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Abstract. Detection-estimation type penalizers have been widelg tiseegularize inverse ill-posed
problems in which it is known that the solution may presestditinuities ( J. Idier, Bayesian Approach
to Inverse Problems, John Wiley & Sons, (2008)). For the cdisguadratic penalty functionals it is
known that the detection-estimation problem can be reftatad as a non-convex penalization problem.
Although this approach is somewhat formally simpler, firgdine corresponding global minimizer is usu-
ally a computationally challenging task, specially in hidjmensional problems, such as those in image
processing. At this step, a duality criterion between the-goadratic and half-quadratic optimization
becomes extremely useful to greatly reduce the computdtmst (J. Idier, Convex half-quadratic cri-
teria and interacting auxiliary variables for image restion, IEEE Transactions on image Processing,
10(7):1001-1009, (2001)).

In this article we will consider general Tikhonov-Phillipsgularization methods where the penal-
izers are given by mixed spatially varying weighted convembinations ofZ? and BV functionals.
Both isotropic and anisotropiBV diffusion cases will be considered. We will use the abovetiorad
non-convex reformulation plus a non-quadratic half-qatidrapproach to attack the problem of approx-
imating the global minimizers of those functionals. Theoagsted optimization problems will then be
recast by means of a duality argument as half-quadratienigstion problems. Numerical results in
signal and image restoration problems will be shown.
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1 INTRODUCTION AND PRELIMINARIES

In a general context, a linear inverse problem can be fortadlas the need of finding in
an equation of the form
Tw =y, Q)

where7 : X — )Yisabounded linear operator between two infinite dimensidilbert spaces
X and), the range of" is non-closed ang is the data, which is supposed to be known, perhaps
with a certain degree of error. In the sequel and unlesswibeispecified, the space will be
L?(Q2) whereQ2 C R" is a bounded open convex set with Lipschitz boundary. Urtuzse hy-
potheses, it turns out that problef) {s ill-posed in the sense of Hadamakbdamard1902),
the Moore-Penrose inverse pfis unbounded and small errors in the dataay result in very
large errors in the corresponding approximationsvofSpies and Temperir(R006). Before
any attempt is made to approximate the solution1)f the problem must be “regularized”.
Regularizing an inverse problem consists essentiallygfoeng the problem by a sequence of
“well-posed” problems whose solutions converge (in an appate way) to a solution (or to a
least squares solution) df); The Tikhonov-Phillips method is undoubtedly the most coon
way of regularizing an ill-posed problem. Although the neoetltan be formulated within a gen-
eral mathematical theory by means of spectral theoryEseg et al.(1996), the widespread of
its use is mainly due to the fact that it can also be formulatedn unconstrained optimization
problem. In fact, given an appropriate functio&lov) (we shall refer toP as a penalizer in
the sequel) with domai® C X, the regularized solution obtained by the Tikhonov-Pbslli
method and such a penalizer, is the global minimizer @ew,,, (provided it exists), of the
functional

Jop(w) = | Tw =y + aP(w), 2)

whereq is a positive constant called regularization parametee diginal method was found
independently by Phillips and Tikhonovin 1962 and 1988Billips (1962 andTikhonov(1963)
using P(w) = Hw||§2m). Other penalizers can also be used to regularize the probianh
choice of P results in a different regularized solution possessingiqadar properties. In the
past 15 years considerable attention has been given to dirfdppropriate” penalizers for a
given problem. Thus, for instance, the choiceltfiw) = HwHig(m produces always smooth
regularized approximations which convergepas+ 0", to the best approximate solution (i.e.
the least squares solution of minimum norm) of probldn($éeeEngl et al.(1996) while for
P(w) = |||Vw| ||i2m) the order-one Tikhonov-Phillips method is obtained. Samty, the choice
of P(w) = |lwl,q, (Where-[|,, denotes the total variation norm) &(w) = [[|[Vw] || 1 g,
result in the so called “bounded variation regularizatioatmods” @Acar and Vogel(1994),
Rudin et al.(1992). The use of these of penalizers is strongly suggested wieserving dis-
continuities or edges is an important matter. The methodgler, tends to produce piecewise
constant approximations and therefore it will most likedyibappropriate in regions where the
exact solution is smoothtChambolle and Lion$1997), producing the so called “staircasing
effect”. For general penalizers3, sufficient conditions guaranteeing existence, uniquenead
weak and strong stability of the minimizers under differmtes of perturbations were found
in Mazzieri et al.(2012.

