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Abstract. Smooth Decomposition (SD) is a multivariate data or statistical analysis methodaised
identify normal modes, natural frequencies and energy partition ofragstd’he method is based on
the knowledge of the system response (spatial data field) to a randdtatiexc It should be noted that
only the output data of the system is needed for the identification. The excite®to satisfy some
properties, normally well met by a white noise, but doesn’t need to be mezhsthis turns the method
the ideal way to deal with the identification of systems under ambient excitatsnsjnd or waves
for instance, which can be hard to compute or to describe. The outpubtta system response is
then projected into a basis and an optimization problem is created. It corfsigtding the basis that
gives the maximum variance of the displacement-projection and the minimumaaéthe velocity-
projection. This optimization problem can then be written as an eigenvaluéeproetith the covariance
matrices of the displacement field, and of the corresponding velocity fiedking this problem the
system is identified and no further considerations and approximationeeded. From the eigenvalues,
the “energy” participation of each normal mode in the response duringrtidegion or the experimental
test can be evaluated. Since this information is crucial for non-linearmsgstientification, the Smooth
Decomposition method can be used to identify linear and non-linear systemsbjéctive of the paper
is to explain the Smooth Decomposition method and to present an application o$itwEipresent the
method and show how the results of SD can be interpreted. Then, an &ipplieaSD on a simulated
numerical model of a cantilever beam is performed and discussed tostemtthow SD can be a nice
tool for modal analysis.
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1 INTRODUCTION

The Smooth Decomposition (SD) is a statistical analysisrigpie for finding structures
in an ensemble of spatially distributed data such that tletoveof generalized displacement
not only keeps the maximum possible variance but also thecitglfield is as smooth in time
as possible. Closely related with the SD are the dual smootitemased in the framework
of oblique projection to expand a random response of a sysfEme concept of dual mode
with the associated decomposition defines a tool that wamsf the SD in an efficient modal
analysis tool. This method of identification can be used iftgdr and nonlinear systems and
uses only output data provide the excitation satisfies saimgepties normally met by a well
chosen random excitation, as a white noise, for example.

The main properties of the SD are discussed and some ogtimahhracteristics of the ex-
pansion are deduced. The parameters of the SD (using themhoalth modes and the smooth
values) give access to modal parameters of a linear systeemns of mode shapes, natural
frequencies, and modal energy partition. This part is a rikeatde improvement with respect to
the standard modal analysis methods. This novel modal sisaiya linear system is illustrated
by examples.

In this paper we will consider a numerical model of a cangleyeam which is excited by
a random force at the free edge of the beam. The first casest®$ithe identification and
modal analysis of this beam considering that there is no haetaping in order to show the
power of the SD. Then we take into account the modal dampirtigeobeam and we will show
that SD is still a good method for low levels of damping. Inypoeis paper we have worked on
discrete systems and on systems with unobserved degréd(sedom which was a first step
to continuous systems. It is explained how the SD can be egpdi identify the parameters of
a continuous system discretized by finite element method.

It is interesting to stress out that this is a new method, mbtcpmpared with the meth-
ods known in the literature as Operational Modal AnalysiM&). So far the only association
between SD and OMA is the fact that both methods use only vgignals for the identifi-
cation and they require random excitation. However therthseare different. SD is a type
of Karhunen-Loeve Decomposition, using correlations arajegtions in the modes whereas
OMA uses the controllability matrix and correlations of tineasured signals that are not nec-
essarily the state of the system.

2 DESCRIPTION OF THE SMOOTH DECOMPOSITION

In this Section of the paper we present the basis of the snusmbmposition method based
on the following worksBellizzi, S. and Sampaio, R20129, Bellizzi, S. and Sampaio, R2013,
Sampaio, R. and Bellizzi, $2011), Sampaio, R. and Bellizzi, $2014hc). As consequence,
the discussion is biased as remarked in the paper title. ¥¢ecalmpare this method with an-
other well known method called the “Karhunen-Loéeve Decositpan (KLD)” or the “Proper
Orthogonal Decomposition (POD)” used to analyze random dsellizzi, S. and Sampaio, R.
(20091, Bellizzi, S. and Sampaio, R20093, Bellizzi, S. and Sampaio, R2006.

