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Abstract. Pneumatic positioning systems are relatively light, clean and of low cost presenting a good 

relationship between weight and power. These features make this kind of system a good choice of 

actuating for most applications. It appears, however, that the nonlinearities inherent to these systems 

are factors that complicate there application, turning them into subject of research for different 

authors. In this context, it is observed that there is a point less explored then other ones, related to the 

mathematical modeling of the dynamics of the adopted control valve. Several authors neglect this 

dynamic behavior by considering it is very high compared to the rest of the systems dynamics. 

Related to this claim, it is intended, in this paper, to develop a mathematical model representative of a 

pneumatic positioning system including the dynamic behavior of a proportional directional control 

valve to establish its real relevance in the global model of the pneumatic positioning system. The 

theoretical analysis that allows the formulation of the mathematical model is based on the concepts of 

fluid mechanics and on the laws of conservation of mass and energy. The results for the validation of 

the model are obtained by computer simulation, which are then compared to experimental results. 
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1 INTRODUCTION 

It is understood by positioning systems, those that enable to position a mechanical load at a 

desired location. This location is usually denoted by a set of cartesian or polar coordinates 

which may be fixed or variable in time. 

Positioning systems are used in several applications, among which may be mentioned: 

rolling mills, agricultural machinery, aircraft rudders, active suspension systems, robotic 

manipulators and active tools. 

It is described in this paper the main aspects related to a specific pneumatic positioning 

system and its respective mathematical modeling, aiming to continue and to contribute to an 

existing research line which has already led to several works developed by other researchers, 

such as: Andersen (2001), Cruz (2003), Ritter (2010), Ribeiro and Cruz (2012), Valdiero et al. 

(2012). 

The choice of pneumatic systems for actuation of positioning systems is due to a number of 

factors that make them very attractive when compared to other actuation systems: these 

systems are often of low cost, clean, light and easy to assemble, presenting a good relationship 

between weight and power. In contrast, the application of these systems have some 

disadvantages among which may be mentioned their nonlinearities imposed mainly by the 

compressibility of the air, the system leaks and the friction between its moving parts. 

Intending to validate the obtained model, results of computer simulation are presented, 

which are then compared to experimental results. 

2 DESCRIPTION OF THE EXPERIMENTAL SET 

For conducting experiments relevant to this work, it was used an experimental set (Figure 

1) that consists of the following components: a proportional directional control valve model 

MPYE-5-1/8-HF-010B, a linear drive model DGPL-25-450-PPV-450-TLF, three manometric 

pressure sensors, two of the model SDE-D10-G2-H18-C-PU-M8 and one of the model SDE-

10-10V. All components listed above are from the manufacturer FESTO. Completing the 

experimental set, it was also used a universal thermocouple type K, model MTR-01 from the 

manufacturer Minipa, with the purpose to measure and control the temperature. 

 

 

Figure 1: Experimental Set. 
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The functioning of this system occurs initially with a displacement of the spool of the 

employed valve, proportional to the value of the voltage signal applied to its solenoid. As the 

valve’s spool moves, it causes to open or close some of the air passage orifices (control 

orifices), thus allowing the air to flow into one of the linear drive chambers. As a result of this 

air flow, it is generated a pressure difference between the chambers of the linear drive, which 

causes the displacement of its piston. 

3 MATHEMATICAL MODELING 

The presented mathematical modeling is based on the concepts of fluid mechanics and on 

the laws of conservation of mass and energy (Fox and McDonald, 2010; Streeter, 2000). As 

will be seen during this paper, some considerations will be needed to obtain the model, such 

as: an adiabatic and reversible process for the compression of the air volumes, which will 

occur at high speeds, what features an isentropic process, unidirectional flows, uniform speeds 

and the condition of static pressure upstream of the control orifices. Finally, the air is 

considered as an ideal gas. 

