
A DECOMPOSITION METHOD FOR MODULAR DIMENSIONAL
SYNTHESIS OF PLANAR MULTI-LOOP LINKAGE MECHANISMS

Martı́n A. Pucheta and Alberto Cardona

Centro Internacional de Métodos Computacionales en Ingenierı́a (CIMEC), INTEC (Universidad
Nacional del Litoral-CONICET), Güemes 3450, S3000GLN Santa Fe, Argentina,

e-mails: {mpucheta,acardona}@intec.unl.edu.ar, http://www.cimec.org.ar

Keywords: Multiloop linkage mechanisms, dimensional synthesis, Graph Theory, combinato-
rial optimization, object-oriented programming.

Abstract. The essence of mechanism synthesis is to find the mechanism for a given motion or task.
There are three customary tasks for kinematic synthesis: function generation, path generation and rigid-
body guidance. The task is often defined by a number of prescribed displacements and orientations called
precision points. Conceptual design of mechanisms has two main stages: (i) Type Synthesis, where the
number, type and connectivity of links and joints are determined, and (ii) Dimensional synthesis, where
the link lengths and pivot positions at the starting position are computed. From the first stage we already
get a mechanism represented by a graph (Pucheta and Cardona, In Mecánica Computacional, volume
XXVI, proc. of MECOM 2005, Buenos Aires, Argentina). To evaluate its feasibility to fulfill a given
task it must necessarily have dimensions. To this purpose, we implement a strategy developed by San-
dor and Erdman (Advanced Mechanism Design: Analysis and Synthesis, vol. 2, Prentice-Hall, 1984).
This strategy consists in: (a) decomposing the complex mechanism topology into Single Open Chains
(SOCs), (b) solving dimensionally each SOC using complex numbers and the analytical Precision Point
Method, and (c) reassembling the solutions. Decomposition of complex multiloop linkages into single
subsystems was deeply studied for automated kinematic and dynamic analysis. However, its use in au-
tomated synthesis applications is less addressed in the literature. The proposed SOCs Decomposition
algorithm uses the graph structure, the geometry of the prescribed parts and the motion constraints data
imposed on them. The resultant order of SOCs is not unique, there could be many valid orders. The
optimal order will be a compromise between what best satisfies the solvability (number of equations for
linearization required by analytical methods) and what best matches the number of prescribed motion
constraints given by the precision points. In spite of the complexity of this method, it produces multi-
ple good initial guesses for subsequent optimization stages based on gradient methods which often fail
because of the bifurcating and highly non-linear nature of this inverse problem.

The method was programmed in C++ language under the Oofelie environment (Cardona et al., Engng
Comp, 11:365–381, 1994).

Mecánica Computacional Vol XXV, pp. 351-373
Alberto Cardona, Norberto Nigro, Victorio Sonzogni, Mario Storti. (Eds.)

Santa Fe, Argentina, Noviembre 2006

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.cimec.org.ar

1 INTRODUCTION

The essence of mechanism synthesis is to find the mechanism suited for a given motion
or task. Among the wide range of inverse problems in the field of mechanism synthesis we
are focused on kinematic synthesis, i.e., to find the mechanism which satisfy exactly, or in its
defect approximately, a set of displacements and/or orientations prescribed on one or more of
their links or joints. In these problems masses and inertias of the constituting parts are ignored,
so the skeleton representation is extensively used. Also, because of the discrete nature of the
mechanism, Graph Theory is suitable to represent them. There are three customary tasks for
kinematic synthesis: function generation (FG), path following (PF) (or path generation), and
rigid-body guidance (RBG); but also, more complex tasks could be defined by combining them
for dual-task or multiple-task purposes.

Conceptual design of mechanisms has two main stages: (i) Type Synthesis, where the num-
ber, type and connectivity of links and joints are determined for the required degree of freedom
and structural constraints, and (ii) Dimensional synthesis, where the link lengths and pivot po-
sitions at the starting position are computed.

We look for a task-oriented synthesis where most or all of the requirements are satisfied while
the enumeration of candidate mechanism solutions takes place. In previous works, we presented
an automated task-oriented Type Synthesis method based on a subgraph search (Pucheta and
Cardona, 2005a,b) where, from a FEM (Finite Element Method) description of the kinematic
task including prescribed parts, we define a graph representation, and then we search this graph
representing the problem inside an atlas of previously enumerated candidate mechanisms. As
answer of the type synthesis software, we obtain the list of all non-isomorphic topologies for the
given kinematics problem. Now we desire to evaluate and sort them in a ranking of optimality,
and therefore, they must necessarily have dimensions.

There is not a general method to find the dimensions for any arbitrary closed-loop mecha-
nism topology for the wide range of kinematics problems. The closed-form equations to solve
kinematic synthesis problems are current areas of interest. Analytical Synthesis by means of
closed-form equations is applicable when the topology is decomposed into single sub-systems
called Single Open Chains (SOC) and the task is simplified by defining a number of finitely
separated displacements and/or orientations called precision points1. The method for this sim-
plified synthesis problem is known as the Precision Point Method (PPM)2.

In order to apply analytical synthesis to solve complex-loop linkages, the most popular strat-
egy is based on:

(i) decompose the topology into SOCs;

(ii) solve analytically each SOC in the order given by the previous step using complex-
numbers for representing the links (Sandor, 1959; Sandor and Erdman, 1984; Lin et al.,
1996), and

(iii) reassemble the sized SOCs to reconstruct the topology.

Although this strategy was successfully implemented in academical and commercial com-
puter programs3, and used to solve most of the linkages employed in industry and life, general

1Also known as “passing points”, “accuracy points”, “precise positions” or “finite positions”.
2Also known as “Finite Position Synthesis” and ‘Burmester Synthesis”.
3We can mention KINSYN (Kaufman, 1971), LINCAGES (Erdman and Gustafson, 1977), RECSYN (Wal-

dron and Song, 1981), SAM (Rankers), TADSOL (Crone et al.), SYNTHETICA (McCarthy), WATT (Draijer and
Kokkeler), and SYMECH (Cook), among others.

M.A. PUCHETA, A. CARDONA352

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

automated methods for dimensional synthesis using analytical synthesis are less addressed in
the literature (Olson et al., 1987; Yannou and Vasiliu, 1995; Sardain, 1997; Yang et al., 1998).

The decomposition of the topology into SOCs is not unique, also the first two steps (i-ii)
are strongly interrelated, because the solvability of one SOC may be dependent on a previous
one. So all possible decompositions must be carefully analyzed. We shall remark that the
decomposition method is the key step between the stages of Type Synthesis and Dimensional
Synthesis by analytical methods.

The aim of this paper is to develop a method for the step (i) which best consider the given task
and the subsequent solvability of the resulting SOCs using modules programmed by analytical
synthesis techniques. The problem is solved using a FEM like description for the topology and
the SOCs.