The main objective of KLD, or POD, consists in finding the sakiat will be, with a fixed
number of elements, the best representation of the inig#l.fiAll those methods have been
used for another interesting aspect which is the model amefduction as it is presented in
Bellizzi, S. and Sampaio, R20123 andBellizzi, S. and Sampaio, R20120 for the SD and
in Ritto, T. and Buezas, F.S. and Sampaio(ZR12 for the POD, or Karhunen-Loeve Decom-
position.
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KLD (or POD) and SD are based on the projection of the data §ietth as the generalized
displacement vector has the maximum variance in order tawbethat all the modes we are
looking for are excited. Indeed, the bigger is the variarfde@displacement vector, the higher
is the probability of a mode to be excited. The SD method ist aifferent because we also
consider the derivative of this generalized displacemeator, the velocity field. The objective
Is to find the basis that gives the maximum variance for theggized displacement vector and
the minimum variance for the velocity vector (in order to jéiee motion as smooth as possible
in time).

2.1 Decomposition Principle

First, let us describe the data field used in this method. Wisider the sampled scalar field
X(t) formed of random values (in the matrix form) as a functiontaf timet (¢ € R). This
field is such asX(t) € R™*™ wheren represents the different instants amdrepresents the
spacial points where we measure the information. The disph@nt field is considered as a
stationary second-order process with zero-mean valueatiaits a time derivative which is
also a stationary zero-mean value process.

The central point of this method is to find a linear rogec:tisnch as: :
Yx(t) = projgX(t) = X(t)p, (1) x(t) = projgX(t) = X(t)p,  (2)

whereYx(t) € R™™, Yy (t) € R™™ and¢ € R™*™ (representing a projection basis). Now,
the objective of this method is to find this projection basislsas it keeps the maximum vari-
ance for the projection of the original fieki(¢) (the generalized displacement field) and the
smallest projection of the velocity field in order to keep traiation in time as smooth as
possible. The objective is to find thﬁj}x 1Yx(t)]|* and m(gn 1Y «(¢)]]* which is exactly as

maximizing f (¢) with:
Yx(t)||? X(t)p||?
f<¢>:“f(m2:”-() I -
IYx@IP [IX(2)gll
Now we can simplify this ratio using the auto-correlationtne@sde Cursi, E.S. and Sampaio, R.
(2019 Rxx andRyy, respectively, for the displacement fiekd(¢) € R™*") and the velocity

field (X(¢) € R"*™). Indeed, we can write:

IX¢I* =E ((X$)" X)) = &"E (X"X) ¢ = ¢"Rxx &, (4)

. .NT . ST
Xl = E ( (%) ><¢> = ¢"E (X'X) ¢ = ¢"Ryx (5)
whereE() is the expected value. Finally we get this new expressiorf{gr) (keeping in
mind thatn is the number of time samples which is rather big and thus easirbplified in the
ratio in the case of the derivative method used do not coesgbe/same number of samples as
in the original field) and we want to find:

(6)

mgx{f(d))_d) RW}_

P TRy
In order to find the maximum of (¢) we can express its derivative with respecitacalled
Vf(¢), such as:

_0f(¢)  2(¢"Ryx®) Raxd — 2 (¢"Rxx @) Ry @
VIO =56 = (67Rix )’

: (7)
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and then find wheV f (¢) vanishes. We can also find this maximum using Lagrange nestip
In both cases we will find the following eigenvalue problenttesexpression of the two initial
propositions. The problem is equivalent to:

Rxx &r = MeRyx P, k=1,..,m. (8)