For a better description of the developed mathematical model, the modeling is presented in 

stages according to the following sequence: modeling of the proportional directional control 

valve’s spool dynamics, modeling of the mass flow rates and the continuity equations for the 

two control volumes considered in the system (volumes A  and B ) and finally, modeling of 

the linear drive’s piston dynamics. Figure 2 illustrates each of the devices present in the 

system and how they are interconnected, and further evidences the control volumes 

mentioned: 

 

 

Figure 2: Schematic Drawing of the Pneumatic Positioning System. 

where sup

Aqm  is the mass flow of air in the supply of the control volume A , exa

Bqm  is the mass 

flow of air in the exhaustion of the control volume B , 0p  is the local atmospheric pressure 

and supp  is the manometric supply pressure of the system. 

Side A Side B 
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3.1 Proportional directional control valve’s spool dynamics 

The balance of forces acting on the valve’s spool is responsible for its dynamic behavior 

(
2

2
. c

c

d x
F m

dt
 ).  The first force component that composes this sum is performed by the 

solenoid ( sF ), the second one is related to the viscous damping ( . cdx
B

dt
) and the last one is 

related to the elastic behavior ( .m cK x ). Thus, and based on the 2nd Newton’s law, considering 

the expression already written in the Laplace domain, one obtains: 
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where cx  is the spool position, cm  is the spool mass and B  and mK  are respectively the 

viscous damping and the elastic rigidity coefficients of the employed valve. Once the 

pressures act in a perpendicular direction to the spool’s movement, its force components are 

neglected. 

Additionally it is known that the force exerted by the solenoid is proportional to the applied 

voltage signal, that is: 

                                                        0s sF K U U                                                             (2) 

where sK  is the solenoid gain, U  is the applied voltage signal (control signal) and 0U  is a 

voltage set point. 

3.2 Mass flow through the proportional directional control valve 

To describe the behavior of the mass flow through the control orifices of the proportional 

directional control valve, it is used a model already presented in other works such as Andersen 

(2001) and Cruz (2003). 

According to Andersen (2001), the mass flow in the subsonic regime is given by: 
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where ep  and sp  are, respectively, the manometric pressures taken upstream and downstream 

of the considered control orifice. eT  is the absolute temperature of the air, 0A  is the cross 

sectional area of the considered control orifice,   is the ratio of specific heats and R  is the 

gas constant. 

According to Andersen (2001), there is a maximum mass flow rate at which air can flow 

through a given area, once known the values of pressure and temperature. To obtain the 

pressure ratio corresponding to this maximum point, Eq. (3) has to be derived in relation to 

the pressure ratio and the resulting expression has to be set equal to zero: 
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Taking a ratio of specific heats equal to 1.4 (value corresponding to the air), the pressure 

ratio described by Eq. (4) assumes a value of 0.528. 

A more detailed analysis with respect to Eq. (3) can be found in Andersen (2001). 

In the following sections, it will be discussed the behaviors assumed by the mass flow in 

the supply and in the exhaust of each one of the control volumes being considered (volumes 

A  and B ). 

3.2.1 Mass flow in the supply of the control volume being considered 

To represent the mass flow in the supply of the control volume being considered, it was 

adopted the following equation: 
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where i  makes reference to the control volume being considered (volumes A  or B ), ip  is the 

manometric pressure related to the control volume being considered and supp  is the 

manometric supply pressure of the system.  

In order to obtain a simplified version, but still representative of the mass flow, Eq. (5) had 

its terms that appear in brackets expanded in terms of two binomial series until potency of 

order two, resulting in: 
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where: 
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with 0K  representing the proportionality constant existing between the cross-sectional area of 

the considered control orifice and the position assumed by the proportional directional control 

valve’s spool. 

Considering an isentropic behavior for the system and also, assuming that the air behaves 

as an ideal gas, one obtains as the final expression for the mass flow in the supply, the 

following equation: 

 

                                        
0 supsup

2

2

. . . 2.( )

1
. . 1

i i i

i

i

n

K U U p p
qm

s s






 


 
  

 

                                           (8) 

where: 
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with i  representing the time constant and n  the undamped natural angular frequency of the 

proportional directional control valve’s spool. 