Given that each penalizing term engraves the solution vattiqular properties, in certain
types of problems, particularly in those in which it is knotivat the regularity of the exact
solution is heterogeneous and/or anisotropic, itis reasierto think that the use of two or more
penalizers of different nature, that could somehow spgtzlapt to the local characteristics of

the exact solution, would be more convenient. During thé 1&syears many regularization
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methods have been developed in light of this reasoning. ,ihugstance, in 1997 Blomgren
et al. (Blomgren et al(1997) proposed the following penalizer:

_ / VPV g 3)
Q
wherep is a decreasing function satisfyiri@m+p(u) = 2, lim p(u) = 1. Thus, in regions where
u—0 U— 00

the gradient ofw is small the penalizer is approximately equa||th|||iz(Q), corresponding

to a Tikhonov-Phillips method of order one (appropriate $arooth regions). On the other
hand, when the modulus of the gradientwofis large, the penalizer resembles the bounded
variation seminorm||Vw|| ;. q,, Which, as previously mentioned, is a good choice for border
detection purposes. Although this model foiis quite reasonable, proving basic properties of
the corresponding generalized Tikhonov-Phillips funeéilturns out to be quite difficult. The
authors proved existence of global minimizers of functi¢@g by using the theory of variable
L? spaces. In 1997 Chambolle and Lions suggested a differentoiveombining these two
methods Chambolle and Lion§1997). They defined a thresholded penalizer of the form:

Pg(w):/ |Vw|2dx+/ |\Vw| dz,
|Vw|<B |Vw|>p

wheres > 0 is a prescribed threshold parameter. Thus, in regions whenders are more
likely to be present|§w| > ), penalization is made with the bounded variation seminorm
while a standard order-one Tikhonov-Phillips method islustierwise. This model was shown
to be successful in restoring images possessing regiohdwihogeneous intensity separated
by borders. However, in the case of images with non-uniforrighly degraded intensities,
the model is extremely sensitive to the choice of the thriesparameter5. More recently,

penalizers of the form
w = [ [vupt @

for certain functiong with range in[1,2], were studied inChen et al.(2006 and Li et al.
(2010. It is timely to point out here that all previously mentiaheesults are valid only for
the case of denoising (no blurring), i.e. for the c@se- id. More recently, Mazzieri, Spies and
Temperini studied penalizers of the form

/|\/1— |d:E+/\1/ 10(x )Ww(x)|dz (5)

where )y, A\; are positive constantg|x) is a weighting function with values on the interval
[0,1] and A(x) is a symmetric positive definite matrix field. General exisgs uniqueness
and stability results of global minimizers of the corresgioy generalized Tikhonov-Phillips
functionals

To(w) = | Tw — y|> + Ao / VT @) w(e)Pdz + A, / 10(2) A(@) V(@) dz  (©)

can be found irMazzieri et al.(20140 and Mazzieri et al.(20148. Several remarks are in
order. First note that the extreme cage) = 0 Vz corresponds to the classical Tikhonov-
Phillips method. Fof(x) = 1 Vz one gets a puré&l method, with the classical Bounded
Variation method corresponding to the case4df) = I Vx. Other choices of the matrix field
A are possible in order to induce an anisotropic BV penabrati-easible ways of constructing
this matrix field can be found for instance @Galvetti et al.(2006. The general case can then
be thought of as a convex combination of a classi¢aind an anisotropi&V penalizers.
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2 SIGNAL RESTORATION WITH A HALF QUADRATIC APPROACH TO MIXED
REGULARIZATION

Approximating the minimizer off) presents quite serious computational challenges. In fact
for high dimensional problems like those arising in imagaaeation, all standard optimization
algorithms will require many hours of CPU time in any modegangonal computer. In order
to reduce the computational burden originated by this dilfyc we shall next consider an al-
ternative approach to the problem of finding the minimize(@f The tactic is based upon a
method developed by J. Idier Idier (2008 for solving detection-estimation problems, and it
consists of rewriting the functional in an appropriate fosianhalf-quadratic optimization tools.
To introduce this approach, we will first consider the casenwfimizing functional 6) when
) is a subset oR, meaningw(z) represents the signal we wish to restore. Without loss of
generality we shall assunfe= |0, 1]. The operatord will necessarily be the identity, meaning
our functional takes the form

ﬂmw:HTw—MP+%/phﬂ— Mx+M/Fw z)|d. (7)