Solving this eigenvalue problem we get the eigenvaluestise and the eigenvectors, the
¢.’s, such as the,’s are in ascending ordek{ > X\, > ... > \,,). There is arelation between
the auto-correlation of the velocity and the correlationhaf acceleration and the displacement

such aRyy = —Ryy. From this relation we get the following eigenvalue probletrich leads
to the same results.
Rxx @r = — ARy @r, k=1, ..m. 9)

Using ¢y, it is possible to define

Vi = Rxx @x. (20)

At this step we are able to find several parameters from aatispient field of a mechani-

cal system. We can identify the, (the Smooth Value - SV), the, (Smooth Mode - SM)

and they,, (Dual Smooth Mode - DSM). Depending on the characteristidh® system, we

can interpret these parameters differently, as seen inahieiloutions of Bellizzi and Sampaio
(Bellizzi, S. and Sampaio, R20129, Bellizzi, S. and Sampaio, R2013, Sampaio, R. and Bellizzi, S.
(2011), Sampaio, R. and Bellizzi, $20140 andSampaio, R. and Bellizzi, $20149) and also

in the one of the Farooq and Feeny’s woRear00q, U. and Feeny, B.R2008.

2.2 Expansion Principle

From this decomposition we do have two different bases, rtiwosh basis called®, formed
with the ¢,’s, and the smooth dual basis, calléd formed with they,’s (for £k = 1,....m
with m as the number of measuring points). Now we propose to use tivesbases to find the
smooth expansion of (¢) and its dual smooth expansion.

2.2.1 Smooth expansion in th&-basis

Considering the expansion ¥ft) in the ®-basis we can writX (t) = >, | & (t)¢}, which
can be simplified using a normalization conditi@fnRXXqﬁk = 1 and usingy,. Then, we can
find the Dual Smooth Components (DS&]¢):

() = 2 (1)

2.2.2 Dual smooth expansion in th&-basis

Let us consider th&-basis to expresX(¢). The dual smooth expansion of this field into
this basis can be written a§(t) = >}, xx(t)y{. Following the same procedure applied in
the Smooth expansion in thie-basis, it is possible to obtain the the Smooth Components (SC)
X ():

_ X(t)w
==

Xk (t) (12)
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At this step, we can notice an interesting property for the&im Components. Let us consider
the square of it and develop to the following form:

E(xi (1)) = ¢f Rxx dr. (13)
Now considering the original eigenvalue problem formulateEq.@8) we can write:
E (xi(t) = - (14)

2.3 Energetic point of view

An interesting thing with SD is the energetic study that camiade with this method. Let
us call the “energy” of the fielXX(¢) the expressioft (| |X(t)H2) that can be reduced (using the
dual smooth expansion). From the dual smooth expansion e ge

X(t) = )l = IXOP =" | a®wi]] (15)

The expression of the “energy” can then be simplified usimgpttevious formulation and we

get:
E (|[X(t) <Z\|xk ¢2§H) Z[ (X (O) E (|19xl1)] - (16)

k=1

Simplifying using Eqg.L4) we can find the final expression for the “energyft) as

E (/X (t) ZAk |l - (17)

Note that, from this formula it is quite easy to find the enecgptured in each mode (the
identified mode with the SD which, sometimes, does not cpaord to a physical mode) during
the simulation since the expression:

> Ak [[4px |
k=1

represents the fraction of energy captured by the miatlging the simulation. This value can
be a really good way to verify if a mode has been well excitedndua simulation and then if
the estimation of its frequency and mode shape can be vatidaiso, this parameter is crucial
for identification of non-linear systems since knowing thergy is essential.