Although it is a well-known fact that the PPM is merely geometric and does not coincide,
in general, with the kinematic requirements, our aim will be, whenever we can, to use the
PPM as a first evaluation tool of the topology. Then, we can make some considerations based
on kinematics and dynamics to evaluate and filter defects in the sized mechanisms (Balli and
Chand, 2002b,a). And finally, we can use each of the filtered results as an initial guess to use
later an optimization software (i.e. SAMCEF BOSS) which minimizes the error between the
generated and the truly desired task (Pucheta and Cardona, 2005a).

The paper organization is as follows. In Section 2 we review the representation of a mech-
anism topology using graphs and the type synthesis process. In Section 3 we present the pro-
posed method for graph decomposition. In Subsection 3.2 we review the dimensional synthesis
methods for opened-chains using analytical methods. Finally, in Section 4 we present the ap-
plications to kinematics problems in complex linkages.

2 A TYPE SYNTHESIS OUTPUT

We first model the kinematics problem using a CAD interface (SAMCEF Field) common
with a program of mechanism analysis (SAMCEF Mecano). In a FEM description of a mech-
anism, the rigid bodies are constructed from nodes, and using these nodes the body can be
constrained by joints of different kinds, either to other bodies or to nodes fixed to ground, see
Geradin and Cardona (2001). Once we sketch some parts or elements of the sub-mechanism,
we can define motion constraints (the task) simplified into three or four precision points (Sub-
section 2.1). Then, for this desired kinematics task we define a graph representation called
initial graph modeling mathematically the synthesis problem (Sub-section 2.2). After the exe-
cution of a type synthesis software the initial graph allows to find potential mechanism alterna-
tives.

2.1 Motion constraints

In planar problems, we can impose three constraints per rigid body or link: two translations
and one rotation on the axis perpendicular to the work plane. The motion constraints may
be defined on nodes, links or joints (as motorization or input of motion). Thus, the motion
constraints could be: sets of node displacements D, sets of link rotations L, and sets of joint
parameters J , e.g., rotations for revolute joints and displacements over the joint axis for the
prismatic ones.

To define a trajectory, we give a set of node displacements

D = {NID, t, (dx, dy); ...; },

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 353

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

where ID is the node identifier, t is the number of passing points in the sequence of precise
positions, and the displacements, dx and dy, are expressed in relative coordinates from the
initial node position.

The description for the set of link rotations is

L = {EID, t, αt; ...; },

where ID is the rigid body element identifier, and αt is the rotation angle expressed in relative
coordinates from the initial position.

A similar description is given for the set of joint parameters

J = {EID, t, αt; ...; },

but the entered parameter must be coherent with the joint type element, i.e. angles αt for revo-
lute joint elements, and displacements ρt for the prismatic joint ones; both expressed in relative
coordinates from the initial position. We shall remark that all prescriptions are expressed “in
relative coordinates from the initial position” because this particular way to define the problem
allows the user to leave some angles or displacements without being defined for some precise
positions.

Different combinations of the sets D, L, and J , gives us the well-known classification for
kinematics problems into FG, PF, and RBG. For instance, a function generation task could
be defined by imposing two sets of rotations either on the joints J or on the links L of two
grounded cranks.

Ignored part

1�

2�

0

1

2

d1

d2

N11

N15

N14

N3

N12

E5

E4

F1

F2

E : Hinge5

E : Rigid Body4

F : Fixation1

N : Node1

D

0

6

4

R

N11

N15

N14

N3

N12

E5

E4

F1

F2

L

a) F.E.M. description of the kinematic task b) Graph representation

Initial Graph

deg ={ () () ()}v , v , vdeg deg deg ={2 1 0}, ,min 0 4 6min min min

(i)
(ii)
(iii)
(iv)N3 E4
!

trajNode

jectiveVertex

= 11

ob = 6

Figure 1: Translation from F.E.M to graph representation for a path following kinematics problem.

A path following problem could be defined by requiring that a point of the unknown mecha-
nism satisfies a set of displacementsD. If we simultaneously require that a point of an unknown
link satisfies a set of displacements D, and we also prescribe a set of orientations L the task is a
rigid body guidance problem. Other combinations of these sets would result in problems which
do not match with the mentioned classification.

For example, in Figure 1-a we can see the problem of guiding one point of an unknown
mechanism by three positions with prescribed timing: the set of displacements D defined on

M.A. PUCHETA, A. CARDONA354

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

node N11 must be in coordination with the set of rotations J defined on the joint E5 of the crank
E4. We declare three triplets for the two displacements desired on node N11,

D = {N11, 0, (0, 0); N11, 1, d1; N11, 2, d2}.

The crank rotations could be defined on joint E5 as:

J = {E5, 0, 0; E5, 1, α1; E5, 2, α2}.

2.2 FEM to graph translation

From the kinematics information sketched in Figure 1-a, we construct an initial graph plus a
set of additional variables to be used as input for the type synthesis stage (Figure 1-b, variables
i-iv).

The graph G(E, V) of a mechanism M, is formed by a set of vertices V representing the
links, and a set of edges E representing the joints connecting the links. The degree d(v) of a
vertex v is the number of edges incident to it. Particularly, the initial graph that we define is
a labelled graph with attributes. We take the IDs of the elements coming from CAD to use
them as “labels” of the vertices and edges of the graph, and we also take the link and joint types
defined by the user on the elements to give “attributes” of vertices and edges, respectively.

In a FEM description, the nodes can have different attributes: e.g. clamped node (with
fixations), isolated node with prescribed movement, node taking part in the geometry of a rigid-
body. A rigid-body can have nb nodes (with nb ≥ 2),

nb = nj + np + nc,

where, nj nodes are used to assemble the body with other bodies nodes by means of joints, np

nodes are not assembled but have prescribed movements D, and nc nodes only give the shape
of the body. These latter nodes are ignored for the type synthesis purposes, however, they are
stored in an auxiliary node-to-element integer map to be used later in the dimensional synthesis
stage as checking points of the task, or to define the restricted area (or space) where the other
links must hold for each configuration.

We define some rules to translate the FEM representation to a graph:

Generation of Vertices: The analysis of all nodes, fixations, and rigid-bodies and joint ele-
ments is required.

V1) Isolated nodes: For each isolated node with prescribed movements, an isolated
vertex in the graph is assigned; the node does not belong to any element.

V2) Rigid-bodies: Free bodies with imposed movements, i.e., rotations L or displace-
ments D on some of their nodes, will be isolated vertices of the initial graph. The
remaining bodies, connected through joints, will be connected vertices of the graph.
Each vertex has a minimum degree constraint degmin(vi) equal to the number of
nodes connected by joints nj in the corresponding rigid-body i.

