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Abstract: 
At present, one can find in the literature a high number of constitutive equations in order to quantify, 
with varying precision, the stress tensor of viscoelastic materials through rheometric measurements. 
These equations may be basically classified as integral and differential models. Also, these models 
may be expressed through the addition of several stress modes by using a spectrum of relaxation 
times, which is obtained from linear viscoelastic properties of materials, tested in the mechanical 
spectrometer. Therefore, the choice of a tensorial constitutive equation to predict computationally 
complex flow kinematics in the processing operations of materials is a rather difficult task with this 
wide menu. This undesired situation occurs mainly when one needs a rather complete set of 
rheometric functions characterizing the material under consideration. In this work we explore the 
capability of the spectral Phan-Thien and Tanner model to characterize transient and steady shear and 
elongational rheometric functions of linear and branched, and low and high density polyethylene 
melts, involving different microstructures. For these specific purposes, precise numerical programs are 
carried out to consider different mechanical histories involving experimental data already reported in 
the literature. A discussion concerning the prediction quality of the rheological model proposed is 
presented and some physical aspects involving requirements for further research are provided. 
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1 INTRODUCTION 
 

A high number of integral and differential constitutive equations are available in the 
rheological literature in order to quantify, with varying precision, the stress tensor of 
viscoelastic materials, once the involved rheological parameters have been evaluated through 
rheometric measurements. Nevertheless, the selection of an appropriate constitutive equation 
for a material under study (for instance, a polymer melt of the processing industry) is not a 
simple task having into account that in practice one usually finds several difficulties; the most 
relevant in this sense are: (a) the number of experimental data available concerning different 
rheometric tests are not enough to characterize the required rheological parameters without 
ambiguity, (b) the constitutive equation selected is not able to fit simultaneously steady and / 
or transient experimental data of both shear and elongational rheometric functions with the 
same set of rheological parameters. Difficulty (a) is the most frequently found, both in basic 
research works and in industrial laboratories. This situation is a consequence of that the full 
rheometric characterization of a given material may result a very expensive and time-
consuming job. The unavailability of commercial rheometers allowing true elongational tests 
(mainly for fluids and melts) is an additional disadvantage. Thus under these circumstances a 
few rheometric data are used to select a constitutive equation to be used in design and control 
of processing operations, where some hypothesis must be introduced, placing questions on the 
validity of the results thus obtained. Difficulty (b) is however more prone to scientific 
research when enough experimental data are available. Here it is relevant the consideration of 
a spectrum of relaxation times to fulfill a crosscheck when different mechanical histories are 
considered. Therefore, one needs to have available robust algorithms to test constitutive 
equations with these data, and to end up with the most appropriate one for further 
calculations. 

Based on this brief discussion, in this work we explore the capability of the spectral Phan-
Thien and Tanner (PTT) model to characterize transient and steady shear and elongational 
rheometric functions of linear and branched, and low and high-density polyethylene melts, 
involving different microstructures. For these specific purposes, precise numerical programs 
are carried out to consider different mechanical histories involving experimental data already 
reported in the literature. A discussion concerning the prediction quality of the PTT model is 
presented, and some physical aspects placing requirements for further research are provided. 
Thus we carried out a rheometric study of the spectral PTT model in order to evaluate 
rheological parameters of the branched low density polyethylene melt (LDPE9) and the linear 
low (LLDPE1) and high density (HDPE1) polyethylene melts, with experimental data 
reported by Bernnat (2001) (the codes used for samples in that work are kept here) involving 
both the shear rate and elongational viscosities, and the linear viscoelastic rheometric 
functions like the storage and loss modules. In this work, all rheological calculations are 
carried out with experimental data from master curves at 190 oC. They were measured in a 
Rheometrics DSR 200 (Bernnat, 2001). 
 