2.4 Modal Assurance Criterion - MAC

In order to evaluate the mode badigound from SD s ) with respect to the expected ones
we will use the Modal Assurance Criterion, called MAC repregagon. According to Allemang
Allemang, R.J(2003, this tool is a good way to verify if modes found from one nuetl{SD
in our case) correspond to modes found by another methaua ¢fre initial eigenvalue problem
for us, defined as the modes shapes basg;). The formulation of this criteria is:

Lz
(T, ¥sn) (PEo¥eic)

MAC(Ysp,¥ria) = (29)
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where the notation]” denotes the complex conjugate transpose of the quantityud aote
that for identical modes from two different methods the MA®usld give one. However, since
the orthogonality is in relation to the stiffness matrix netthe MAC value is not null for two
different modes.

3 SMOOTH DECOMPOSITION AS A MODAL ANALYSIS TOOL FOR DISCRETIZED
UNDAMPED SYSTEMS

Any continuous undamped system can be written (thanks tdidoeetization by finite el-
ement for instance) in a matrix form of the classical dynaegoation, wheré/ is the mass
matrix, K is the stiffnessx(¢) andX(t) represent respectively the generalized displacement and
the acceleration fields of the system. The excitation of yséesn is represented bt ).

MX(t) + Kx () = f(1). (20)
From EQ.R0) we can write the acceleration as
X(t) = —MTIKx (t) + MM (). (21)
The modal parameters are found solving the classical exeaproblem:
M~ Ky, = witpy. (22)

where,w;’s are the squares of the natural frequencies of the medasyistem with associated
normal modes),, (results used as reference). First let us remind the irgiggdnvalue problem,
given by Eq.9), and adapt it to our case:

Ruxr, = —M:Rsxbr., k=1 ..m. (23)
Then, using Eg41) and the cross-covariance definition, we can write:
Rxxd)k = —)\kE [X(t)XT<t)] ¢k
= —XME [(-MT'KxT(t) + MH(t)) X" (t)] ¢
= MM TKE [X(6)X(1)] dx — MM TE [f(£)XT ()] .
0
= MM KR — MM 'Ry (24)

Then, as the response and the forcing are not correlated aathe time instarit(see later in
this paper) and zero-mean value signals, also using thatawdiof the auto-covariance, we can
write (reorganizing):

1
M_IKRxx¢k - /\_kax(,bk- (25)

The eigenvalue problems given by Eg2) and @5) correspond to same mechanical system,
thus we get the following equivalence:

1
M=Ky = with <= M KRa@r = 1Ry (26)
k
Thanks to EqZ6) we get the following interpretation of the parameters ahaadr undamped
system:
2 1
Yk T A0 (27)
"/)k = Rxx¢k:~
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3.1 Correlation between random force and displacement

In this section we will rapidly show why the term with the calation between the force and
the displacement is equal to zero in E4) First, let us consider a forggt) and the associated
response of a systemit). The correlation between the forgeat the instant: and the response
at the instant is:

Ryo(u,s) = E[f(u)z(s)]
_ Epﬂw/sh@ﬁ@—vM4

—00

- | [ ao)srs-val

= / h(v)Rss(u, s —v)dv. (28)
In Eg.@8), the functioni(v) is the response of the system to an impulse. Then, consigimn
force is stationary we can proceed with:

Rys(u,s) = / h(v)Rsp(s — v —u)dv. (29)

Even though the integrand dependsson u, for smalls, Ry, (u, s) is a function ofs as it
enters in the limit of the integral. Now, considerih¢) does not diverge fot — oo, which
means that the system is stable, and, consideringithiat— oo, one can show th&, (u, s)
approaches a simple dependencesenu. Now, an interesting point consists in considering
the delay the response needs to become stationary. Thediedatly depends on the damping
of the system (indeed, the higher is the damping, the faséesignal reaches stationarity). For
undamped cases, the number of samples has to be big enougbue etationarity. Then,
the response of the system approaches stationarity when oo, we can define the variable
T = s — u and get:

Rps(u,s) = Rpus —u)

- Rf:v(T)
= /_ h(v)Rss(T — v)dv
= /_OO h(T — v)Ryf(v)dv. (30)