V3) Fixations: Conventionally, the ground link will be the vertex zero . Depending on
the number of grounded bodies, this vertex may be binary, ternary, etc. The isolated
fixations represented by fixed nodes are also used as prescribing degree of the vertex
zero, that isdegmin(v0) = #fixations.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 355

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Generation of Edges: All joints will be edges of the initial graph connecting two of the previ-
ous defined vertices, so that they are assumed to be binary (isolated joints are not allowed).

See, for example, in Figure 1 the element E4 with nb = 2, np = 0, nj = 1 and nc = 1.
Following rule V1 the element is translated to a vertex v4 with minimum degree 1. The node N3

shown as “circled” in the element does not participate in the initial graph; however, it is stored
in a map (iv) indicating N3 → E4. Then, for the isolated node N11 which will develop the
required trajectoryD, we used rule V2 to create a new vertex v6 with zero degree. Additionally,
two integer variables are set and used later in the synthesis process. They are trajNode, the ID
of the node which will develop the required trajectory, and the objectiveVertex defined as the
vertex of the graph representing the mechanism which has the trajNode. Finally, by means of
rule V3, the two fixed nodes N12 and N15, introduce two constraints to the degree of the ground
vertex v0. A list called minimum degree of vertices has the minimum degree constraint for each
vertex. For example, it is filled as degmin = {degmin(v0), degmin(v4), degmin(v6)} = {2, 1, 0}.

The constructed initial graph has labelled vertices with link type attributes, labelled edges
with joint type attributes and the properties objectiveVertex, trajNode and degmin. Using this
information the initial graph is searched, as a pattern to match, inside an atlas of mechanisms.
In the path following example, we set the search parameters as: (a) atlas of rigid one-degree of
freedom mechanisms, (b) maximum distance from the objective vertex to ground equal to 2 (the
minimum distance is always set to 2 when a trajNode is chosen by the user), and (c), avoidance
of pseudo-mechanisms. Each matching is a feasible mechanism topology Ma which inherits
the motion constraints D,J ,L of the task.

4

6

7

0 7

4 6

Reconsidered part

N11

E4

L

E7

E6

a) Type Synthesis: graph and sketch. b) Dimensional Synthesis: FEM description.

N3

D

L

Figure 2: The simplest solution for the two stages of synthesis for a path following problem.

Figure 2-a shows the graph and the sketch for the simplest first alternative found by the type
synthesis execution. In the graph, the ground has the label zero, and the objective vertex has a
diamond shape. The grey vertex (7) and their incident edges are the new type synthesized link
and joints, respectively. In Figure 2-b we put the dimensional synthesis result only to remark
that the ignored part is restored to its original element to complete and evaluate the mechanism.
In these figures we can see that body E6 is binary in terms of number of joints as considered in
the graph; but it is physically ternary in terms of number of nodes. In the same mechanism, the
body E4 is binary in the graph, but it has three nodes after reconsidering the ignored part.

M.A. PUCHETA, A. CARDONA356

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Alternative 2

0

4

8

7

9

6

Alternative 3

0

8

4

7

9

6

Alternative 4

0

7

8

4

6

9

Alternative 5

0

4

8

9

7

6

Alternative 6

0

8

9

4

7

6

0 7

4 6

Alternative 1

0

4

8

7

9

6

Objective
vertex

Ground
vertex

0

1

2

0

6

4

R
Alternative 0

Alternative 0 Alternative 1 Alternative 2

Alternative 3 Alternative 4 Alternative 5 Alternative 6

0

1

2

4 4 4

4 4 4
4

66

66

6
6

6

7

7

7

7

7

7

8
8

8
8

8

8

9

9

9

9

9

9

7

Figure 3: Type Synthesis outputs for the path following problem. The graphs are shown above and the correspond-
ing sketches below.

In Figure 3 we can see more type synthesis results for this example problem where alterna-
tivesM0 toM6 are the simplest non-isomorphic mechanisms.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 357

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

3 THE PROPOSED METHOD

The decomposition method consist in the following steps:

S1) Topology decomposition: The kinematic chain (closed-loops chain mechanism) is de-
composed into a set of separated closed-loops4 of minimal length.

S2) SOCs decomposition: For each set of closed-loops, each closed-loop is selected in a
given order to be decomposed into SOCs, i.e. dyads, triads, quadriads, etc., using the
node displacement constraints.

S3) SOCs evaluation: After analyzing data (geometry and synthesis data definitions), the
SOCs solvability is evaluated in the resultant order.

S4) Retained ordered SOCs: The best valuated combination/s of open-chains is/are stored
for dimensional synthesis.

3.1 Topology decomposition

In the Type Synthesis stage we obtain a mechanism structure represented by a connected
graph G(V, E), where the vertex set V has cardinality v, and the edge set E has cardinality
e. We know from Graph Theory that a planar graph has ν = v − e + 1 independent closed
loops, and particularly, we can find the basis of minimal length loops or minimal independent
loops. Using these loops we can efficiently explore all the significant dimensions of the links in
a systematic way.

0

4

8

7

9

6

(i)
(ii)

0
4

9
7

8

6

Loop 1Loop 0

0
4

9
7

8

6

Loop 1Loop 0

0
4

9
7

8

6

b) c)

a) trajNode

jectiveVertex

= 11

ob = 6

Figure 4: The set of independent loops of minimal length allows to find the significant dimensions of links.

The Watt-II kinematic chain has ν = 7 − 6 + 1 = 2 independent closed loops (Figure 4-a).
One line per non-binary link is left without being explored by the independent loops, e.g. links
7 and 0 in Figure 4-b, but their end points are visited by the loops and consequently taken into
account. Thus, the loops, traditionally given in terms of edges in Graph Theory visit all edges
of the graph and therefore all nodes of the FEM description. In order to consider the link with
the trajNode, we extend the loop to pass through this node (see Figure 4-c).

4Know as Cycles in Graph Theory (Harary, 1969) or Circuits (Tsai, 2001), and also called Kinematic Loops
by Kecskeméthy et al. (1997).

M.A. PUCHETA, A. CARDONA358

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Closed-loops determination

A spanning tree T , is a tree containing all the vertices of a connected graph G. Therefore,
T is a subgraph of G. In general, the spanning tree of a connected graph is not unique. For a
given spanning tree T , the edge set E of G can be decomposed into two disjoint subsets, called
the arcs and chords. The arcs of G consist of all the elements of E that form the spanning tree
T , whereas the chords consist of all the elements of E that are not in T . The union of the arcs
and chords constitutes the edge set E. The addition of a chord to a spanning tree forms one and
only one circuit.

