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Abstract. Problems related to the vibrations of axially moving flexible beams made of functionally
graded materials are addressed. The problem of an axially moving beam may be interpreted as a tele-
scopic system where the mass is not constant, the mechanism of elastic deformation is transverse bend-
ing.

A thin-walled beam with annular cross-section is analyzed, where a continuously graded variation
in the composition of ceramic and metal phases across the wall thickness with a simple power law is
considered.

In this paper a finite element scheme is employed to obtain numerical approximations to the varia-
tional equation of the problem. Normally, finite element approaches use fixed-size elements, however
for this kind of problems the increase of the number of elements, step by step as the mass enters is a
cumbersome task. For this reason an approach based on a beam-element of variable domain is adopted.
The length of the element is a prescribed function of the time.

Results highlighting the effects of the beam flexibility, tip mass and material constituents on the
dynamics of the axially moving beams are presented and the corresponding conclusions are given.
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1 INTRODUCTION

Axially moving beams appear in a broad range of problems such us telescopic robotic ma-
nipulators, deployment of flexible antennas or appendages of spacecrafts, band-saw blades as
well as the rolling process of plates, wire rods, recorder tapes and belts, among others. In
this kind of problems the conservation of mass is not automatically satisfied because it may
change depending on the type of boundary conditions. That is, if the axially moving beam
is considered to be inextensible or axially rigid and it is supported between two fixed points
(the case of belts or band-saw blades), the mass of the system in the domain can be conserved
if the motion amplitude is small. However, in the case of telescopic cantilevered beam (the
case of robot arms), the mass of the system is not conserved as mass enters or leaves the do-
main. In this class of problems, the rate of entering mass is a prescribed value. The study of
flexible beams in a translational axial movement have been gaining attention in the last years
(Stylianou and Tabarrok, 1994; Behdinan et al., 1997a,b; Theodore et al., 1996; Imanishi and
Sugano, 2003; Al-Bedoor and Khulief, 1996, 1997), due to new applications in the areas of
robotics and spacecrafts (specifically modeling telescopic flexible actuators traveling through
prismatic joints). These last applications may operate under severe environmental conditions
such as high temperatures, requiring an extended operational life. Under these circumstances,
the use of functionally graded materials can offer some constructive answers in order to avoid
possible structural limitations.

The functionally graded materials are a kind of composites whose properties vary contin-
uously and smoothly from a ceramic surface to a metallic surface in a specified direction of
the structure. The ceramic face protects the metallic surface from corrosion as well as thermal
failure, whereas the metallic part offers the strength and stiffness to the structure. The material
properties are normally modeled varying according to a power law along the thickness of a shell
(Reddy and Chin, 1998) that constitutes the structure. The research in structural problems, fo-
cusing attention in the employment of functionally graded materials, has been mainly devoted
to eigenvalue analysis of beams (Oh et al., 2003), plates and shells (Reddy and Chin, 1998).
However, to the best of author’s knowledge, in spite of its importance, no research work related
to the vibrations of axially moving flexible beams made of functionally graded materials has
been yet presented.

In the present work, a study on the vibrations of flexible sliding beams made of functionally
graded materials, deployed or retrieved through a prismatic joint, is performed. The beam
is modeled employing Euler-Bernoulli assumptions for small displacements and deformations
(Stylianou and Tabarrok, 1994; Theodore et al., 1996). A finite element scheme is employed
to obtain numerical approximations to the variational equation of the problem. Normally, finite
element approaches use fixed-size elements, however for this kind of problems the increase
of the number of elements, step by step as the mass enters is a cumbersome task that needs
a very large number of small elements in order to reach reasonable smoothness and accuracy
in the results. Other authors (Al-Bedoor and Khulief, 1996, 1997) developed a finite element
scheme where a transition element is employed in the link as the mass enters. Although the
use of transition element is an interesting idea, however it presents some inconveniences in
the programming stage because one has to consider that the element is partially housed in the
hub, then without flexural deformation. For this reason an approach based on a beam-element of
variable domain developed earlier by other authors (Stylianou and Tabarrok, 1994) is adopted in
this work, where the length of the element is a prescribed function of the time. The finite element
methodology introduced by those authors is revisited in order to make clear its use in the context
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of a beam constructed with functionally graded materials. A study of dynamic responses for
different cases of axial deploying patterns and material configurations is performed.