2.1 Signal restoration by mixed regularization

Since restoring the signal(z) is tantamount to finding the minimizer of the previous func-
tional, we will need to perform a discretization in order togeed numerically. For that, we will
take M equally spaced points,, = 22—t € [0,1], m = 1,..., M, and define our discretized
signalu € RM by u,, = w(x,,) for m = 1,2,..., M. In the same way, lef’ € R¥*M and
v € RY be discretized versions of the operafoand of the observation, respectively, and let
O = 0(z,,) form = 1,2,..., M. We now introduce a discrete finite-differences approxiomat
of functional () as follows:

Jo(u) = ||Tu — v||* + °§:1—9 }:e

The restored signab(x) will then be approximated by the discrete signal represehtethe
vector minimizing this functional. The main difficulty fomidling such a minimizer arises from
the non-differentiability of the absolute value at the arjgvhich precludes the differentiability
of Jp(u). To overcome this impediment we shall replace the absohite\by a functionp(t)
approximating it and satisfying certain additional regiiyaand asymptotic assumptions. For
general non-quadratic penalizers, in order to preservesdgd discontinuities between homo-
geneous regions, it is important to appropriately choosebthavior of the functiow. Two
groups of functions have mainly been considered in thedlitee. Namely:

(8)

UM

e [,L,: we say that a functiop : R — R is of Ly, class if it is even, non-constant,
convex and of clas§! onR, C? at the origin and asymptotically linear.

e [,y we say that a functiop : R — R is of Ly, class if it is even, non-constant,
non-decreasing oR ", asymptotically constant and of clag%at the origin.

It is important to point out, however, that da ., or L, L, function does not need to be an ap-
proximation of the absolute value. Thus, for instance, ate detection-estimation problems
for the case of restoration of piecewise smooth signals/ig function$(t) = min{t?, 7%}
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(for a givenn), results appropriatddier (2009, Section 6.4.1). In our case, we will pick the
Lo L, function

P(t) = ¢y(t) = V1> + 17—, 9)
for n > 0 sufficiently small, and replace functiond) (with
Ao A Uy — Uy
Joo(w) = ITu—vl* + 35 m71(1 — O )up, + ;emgb (mTMml) . (10)

Now that we have a differentiable functional, we will intragk a duality relation which will
later allow us to conveniently write the corresponding fingter necessary condition as a linear
system.

2.2 Non-quadratic and half-quadratic duality

Let ¢(¢) be a non-quadratic function satisfying: ijt) is even; (ii)¢ (/1) is concave ofiR*
and (iii) ¢(¢) is continuous at = 0 and¢ € C'(R\{0}). Under these hypotheses, it can be
shown Rockafellar(1970, Section 12) that there exists a functiofb) so that the paif¢, v)
satisfy the following duality relation:

B(t) = inf (st +(s)). (11)

s>0

U(s) = sup(o(t) — st?).

teR

Expression11) is usually referred to as the half-quadratic formpoffFor instance, fop = ¢,
as in Q), it can be easily shown that the corresponding dual fungso

1

Uy(s) =n’s —n+ v (12)

By using the dual functiony(s) we now define the following functional, which introduces an
auxiliary variables € R} !

N M
- 2 0 2
Ko g(u,s) =||Tu—v|* + i m§:1(1 — O )y,
A\ U U 2
1 m — WUm—1
— —_— . 1
MY m; o <8m ( 1/M ) Jﬂ/}(s’”)) 49

Functional {3) is strongly rooted in the origin of the detection-estimatiormalism, where an
additional variable is used to define an augmented critéddake possible discontinuities into
account. It turns out that functional$@) and (L3) are closely related. In fact, by minimizing
Ko 4(u, s) with respect tos € R} ~! we obtain:
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M M
7w = ol + 223 (1= )+ 223, ik (s, (et (o)
M me1 m M m—2 smERY 1/M

A A M Upyy — Uy
o . 2 _0 . 2 _1 m m—1
=17 o+ 5 S0t + 5 0 (Pt
:J6,¢(u)7 (14)

where the second equality holds since each elemenisadissociated independently to one and
only one term of the sum. By defining a diagonal mafsixx R > with diagonal elements

. Um — Um—1
b,, such that, = 0, andb,, = argmin | s, [ —————
' 3§€R+ ( 1/M

(assuming those minimizers do exist) and using identitl),(\we can then write

A M A M Upy — U 2
Toolw) = 7w =l + 20 S (1 = Ou)u, + 753 (bm (i) ¢<bm>) .
m=1 m=2