2 RHEOLOGICAL MODEL 
 

The spectral PTT model with M-modes of effective relaxation times is based on the 

microstructure stress tensor expressed ∑
=

=
M

m
mp

1
ττ , which is a part of the total extra stress 

tensor 
sp

τττ += , where Dss
ητ 2=  is associated with retardation effects involving 

viscosity sη  and the rate of deformation tensor D . In this sense, one expresses, 
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Each one of these equations involves an effective relaxation time e
mλ , which depends on the 

stress field as indicated below (Eq. (3)). The time derivative on the right side of Eq. (1) is 
expressed, 
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which is designated the Gordon-Schowalter non-affine time-convective derivative, (see 
Gordon and Schowalter, 1972). Here DvL χ−⋅∇= is the effective velocity gradient tensor. 

Also ( ) ααηη /1−= ps  and ∑
=

=
M

m
mmp g

1
λη ; consequently the instantaneous elastic response 

of the PTT model is obtained for 1=α . Consistently the zero shear rate viscosity of the melt 
is expressed spo ηηη += . 
 In the PTT model, each mode of effective relaxation time is a function of the stress tensor, 
and it may be expressed, 
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The spectrum of relaxation times { }mm g,λ  of the PPT model for each polymer melt is 
determined first through linear viscoelastic experimental data available in the literature 
(Bernnat, 2001). Then other rheological parameters like α , χ  and ξ  are determined through 
experimental data concerning the shear and elongational viscosities functions. Finally when 
the PTT model is fully characterized for each polymer melt, one is able to study the numerical 
predictions of relevant transient rheometric functions. Once this process is finished, the PTT 
model may be used in the prediction of more complex flows of the polymer processing 
industry.  

 
Polyethylene Samples wM  [Da] nw MM /  oη  [Pa s] Density [kg/m3] 

HDPE1 205000 34 275000 958 
LLDPE1 105000 3.0 12650 920 
LDPE9 115000 6.8 5740 921 

 

Table 1. Values of mass average molecular weight wM , polydispersity nw MM / , zero shear rate viscosity oη  
and density of the three polyethylene melts under study here, as reported by Bernnat (2001). 

 
Below, sections describe the sequence of steps followed here to characterize polyethylene 

melt samples LDPE9, LLDPE1 and HDPE1, and also indicate the numerical programs developed 
to carry out the fitting of experimental data and the predictions of rheometric functions. Some 
relevant data concerning these polymer melts are reported in Table 1. 
 
2 RHEOMETRIC CHARACTERIZATION OF MELTS IN THE LINEAR 

VISCOELASTIC RESPONSE 
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The viscoelastic constitutive equation must satisfy rheometric data obtained within the 
asymptotic behavior of linear viscoelasticity. For this purpose, we use experimental data 
reported in the literature (Bernnat, 2001), for the storage G′  and loss G ′′  modules as 
functions of frequency ω , at a small constant shear rate. Therefore, these rheometric 
functions in terms of the spectrum of relaxation times are, 
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These modules may be also expressed through the loss component of the dynamic viscosity 

( ) ( )
ω

ωωη G ′′
=′ , and its elastic counterpart ( ) ( )

ω
ωωη G′

=′′ . Thus, one readily obtains the 

modulus of the complex dynamic viscosity ( ) ( ) ( )ωηωηωη ′′+′=*  as a representative value 
of the shear rate viscosity at the asymptotic limit of small shear rates. 

The algorithm used to fit experimental data is composed of two parts. One involves a linear 
least squares procedure with linear inequality constraints, which impose that { }mm g,λ  must 
be positive values for physical meanings (see, for example, Deiber et al., 1997; Peirotti et al. 
1998). The other part of the algorithm uses a nonlinear regression analysis through the 
Levenberg-Marquardt subroutine to minimize the fitting error on the average, thus providing 
an improved final set { }mm g,λ . The following steps are carried out in this sense:  

Step 1. We form a grid for relaxation times, Mλλλ <<< ...21 , where 
1

1
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with i=1…M. Since experimental data are obtained for the frequency range ωmin<ω <ωmax, 

maxmin 1 ωλ =  and minmax 1 ωλ =  are defined. It is suggested to use M ≅  30 (see also 
Honerkamp and Weese, 1989).  
Step 2. Minimizing GhK −⋅  is required with the unknown { }mgh =  for m=1…M, subject 

to, 0>h  , where K  is a 2N x M matrix, G is a 2N vector, and h  is an M vector. Additionally, 
N is the number of frequency values in order to obtain experimental data of the storage and 
dissipation modules, which are designated here ( )iiG ω′  and ( )iiG ω′′ , respectively, for i=1…N. 
The number of discrete relaxation times is M, and the algorithm requires that MN ≥ . 