2 STRUCTURAL MODEL

2.1 Basic Assumptions

Figure 1 shows a horizontal flexible beam of variable lengthL(t) moving along its longi-
tudinal x-axis at a prescribed velocity,V = ∂tL (t). The beam has a total lengthLT , and an
annular cross-section, where the material properties are functionally graded in the thickness.
The following hypotheses are considered in order to develop the model: (a) Bernoulli-Euler
assumptions are invoked to model the structure, i.e. the cross section is preserved from distor-
tions in its plane, rotary inertia effects are neglected and extensional deformation are supposed
to be small; (b) the gravitational potential energy due to the elastic deformations is not taken
into account in comparison to the overall reference motion; (c) A tip mass is considered to be
concentrated at the free end of the beam. (d) The beam is composed by ceramic and metallic
phases, where a simple power-law-type definition is employed for the volume fraction of metal
(ceramic) in the thickness.

Figure 1: Beam configuration .

The functionally graded shells are considered to be composed by many isotropic homoge-
neous layers (Tanigawa, 1995). The stress-strain relations for a generally isotropic material
including thermal effects are expressed as (Kadoli and Ganesan, 2006):

σxx

σss

σxn

σns

σxs

 =


Q11 Q12 0 0 0
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0 0 0 0 Q66
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
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εns

εxs

−


α̂∆T
α̂∆T

0
0
0



 (1)
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The matrix elementsQij are defined in terms of effective elastic properties:

Q11 =
Eeff

1−ν2
eff

Q12 =
Eeff νeff

1−ν2
eff

Q44 = Q55 = Q66 =
Eeff

2(1+νeff)

α̂ =
αeff

1−νeff

(2)

As the Euler-Bernoulli hypotheses are invoked, only the first two components of stress and
strain of equation (1) would be employed.

The effective material properties are given by:

Eeff (n) = (Eo − Ei)

(
2n + e

2e

)K

+ Ei (3)

νeff (n) = (νo − νi)

(
2n + e

2e

)K

+ νi (4)

αeff (n) = (αo − αi)

(
2n + e

2e

)K

+ αi (5)

ρeff (n) = (ρo − ρi)

(
2n + e

2e

)K

+ ρi (6)

κeff (n) = (κo − κi)

(
2n + e

2e

)K

+ κi (7)

whereEeff , νeff , αeff , ρeff andκeff are the effective modulus of elasticity, effective Poisson’s
coefficient, effective thermal expansion coefficient, effective mass density and effective ther-
mal conductivity coefficient, respectively. These properties are defined forn ∈ [−e/2, e/2],
wheree is the thickness. The subindexes”o” and”i” stand for outer and inner surfaces, respec-
tively. K (0 ≤ K ≤ ∞) is the power law exponent. It becomes evident that ifK = 0 the
beam is entirely made of the outer material, normally ceramic. In addition to the exponential
laws of variation in the radial direction, the properties may be subjected to variation with the
temperature that can be represented in the following expression (Reddy and Chin, 1998):

mp = p0

(
p−1T

−1 + 1 + p1T + p2T
2 + p3T

3
)

(8)

wheremp is a material property in general (i.e. modulus of elasticity, or Poisson’s coefficient,
etc.),T is the absolute temperature and the coefficientspi are unique for a particular material
and obtained by means of a curve fitting procedure (Praveen et al., 1999). Thus the material
properties can be represented as a function of the thickness and the temperature.
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2.2 Variational Formulation of the Structural Member

The displacement field taking into account the hypotheses of the previous paragraph is:

ux (x, s, n, t) = −
[
Y (s)− ndZ

ds

] ∂v(x,t)
∂x

uy (x, s, n, t) = v (x, t)
(9)

The displacement field (9) is a particular case of displacement fields of thin-walled beam
formulations (Oh et al., 2003; Cortinez and Piovan, 2002), where the points{Y (s), Z(s)} de-
scribe the middle line of the wall thickness (see Figure 1). Under the hypotheses proposed in
the previous paragraph, only the axial strain is considered, which can be expressed as:

εxx = ε̄xx + nκ̄xx (10)

whereε̄xx andκ̄xx are given by:

ε̄xx = −Y (s) ∂2v
∂x2

κ̄xx = dZ
ds

∂2v
∂x2

(11)

Then, the strain energy of this structural member can be described as:

Ed =
1

2

∫ L(t)

0

J11
11

(
∂2v

∂x2

)2

dx (12)

The kinetic energy of the system may be expressed as:

Ek =
1

2

∫ L(t)

0

Jρ
11

[(
∂v

∂t
+

∂x

∂t

∂v

∂x

)2

+
∂V

∂t
(L− x)

(
∂v

∂x

)2
]

dx +
1

2
Jρ

11LT V 2 (13)

In expressions (12) and (13), L(t) is the instantaneous length of the protruded part of the
sliding beam. In expression (13), the first term, the underlined term and the double underlined
term correspond to the transverse complementary kinetic energy, the kinetic energy due to axial
acceleration - also called co-kinetic energy (Behdinan et al., 1997a,b) - and the complementary
longitudinal kinetic energy (or kinetic energy due to the axial motion of the rigid body), respec-
tively. This last term is a prescribed quantity since the sliding velocityV (t) is prescribed. It has
to be noted that expressions (12) and (13) are similar to the ones of the case of isotropic materials
(Stylianou and Tabarrok, 1994). Note also, that in equation (13), ∂x(t)/∂t = ∂L(t)/∂t = V ,
due to the condition of inextensibility. The constantsJ11

11 andJρ
11 are the flexural stiffness and

sectional inertia for a functionally graded material, that are given by the following expressions:

J11
11 =

∫ 2πRm

0

[
Ā11Y

2(s) + D̄11

]
ds

Jρ
11 =

∫ 2πRm

0

∫ e/2

−e/2
ρeffdnds

(14)
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In the above expressionsρeff is obtained from (6); Ā11 andD̄11 are modified shell-stiffnesses
for functionally graded materials which are obtained eliminatingNss andMss (which are con-
sidered negligible as a common procedure for composites materials (Cortinez and Piovan, 2002;
Oh et al., 2003)) and reducinḡεss andκ̄ss from the following expression:

Nxx

Nss

Mxx

Mss

 =


A11 A12 B11 B12

A12 A11 B12 B11

B11 B12 D11 D12

B12 B11 D12 D11




ε̄xx

ε̄ss

κ̄xx

κ̄ss

 (15)

whereNxx andNss are shell forces,Mxx andMss are shell moments, andAij, Bij andDij are
given by:

{Aij, Bji, Dij} =

∫ e/2

−e/2

Qij

{
1, n, n2

}
dn (16)

Since this problem has mass entering (or leaving) the system, normally it is described by
means of an Eulerian formulation. However, as it was shown earlier for this kind of problem
(Behdinan et al., 1997a; McIver, 1973), the Lagrangian formulation can still be used even for
the case of a system with changing mass. In these circumstances, the equation of motion can be
obtained by the following Lagrangian expression:

δL = δEk − δEd = 0 (17)

2.3 Finite Element Discretization

As it was mentioned previously a finite element scheme will be employed to solve the motion
equation. The approximation scheme for this sliding beam model for functionally graded ma-
terials is based on the concept of variable domain element introduced in the nineties (Stylianou
and Tabarrok, 1994) for the case of isotropic materials. In this context, the length of the el-
ement is not considered fixed, but varying according to the prescribed sliding velocityV . In
order to develop the finite element equation for the variable domain element, the free part of the
sliding beam is divided into a number of equal length elements. Under this circumstances, the
Lagrangian (17) for a i-th element is given by:

δLi =
δ

2

∫ le(t)

0

{
Jρ

11

[
∂v̄

∂t
+

∂LCi

∂t

∂v̄

∂x̄
+

∂V

∂t
(LCi − x̄)

(
∂v̄

∂x̄

)2
]
− J11

11

(
∂2v̄

∂x̄2

)2
}

dx̄ = 0

(18)
where the overbar in the variables corresponds to the homonym variables but in the element do-
main. The location of the spatial variablex̄(t) in the element domain, is given by the following
expression:

x̄(t) = x(t)− Li(t) (19)