Furthermore, if we define the diagonal matfix € RM*M by ©,,,, = 6,, and we letL,
be the one-dimensional first order finite difference matri&. ((Liu),, = w, — Uy, for
m=2,3,...,M andL, ; = 0), we can finally write

2
) +(sm) | form =2,3,... M

M
A A
Joo(u) = | Tu—v|? + Mout([M — O)u+ A\ Mu'LtOBLu + Ml Z;emw(bm). (15)

Finding the minimizer ot/ ,(«) is now, in principle, a simple task. In fact, by using express
(15), the first order necessary condition leads to the (appgjdimear system

(T'T + %(IM —©)+ MML:OBLy)u = T'. (16)

It is important no note, nonetheless, that the diagonal etesn,,, of matrix B depend on, and
hence, strictly speakingl6) is in general a non-linear system. Here again, the duadigtion
comes in handy since by differentiating expressibi) (ve observe that the elemerits must

satisfy
_ ¢(tm)

b = 5 (17)
wheret,, = (u,, —u,—1)/(1/M). Letus notice thap(¢) has continuous second order derivative
at zero, provided that(¢) be of class., L, or Ly Ly. Thus,¢ has finite second order derivative
att = 0, and then L'Hopital’s rule implies thafft;g—t) has a removable singularity at zero. Hence
for t,, = 0, we defineb,,, = ¢"(0)/2.

We shall now proceed to build an algorithm for approximatimg minimizer ofJ 4(u) by
using expressiond.6) and (L7) via a fixed-point type argument as follows.

2.3 Numerical implementation of the half-quadratic approach

Since minimizing 15) implies the simultaneous minimization with respect to thier-
dependent variables, andb,,, we will state a simple cyclic iterative algorithm that wasihd
to be quite effective:
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Step 1- Initializing: setj = 0, and initializeu’ = u°.
Step 2- Counting: letj =j + 1.

Step 3 - Updating B: update the components, of B’ using equationX7). That is,

S SO )
" ZM(U%;l_um 11) .

Step 4 - Updating u: updateu’ by solving (in the least-squares sense) the linear system

Ao

(T"T + M(IM 0)+ M\MOLIB L)u! = T.
Step 5 - Convergence: if a previously defined convergence criterion is satisfibd,algorithm

ends and the restored signal is defined taheElse, the algorithm repeats from step 2.

Remark: clearly several convergence stopping criteria can be us&tap 5 above. Here
and in all the examples that follow this was: stop whene¥gr 6;,_,| < «, whered; is the
parameter value of Morozov’s discrepancy principle cqroesling tou; anda is a sufficiently
small parameter. In our case we taok= 10°.

In the next section, we shall generalize this half-quadragiproach to the case of image
restoration problems (i.e. for = 2).

3 THEHALF-QUADRATIC APPROACH TO IMAGE RESTORATIONWITH MIXED
L? AND ANISOTROPIC BV REGULARIZATION

Consider now the model problert)(@long with functional §) and assume = [0, 1] x [0, 1].
Here noww(z) represents the intensity of a gray-scale image at the poinf). We discretize
the image to obtain an/-by-M matrix U, consisting of the values ab at the centerpoints
of an M-by-M pixel grid. Next, we stack the columns bfto get a vecton, € RM” so that
Uni(i—1)+m = Umg VI,m = 1,2,..., M. We proceed in the same way to obta&nc RM?
andv € R™*, corresponding to discretized versiong)¢f) and the observation, respectively.
Finally, T € RY**M* will represent an appropriately discretized version ofdperator7” and
A,, the2-by-2 matrix obtained by evaluating the matrix-valued functidf) at the centerpoint
of them™" pixel. Thus, our discretization of functiond)(takes the form

( (um - uerl) )
M (U, — Upn—nr)
wheret is the set of all indexes which do not correspond to a pixehi bhottom or left
borders of the image. Naturally, the restored image will ppereximated by the minimizer of

this functional. In order to find such a minimizer, let us lelgy noticing that then-th term of
the discretized anisotropy penalizer di8)is now

Gy

M (um — Um— M)
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Jo(u) = ||[Tu—v|*+ 222(1—0 Ju> +—Ze

m=1 meM

, (18)