Therefore, from the linear viscoelasticity (Eqs. (4) and (5)), we define, 
22

22

,
1 im

im
miK

ωλ
ωλ

+
= , for 

i=1…N, and m=1…M, and 22,
1 im

im
miK

ωλ
ωλ

+
= , for i=N+1…2N, and m=1…M. The 

components Gi of vector G have to be assigned as follows: ( )iii GG ω′= , for i=1…N, and 
( )iii GG ω′′= , for i=N+1…2N. 

Step 3. We apply the algorithm presented by Lawson and Hanson (1974). It should be 
observed that in this numerical code there are two vectors P and Z, the dimensions of which 
are P and Z respectively. These dimensions change along the iterative process so that P+Z=N. 
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Therefore, once the convergence is attained, one gets, 0>mg , for m=1…P and 0=mg  for 
m=P+1…M. Of course, the vector { }mgh =  with 0>mg  and dimension P<N, satisfies, 

1E
G

GhK
=

−⋅
, where E1 ≤ 1% typically for the polyethylene samples. Thus, at this step, we 

get the spectrum { }mm g,λ , where mλ  for m=1… P are the remaining values of the original 
set. 
Step 4. One can still try to improve the fitting of experimental data ( )iiG ω′  and ( )iiG ω′′  by 
using the well-known Levenberg-Marquardt routine. Therefore, this code is initialized with 
{ }mm g,λ  obtained at Step 3.  In this routine, we define 2N nonlinear algebraic equations 

f1….f2N for the unknown vector { }pp ggx ...,... 11 λλ= , where imii GKf −= ´
, . Thus one gets, 
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i=N+1…2N and m=1…P. iG  are the same as those components defined above. Therefore, the 

target is the minimization of 
2

f  where the component of vector { }iff =  is also defined 

above. Once the convergence is attained, this code gives us a new spectrum { }mm g,λ  of 
dimension P as in Step 3. The convergence error is designated E2 and it is defined with an 
expression similar to E1. In general E2 ≤ E1 but this cannot always be assured. 

Once the spectrum of relaxation times is available, the shear modulus ( )tG  may be 
obtained having into account that the asymptotic behavior describing the linear viscoelastic 
response relates directly G′  and G ′′  to ( )tG  through Fourier transform. Thus, the transform 
variables are frequency ω  and time t , and the relevant expression obtained is,  
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The next step is therefore to calculate important linear viscoelastic parameters of the 
polymer melts like: plateau modulus o

NG , zero shear rate viscosity oη , rubbery plateau 

relaxation time o
Nλ  and steady state compliance o

eJ , which may be obtained from the 

following equations of the linear viscoelastic theory, involving the set { }mm g,λ  obtained with 
Eqs. (4) and (5): 
 

( ) ∑∫
=

∞
=

′′
=

M

m
m

o

o
N gdGG

1

2 ω
ω

ω
π

              (7) 

 

( ) m

M

m
m

o
o gdttG λη ∑∫

=

∞
==

1
               (8) 

 

o
N

oo
N

G

η
λ =                  (9) 

 

Mecánica Computacional Vol XXV, pp. 3-20 (2006) 7

Copyright © 2006 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2
1

2

o

M

m
mm

o
e

g
J

η

λ∑
==                    (10) 

 
3 RHEOMETRIC CHARACTERIZATION OF MELTS IN THE NONLINEAR 

VISCOELASTIC RESPONSE FOR SHEAR FLOW 
 

 When a constant shear rate flow is suddenly imposed to a polymer melt, the rate of strain 
tensor is expressed,  
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where γ!  is the constant shear rate. Therefore, combining Eqs. (1) to (3) with Eq. (11) the 
components of the stress tensor may be evaluated from the following evolution equations, 
expressed through cylindrical coordinates for practical reasons: 
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for Mm ...1= , where drvd z /=γ! . In addition, 0=== θθτττ s
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s

zz
s  and γητ !s
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s = . 

