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Abstract. Biot’s equations appear in geophysical applications where wave propagation in fluid saturated
porous media is considered, although in recent years they have also been applied to model ultrasonic
technics for osteoporosis or other bone-modifying diseases diagnosis.
It is well known that finite element solutions for propagating waves deteriorate rapidly with increasing
dimensionless wavenumber, even when the number of elements per wavelength is kept constant; this is
referred to as pollution error.
In this work we present a detailed analysis of the numerical behaviour of a finite element method used to
approximate the solution of the 1D Biot equations.
The study is performed by deriving and the dispersion relations and by evaluating the derived quantities,
such as the dimensionless phase and group velocities.
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1 INTRODUCTION

The propagation of waves in a porous elastic solid saturated by a single–phase compressible
viscous fluid was first analyzed by Biot in several classic papers. Biot assumed that the fluid
may flow relative to the solid frame causing friction. In the low frequency range, such flow is of
laminar type and obeys Darcy’s law for fluid flow in porous media. In the high frequency range,
Biot pointed out that a frequency correction factor had to be introduced in the Darcy coefficient.
Biot predicted the existence of two compressional waves, which he denoted type I and type II
compressional waves, and one shear wave. The three waves suffer attenuation and dispersion in
certain ranges of frequencies. The type I and shear waves have a behaviour similar to that in an
elastic solid, with high phase velocities, low attenuation and very little dispersion. The type II
wave behaves as a diffusion–type wave due to its low phase velocity and very high attenuation
and dispersion. For shortness, a porous elastic solid saturated by a single–phase fluid will be
referred to as a Biot medium.
The purpose of this paper is to analyze the numerical dispersion associated with the numerical
solution of the one dimensional Biot’s equations of motion employing the finite element meth-
ods as described in what follows.
Following the methods introduced in (Zyserman et al., 2003) we analyze the numerical be-
haviour of the finite element approximation by finding the analytic and numerical dispersion
relations, and studying the numeric phase and group velocities, and wave attenuation. We in-
vestigate how the defined numerical quantities depend on the number of points per wavelength,
so as to give an estimated lower bound on the latter in order to get a desired accuracy.

2 REVIEW OF BIOT’S THEORY

We consider a one dimensional porous solid saturated by a single phase, compressible vis-
cous and assume that the whole aggregate is isotropic. Let us and ũf denote the averaged
displacements of the solid and fluid phases, respectively; then

uf = φ(ũf − us),

is the average relative fluid displacement per unit volume of bulk material, where φ denotes the
solid effective porosity. Following (Biot, 1962), and denoting u = (us, uf), the 1D stress-strain
relations can be written in the form:

τ(u) = 2µ
∂us

∂x
+ (λc

∂us

∂x
+D

∂uf

∂x
),

pf(u) = −D
∂us

∂x
−Kav

∂uf

∂x
. (1)

Here τ(u) is the stress tensor and pf(u) the fluid pressure. The coefficient µ is equal to the shear
modulus of the bulk material, considered to be equal to the shear modulus of the dry matrix.
Also λc = Kc − 2µ, with Kc being the bulk modulus of the saturated material. Following
(Santos et al., 1992), (Gassmann, 1951) the coefficients in (1) can be obtained from the relations

α = 1 −
Km

Ks
, Kav =

[
α− φ

Ks
+

φ

Kf

]
−1

(2)

Kc = Km + α2Kav, D = αKav,
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where Ks, Km and Kf denote the bulk modulus of the solid grains composing the solid matrix,
the dry matrix and the saturant fluid, respectively. The coefficient α is known as the effective
stress coefficient of the bulk material.

2.1 The equations of motion

Let ρs and ρf denote the mass densities of the solid grains and the fluid and consider

ρb = (1 − φ)ρs + φρf

to be the mass density of the bulk material. Then the equations of motion are (Santos et al.,
1992)

ρb
∂2us

∂t2
+ ρf

∂2uf

∂t2
−
∂τ(u)

∂x
= f s, (3)

ρf
∂2us

∂t2
+ g

∂2uf

∂t2
+ b

∂uf

∂t
+
∂pf (u)

∂x
= f f .