1

= |M (aTl (um - um—M) + aTQ(um - um-i-l)) |
1

+ |M (agjl (Um - um*M> + ag,l2<um - uerl)) |7 (19)
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wherea, i,j = 1,2, are the elements of the 2-by-2 matri,. Here again, to avoid the
non- dlﬁerentiability at the origin of the absolute valuee will replace it with the function
o(t) = ¢,(t) defined in ), for which the corresponding dual is functionis) = ¢, (s) given
in (12). Following the same steps as in section 3.2 and using thktydualation (11), we
approximate 19) by

e (oo o)

Mt — ) )| b M (@t = o) @t = )]+ ()

1
+Cm [M (ag}l(um — Upm—r) + ag}Q(um - um-i—l))}2 +¥(em),

(20)
where
b = argerﬂgin (SmM2 (@7 (= U ar) + @ (U — Um+1))2 + Qﬁ(sm)) ;
smERy
and
Cn = afger]gin <3mM2 (a5 (U — Wn—pr) + 'y (U, — Um+1))2 + ¢(3m)> :
Define now the)M2-by-M? diagonal matricesA®’ for 4,5 = 1,2, such thatd’/ =~ = a;’y if

m € M andA” = ( otherwise, and leR; and R, be theM2 -by-M? matrlces deflned by
R, = A“(Ll®IM)+A12(IM®Lt)andR2 AQl(Ll®IM)+A22(IM®Lt),WhereIM
denotes thel/-th indentity matrix and» is the Kronecker product. It is then easy to see that,
using Q0), functional (L8) can be approximated by

Ao
Jo.p(u) =||Tu —v||* + Mu Iy — O)u + Mu'RIOBR v + \u' REOC Ryu

+ LS (b + ﬁ; > 0t (em). (21)

where B and C' are theM?-by-M? diagonal matrices whose diagonal elementstareand
cm, respectively. We now want to find the minimizer of functib(2l). As for the case of
signals (equationl) ), this seems to be a relatively easy task. In fact, oncenafaifirst order
necessary condition resembles a linear system and is giwen b

Ao

We should observe, however, that matridesand C' depend on: and systemZ4?) is in fact
nonlinear. Nevertheless, differentiation of the dual#jation (L1) implies that the diagonal
elements,, andc,, of those matrices must satisfy

B ¢/( (‘flnl(u - um—M) + aTQ(um - um-i—l)))
"M (al 1 (U — Un—nr) + a?}?(”m - Um+1)) (23)
and / m m
o (M (am(um — Upm—n) + am(um - UmH))) (24)

2M (ay (tm — Um—nr) + a5 (Uny — Uni1))
Based upon all of the above, we shall state a cyclic iteratigerithm for image restoring as
follows:
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Step 1- Initializing: setj = 0, and initializeu’ = u°.
Step 2- Counting: letj =j + 1.
Step 3 - Updating B: update the components, of B’ using equationZ3). That is,

P ¢'(M (0717,11(10%;1 - uin_—lM) + aTQ(“irfl - uf’n_—i}l)))

" 2M (aﬁ (' — u{nfM) + QTQ(U% - “m+1))

Step 4 - Updating C: update the components, of C7 using equationZ4). That is,

M (g (il — ) + s (ul !t — )

— A — —
" 2M (agfl(ufn - uin—M) + ang(Ugn - uin-i—l))

Step 5 - Updating u: updateu’ by solving the linear system

A . . .
(TtT + MOQ([MQ — @) —+ AlRi@B‘le —+ Ale@C]RQ) w = T

Step 6 - Convergence: if the convergence criterion is satisfied, the algorithmseadd our
restored signal is defined as. Else, the algorithm repeats from step 2.
4 APPLICATIONSTO SIGNAL AND IMAGE RESTORATION
The purpose of this section is to present some applicatithe @lgorithms developed above
for half-quadratic mixed.?-BV regularization in signal and image restoration problems.
4.1 A signal restoration example

A basic mathematical model for signal blurring is given bynaalution, as a Fredholm inte-
gral equation of first kind:

1
) = [ kltsudt = Tu(), (25)
0
wherek(t, z) = \/2_+Ub exp(—% is a Gaussian kernet, > 0, w is the original signal and

y Is the blurred signal. For the numerical examples that ¥glequation 25) was discretized in
the usual way (using collocation and quadrature), resuitira discrete model of the form