The collection of all the circuits with respect to a spanning tree forms a set of independent
loops or fundamental circuits. The fundamental circuits constitute a basis for the circuit space.
Any arbitrary circuit of the graph can be expressed as a linear combination of the fundamental
circuits using the operation of modulo 2, i.e., 1 + 1 = 0 (Harary, 1969; Tsai, 2001).

Based on the previous definitions, a possible set of ν independent loops can be computed by
the following algorithm:

S1 Take one spanning tree T of G.

S2 Compute the complement of T (CT = G − T). The graph CT is composed by as many
components as independent loops the graph G has. Also, since it is the complement of a
tree, each component is an isolated edge (also called chord) connecting two vertices.

S3 Make a copy of T , i.e., TAux := T . Take an edge of the complement CT and add it to the
spanning tree TAux. Then, delete this edge from CT . This results in a loop with branches
and leaves.

S4 Prune recursively all leaves of TAux. This leads to a single loop. Save the loop in other
data structure.

S5 Repeat steps S3 and S4 ν times (that is to say, until all edges in CT disappear).

0

2

4

1

5

3

0

2
3

4

1

5

0

2
3

4

1

5

G T C

0

2
3

4

1

5

0

2
3

4

1

5

0

2
3

4

1

5

Loop 0 Loop 1

0

2

4

1

5

3

0

2

4

1

5

3

0

2

4

1

5

3

0

2

4

1

5

3

G T C Loop 0 Loop 1T

T

Figure 5: Stages of the algorithm to find a set of independent loops in the graphs of a Watt-I topology (above) and
for a Stephenson one (below).

In Figure 5, we illustrated the stages produced when we apply the algorithm.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 359

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

This algorithm does not necessarily lead to loops with minimal lengths, i.e. with minimal
number of edges per loop. Therefore, we post-process the obtained loops making all possible
sums of modulo 2 between them, and saving those with minimal lengths to form the minimal
loop basis.

3.2 Dimensional synthesis review

Some introductory topics about dimensional synthesis are needed to justify some rules im-
plemented in the SOCs decomposition procedures to be explained in the next subsection.

The data necessary to solve dimensionally an open-chain by means of analytical methods
using the complex-number approach are:

• Number of links nL in the open chain. The SOCs were traditionally called dyad (nL =
2), triad (nL = 3), quadriad (nL = 4), etc. We numbered the links in zero base as
l = 0, . . . , nL − 1.

• Number of precision points npp defined in the task. The notion of finite precise position
for a SOC is used to describe the states of the chain members. The configuration of the
SOC at time t is relative to time 0, and t = 0, . . . , npp − 1.

• End-points displacements. Two sets of displacements on the tail ht of the SOC and on
the tip or effector point gt must be defined.

• End-points positions. The position of at least one of the end-point nodes, d0 or dnL
,

must be known.

• Type of joints preceding each link. In the complex-number approach, joints are the tails
of each complex-number representing each link.

• Prescribed motion constrains. Rotations and translations may be applied either on joints
or links. Some of them could be prescribed by the user or by a previously computed SOC
which shares the link.

When the chains move to the t-th precise position, the obtained configuration is characterized
by the nature of each joint, that is, revolute joints permit link rotations αt

l (see for example, the
first link of Figure 6-a where Lt

0 = L0e
iαt

0), and prismatic joints permit stretch factors ρt
l

through joint direction of the subsequent link but preserving a fixed angle with the previous
link/complex-number, e.g. the second link of Figure 6-b where Lt

1 = ρt
1L1e

iαt
0 . Using this

notation we can write the Loop-Closure Equations to solve, for example, the RR-dyad

L0 + L1︸ ︷︷ ︸
initial

+ gt −L0e
iαt

0 −L1e
iαt

1 − ht︸ ︷︷ ︸
t−th position

= O. (1)

Calling δt = ht − gt, it can be rearranged as

L0(e
iαt

0 − 1) + L1(e
iαt

1 − 1) = δt. (2)

Expression (2) is known as the Standard-Form Equation for a Dyad. When npp = nL + 1
this complex-number system is linear and can be easily solved. For instance, if three positions
(t = 0, . . . , 2) are prescribed for a dyad, the resultant system is written as,[

(eiα1
0 − 1) (eiα1

1 − 1)

(eiα2
0 − 1) (eiα2

1 − 1)

] [
L0

L1

]
=

[
δ1

δ2

]
(3)

M.A. PUCHETA, A. CARDONA360

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

r

x

iy
R

x

iy
P

R

R

R

=

=

a) b)

r

g t

=?

1
L

0
ht

L

=?

1
L

t

0
L

t
�

0

�
1

t

t

d

d0

2
d

d0

3

=?

=?

1
L

0
L

=?

g t

0
L

t

1
L

t

2
L

t

2
L =?

�
1

�
2

t

t

�����
0

t

1

t

�
0

t

h
t
= 0

Figure 6: Examples of data for a RR-Dyad and a RPR-Triad modeled by complex-numbers. The initial and t-th
precise position are shown.

or in a more compact way as
CL = D. (4)

Note that ht and gt can be given independently of the two end-point positions d0 and dnL
,

but at least one of them, d0 or dnL
, must be known to locate the synthesized nL links. If the

two end-point positions are known, an additional equation is considered for the initial situation
augmenting the system (2) with the equation:

L0 + L1 = r, (5)

where r = dnL
− d0 is the complex-number which closes the SOC at the starting position, and

it is often known as offset. Then, we have a system modified as{
L0(e

iαt
0 − 1) + L1(e

iαt
1 − 1) = δt

L0 + L1 = r,
(6)

it also can be written as(eiα1
0 − 1) (eiα1

1 − 1)

(eiα2
0 − 1) (eiα2

1 − 1)
1 1

[
L0

L1

]
=

δ1

δ2

r

 , (7)

or briefly as
CoffL = Doff . (8)

The system (8) has rank(Coff) = nL, this means that two rows or columns of Coff are
linearly dependent. Thus, from the condition det(Coff) = 0, the coupled motion constraints
can be found by means of geometrical constructions called Compatibility Linkages. Note that
the trivial solution is found by proposing α1

1 = α1
0 and α2

1 = α2
0 in Coff , while the non-trivial

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 361

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

one is deduced by augmenting the matrix Coff with the column of the independent term Doff and
computing

det([Coff |Doff]) = 0 (9)

to find the geometrical relationships between the parameters (Erdman and Sandor, 1997). Given
α1

1 and α2
1, two pair of sets of α1

0 and α2
0 can be found to fulfil (9). Therefore, the problem (7) is

known as synthesis with imposed offset when the two end-point positions d0 and dnL
, and the

sets of end-point displacements ht and gt of the SOC are known. Also, if one of the sets ht or
gt are null, it is said that the pivot is imposed5.