The mass coupling coefficient g represents the inertial effects associated with dynamic interac-
tions between the solid and fluid phases, while the coefficient b includes the viscous coupling
effects between such phases. They are given by the relations

b =
η

k
, g =

Sρf
φ
, S =

1

2

(
1 +

1

φ̄

)
, (4)

where η is the fluid viscosity and k the absolute permeability. S is known as the structure or
tortuosity factor. Above a certain critical frequency ωc the coefficients b and g become frequency
dependent (Biot, 1956b; Johnston et al., 1987; Carcione, 2001); this effect is associated with the
departure of the flow from the laminar Poiseuille type at the pore scale. The value of ωc can be
estimated by the formula

ωc =
2η φ

a2
pρf

, (5)

where ap = 2(5k/φ)1/2 is the effective flow channel or pore size parameter calculated in
terms of the permeability k and the porosity φ (Johnson, 1982; Bear, 1972; Scheidegger, 1974;
Hovem and Ingram, 1979).
In this paper frequencies below ωc are considered, so that the mass coupling and viscous cou-
pling coefficients are assumed to be constant.

The equations (3) stated in the space-frequency domain become (Biot, 1956a), (Biot, 1956b),
(Berryman, 1980):

−ω2ρbu
s − ω2ρfu

f −
∂τ(u)

∂x
= f s (6)

−ω2ρfu
s − ω2 g uf + iω b uf +

∂pf (u)

∂x
= f f , (7)

where ω = 2πf is the angular frequency. These equations can be rewritten as

−ω2Pu+ iωBu− L(u) = F , (8)
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where

L(u) =

(
∂τ(u)

∂x
,−

∂pf (u)

∂x

)
,

P =

(
ρb ρf
ρf g

)
, B =

(
0 0
0 b

)
and F = (f s, f f).

Naturally, boundary conditions must be provided in order to completely define this problem. If
Γ is the boundary of the domain Ω, let ν the unit outer normal on Γ. Of course, as the 1D case
is being considered, ν =1 or ν =-1, and Γ is a set of two points. Set

GΓ(u) =

(
τ(u)ν · ν, pf(u)

)
, (9a)

SΓ(u) =
(
us · ν, uf · ν

)
. (9b)

The proposed absorbing boundary condition reads

− GΓ(u) = iωDSΓ(u). (10)

Here the matrix D in (10) is positive definite; it can be obtained from D = P
1

2N
1

2P
1

2 , where
N = P−

1

2M
1

2P−
1

2 and

M =

(
λc + 2µ α Kav

α Kav Kav

)
. (11)

2.2 Phase velocities and attenuation

Consider a compressional plane wave traveling along the x-axis, and define the potentials

ϕ = Ace
i(ωt−qx), ψ = Bce

i(ωt−qx),

where
q = 1D complex wave vector = qr − iqi. (12)

Replacing U = ∂ϕ
∂x

and W = ∂ψ
∂x

in (8), and assuming F = 0, the equations

(ρω2 −Hcq
2)Ac + (ρfω

2 −Dq2)Bc = 0, (13)
(ρfω

2 −Dq2)Ac + (gω2 − iωb−Mq2)Bc = 0.

are obtained. The fact that the strain and kinetic energies are positive allow the choice of two
physically meaningful roots q1 and q2 of q in (13) having negative imaginary part, correspond-
ing to the P1 (fast) and P2 (slow) compressional waves, respectively.
The present study will be carried out considering phase velocities vj = ω/|Re(qj)| and attenu-
ation qij.

3 THE FINITE ELEMENT PROCEDURE

The variational formulation of equations (8)-(10) can be written, considering a domain Ω =
(0, 1) as (see (Santos et al., 2005) for details):

−ω2 (Pu, v) + iω (Bu, v) + A(u, v) + iω 〈D SΓ(u), SΓ(v)〉 = (F , v), (14)

v =
(
vs, vf

)t
∈ V,
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where the space V is H1(Ω); A(u, v) is the following bilinear form:

A(u, v) =

(
τ(u),

∂vs

∂x

)
−

(
pf (u),

∂vf

∂x

)
, u, v ∈ V, (15)

and, as usual, (·, ·) denotes the inner product in Ω and 〈a, b〉 ≡ f(0)g∗(0) + f(1)g∗(1) the inner
product on the domain boundary Γ (∗ means complex conjugate).
Turning the attention to the discrete approximation of equation (14), let V h be the space of C0

piecewise linear functions used to approximate both the solid and fluid displacements, i.e.