As we have said earlier in this paper, the force is random aedraed to be a white noise
with a frequency range defined in the frequency bands; 2] where f, is the acquisition
frequency (known from the simulation or the experimen®, dluto-correlation of the force is:

o7 sin (fsv)

Ryp(v) = T (31)

In this equationa]% represents the variance of the force (white noise). Fronpteeious equa-
tions we get:

2 in v 00
R.(7) %(Uf) /_OO h(r —v)§(v)dv
_ s
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As it is well known, the response functiarit) to an impulse (applied &t= 0) is zero when
t < 0 and oscillating when > 0. In Eq.(32) we consider(—7) then we switch the oscillating
part of the response with the other one (the zero-one). mprtant to say that in our cases,
we consider causal mechanical systems then the correfation< 0 is not relevant (the oscil-
lating part of the function) but the other one % 0 ) is crucial and for this part the function is
zero. Finally, forr > 0, Ry, (7) — 0 for a time of simulation or experiment long enough to get
stationarity (the stationarity can be reached faster fanmd systems).

In order to show the phenomena let us consider a simple dampetfanical system with
only one degree of freedom. The system consists of a thass 10 kg, a springk’ = 40 kN
and a dampe€’ which will be responsible for two different values of modalndping called,
such as; = 0.95% and(, = 1.9%. We use a Gaussian white noise for the excitatign)
such as its statistics parameters age = 0N andor = 100 N. The acquisition frequency
fs = 500 Hz. For each case of damping, we will show results of the tatrom between
the force and the displacement for different numbers of $asmwhich means different time
duration of simulation.

Correlation between force and response - 1Dof Correlation between force and response - 1Dof
samples = 2%° ¢ = 0.95% Samples = 2%° ¢ = 1.9%

. ANAANA AN
£ RATATATATAY;

NN

I I I I I I I I I I I I I I I I I I I
1 08 06 04 02 0 02 0.4 06 08 1 1 08 06 04 02 0 02 0.4 06 08 1
7(s) 7(s)

Figure 1: Comparison between the calculated correlé®en (blue) and the estimated one through the Scaled
Impact Response Function (red) for different values of damp

Correlation between force and response - 1Dof Correlation between force and response - 1Dof
samples = 28 ¢ = 0.95% samples = 28 ¢ = 1.9%

L L L L L L L L L L L L L L L L L
-1 -08 0.6 0.4 02 0.2 0.4 0.6 08 1 -1 -0.8 0.6 0.4 02 0.2 0.4 0.6 08 1

0 0
7(s) 7(s)

Figure 2: Comparison (bis) between the calculated corogl&t ;. (blue) and the estimated one through the Scaled
Impact Response Function (red) for different values of damp
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Correlation between force and response - 1Dof Correlation between force and response - 1Dof
Samples = 2%t ¢ =0.95% Samples = 22 ¢=1.9%

I I I I I I I I I I I I I I I I I I I
1 08 06 04 02 0 02 0.4 06 08 1 1 08 06 04 02 0 02 04 06 08 1
7(s) 7(s)

Figure 3: Comparison (ter) between the calculated corogl& ;. (blue) and the estimated one through the Scaled
Impact Response Function (red) for different values of damp

Thanks to the results presented by Fij2 and3, we can first validate the E@2) and we
can also show that for a number of samples big enough (whi@nsa simulation time also
sufficiently big) the correlation between the force and #&ponse is equal zero if the force is
random forr > 0 which is the case in E@). The same conclusion can be reached faster if
we consider the damping of the system as we have said before.