A procedure to find the shear stress zr
s

M

m
zr
m

zr ττττ +== ∑
=1

 and the shear rate viscosity 

γτη !/=  is to solve these equations numerically from the inception of the shear flow until 

the asymptotic steady state is reached. In order to calculate this steady state, the time 
derivatives in Eqs. (12) to (15) are written in discrete form (forward finite differences). Then 
the fourth order Runge-Kutta method is applied until stresses are constant. The time step used 
in this work is 10-5 s. Criteria for convergence to the steady state are expressed in terms of two 
consecutive time steps, as follows, 
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where superscripts p and q refer to cylindrical coordinates (see Eqs. (12) to (16)) and i 
indicates the number of time steps being carried out. 
 
4 RHEOMETRIC CHARACTERIZATION OF MELTS IN THE NONLINEAR 

VISCOELASTIC RESPONSE FOR ELONGATIONAL FLOW 
 

 For the purpose of visualizing the behavior of the polyethylene melt samples under 
rheometric elongational flow, a constant elongational rate ε!  is suddenly imposed to the PTT 
model representing the polymer melt samples. Therefore, the rate of strain tensor is expressed,  
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In this case, θθττ m
rr
m =  is satisfied. For the elongational flow, stresses at the steady state 

regime cannot be obtained explicitly with the spectral PTT model. Therefore, the elongational 

viscosity εττη !/
11
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 is found here by solving numerically the following 

evolution equations, for the inception of the elongational flow, until the asymptotic steady 
state is reached, 
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where, Mm ...1= . 
Once more, in order to find the steady state stresses, time derivatives in Eqs. (19) to (21) 

are written in discrete form. Then the same numerical procedure as that used for the shear 
flow analyzed above is applied. 
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4 RESULTS AND DISCUSSION 
 

In this section, first the numerical results obtained for the set { }mm g,λ  within the 
framework of linear viscoelasticity are discussed briefly. Then stress evolutions described by 
Eqs. (11) to (16) and (18) to (22) involving finite constant shear rate and constant elongational 
rate, respectively, are solved numerically and discussed in relation to experimental data 
available in the literature. These results are presented and discussed in the same order as they 
have been formulated above. Finally transient responses of shear and elongational rheometric 
functions are illustrated and analyzed for the three polyethylene melt samples under study. 
 
4.1 Linear viscoelasticity 
 

 Figure 1 (a, b and c) shows the storage and loss modules G′ and G ′′  as functions of 
frequency ω , for the three polyethylene samples in the melt state. One observes in this figure 
that the fittings (solid lines) of experimental data (symbols) are accomplished well with the 
spectrum of relaxation times calculated here, which in general do not exceed eight modes. We 
have also plotted the modulus of the complex dynamic viscosity to show the pseudoplastic 
responses of the three polymer melts (see also the experimental shear viscosity functions 
below), which may be inferred consistently through the well known and approximate Cox-
Merz rule. 
 It is also relevant to point out here that the HDPE1 sample shows the lower crossover 
frequency, as it is observed in Figure 1 (a, b and c), indicating that this melt has values of 
relaxation times higher than those pertaining to LLDPE1 and LDPE9 samples. This result is 
consistent with the characteristic values reported in Table 1 (see also Table 2). Thus, HDPE1 
has the higher average molecular weight apart from being morphologically linear. 