Tu =, (26)

whereT is a(M + 1) x (M + 1) matrix, u,v € RM* (u; = w(z;), v; = y(z;), ;= L, 0 <
j < M). We tookM = 130 ando, = 0.04. The datag was contaminated with a 1.5% zero-
mean Gaussian additive noise (i.e. standard deviation égieb% of the range of). Figure
1(a) shows the original signal (unknown in real life problems) and the blurred noisy signal
which constitutes the data of the inverse problem. Figubg 4ljows the restoration obtained
with the classical Tikhonov-Phillips method (correspamgdio /(x) = 0 in functional ©)).
Figure 1(c) shows the restoration obtained with the pBvé penalizer (z) = 1in (6)) and
finally, Figure 1(d) depicts the restoration obtained witl mixedZ?- BV penalizer withd(z)
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chosen by scaling to [0,1] the modulus of the gradient of &ggilarized solution obtained with
a pure Tikhonov-Phillips method. It is timely to point outrbehat the choice of the functigh
is a very important matter which we do not discuss in thichkatiln all cases, the regularization
parameters used{ and\;) were estimated using Morozov’s discrepancy principles attual
values of these parameters for all examples that follow laogvae on Table 3 at the end of this
article.

(@) (b)

1 . . :
Original Signal — — — Original Signal
0.81 Observation |1 0.8¢ Restoration
0.6 0.6
0.4r¢ 0.4r1
0.2t 1 0.2
u— 0
-0.2} 1 -0.2¢}
ISNR = 2.611
-0.4 : : : : -0.4 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(©) (d)
1 u u 1 . . . .
— — — Original Signal — — — Original Signal
- Restoration 1 0.81 - Restoration
|
| 0.6
0.4r1
0.2t
0
/
-0.2¢ .__r}_ -0.2¢
ISNR = 4.680 ISNR = 6.508
-0.4 : : : : -0.4 : : : :
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1: (a) Original signal and observation; (b) TikhosRhillips restoration; (cBV restora-
tion; (d) Mixed L2-BV restoration.

As expected, the combined method returns a much betteraéista This is clearly reflected
in the ISNRs for all three cases. The CPU times required tmparthe latter mixed restoration
was compared to those required by another program based trattitional Newton-Raphson
method. Given the same stopping criteria, the algorithnppsed here was in average over
thirty five times faster than the other, what provides strewigence of the computational effi-
ciency of these new half-quadratic approach. We will negspnt an application to an image
restoration problem, of the method and algorithm develop&kction 3.

4.2 Imagerestoration examples
4.2.1 A gray-scaleimage

For the following examples we used a two dimensional cortimtunodel for the blurring
operator with point spread function (PSF) of atmospheniattience type (gaussian kernel) with
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vertical and horizontal variance§ ando?, respectively:

Tw(z,y) = / /Q (2r0n0y) L exp (—(‘” —o) _ <y_t)2) wis, t)dsdt.  (27)

2 2
207, 207

Herew(s,t), for (s,t) € Q C R?, represents the gray-scale intensity at the point) of the
image we want to restore. The getis the support of the image, which in all cases we take
to be[0, 1] x [0, 1]. Here too, modelZ7) was discretized in the usual way by taking a regular
M x M grid on€) and stacking the columns of the discretized version of thegew (s, t) to
form a vectoru € RM*. The resulting discretized model is then of the fdfim = v whereT'

is an M2-by-M? matrix and the components ofcorrespond to the values of the observation
Tw(z,y) at the centerpoints of the corresponding pixels. For thengkas that follow we took

o2 = o7 = 0.02, M = 100 and the data of the inverse problem (namelyvas contaminated

with 1% additive zero mean Gaussian noise.

Figure2(a) shows the blurred-noisy image (data of the inverse prapwhile Figure2(b)
shows the restoration obtained with a Tikhonov-Phillipstiod (pureL? penalizer). This
restoration was later used to build the anisotropic peattin matrices4,, and the compo-
nentsd,, of the convex combination vector. In the following examplk® elements,, were
computed by scaling t@, 1] the norm of the discretized gradient of the pure Tikhonoilliph
solution. As for the matriced,,, they were constructed following the theoryQalvetti et al.
(2009 (for reasons of brevity we do not give further details here)

() (b)

Figure 2: (a) Blurred noisy image (observation); (b) TikbesPhillips restoration.

In Figure3 we present the restorations obtained using @ivepenalizers; isotropic case in
(a) and anisotropic in (b).
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v \

Figure 3: (a) IsotropidV restoration; (b) Anisotropi@V restoration.

