous Winkler medium
as above is included in this Section. Here it is subjected to a static moment at its lower end of
magnitude My; the unknowns are the A,;’s but in this case they are time-independent, i.e.

Ay=0 (i=1,23,..) (30)

Copyright © 2006 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXV, pp. 1781-1792 (2006) 1789

0.08 T T T
0.06 ‘ N

0.04 - } b

0.02 - ] W ‘ B

v(1000)
=]
—_—

-0.02

-0.04 | \ _

-0.06 - *

-0.08 | | ! | | | | | |
0

Figure 5: Lateral displacement of the beam at X = 1000. Duration of experiment: 10 s.

from which a nonlinear algebraic system yields,

EJ~
%‘2 IE JF(’YA)(l_T)} Ay
2 A Y WYipdip kol Y GoA
p=1 n=1,3,5,...
- M,
— (1) =2 31
(=1 (31)
(i=1,2,3,...)

which is solve by a simple iteration procedure. If A is large enough, the surrounding soil will
start to act passively opposing to the deformation until the active and passive loads are statically
equilibrated by the response. In Figure & the response is shown for different values of 7 (ratio
of the bottom reaction to the rod total weight).

The value = 0.4 appears as a practical limit. The static solution is strongly influenced by
the prestress regime assumed for the beam; this is due to a simple stability problem (buckling).
The critical load for this problem is presented as an illustration in the Appendix.

5 CONCLUSIONS

The semi-analytical solution of the dynamic behavior of a bar subjected to a prestressed
state, located in a borehole with surrounding Winkler soil has been herein presented. The
clearance adds a strong nonlinearity to the problem. In a first simplification a Bernoulli-Euler
beam of a Hookean material and uniform cross section is subjected to an axial load at the
bottom end to simulate the static reaction force when the drill bit touches the formation and, the
dead load. Due to the slenderness of the beam the clamped end was assumed as hinged. Such
simplification is believed not to modify the global behavior. The energy contribution of the
clearance nonlinearity was taken into account by means of a spring and represented by power
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Figure 6: Variation of the elastica for three different intermediate times.
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Figure 7: Solution found with finite element discretization of the spatial domain. Lateral displacements at t=10 s
along the lower portion of the beam
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Figure 8: Static displacement at different points of the rod

series expansion in the lateral displacements. The solution was found by first applying a direct
method with extended trigonometric series that ensure the uniform convergence of the basic
unknown functions in the spacial domain. The resulting nonlinear differential system in the
time variable was solved by a standard Runge-Kutta routine within the Matlab environment.
The reported results of the deformed configurations are preliminary since the authors continue
the study of the numerical convergence. Additionally the static state analysis and the critical
load of the prestressed beam were included. Although the beam model was assumed with
strong simplifications this is a first step to obtain an semi-analytical solution that may serve as
a reference solution to other numerical techniques. The authors are actually analyzing other
models considering nonlinear strain energy for the beam and stepped beams. Some of this
analyzes are expected to be reported at the ENIEF 2006.

REFERENCES

C.P. Filipich and M.B. Rosales. Arbitrary precision frequencies of a free rectangular thin plate.
Journal of Sound and Vibration, 230:521-539, 2000.

M.B. Rosales. A non-classical variational method and its application to statics and dynamics
of structural elements (in Spanish). Ph.D. Thesis. Universidad Nacional del Sur, Argentina,
1997.

M.B. Rosales and C.P. Filipich. Time integration of non-linear dynamic equations by means of
a direct variational method. Journal of Sound and Vibration, 254:763-775, 2002.

I. Sharf. Geometric stiffening in multibody formulations. Journal of Guidance, Control, and
Dynamics, 18:882-890, 1995.

Copyright © 2006 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



1792 C. FILIPICH, M. ROSALES, R. SAMPAIO

Table 2: Critical loads for a simply supported column with variable axial stress. ¢
c 0 01102 1031|0405 06 0.7

P (45) | 186 225|284 [37.7 | 53.6 | 83.2 | 1442 | 2965

M. A. Trindade and R Sampaio. Dynamics of beams undergoing large rotations accounting
for arbitrary axial deformation. Journal of Guidance, Control, and Dynamics, 25:634-643,
2002.

M. A. Trindade, C. Wolter, and R Sampaio. Karhunenlove decomposition of coupled ax-
ial/bending vibrations of beams subject to impacts. Journal of Sound and Vibration, 279:
1015-1036, 2005.

R.W. Tucker and C. Wang. An integrated model for drill-string dynamics. Journal of Sound
and Vibration, 224:123-165, 1999.

A.S. Yigit and A.P. Christoforous. Coupled axial and transverse vibrations of oilwell drill-
strings. Journal of Sound and Vibration, 195:617-627, 1996.

A.S. Yigit and A.P. Christoforous. Coupled torsional and bending vibrations of oilwell drill-
strings subjected to impact with friction. Journal of Sound and Vibration, 215:167-181,
1998.

A CRITICAL LOAD OF A SIMPLY SUPPORTED ROD WITH LINEARLY VARY-
ING NORMAL FORCE

Let us analyze the equilibrated straight configuration under the stress

X
of(X)=qLle—7);  (0<X <L) (32)
where ¢ = 1 — 7. The total load is denoted P = vAL. In order to impose other equilibrated
(bending type-Fuler) configuration (II) in the vicinity to (I) measured by v = v(x), that is ob-
tained under the critical load magnitude P = P.. = vAL,,, the following differential equation
has to be satisfied

AL*
" PCT(E—J)[U’ —(c—x)"] =0 (33)

where z = X/L (0 < = < 1), (-} = d()/dx, E is the Young’s modulus, 4 and .J are the area
and the moment of inertia of the uniform section of the rod, respectively. The problem is solved
for the simply supported bar by means of a power series solution, yielding the values reported
in Table 2. It was concluded that M > 40 fulfills the convergence of the results.

It should be noted that for ¢ > 0.79 (prevailing tensile state) no critical load is found.
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