Figure 2 shows the relaxation modulus ( )tG  for the three polyethylene melt samples. It is 
found that the magnitude of the rubbery transition is quite significant for LLDPE1, what is 
consistent with the high value of o

NG  found for this polymer (see Table 2 and Eqs. (7) to 
(10)). Thus the morphologies of HDPE1 and LLDPE1 samples, apart from both being linear 
polymers, present in addition other different characteristics: thus, average molecular weights 
affect directly the value of oη , but this is not necessarily true for the interpretation of o

NG  as 

expected from the theory of rubber elasticity. In fact TnkG B
o
N ∝ , where n  is the number of 

entanglement per unit volume, Bk  is the Boltzman constant and T  the absolute temperature. 
Consequently, one should not expect to find an important incidence of the average molecular 
weight on o

NG . On the other hand, polydispersity is relevant in the determination of o
NG , and 

this effect can be visualized from the theory of rubber elasticity when one corrects the shear 
modulus expression by the presence of unentangled chain terminals in the network. This 
effect is clearly illustrated in Table 2 through HDPE1 and LLDPE1 samples.  
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Figure 1: Storage and loss modules G′ and G ′′  and complex dynamic viscosity modulus *η  for melts LLDPE1, 
LDPE9, and HDPE1 at 190 oC. Experimental data (symbols) are obtained from Bennart (2001). Solid lines show 

the fittings of these experimental data with Eqs. (4) and (5) determining  the relaxation time spectrum. 
 

Table 2 also shows that numerical predictions of oη  compare well with those values 
obtained by Bernnat (2001), indicating a good convergence of the numerical algorithm 
generated here to fit experimental data with Eqs. (4) and (5). It is also evident that o

NJ  

behaves inversely proportional to o
NG  as one should expect from the theory of linear 

viscoelasticity, while the characteristic relaxation time o
Nλ  is the result of a rather complex 

coupling between different effects manifested through o
NG  and oη . In fact, reptation of chains 

in a polydisperse melt, giving the relation αη wo M∝  with approximately 4.3≈α  (samples 
tested here are not strictly monodiperse chains), also involves the tube release mechanism, 
which is associated with local Rouse type relaxation modes of the entangled network (Deiber 
et al., 2002; Peirotti and Deiber, 2003), affected in part by the polymer density. As one 
expects, the branched LDPE9 sample gives the lower o

NG , which should not be affected 
ideally by the average molecular weight. 
 

Sample o
NG  [Pa] o

Nλ  [s] o
eJ [Pa-1] oη [Pa s] oη [Pa s] 

(Bernnat, 2001) 
LLDPE1 1.08 106 1.17 10-2 2.66 10-4 1.26 104 1.265 104 
LDPE9 2.10 105 2.73 10-2 3.88 10-4 5.74 103 5.74 103 
HDPE1 6.23 105 4.46 10-1 1.09 10-3 2.78 105 2.75 105 

 

Table 2: Material properties calculated from Eqs. (7) to (10) for the three polyethylene melt samples. 
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Figure 2: Shear relaxation modulus ( )tG  from Eq. (6) for LLDPE1, LDPE9 and HDPE1. 
 
4.2 Shear and elongational flows  
 

 Figure 3 shows the fitting of experimental data of both shear and elongational viscosities 
through the PTT model (Eqs. (1) to (3)) and the numerical code proposed and explained 
above in relation to Eqs. (11) to (22). Through these calculations, the fitting parameters found 
numerically are 1.0=χ , →α 1 and those reported in Table 3 for ξ . 
 
 
 

Polyethylene ξ  

LDPE9 0.013 
LLDPE1 0.08 
HDPE1 0.1 

 

Table 3: Values of parameter ξ  for polyethylene melt samples.  
 
 
 
Thus, it is clear that χ  and α  are not sensitive to chain structure of the polyethylene melts 
studied here, while ξ  increases with the average molecular weight (see also Table 1). Also 
this parameter is higher for melts with linear chains. 
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Figure 3: Steady state shear and elongational viscosities calculated with the spectral PTT model (solid lines). 
Symbols are experimental data reported by Bernnat (2001). 