The necessary condition to dimensionally solve a SOC, either in the form of Equations (2)
or (6), is that there must be at least one link with completely unknown rotations. Under this
condition, the resultant loop closure equations can be solved by using the structure of Com-
patibility Linkages proposed by Sandor (1959), Hartenberg and Denavit (1980), Erdman and
Sandor (1997), and Lin et al. (1996). They gave methods to linearize the non-linear systems
when the number of prescribed positions is higher than the number of equations needed to have
a linear solution (npp > nL + 1). These cases are dyads in 4 to 5 positions, triads in 5 to 7
positions, quadriads and 5 to 9 positions. When npp > nL + 1, some parameters must be pro-
posed by the user, and the remaining ones are coupled and computed by means of geometrical
constructions, often resulting in sets of parameters with multiplicity of solutions. The proposed
parameters are the so-called free choices. The exploration of their ranges (for example, [0, 2π]
for a rotational parameter) gives infinities of open-chains from which the user or the computer
program may find the optimal for some criteria (we have experimented with genetic algorithms
to find optimal free parameters in Pucheta and Cardona (2005a)).

If one of the two end-point positions d0 and dnL
is unknown, but the sets of end-point

displacements ht and gt of the SOC are known, all links may have imposed rotations, but this
does not assure the existence of a solution. It depends on the determinant of the system det(C).
Then, the unknown position d0 or dnL

may be computed later. For example, in Figure 6-b a
free-pivot problem is shown for a RPR-triad. Here, gt = 0 and d0 is unknown. After computing
the links, the pivot position can be found by

d0 = dnL
−

nL−1∑
l=0

Ll.

In Figure 7 we can see the available modules to solve the SOCs. Each SOC has a directed
graph representation or path because it is oriented to the complex-number method. Using the
FEM description, the path begins with a node and ends in other node and between two links
there is always a pair of nodes constrained by a joint. So we have particular subcases. For
instance, the subcases for a dyad could be LJL or JLJL (JLJLJ will never occur for the proposed
decomposition), where J means joint and L denotes link. The second subcase also solves the
symmetric one, i.e, the LJLJ.

3.3 SOCs decomposition

Once the loops are computed and stored, we will decompose them into SOCs based on some
necessary conditions for dimensional synthesis.

The method uses the FEM description for each loop and the initial motion constraints coming
from the topology. Given a loop, we go through the nodes chained by the loop and divide it

5Note that, both sets, ht and gt, can be simultaneously null for a triad, quadriad, and so on. But it configures a
structure for a dyad.

M.A. PUCHETA, A. CARDONA362

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

N0 N1 N2 N3

J0

L0 L1

LJL-Dyad

N0 N1 N2 N3 N4

J0 J1

L0 L1

JLJL-Dyad

N0 N1 N2 N3

J0

L0 L1

LJLJL-Triad

N0 N1 N2 N3 N4

J0 J1

L0 L1

N4 N5

J1

L2

N5 N6

J2

L2

JLJLJL-Triad

N0 N1 N2 N3

J0

L0 L1

LJLJLJL-Quadriad

N0 N1 N2 N3 N4

J0 J1

L0 L1

N4 N5

J1

L2

N5 N6

J2

L2
N7

J3

N6 N7

J2

L3

N8L3

JLJLJLJL-Quadriad

N0 N1 N2 N3 N4

J0 J1

L0 L1

JLJLJ-Dyad
5N

J2

N0 N1 N2 N3 N4

J0 J1

L0 L1
N5 N6

J2

L2
N7

J3

JLJLJLJ-Triad

N0 N1 N2 N3 N4

J0 J1

L0 L1
N5 N6

J2

L2
N7

J3

N8L3
N9

J4

JLJLJLJLJ-Quadriad

Figure 7: Modules for solving SOCs. For the internal nodes, the � symbol means that position and displacements
are unknowns. The • symbol means that the sets displacements are known for both end-nodes, and positions must
be known at least for one of them.

into SOCs starting from a node with prescribed displacement and ending in another node with
prescribed displacement. These nodes will be the tail and the tip of each SOC.

This decomposition is “loop order dependent”, so we analyze the ν! Loop-Orderings in lex-
icographical order. For a SOC existence, we require that there must be at least two nodes with
prescribed displacements per loop, and the position of at least one of these end-point nodes
must be known, otherwise, the decomposition of the given loop, and also the loop-ordering is
abandoned.

Additionally, since the decomposition is also “loop orientation dependent” when there are
more than one SOC per loop, the opposite orientation must also be explored. For example, in
the presence of the objectiveVertex the number of loop-orderings are multiplied, i.e., we need
to explore all possible orderings for each orientation of the loops containing such vertex. In this
case, we can predicts that we will obtain at least ν + 1 SOCs.

We decompose an individual closed-loop into SOCs with the aid of a circular table which
have the information only relative to such loop. To simulate the states of the sets of displace-

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 363

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

ments we use a Boolean variable stdispl for each node. Initially, the fixed nodes have null set
of displacements, so they are known. The trajNode is the second source of prescribed displace-
ments. If we suppose that once a SOC is identified it is solved, the initial positions and the sets
of displacements for all of their nodes are computed, so they will impose new constraints for
decomposing/solving the SOCs in the following loop. Therefore, after one SOC is identified
the Boolean variable stdispl is updated as “true” for all the involved nodes.

We will illustrate the algorithm for SOCs decomposition using the path following example,
which is shown in Figure 8. Part of the mechanism is prescribed by data (the circled nodes filled
in black have known positions and known sets of displacements), and the remaining part was
synthesized (open squares nodes).

0

5

9

4

10

7

11

6 L4

L6

L7

DD

N11

N15

N14

N12

L

b) Graph = Loop c) F.E.M.
elementsnodes

Known
? Unknown

Position Displacements Symbol

?

?

??

N17

L5

J10

J9

J11

N16

N19

N20 N18

a) Node identification

L

l0

Figure 8: A first feasible graph for a path following problem.

For the unique loop, the auxiliary circular table has four rows and as many columns as
nodes in the loop (“circular” denotes that the last column is connected to the first). When the
loop contains an objective vertex the table has an additional column for the trajectory node.

nodeID � 12 15 14 16 19 11 20 18 17 �
linkID � 0 0 4 4 6 6 6 7 7 �
jointID � -9 -5 -5 -10 -10 0 -11 -11 -9 �
stdispl � 1 1 0 0 0 1 0 0 0 �

SOC 0 � N.H �
SOC 1 � .H N. �

Table 1: Example of circular table for open chains identification.

In order to fill the table, a cursor starts pointing to a node of the first vertex, and writes (see
Table 1 and Figures 8-b and 8-c) :

1. the node ID in the first row;

2. the ID of the link to which the node belongs in the second row;

M.A. PUCHETA, A. CARDONA364

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

3. the ID of the joint to which the node belongs in the third row;

4. a boolean state variable, indicating that at this node has a prescribed displacement.