V h =
{
v ∈ C0(Ω)|v|[xi−1,xi] ∈ P1, i = 1, ..., N

}
. (16)

The global finite element procedure is defined as follows: find uh =
(
us,h, uf,h

)
∈ V h such that

Θh(u
h, v) = (F , v), v =

(
vs, vf

)
∈ V h. (17)

Here

Θh(u
h, v) = −ω2

(
Puh, v

)
+ iω

(
Buh, v

)
+ A(uh, v) + iω

〈
D SΓ(uh), SΓ(v)

〉
. (18)

4 NUMERICAL DISPERSION ANALYSIS

Consider writing the solutions to equations (13) in dimensionless form, for what the follow-
ing dimensionless parameters are defined:

δ1 =
µ

µ+ 2λc
, δ2 =

D

µ+ 2λc
, δ3 =

M

µ+ 2λc
, (19)

(20)

ωc =
b

φρf
, ωa =

ω

ωc
, (21)

γ1 =
ρf
ρb
, γ2 =

g

ρb
, γ3 =

1

φγ1ωa
. (22)

Introducing also a reference velocity VR =
√

λc+2µ
ρb

, the solutions to equations (13) can now be
written as

V 2
R

ω2
c

q2 = ω2
a

(
1

2 (−δ2
2 + δ3)

(
(γ2 + i γ3/ωa − 2 γ1 δ2 + δ3)

∓

√
(γ2 + i γ3/ωa − 2 γ1 δ2 + δ3)

2 − 4 (−γ2
1 + γ2 + i γ3/ωa) (−δ2

2 + δ3)

) )
, (23)

where the ∓ signs stands for the fast and slow compressional waves respectively. In order to
proceed, the source term is set to zero in both Eq. (17) and the domain is restricted to a portion
far away from the artificial boundaries so that their contribution can be neglected (Cohen, 2002).
Further, it is assumed that the grid is homogeneous and the elements are segments with length
h. To perform the discrete dispersion analysis, the basic algebraic equations of a typical degree
of freedom must be obtained from Eq. (17) (Zyserman and Gauzellino, 2005). In the present
case, it means considering two consecutive elements comprising three nodes, see Fig.1
Let us,h and uf,h be expressed in terms of the (local) basis associated with the nodal points in
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h u
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Figure 1: Representative stencil used to derive the numerical dispersion relations. ui, i=1,2,3 are the considered
dofs.

Fig.(1) as follows

us,h =
3∑

j=1

� s,h
j φj(x), (24)

uf,h =
3∑

j=1

� f,h
j φj(x). (25)

In order to proceed with the dispersion analysis the weak form (17) is tested against the two
functions

vs = (φ2, 0) vf =(0, φ2), (26)

ending up with an homogeneous algebraic system of two equations in 3 unknowns. The co-
efficients in this system of equations are replaced by standing wave solutions, choosing as the
origin of coordinates the central node. Therefore, u1 = (us,h, uf,h) exp(−iqh), u2 = (us,h, uf,h)
and u3 = (us,h, uf,h) exp(iqh). After some algebra a 2×2 the linear system

�
(
us,h0

uf,h0

)
= 0 (27)

is obtained, where
�

11 = −2 + 2 cos(h qr,h) cosh(h qi,h) + 2 i sin(h qr,h) sinh(h qi,h)+
(
hω

3VR

)2 (
2 + cos(h qr,h) cosh(h qi,h) + i sin(h qr,h) sinh(h qi,h)

)
,

�
12 = −2δ2

(
−1 + cos(h qr,h) cosh(h qi,h) + i sin(h qr,h) sinh(h qi,h)

)
+

(
hω

3VR

)2 (
2 + cos(h qr,h) cosh(h qi,h) + i sin(h qr,h) sinh(h qi,h)