3.2 Application of the method

Let us apply this method to a problem. To illustrate this tlgewe can observe the cantilever
beam presented in Fig. This system has got the following mechanical properties: 1 m,
E = 200GPa = 200 x 10° N.m2, I = 833 x 107 m* andp = 7850 kg.m3. The
concentrated force applied at the free end of the beam isreskto be random withr = 0 N
andor = 10 N.

o

ELAp

L

Figure 4: Cantilever beam submitted to random force at e édge

In order to solve this continuous problem we discretize iffibjte elements. For this dis-
cretization we consider the Euler-Bernoulli theory thus weétgo degree of freedom for the
finite element, the deflection called(z, ¢) and the rotation of the transversal section called
0(x,t).

From the finite element discretization we get the mass affdests matrices of the beam
(respectivelyM andK) and from them we can easily find the natural frequencies aodem
shapes of the system solving the eigenvalue problem defmEd.i@2). These results are the
reference for the comparison with results we get from Shhik¢ase we do not consider modal
damping.

Let us now simulate the dynamic response of this system. ifi@ation is made (by mode
superposition) such as we get a number of samples 409600 with an acquisition frequency
fs = 1.3 kHz (equivalent to &15s-long simulation). A convergence analysis was made on the
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first natural frequency calculated from the mass and thimesi§ matrices. It was verified that a
discretization with five linear elementd,;,. = 5 is good enough to get good approximation to
the first natural frequency.

From this simulation we can plot the Power Spectral DensR$b (S(f)) of the response
using the following number of samples in a blodk = 8192. Figure5 shows the one-sided
spectral density in Hertz ( f) of the vertical displacement at the free edge. Thanks tqolbis
we can see that the response of the system is composed by filesrfgince there are five peaks
on the one-sided spectral density of the response). Thadraies were the peaks take place
are then written in the following table.

|
/

50 /‘
-

e
/‘\ N° Frequences (Hz)
\/ \\'/

G(f)

-201

=3

\
\\ //
\r

-250

| |
| ]

fi 8.093

f 1 51.10

a0 f3 143.6
fa 283.7
%0 0 wr;o 250 31;0 41‘)0 5(;0 6(;0 700 f5 47 O . 8
Frequence (Hz)
Table 1: Frequencies of the peaks in the one-
Figure 5: One-sided Power Spectral Densitf) sided Power Spectral Density of the response.

From the response (only vertical displacement cali¢d, t)) of the system excited with the
random forceF'(t) we can apply the Smooth Decomposition and identify natuegjencies
and mode shapes and compare them to the expected onesteal¢tdan the mass and stiffness
matrices generated from the finite element discretizatanst let us have a look on the natural
frequencies presented in the TaBle

N° Freq. EIG (Hz) Freq. SD (Hz) Rel. Error (%)

1 8.1539 8.1537 0.0025
2 51.125 51.124 0.0015
3 143.59 143.59 0.0024
4 283.67 283.66 0.0015
5 470.81 470.82 0.0013

Table 2: Comparison of natural frequencies from SD and tles calculated from the mass and stiffness matrices.

We can also compare the mode shapes of the five first modes systesm and their corre-
spondence through the MAC representation to get a bettarafleur results (see Fig).

This example shows how SD can be used as a modal analysisorobhéar undamped
systems.
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w
-

Number of DoF
N ~
e
J
e —
b /44
———

B
|

1 SD Modes

Mode Number

Figure 6: Left: Mode shapes comparison / Right: MAC betwéenEIG-resolution modes and the SD ones

4 SMOOTH DECOMPOSITION FOR GENERAL SYSTEMS

4.1 Interpretation of the method

In this part we will consider damped systems. This consta@ras closer to real mechanical
systems which can be formulated thanks to the dynamics iequat

MX 4+ CX + KX +A(X) = F, (33)

whereM, K andC are the mass, the stiffness and the damping matrices of stemsyF is the
forcing vector which, in our specific case is not monitoredkfuiown excitation, characteristic
of the output only methods). The term calladepresents the nonlinearity of our mechanical
system.