Two SOCs are identified by analyzing the fourth row content. In the example, we have one
SOC going clockwise from node 15 to node 11, and a second SOC continuing clockwise from
node 11 to node 12. For the running of the loop with the inverted orientation we obtain the
decomposition shown in Table 2.

nodeID � 15 12 17 18 20 11 19 16 14 �
linkID � 0 0 7 7 6 6 6 4 4 �
jointID � -5 -9 -9 -11 -11 0 -10 -10 -5 �
stdispl � 1 1 0 0 0 1 0 0 0 �

SOC 0 � N.H �
SOC 1 � .H N. �

Table 2: Circular table for the counter-clockwise orientation.

The decomposition gives us two SOCs with the same type, that is the JLJL-Dyad module.
The resultant complex-number models can be seen in the illustration of Figure 9.

D

N11

N15

N14

N12

L

N17

N16

N19

N20 N18

SOC 0

N11

N15

N14

N12

L

N17

N16

N19

N20 N18

SOC 1= +
L0

5

9

4

10

7

11

6

0

5

9

4

10

7

11

6

D

N11

N15

N14

N12

L

N17

N16

N19

N20 N18

SOC 1

N11

N15

N14

N12

L

N17

N16

N19

N20 N18

SOC 0= +

N11

N11

Closed-chain = JLJL Dyad + JLJL Dyad

Closed-chain = JLJL Dyad + JLJL Dyad

4

L6

4

4

6

l0

l0

01) Loop order: l

02) Loop order: l

Figure 9: Complex-numbers built for both decompositions.

This is a simple example with a unique loop but in Section 4 we will show results for multi-
loop mechanisms.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 365

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

3.4 SOCs evaluation

In the previous example, we did not appreciate any direct advantage from the change of
orientation in the loop decomposition. For both decompositions, we obtained two SOCs of
JLJL-Dyad type. However, the SOCs ordering will be very important in the dimensional syn-
thesis stage. Following the same example, to solve the SOC 0 of Figure 9 (above), we have
the first link (L4) with its motion completely defined, that is the prescribed timing transmitted
by the input joint (J5). Then, we need to propose two free-parameters α1

1, α
2
1 to solve the SOC.

Then, the sets of rotations of the second link (L6) are known. To solve the SOC 1, the set of
rotations of link 6 are imposed by the results of SOC 0; proposing two free choices α1

0, α
2
0 the

problem is solved. For the inverted orientation decomposition, Figure 9 (below), we must define
four free choices to solve the SOC 0, and then, we have the SOC 1 with completely defined
movements on both links (L4 and L6). As the offset is imposed, only if det([Coff |Doff]) = 0
it will have a solution, which is a very odd case. Thus, the first decomposition is preferred for
design.

The second decomposition violates the important design condition E1: “when the system be-
comes non-linear or has rank defect, at least one link must have completely unknown rotations”.
In the example, the imposed offset produces rank defect.

Additionally, to choose a SOC decomposition E2: “we will give preference to that decom-
position in which the first SOC solves more initial motion constraints”. For example, in the first
decomposition, the SOC 0 solves three motion constraints prescribed by the user (timing) and
the SOC 0 of the second decomposition none. So, the first one is also preferred for this reason.

More than one ordering could be well-posed in terms of these two evaluation criteria, E1
and E2, so we retain all of them to pass through dimensional synthesis stage to give a valid
judgement. Note that we cannot predict if a SOC has solution until the free paramerters are
proposed for their whole ranges.

The evaluation takes place in the order in which the SOCs where decomposed and stored.
This will be the computing and thereby the assembling order. For this given order the SOCs are
evaluated simulating, either the initial constraints (node and link imposed movements) as well
as the data transference between link rotations, and node positions and displacements.

For each SOC, we count the number of links with completely undefined constraints nU(SOC).
As we said, it must be

nU(SOC)


≥ 1 if npp ≥ nL + 1 and, d0 and dnL

are known (imposed offset),
≥ 1 if npp > nL + 1 and there is one free end-point position, d0 or dnL

is unknown,

≥ 0 if npp = nL + 1 and, d0 or dnL
is unknown.

(10)
Also we count the number of constraints nC(SOC) solved by each SOC.

Finally, an index for ranking each decomposition is given in terms of the best satisfaction of
two rules:

R1 Number of SOCs satisfying the constraint (10). It would be equal to the number of SOCs.

R2 Number of constraints solved by the first SOC, the second, the third, and so on, are
compared between SOCs in assembling order. That is, the lists

{nC(SOC 0), nC(SOC 1), . . . , nC(SOC ν),. . . }

for each SOC.

M.A. PUCHETA, A. CARDONA366

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

For example, the evaluation for the decompositions shown in Figure 9 gives:

1. R1 = {true, true} = 2, R2 = {3, 3};

2. R1 = {false, false} = 0, R2 = {0, 6}.

So that the first one is considered at the first position in the ranking.

4 RESULTS

Several kinematics problems were tested and used as feedback to develop the method.

4.1 A multi-loop curve path generator

We will continue with the path following example of Figure 3 whose minimal independent
loops were shown in Figure 4-c.

The Alternative 1 of the type synthesis output is a two-loop chain (see Figure 10), where
a new pivot was synthesized. Also, since there is an objective vertex, the number of possible
decompositions is duplicated. There are 2ν! loop orderings decomposed into ν + 1 SOCs each
one.

N11

N15

N14

N12

L

N17

N20

N24

N23

N18

0

11

5

12

7

13

14

4

15

8

16

9

6

0l

1l

L4

L6

L8

L9
N19

N25

L7

J11

N16

N21

N22

N26

J5

J12

J16

J14

J13

elementsnodes

a) Graph and minimal independent loops b) F.E.M. description

J15

Figure 10: Initial situation for the decomposition of the second alternative of the path following problem.