)
γ1,

�
21 =

�
12,

�
22 = δ3

(
−2 + 2 cos(h qr,h) cosh(h qi,h) + 2i sin(h qr,h) sinh(h qi,h)

)
+

(
hω

3VR

)2 ((
2 + cos(h qr,h) cosh(h qi,h) + i sin(h qr,h) sinh(h qi,h)

)
γ2 −

γ3

3ωa

(
2i− i cos(h qr,h) cosh(h qi,h) + sin(h qr,h) sinh(h qi,h)

))
.
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Forcing this linear system to have nontrivial solutions, i.e., setting

det(
�

) = 0, (28)

and taking real and imaginary parts, a coupled system of two nonlinear equations in the un-
knowns (qr,h, qi,h) is obtained. Notice that some parameters appear in these equations; they
must be fixed beforehand in order to be able to actually get the seeked solutions.
The implemented algorithm to obtain (qr,h, qi,h) can be described as follows: a) Fix a set of pa-
rameters δi, γi, i=1,2,3. b) Fix the number of points per wavelength Np, c) For each frequency
ωa find h through the relation h = 2π/(Npq

r), where qr is previously determined from the ana-
lytic dispersion relations (See Eq. 23), and solve the nonlinear system by means of a Newton’s
like method.

5 RESULTS AND DISCUSSION

As already stated, results of the numerical dispersion analysis are shown in terms of dimen-
sionless phase and group velocities and dimensionless attenuation. For the parameters describ-
ing the physical properties of the fluid saturated porous medium, the following values were
chosen:

δ1 =
35

100
, δ2 =

8

100
, δ3 =

24

100
, γ1 =

35

100
, γ2 = 5, γ3 =

1

10
, (29)

which represent a wide range of water or oil saturated high density sandstones. The set of con-
sidered number of points per wavelength was chosen to be Np = {5, 8, 10, 12, 15, 20}. From
Figures 2, 3 and 4 it can be clearly seen that the fast wave is affected by numerical dispersion;
this effect is more noticeable for the phase and group velocities than for the attenuation. In
this case, for the normalization factor we have chosen, the relative error can directly be esti-
mated from the pictures, at least for the velocities. It can be noticed that, for example, twelve
points per wavelength yield an error of about 1.5% for the phase velocity and almost 2% for
the group velocity. These errors can be deemed small in case of working with a computational
domain where the wave travels a relatively small number of wavelengths, otherwise, Np must
be increased. Notice that the improvement in the quality of the approximations is not as as re-
markable as expected when the number of points per wavelength is increased, Np=20 yields an
error of about 1.2% for the group velocity. Even though the slow wave behaviour is apparently
better, see Figures 5–7, an analysis of the relative error shows that it is not true. Considering
the phase velocity and twelve points per wavelength the relative error climbs up to 1.4% for
some frequencies, and it is necessary to work with Np=15 to barely keep it less than 1% for all
frequencies; the group velocity shows a similar behaviour.

6 CONCLUSIONS

An analysis of the dispersion relations of the Biot equations of motion in the one dimensional
cases was presented. The mentioned analysis was carried out by deriving the numerical disper-
sion relations, and deriving related quantities, such as numerical phase and group velocities and
numerical attenuation.
It was observed that all quantities suffer of numerical pollution; therefore, working with a Biot
medium using the widespread rule of thumb of ten points per wavelength would lead to rather
inaccurate results. At least fifteen points per wavelength must be used in order to guarantee, in
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the presently analyzed quantities, a relative error per wavelength less than 1%; a rough upper
bound for the error would be the product of this relative error times the number of wavelengths
the wave travelled.
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Figure 2: Dimensionless phase velocity for the fast wave P1, as a function of the frequency, and for a representative
set of NP .
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Figure 3: Dimensionless group phase velocity for the fast wave P1, as a function of the frequency, and for a
representative set of NP .
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Figure 4: Dimensionless attenuation for the fast wave P1, as a function of the frequency, and for a representative
set of NP .
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Figure 5: Same as Fig. 2, but for the slow wave P2.
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Figure 6: Same as Fig. 3, but for the slow wave P2.
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Figure 7: Same as Fig. 4, but for the slow wave P2.
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