3.2.2 Mass flow in the exhaustion of the control volume being considered 

To represent the mass flow in the exhaustion of the control volume being considered, it 

was admitted that the pressure ratio, given by the pressures taken downstream and upstream of 

the considered control orifice, always assumes a value lower or equal to its critical value, 

given by: 
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which, in turn, provides a constant value for the mass flow, regardless of the pressure values 

involved. 0p  represents the local atmospheric pressure which, in this case, coincides with the 

pressure taken downstream of the considered control orifice. 

Substituting the result of Eq. (13) in Eq. (3), considering also Eq. (7), Eq. (10), Eq. (11) 

and Eq. (12) and recalling the fact that the air has a ratio of specific heats equal to 1.4 and that 

it behaves in an isentropic manner and as an ideal gas, one obtains as the final expression 

representative of the mass flow in the exhaustion, the following equation: 

                                         
0

2

.
. .0.484

1
. ² . 1

iexa

i i

i

n

K U U
qm p

s s


 
 
 
   
 

                                       (14) 

3.3 Continuity equation for a compressible flow in the control volume being considered 

This equation makes reference to the conservation of mass in a specific control volume and 

through the surface area of passage that delimits it: 
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where iA  is the surface area of air passage, iV  is the control volume being considered and i  

and i  are, respectively, the density and the velocity of the air in iV . 

Considering that the air behaves as an ideal gas and assuming that the process has an 

isentropic behavior, one obtains as final expression for the continuity equation the following 

relationship: 
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q q
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where 1miq  and 2miq  represent, respectively, the mass flow measurements upstream and 

downstream of the control volume iV .  

In the particular case of the control volume A , given by 0.A c AV A X V  , it is considered 

that 2mAq  does not exist and that 1mAq , for being the unique mass flow present in this case, was 

renamed only as mAq . In view of these considerations, and in order to obtain an expression 

that describes the behavior of the pressure being regulated in the control volume A , Eq. (16) 

can be reduced to: 
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where cA  and X  represent, respectively, the useful cross-sectional area and the position of 

the linear drive’s piston and AOV  represents a volume that includes the dead volume of the 

linear drive’s chamber being considered, beyond the pipe connecting  this chamber to one of 

the output control orifices of the valve. 

Analogously to the control volume A , one obtains the following equation for the control 

volume B : 
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In this case, the control volume considered is given by ( )B c BOV A L X V   , 1mBq  is the 

mass flow that becomes non-existent and 2mBq , for being the unique mass flow present in this 

case, was renamed only as mBq . Additionally it follows that L  and BOV  represent, 

respectively, the useful length of the linear drive and a volume that includes the dead volume 

of the linear drive’s chamber being considered, beyond the pipe connecting this chamber to 

one of the output control orifices of the valve. 

3.4 Linear drive’s piston dynamics 

                                                                     . ( ).A B cM X p p A                                                            (19) 

where M  is the mass of the linear drive’s piston. 

It can be seen from Eq. (19), that the dynamic behavior of the linear drive was considered 

as being an exclusive result of the force imposed by the pressure gradient [  .A B cp p A ]. The 

friction and the dead zone, although of extreme relevance for an accurate description of the 
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linear drive’s piston dynamics, are not considered in this paper, but are already being 

contemplated in the new work plans suggested by the authors of this paper. 

4 RESULTS AND CONCLUSIONS 

Figure 3 shows the dynamic behavior of the pressures that supply the two control volumes 

being considered. 

 

 

Figure 3: Dynamic Behavior of the Pressures Downstream the Control Valve: (a) Side A; (b) Side B. 

It is worth noting that the curves obtained by computer simulation and exposed in Figure 

3, are a direct result of the linearization process of Eqs. (1), (5) and (15). Comments regarding 

linearization and parametric survey can be found, respectively, at Ribeiro (2014) and Eurich 

(2014). 

Analyzing the pressure behaviors in Figure 3, it can be observed that there is a great 

similarity between the dynamic behaviors obtained experimentally and by computer 

simulation. Based on these curves it can be concluded that the modeling process being 

performed tends to a satisfactory and representative result of the dynamic behavior of the real 

system.  

Other experiments to comprove the validity of the proposed model are already being 

developed by the authors of this paper. Soon this model will be completely validated and will 

be ready for use. 
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