First we identify those loops where the objective vertex is located. Then, the possible order-
ings are: l0−

−→
l1 ,
−→
l1 −l0, and the inverted cases l0−

←−
l1 , and

←−
l1 −l0. The resultant decompositions

are shown in Figure 11.
The obtained evaluations are:

1. R1 = {true, true, true} = 3, R2 = {3, 3, 3};

2. R1 = {false, true, true} = 2, R2 = {0, 3, 6};

3. R1 = {true, true, false} = 2, R2 = {3, 0, 6};

4. R1 = {false, true, true} = 2, R2 = {0, 3, 6};

The final ranking is 1, 3, 2, 4.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 367

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

N15

N14

N12

L

N17

N20

N24

N23

N18

N11
N16

N21

N22

N26

N15

N14

N17

N20

N24

N23

N18

N15

N14

N12

L

N17

N20

N24

N23

N18

N12

Closed-chain = JLJLJLJ Triad + LJL Dyad + JLJL Dyad

N11

N17

N19

N25

Closed-chain = J JLJLJL TriadLJL Dyad + JLJLDyad +

N11

N12

N17

N19

N25

N11
N16

N21

N22

N26

Closed-chain = JLJLJLJ Triad + JLJL Dyad + LJL Dyad

N11
N16

N21

N22

N26

N11

N17

N19

N25

Closed-chain = J JLJLJL TriadLJL Dyad + JLJLDyad +

N11
N16

N21

N22

N26

N11

N17

N19

N25

N15

N14

N17

N20

N24

N23

N18

SOC 0

SOC 1

SOC 2

SOC 0

SOC 1

SOC 2

SOC 0

SOC 1

SOC 2

SOC 0

SOC 1
SOC 2

4

L7

L6

L6

L7

4

L6

L6

L4

L7

01) Loop order: l - l1

12) Loop order: l - l0

03) Loop order: l - l1

14) Loop order: l - l0

L4

L7

Figure 11: All decompositions for the second alternative of the path following problem.

M.A. PUCHETA, A. CARDONA368

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

4.2 Nozzle of a turbine engine

The problem shown in Figure 12 schematizes the prescribed coordination between two flaps
of a turbine engine and the horizontal movement of an hydraulic cylinder. The physical meaning
of the initial graph vertices is: 8 (primary flap), 10 (secondary flap), and 12 (hydraulic cylinder).
Four positions are given for each flap while only the starting and ending positions are prescribed
for the cylinder (2 positions).

1�

2�

3�
1

�

2
�

3
�

d3

d0 40mm

70mm

-0.8145

�

�

-0
.2

2
5
7

-0
.3

2
9

-0.7672

-0.1959
-0

.0
4
3
1

0

1

2
3

0

12

10

8

P

R

R

E15

E8

E10

��� law

1DOF?

Initial Graph

E : Rotoidal Hinge

E : Prismatic

F : Fixation

N : Node

F.E.M. description

E12

E13

E14

E : Rigid Body

15

8

13

Figure 12: Graph representation for a kinematics problem of double function generation.

The first six solutions available from the type synthesis stage are shown in Figure 13.

Alternative 1

8

10

17

12

18

427

Alternative 3

8

10
17

12

18

427

Alternative 4

8

10

12

17

18

427

Alternative 5

8

10

12
17

18

427

0

8

10

12

P

17

18

0

8

10

12

P

17

18

0

8

12

P

10

17

18

0

10

12

P

8

17

18

0

8

12

P

10

17

18

0

10

12

P

8

17

18

Alternative 2

8

10

12

17

18

427

Alternative 0

10

8

17

18

427

12

Figure 13: Type Synthesis outputs. For clarity, an automatic sketch is drawn below each solution.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 369

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The synthesized nodes and elements for the Alternative 0 are shown in Figure 14.

0

10

12

P

8

17

18

427

L12 L18 L8

L17

L10

J15 J23
J21

J13

J14J22

J20

L

D

L

14R

15P

20R

10

22R

12

23R

17

0

13R

8

21R

18

12

0l

1l

elements

nodes

a) Graph and minimal independent loops b) F.E.M. description

N20

N15

N22

N19

N31
N35

N34

N29 N28

N32

N33 N30 N17

N21

L10

L8

L12

Figure 14: Initial situation for the decomposition of the simplest alternative for double function generation.

The decomposition process results in two SOCs for each loop-ordering. Now, we will de-
scribe the circular tables obtained for the first loop-ordering l0 − l1.

The circular Table 3 for SOC identification in loop l0 is filled as follows.

nodeID � 21 22 20 15 28 32 33 30 17 �
linkID � 0 0 0 8 8 17 17 10 10 �
jointID � -14 0 -13 -13 -20 -20 -22 -22 -14 �
stdispl � 1 1 1 0 0 0 0 0 0 �

SOC 0 � .H N. �

Table 3: Circular table for loop l0 in the nozzle problem.

Since in this example there is not a trajectory node breaking the loop, an unique SOC is
obtained and the running of the loop with the inverted orientation is not necessary.

The next loop that we obtained, l1, is filled as it is shown in Table 4.

nodeID � 22 21 20 15 29 34 35 31 19 �
linkID � 0 0 0 8 8 18 18 12 12 �
jointID � -15 0 -13 -13 -21 -21 -23 -23 -15 �
stdispl � 1 1 1 1 0 0 0 0 0 �

SOC 1 � .H N. �

Table 4: Circular table for loop l1.

The corresponding decomposition is illustrated in Figure 15-1. The orientations of the
complex-numbers in the SOC 1 are inverted to make them compatible with the available solver

M.A. PUCHETA, A. CARDONA370

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

module JLJLJL-Triad. The program automatically inverts the orientations of the complex-
number chain whenever it finds that the SOC is started by a link. The decomposition for the
loop-ordering l1 − l0 is treated in the same form, and it is shown in Figure 15-2.

01) Loop order: l - l1

12) Loop order: l - l0

N20

N15

N28
N32

N33

N30

N17

N21

L10

L8

SOC 0

N15

N22

N19

N31

N29

L12

N35

N34SOC 1

Closed-chain = JLJLJLJ Triad + JLJLJL Triad

N20

Closed-chain = JLJLJLJ Triad + JLJLJL Triad

L8 N15

N22

N19

N31

N29

L12

N35

N34SOC 0
N15

N28
N32

N33

N30

N17

N21

L10

L8

SOC 1

L8

Figure 15: All decompositions for the double function generation problem.

The obtained evaluations for both decompositions were:

1. R1 = {true, true} = 2, R2 = {8, 6};

2. R1 = {true, true} = 2, R2 = {6, 8};

This means that the first one will be chosen for dimensional synthesis (Figure 16).

L12

L18

L8

L17

L10

J15
J23

J21

J13

J14

J22

J20

Figure 16: Dimensional synthesis of the nozzle problem using the first decomposition.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 371

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

5 CONCLUSIONS

We proposed an automated method to generate, evaluate and rank all SOCs decompositions
from the sets of minimal independent loops of the graph representation of a mechanism. The
decomposition can be used for the synthesis of any kinematics problem based on the Precision
Point Method. The rules for evaluation are heuristics, and the examples showed that they do not
reject any feasible solution and offer an optimal sequence of SOCs ranked in the first place.

The presented algorithm for computing the set of minimal independent loops works well with
graphs without attributes on their vertices and edges (link and joint types respectively). How-
ever, when we consider attributes, loops with equal lengths could be different. Therefore, we
may obtain more than one set of minimal independent loops. Using an isomorphism identifier
for coloured graphs we would obtain all non-isomorphic sets of minimal-length independent
loops.

The rules for decomposition based on FEM description, i.e. the positions and displacements
of nodes, and the successive transfert of data between SOCs, can be extended to tridimensional
problems.