Finally, Figure4 shows the restorations obtained with the miXéeBV penalizer; isotropic
case in (a) and anisotropic in (b).

T &

Figure 4: (a) MixedL?-isotropic BV restoration; (b) Mixed.2-anisotropicBV restoration.

For comparison purposes, the original image is present&igimre5 and all ISNR values
in Table2. Once again, the best restoration is obtained with the coeaki?-anisotropicBV
penalizer. It is also timely to see that the ISNR value of thisteopic BV restoration is signif-
icantly larger than the one obtained with the isotropic penalizer. Also, the ISNR increases
from any one of the single methods to the corresponding coeabone (namely, isotropiBl
to mixed isotropic and anisotropf8} to mixed anisotropic). These observations clearly high-
light the relevance and potential applications of the carabimethods.
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Restoration Type  ISNR
Tikhonov 4.140
Isotropic BV 3.666
Anisotropic BV 5.032
Mixed Isotropic 4517
Mixed Anisotropic 5.118

Figure 5: Original image Table 1: ISNRs of each restoration

4.2.2 A color image

Finally we present an application to a color image restorafiroblem. Here the forward
model consists of applying the integral operator given hyagign @7) to each one of the three
layers (RGB) of the image. Blurring, noise contaminatiod agstoration were all performed
separately on each one of the layers. Figi(@® shows the blurred-noisy image (data) while
Figure 6(b) shows the restoration obtained with a Tikhonov-PHsll{jpure ?) regularization
method. Here too this restoration was used to build the tmogic penalization matriced,,
and the components, of the convex combination vector.

Figure 7 shows the restorations obtained with pi#& penalization terms, both isotropic
(a) and anisotropic (b). The difference between the restms induced by taking into ac-
count gradient-induced directions stands out clearlyalyinFigure8 shows the restorations
performed with mixed.?- BV regularization.

() (b)

-

Figure 6: (a) Blurred noisy image (observation); (b) TikbesPhillips restoration.
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(@) (b)

Figure 7: (a) IsotropidV restoration; (b) Anisotropi@V restoration.

(@) (b)

Figure 8: (a) MixedL?-isotropic BV restoration; (b) Mixed.2-anisotropicBV restoration.

To better illustrate and compare the performances of theadst Figuré® shows the original
image while Tabl& shows the ISNR values for each one of the five restorations.
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Restoration Type  ISNR
Tikhonov 3.325
Isotropic BV 3.104
Anisotropic BV 4.042
Mixed Isotropic 3.846
Mixed Anisotropic  4.420

Figure 9: Original image Table 2: ISNRs of each restoration

Similar observations as for the gray-scale example can k#erhare. Namely, the best
restoration is once again obtained with the combinégnisotropicBV penalizer, the ISNR
value of the anistropi@V restoration is considerably larger than the one for theapat BV
penalizer and the ISNR values increase from any one of tiggesmethods to the corresponding
combined one. For the sake of completness the next tablesshewalues of the regularization
parameters, and\; use for all previous restorations.

Restoration Signal Gray image Red layer Green layer Blue layer
Tikhonov le-2 le-2 1.42e-2 1.28e-2 1.56e-2
Isotropic BV 6.4e-4 7e-5 l.1e-4 1.2e-4 le-4
Anisotropic BV — le-4 le-4 l.1le-4 le-4
Mixed Isotropic || 1.01e-2, 6.46e-4 8.59e-3,6.01e-6 1.32e-4,9e-5 1.12e-4,1.1e-4 1.56e-2, le-4
Mixed Anisot. — le-2,le-4| 1.42e-2,1.1e-4 1.28e-4,1.2e-4 1.91e-2,1.2e-4

Table 3: Values of the parametexgand\; used for the different restorations

5 CONCLUSIONS

In this article we used a non-convex reformulation plus a-goadratic half-quadratic ap-
proach to attack a general Tikhonov-Phillips regular@atmethod were the penalizers are
given by mixed spatially varying weighted convex combioasi of L?> and BV functionals.
Both isotropic and anisotropi&V" diffusion were considered. The associated optimization
problems were then recast by means of a duality argumentfagusratic optimization prob-
lems. The method proposed in this article resulted in sicpnifily faster algorithms as compared
to direct Newton-based methods. Numerical results in $ignd image restoration problems
were shown along with their ISNRs, whose higher values fentixed-anisotropic restorations
showed substantial improvements.
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