As it was shown in the literature (namely Bellizzi and Samedlizzi, S. and Sampaio, R.
(20195 and Sampaio, R. and Bellizzi, 20143), the interpretation for those cases is not as
simple as for the linear ones. Indeed, we cannot find the siegulivalence shown with EGX).
These considerations provide from the statistical liresdion method thus they give results for
a linear system. If we apply these equivalences, given by(ZEf, to non-linear systems we
actually get the modal parameters for the linear equivadgatem but not for the non-linear
one.

If we consider a damped system with tBematrix as a linear combination of tid andK
ones (i.e.C = aM + K) we can reach a similar interpretation as it was done for onpeal
systems. From this method we do have access to the normakmbtlee systems.

4.2 Influence of the modal damping on the identification quaty

In this part we will consider the same mechanical systemHtisttime we consider modal
damping through thé-coefficients. In order to observe the influence of the dampin the
identification made with SD we will investigate the evolutiof the relative error in the identi-
fied natural frequencies with increasing modal damping.eNloat here the modal damping is
considered constant i.e. the same for all modes.

This example will investigate the influence of the modal damggactor on the evaluated
frequencies from SD. To discuss this we will observe theikaarror in each natural frequency
for different values of the modal facto¥o < ¢ < 10%. Keep in mind that the modal damping is
constant. On the Fig. we can see that the relative error in the natural frequengiesreasing

linearly.
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Figure 7: Evolution of the relative error in the five natunaduencies with respect to the modal damping

Now let us have a closer look on the identification made With 10%. In the Table3 we
can see that the relative error for the estimated naturqliecies is quite important.

N° Freq. EIG (Hz) Freqg. SD (Hz) Rel. Error (%)

1 8.1539 8.1497 0.0517
2 51.125 50.496 1.2441
3 143.59 139.44 2.9750
4 283.67 268.51 5.6458
5 470.81 441.88 6.5472

Table 3: Comparison of natural frequencies from SD and tles calculated from the mass and stiffness matrices.
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Figure 8: Results for the cantilever beam considering mdedaiping of 10%. Left: Mode shapes comparison /
Right: MAC between the EIG-resolution modes and the SD ones

But, in the same time, we can see that the estimation of the stuajges was not that bad for
the first modes. This proves that for high modal damping fadfois method is not adequate.
As SD gives the evaluation of the normal modes, it was expdoiehigh damped systems an
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inadequate evaluation of them and their frequencies. Coimgemodes, the conclusions are
similar. For small damping factors the approximations arigeggood but for bigger ones we
observe some mode shapes that do not correspond to the expeets.

5 CONCLUSIONS

In this article we have discussed the concept of Smooth Dposition and explained the
method. Its properties were exposed and the concept of Dnabf Modes were presented.
We showed simple examples where SD was used as a modal tabkfatentification of me-
chanical systems.

As we have seen in the first part, this method can be appliedifdamped linear systems
which makes sense since this method was developed exacthjigdkind of systems. We have
seen in the second part that SD also works for low-dampeédmsgstHowever, for high-damped
systems SD is not really adapted and should be improvedeth@es SD gives the normal modes
associated to a given field, this method may not work for figaimodes with an imaginary part
which may be the case for damped systems.

In previous articles~oiny, D. and Wagner, G.B. and Sampaio, R. and Lima(Z®17 and
Wagner, G.B. and Foiny, D. and Sampaio, R. and Limg2R17 we have shown that SD is a
powerful for discrete system with several degrees of freeda this article we have shown an
application of SD to continuous systems discretized bydialement method.

A crucial point that was not developed in this article is thgortance of the excitation
guality. The excitation of the system has to respect somdittons to get a good approximation
and estimation of the modal parameters. If the excitatiogsdwt satisfy the properties, the
results are affected and this has to be taken into accouttidanterpretation.

Finally, it is possible to say that SD is a nice tool for modaalgsis and can be applied
to continuous systems. We would like to highlight that thethod can also be applied to
identification of non-linear systems since it is possibldefine an energy indicator.
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