We think that it is not possible to build a data base of decompositions for all kinematics
problems. However, the presented method can be useful to construct a data base for the most
popular kinematics tasks, like PF, FG and RBG, for mechanisms up to eight links.

The next direction of research will be the study and development of this method for planar
compliant mechanism applications using the pseudo-rigid body concept (Howell, 2001).

6 ACKNOWLEDGMENTS

This work received finantial support from Consejo Nacional de Investigaciones Cientı́ficas y
Técnicas, Agencia Nacional de Promoción Cientı́fica y Tecnológica, Universidad Nacional del
Litoral and from the European Community through grant SYNCOMECS (SYNthesis of COm-
pliant MEChanical Systems) project UE FP6-2003-AERO-1-516183.

The first author wants to thank for the very useful publications sent by the professor Ting-Li
Yang from Nanjing, P.R. China.

REFERENCES

S.S. Balli and S. Chand. Defects link mechanisms and solution rectification. Mechanism and
Machine Theory, 37(9):851–876, 2002a.

S.S. Balli and S. Chand. Transmission angle in mechanisms (triangle in mech). Mechanism and
Machine Theory, 37(2):175–195, 2002b.

J.B. Cook. SyMech Synthesis Software for Pro/E. URL http://www.symech.com.
H.A. Crone, A.J. Klein Breteler, and K. van der Werff. TADSOL Type And Dimension Synthe-

sis Of Linkages. URL http://www.ocp.tudelft.nl/ tt/cadom. Delft University of Technology,
Netherlands.

H. Draijer and F. Kokkeler. WATT Mechanism Synthesis. URL http://www.heron-technologies.
com/watt. Heron Technologies.

A.G. Erdman and J. Gustafson. LINCAGES: A Linkage Interactive Computer Analysis and
Graphically Enhanced Synthesis Package. ASME Paper No. 77-DTC-5, 1977.

A.G. Erdman and G.N. Sandor. Mechanism Design: Analysis and Synthesis, volume 1.
Prentice-Hall, New Jersey, 3rd edition, 1997.

M. Geradin and A. Cardona. Flexible Multi-Body Dynamics. A Finite Element Approach. John
Wiley & Sons, 2001.

M.A. PUCHETA, A. CARDONA372

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.symech.com
http://www.ocp.tudelft.nl/tt/cadom
http://www.heron-technologies.com/watt
http://www.heron-technologies.com/watt

F. Harary. Graph Theory. Addison-Wesley Series in mathematics, 1969.
R.S. Hartenberg and J. Denavit. Kinematic Synthesis of Linkages. McGraw-Hill, New York,

1980.
L.L. Howell. Compliant Mechanisms. John Wiley & Sons, New York, 2001.
R.E. Kaufman. KINSYN - An interactive system for the kinematic synthesis of mechanisms.

In Third World Congress on Theory of Machines and Mechanisms, pages 13–20, Dubrovnik,
Yugoslavia, september 1971.

A. Kecskeméthy, T. Krupp, and M. Hiller. Symbolic processing of multiloop mechanism dy-
namics using closed-form kinematics solutions. Multibody System Dynamics, 1(1):23–45,
1997.

C.-S. Lin, A.G. Erdman, and B.-P. Jia. Use of compatibility linkages and solution structures in
the dimensional synthesis of mechanism components. Mechanism and Machine Theory, 31:
619–635, 1996.

J.M. McCarthy. Synthetica. URL http:// synthetica.eng.uci.edu/∼mccarthy. Laboratory for the
Analysis and Synthesis of Spatial Movement. University of California, USA.

D.G. Olson, A.G. Erdman, and D.R. Riley. Formulation of dimensional synthesis procedures
for complex planar linkages. ASME Journal of Mechanisms, Transmissions, and Automation
in Design, 109(3):322–328, 1987.

M.A. Pucheta and A. Cardona. Type synthesis and initial sizing of planar linkages using graph
theory and classic genetic algorithms starting from parts prescribed by user. In Multibody
Dynamics 2005, ECCOMAS Thematic Conference, Madrid, Spain, 2005a.

M.A. Pucheta and A. Cardona. Type synthesis of planar linkage mechanisms with rotoidal
and prismatic joints. In Mecánica Computacional, volume XXVI of VII Congreso Argentino
de Mecánica Computacional, MECOM 2005, pages 2703–2730, Buenos Aires, Argentina,
2005b.

A.M. Rankers. SAM: Synthesis and Analysis of Mechanisms. URL http://www.artas.nl.
ARTAS-Engineering Software.

SAMCEF. SAMCEF Field v5, SAMCEF BOSS/Quatro v5. URL http://www.samcef.com.
SAMTECH S.A.

G.N. Sandor. A General Complex-Number Method for Plane Kinematic Synthesis with Appli-
cations. PhD thesis, Columbia University, New York, 1959.

G.N. Sandor and A.G. Erdman. Advanced Mechanism Design: Analysis and Synthesis, vol-
ume 2. Prentice-Hall, New Jersey, 1984.

P. Sardain. Linkage synthesis: Topology selection fixed by dimensional constraints, study of an
example. Mechanism and Machine Theory, 32:91–102, 1997.

L.-W. Tsai. Mechanism Design: Enumeration of Kinematic Structures According to Function.
CRC Press, Boca Raton, 2001.

K.J. Waldron and S.M. Song. Theoretical and numerical improvements to the interactive linkage
design program, RECSYN. In Seventh Applied Mechanisms Conference, pages 8.1–8.8.7,
Kansas City, Missouri, 1981.

T.-L. Yang, F.-H. Yao, and M. Zhang. A comparative study on some modular approaches for
analysis and synthesis of planar linkages: Part 2 – Modular dynamic analysis, modular struc-
tural synthesis and modular kinematic synthesis. In ASME Design Engineering Technical
Conferences, DETC/MECH-6058, Atlanta, Georgia, USA, 1998.

B. Yannou and A. Vasiliu. Design platform for planar mechanisms based on a qualitative kine-
matics. In QR’95: Ninth International Workshop on Qualitative Reasoning about Physical
Systems, pages 191–200, Amsterdam, 1995.

Mecánica Computacional Vol XXV, pp. 351-373 (2006) 373

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://synthetica.eng.uci.edu/~mccarthy
http://www.artas.nl
http://www.samcef.com

	INTRODUCTION
	A TYPE SYNTHESIS OUTPUT
	Motion constraints
	FEM to graph translation

	THE PROPOSED METHOD
	Topology decomposition
	Dimensional synthesis review
	SOCs decomposition
	SOCs evaluation

	RESULTS
	A multi-loop curve path generator
	Nozzle of a turbine engine

	CONCLUSIONS
	ACKNOWLEDGMENTS