Then, since∂x(t)/∂t = ∂L(t)/∂t = V , the velocity of position change in the element
domain is given by:

∂x̄(t)

∂t
=

∂x(t)

∂t
− ∂Li(t)

∂t
=

∂L(t)

∂t
− ∂Li(t)

∂t
=

∂LCi(t)

∂t
(20)
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where, beingNe the number of elements, the complementary lengthLCi(t) is given by:

LCi(t) = L(t)− Li(t) = L(t)

[
1− i− 1

Ne

]
(21)

The flexural displacement can be represented by the following vector expression:

v = FT qe (22)

where the shape functions and nodal variables are given by:

F =
{

1− 3x̄2

l2e
+ 2x̄3

l3e
, x̄− 2x̄2

le
+ x̄3

l2e
, 3x̄2

l2e
− 2x̄3

l3e
,− x̄2

le
+ x̄3

l2e

}
qe =

{
v1,

∂v1

∂x̄
, v2,

∂v2

∂x̄

}T
(23)

It has to be mentioned that,le is time dependent, consequently the finite element expressions
for the derivatives of variablev are:

∂v
∂x̄

= ∂F
∂x̄

T
qe

∂2v
∂x̄2 = ∂2F

∂x̄2

T
qe

∂v
∂t

= ∂F
∂t

T
qe + FT ∂qe

∂t

(24)

Now, substituting (24) into expression (18), performing variational calculus, integrating in
the time variables and arranging in terms of the vector of nodal variables, nodal velocities and
nodal accelerations, one can arrive to the following element equation:

me
∂2qe

∂t2
+ ceq

∂qe

∂t
+ keqqe = 0 (25)

whereme, ceq andkeq are the elementary matrices of mass, equivalent damping and equivalent
stiffness, respectively. The elementary mass matrix is given by:

me =

∫ le(t)

0

Jρ
11F

T Fdx̄ (26)

Whereas the elementary equivalent damping and equivalent stiffness matrices are given by:

ceq = ce1 − ce2 + ∂me

∂t

keq = ke0 −me1 −me2 + ∂ce1

∂t

(27)

where

ke0 =
∫ le(t)

0
J11

11
∂2F
∂x̄2

T ∂2F
∂x̄2 dx̄

ce1 =
∫ le(t)

0
Jρ

11

(
FT ∂F

∂t
+ ∂LCi

∂t
FT ∂F

∂x̄

)
dx̄

ce2 =
∫ le(t)

0
Jρ

11

(
∂F
∂t

T
F + ∂LCi

∂t
∂F
∂x̄

T
F
)

dx̄

me1 =
∫ le(t)

0
Jρ

11

[
∂F
∂t

T ∂F
∂t

+ ∂LCi

∂t

(
∂F
∂t

T ∂F
∂x̄

+ ∂F
∂x̄

T ∂F
∂t

)
+

(
∂LCi

∂t

)2 ∂F
∂x̄

T ∂F
∂x̄

]
dx̄

me2 =
∫ le(t)

0
Jρ

11 (LCi − x̄) ∂V
∂t

∂F
∂x̄

T ∂F
∂x̄

dx̄

(28)
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It is clear thatke0 is the common structural stiffness matrix, but the other three matrices ofkeq

are mass-dependent components of the equivalent stiffness of the sliding beam. The damping
matrix is in general non-symmetric. If the motion is such that the mass enters to the system
(i.e. extrusion), then matrixceq is positive definite, but if the mass is leaving the system (i.e.
retraction), the matrixceq is negative definite.

After the assembling process, one can get the following expression:

M
∂2Q
∂t2

+ Ceq
∂Q
∂t

+ K eqQ = 0 (29)

whereM , Ceq and K eq are the global matrices of mass, equivalent damping and equivalent
stiffness, whereasQ is the global vector of nodal variables.

The damping matrixCeq can be modified in order to account for structural damping as:

Ceq = C1 − C2 +
∂M
∂t

+ CRD (30)

The matrixCRD corresponds to the system proportional Rayleigh damping given by:

CRD = αM + βK (31)

whereM and K are the global mass and structural stiffness matrices, respectively; whereas
parametersα andβ are computed from two experimental modal damping functions (Bathe,
1982; Meirovith, 1997).