 
 From Figure 3 one concludes that the branched polymer melt of the same chemical type as 
linear ones present a higher resistance to elongation, which is visualized as the difference 
between the Trouton viscosity asymptote and the maximum peak of the elongational 
viscosity. Also, having into account that Figure 3 reports nonlinear rheometric functions and 
includes experimental data of elongational and shear rheometries, one may conclude that the 
PTT model is appropriate to represent rheologically linear and branched polyethylene melts, 
despite some differences may be visualized between numerical predictions and experimental 
data in the case of the linear polymer melts. What is more relevant here is the consistency 
found in predicting stresses well, for two independent mechanical histories like the imposition 
of constant shear and elongational rates. These types of predictions with experimental 
validations involving both shear and elongational rates have been rarely found in the 
literature. Analyzing even more deeply Figure 3, it is evident that the PTT model is much 
better for the branched polyethylene melt. Nevertheless, in relation to this result one should 
also consider that the measurement of the elongational viscosity has been quite difficult to 
obtain with the present state of the art of rheometry, and hence some experimental shifting 
errors could be also associated with the results reported in Figure 3, although they were 
present only for the linear polymer melts. Thus systematic shifts in the Trouton asymptotes 
for the two linear polyethylene melts are visualized in Figure 3 (a and c), in contraposition to 
Figure 3 (b), where this asymptote is satisfied remarkably well. 
 
4.3 Simulation of transient shear and elongational flows  
 

Once both linear and some relevant steady nonlinear viscoelastic responses of the spectral 
PTT model have been fitted to the corresponding rheometric experimental data, allowing one 
to determine rheological parameters { }mm g,λ , α , χ  and ξ , it is now possible to simulate the 
transient response of the three polyethylene melt samples to obtain further rheological 
conclusions. 
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Figure 4 (a, b and c), for instance, illustrates the transient shear viscosity upon inception of 
a constant shear rate oγ! . Although one may observe that overshooting of the shear viscosity 
function increases with the intensity of shear rate, which is a well known result for polymer 
melts in general, it is also possible to visualize that overshooting magnitudes are higher for 
increasing molecular weight mainly for linear chain melts. In addition, one finds that the 
dumping of the viscosity function at high values of time may present oscillations of high 
frequency for HDPE1 and LLDPE1 (the linear samples) in contraposition to the branched 
LDPE9 sample, which for a shear rate of 0.1 s-1 does not show neither overshoot nor 
oscillations. These results are in part a consequence of the type of convected derivative used 
in the PTT model involving the magnitude of parameter χ . In fact as χ  increases, the 
Gordon-Schowalter derivative becomes more corrotational than codeformational. Therefore, 
as it is well known, the oscillations at high times for ≠χ 0 are expected. 
 Figure 5 (a, b and c), for instance, illustrates the transient elongational viscosity upon 
inception of a constant elongational rate oε! . One may observe here how the transient growing 
elongational viscosity increases toward the asymptotic steady state value. These figures 
reproduce also the experimental responses typically found with polymer melts under the 
transient elongational test, by showing how difficult may result to attain the asymptotic steady 
state value of the elongational viscosity. 
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Figure 4: Transient shear viscosity of melts for different constant shear rate oγ! : 
(a) LLDPE1, (b) LDPE9, (c) HDPE1. 
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Figure 5: Transient elongational viscosity of melts for different constant elongational oε! : 
(a) LLDPE1, (b) LDPE9, (c) HDPE1. 

 
 
5 CONCLUSIONS 
 

 One of the relevant conclusions obtained here is that an appropriate selection of 
constitutive equations for the stress tensor of polymer melts, like linear and branched 
polyethylene melts, may be carried out only when experimental data of rheometric functions 
pertaining to both the linear and nonlinear viscoelastic responses are available, involving both 
shear and elongational kinematics. Under these circumstances the full set of rheological 
parameters pertaining to a constitutive equation may be evaluated consistently and without 
ambiguity (gross hypothesis and approximations may be thus avoided). In this sense it is clear 
that researches on elongational rheometry is a subject of relevance in rheology to be one able 
to characterize materials in the processing industry. More specifically, we found that the PTT 
model is excellent for the branched LDPE9 polyethylene melt. Thus one expects that the 
rheological characterization of this melt through the spectral PTT model may be used with 
sufficient precision in the prediction of complex flows found in processing operations. More 
generally, the selection of a constitutive equation for a given material requires a relevant set 
of experimental data concerning different rheometric tests and, what is not less important, the 
availability of robust algorithms, which are able to solve any steady and transient mechanical 
histories. These algorithms must also fit experimental data and simulate any steady and 
transient material responses. 
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