The Matlab solvers are employed to simulate numerically the finite element model, for this
reason the equation (29) is represented in the following ODE form:

A
dW
dt

+ BW = 0 (32)

where:

A =

 Ceq M

M 0


B =

 K eq 0

0 −M


W =

{
Q, dQ

dt

}T

(33)

3 NUMERICAL STUDIES

3.1 Convergence and Comparisons with other Approaches

In the following paragraphs convergence check and comparison between different approaches
are performed. In these calculations the structural damping is neglected.

Figure 2 shows the tip displacements of four different discretization (with two, four, six and
eight elements) of a isotropic beam tested by other authors (Al-Bedoor and Khulief, 1997),
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whose properties are shown in Table 1. The deployment of the beam follows a profile forL(t)
given by:

L(t) = L0 + V.t (34)

whereL0 = 1.8m is the initial length of the beam outside the hub,V = 0.3m/s is the deploy-
ment velocity. For the simulation process, a tip displacement of -0.005 m and null velocities are
imposed in the initial state vector.

Properties Value
Total lengthLT [m] 3.6
Flexural StiffnessJ11

11 [N/m2] 756.65
Mass per unit lengthJρ

11 [Kg/m] 4.015

Table 1: Data for the aluminium beam tested

Figure 3 shows the time consumed in the calculation (in a Pentium IV computer with 3.2
GHz, 512 RAM) of the four models. As it can be seen from Figures 2 and 3, models with few
element can reach acceptable results in reasonable short time.
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Figure 2: Response for different discretization cases.

Figure 4 shows the tip deflection of the previous isotropic beam, comparing the present
formulation and the transition element formulation (Al-Bedoor and Khulief, 1997). Both ap-
proaches employed beam models with four finite element.

The tip deflections of the retracting beam are compared in Figure 5. Once again the present
formulation and the transition element formulation (Al-Bedoor and Khulief, 1997) are com-
pared. In this case the retracting pattern with the same form of expression (34), but with
L0 = 3.0m, V = −0.3m/s and an initial tip displacement of−10mm. For this last calcu-
lation, a model with four elements was employed. An excellent agreement between the two
approaches is observed.
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Figure 3: Computation time for different discretization cases.
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Figure 4: Tip deflection of a deploying beam atV = 0.3m/s.

3.2 Simulation the Dynamics of Beams made of Functionally Graded Materials

In this paragraph an analysis of the dynamics of sliding beams with different configurations
of Functionally Graded properties is performed. The beam for the studies performed in this
paragraph is constructed by a material whose properties vary functionally from a stainless steel
surface of SUS304 to a ceramic surface of Silicon Nitride. The basic properties of these com-
ponents components (Reddy and Chin, 1998; Oh et al., 2003), are given in Table 2. For every
simulation the beam has a total lengthLT = 3.6m and the cross-section has a mean radius
Rm = 0.025m m. and a wall thicknesse = 0.004m.

As a first simulation, the two deployment profiles of expressions (35) and (36) are selected.
In (35) L0 is the initial free length of the beam,V is the sliding velocity anda is the acceleration.
In (36) L0 is the initial free length of the beam,τ andη are constants. The deployment pattern
(35) produces the deployment of the beam with a constant acceleration and contains (34) as
a particular case. The pattern (36) performs the deployment of the beam with time varying
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Figure 5: Tip deflection of a deploying beam atV = −0.3m/s

velocity and acceleration. Thus, under this pattern, the beam domain evolves with pulsatile
velocity (between zero andη/τ ) and sinusoidal acceleration.

L(t) = L0 + V.t +
at2

2
(35)

L(t) = L0 +
η

τ

[
t− τ

2π
Sin

[
2π

τ
t

]]
(36)

Figures 6 and 7 show the tip displacement of a beam under the extrusion corresponding to
deployment laws (35) and (36), respectively. For both simulations models with four elements
and imposing an initial tip displacement of -5 mm. were employed and a functionally graded
material with a ceramic outer surface and a metallic inner surface was adopted. No structural
damping and temperature effects were considered. The properties for the deployment law (35)
wereL0 = 1m, V = 2m/s anda = 3m/s2; whereas for deployment law (36), L0 = 1m,
η = 0.7 and τ = 0.2. In both figures it is possible to see the high frequency oscillating
deployment when the exponentK = 0, because the beam is totally made of ceramic which has
high stiffness.

Properties Material p0 p−1 p1 p2 p3

E[N/m2] SUS304 2.0104× 1011 0 3.0790× 10−4 −6.534× 10−7 0
Si3N4 3.4843× 1011 0 −3.0700× 10−4 2.160× 10−7 −8.946× 10−11

ν SUS304 0.3262 0 −2.0020× 10−4 3.797× 10−7 0
Si3N4 0.2400 0 0 0 0

ρ[kg/m3] SUS304 8166 0 0 0 0
Si3N4 2370 0 0 0 0

Table 2: Properties of Stainless Steel (SUS304) and Silicon Nitride (Si3N4)

It is easy to modify (Stylianou and Tabarrok, 1994) the finite element formulation in order
to account for a lumped tip massMT . Just a lumped mass term has to be added in the tip node
and the factorJρ

11 (LCi − x̄) in the matrixme2 has to be changed by(Jρ
11 (LCi − x̄) + MT ).
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Figure 6: Tip deflection of a deploying beam with a constant acceleration pattern.
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Figure 7: Tip deflection of a deploying beam with a sinusoidal acceleration pattern

Figure 8 shows the time history of the tip displacement of a beam with an exponent of
K = 200 deploying with the law (36), whereL0 = 1m, η = 0.8 andτ = 0.2. In this study,
the structural damping and the thermal effects are not considered . In one case a tip mass of
MT = 1kg (which is approximately the 20% of the initial mass of the protruded bar, i.e. at
t=0) is considered. As it was expected, the addition of a tip mass has the effect of lowering the
frequency of oscillations during the extrusion.

A final analysis evaluates the effect of structural damping with the inclusion of tip mass.
The coefficientsα andβ are calculated (Bathe, 1982) assuming for simulation purposes the
damping coefficientsξ1 andξ2 for the first and second frequencies respectively. Two cases are
simulated, in the case 1, the damping coefficients areξ1 = 1× 10−6 andξ2 = 5× 10−6, in the
case 2 the damping coefficients areξ1 = 2 × 10−5 andξ2 = 1 × 10−4. Figure 9 compares the
time histories of the tip displacement for a beam withK = 200 and a tip mass ofMT = 1kg,
taking into account and neglecting the structural damping. The deployment characteristics are
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Figure 8: Effect of the tip mass on the Tip deflection for a sinusoidal acceleration pattern,K = 200

the same to those of the cases of Figure 8. As it can be seen, in the case 1 the motion is lightly
damped, on the contrary the case 2 shows a more pronounced damping in the tip displacement
of the system since the damping coefficients employed in the calculation of Rayleigh damping
are twenty times greater than the ones employed in case 1.
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Figure 9: Tip deflection. Analysis of structural damping,K = 200

4 CONCLUSIONS

In this article a formulation for axially moving beams made of functionally graded materials
was developed. The structural model is based on the Bernoulli-Euler hypotheses including the
constitutive equations for a ceramic-metallic functionally graded material. The variation of
properties along the wall thickness of the annular cross-section, follows a simple exponential
law.

A finite element formulation was employed to simulate the dynamics of extruding and re-
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tracting beams. This formulation considers the use of a beam element of variable length which
showed a very good performance.

The finite element results obtained with this formulation for the tip displacement of a sliding
beam, agrees well with the results published by other authors employing the assumed modes
methods.

Two different patterns or deployment laws were tested in the protrusion of functionally
graded beams. The variation of the properties by means of the exponentK was analyzed.
The simulation results showed that the beam presents a high (low) oscillatory deployment when
it is composed mainly by the ceramic (metallic) component.

As a final conclusion, this kind of model is quite useful for the analysis of deploying beam-
like structures with specified deploying patterns, for both functionally graded and isotropic
materials. Although the model presents a relative complexity in its formulation (due to the
concept of element with variable length), it has a good computational performance.
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