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Abstract. With the purpose of characterizing the Earth subsurface, one of thetiobgof the inver-
sion of prestack seismic data is to determine contrasts between rock prepentethe information
contained in the variation of the amplitudes of the reflected compressionabwath the angle of inci-
dence. This amplitude-versus-angle (AVA) variation can be descripediious approximations to the
so-called Zoeppritz equations, a set of non-linear equations thatdlepehe physical characteristics of
the medium at each side of the interface where the compressional waes sfrike coefficients of such
approximations constitute AVA attributes that may provide important informationtstuid content, a
key issue for the characterization of hydrocarbon reservoirs. Inatbik we present a new inversion
strategy to estimate efficiently and accurately high-resolution AVA attributes firestack data. The
proposed technique promotes sparse-spike reflectivities that, whealhgesh with the source wavelet,
fit the observed data. Sparse solutions are desirable because thsy used to characterize significant
and close reflectors more accurately than using conventional solutibasnversion is carried out using
a hybrid two-step strategy than combines Fast Iterative Shrinkagetidideng Algorithm (FISTA) and
Very Fast Simulated Annealing (VFSA). FISTA provides sparse solutigmainimizing both the misfit
between the modeled and the observed data, ang-th@rmof the solution. VFSA is an stochastic com-
putational algorithm to finding near-optimal solutions to hard optimization problé&tthe first stage,
FISTA sparse-solutions provide an estimate of the location in time of the maictoefieinformation
that is subsequently used as an initial guess for the second stage,asberate reflectivity amplitudes
are estimated by solving a more stable overdetermined inverse problem.cbimel stage also involves
the use of VFSA for tuning the location in time of the main reflectors and the souawelet. FISTA
does not require the inversion of matrices in explicit form. At each iteratiby ratrix-vector multipli-
cations are involved, making it easy to apply, economic in computational tenchgceequate for solving
large-scale problems. As a result, the FISTA+VFSA strategy repreaamtsple and cost-effective new
procedure to solve the high-resolution AVA inversion problem. Resultgothstic data show that the
proposed hybrid method can obtain high-resolution AVA attributes fromyratiservations, even when
the number of reflectors is not knovenpriori and the utilized wavelet is inaccurate, making it an inter-
esting alternative to conventional methods.
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1 INTRODUCTION

The inversion of prestack seismic data has been long repedais a useful technique for the
characterization of hydrocarbon reservoirs. Like any oiinersion problem it is based on an
appropriate set of observations, and a general knowledtfeeafesired solution. The objective
of the prestack seismic inverse problem is to make infereabeut the contrasts between rock
properties such as P and S-wave propagation velocitiescadlensities. These contrasts are
related to the variation of the amplitudes of the reflectedm@ssional waves as a function of
the angle of incidence, for a given reflecting interface @lecctor) that separates two different
media. This variation, which is known as amplitude versugeawmariation (AVA) or amplitude
versus offset variation (AVO), can be described by the Zagppquations Zoeppritz 1919
Yilmaz, 2001). Zoeppritz equations depend on the angle of incidence anthdependent
elastic parameters, three on each side of the reflector. ighenbn-linearity of these equations
makes them impractical for their use in inversion problemd data interpretation. Because
of this, several linear approximations have been develdpeudarious authors over the last
decadesAki and Richards198Q Shuey 1985 Fatti et al, 1994). These linear approximations
depend on the angle of incidence and various coefficierdseto the physical properties of
the medium. The most common approximations, such as thedswedoped by the authors
indicated above, only require two or three coefficients torapimate the Zoeppritz equations
with an acceptable error for angles of incidence smaller tha critical angle. The coefficients
of such approximations, which are the objective of the isi@T, constitute AVA attributes that
may provide important information about fluid content, a ks&sue for the characterization of
hydrocarbon reservoirs.

The proposed inverse problem is multidimensional and 8lgab In practice, seismic records
contain many reflectors and therefore there will be as matsycfeAVA coefficients as there
are reflectors within the selected record length. Also, tiagdies in the seismic wavelet used
in the forward model increase the no-uniqueness of the sevproblem. The main problem is
that not only there exist several sets of coefficients thabhthe data equally well, but some
of them might exhibit a huge norm and thus are meaningless, Ahese solutions are strongly
affected by the omnipresent noise in the observed data.l&aatk these difficulties the space
of possible solutions must be constrained using an adegegiéarization ol priori informa-
tion. Sparseness is a property that can be incorporatagésri constraint via regularization
(Taylor et al, 1979 Oldenburg et a).1983 Sacchj 1997). Sparse solutions are desirable be-
cause they can be used to characterize significant and elftsetors more accurately that using
conventional solutiondjebeye and van Rig1990.

Many authors have studied the sparse-spike AVA inversidih wery interesting results.
In the works ofDownton and Lineg2003, Misra and Sacchf2008 and Alemie and Sacchi
(2017 sparseness is obtained through a Bayesian approach, usapgpeopriate long-tailed
priori probability distribution. Pérez and Velig2011) obtained sparse solutions by fixing the
number of reflectors and finding the model that best adjust®biserved data using a global
optimization algorithm. FurtheRérez et al(2012 obtained sparse solutions by minimizing,
simultaneously, thg -normof the solution and the misfit between the modeled and therobde
data using an iterative shrinkage-thresholding algorithm

In this work we propose an hybrid algorithm by combining @native shrinkage-thresholding
algorithm known as Fast Iterative Shrinkage-Thresholdilggrithm (FISTA) Beck and Teboulle
2009 and a global optimization technique known as Very Fast &ted Annealing (VFSA)
(Ingber, 1989. FISTA is used, in a first stage, to find an initial estimatairthe number of
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reflectors and their positions. Then, in a second stage, ViES&ed to improve the solution
given by FISTA, tuning the seismic wavelet and adjustingne€essary, the position of the re-
flectors at the same time. In each iteration of the VFSA, thplémdes of the reflectors are
estimated using least-squares (LS). This LS strategy veasusled by/elis (2008 in the con-
text of sparse-spike deconvolution of postack data. It iglkvmentioning that FISTA only uses
matrix-vector multiplications and no matrix inversion. él'imitial solution provided by FISTA
allows one to increase the computational efficiency of aatées but very expensive algorithm
like VFSA. The use of a global optimization technique sucNWBESA is necessary because the
inversion problem proposed in this work is highly non-lingaterms of the position of the
reflectors and the parameters that define the seismic walrelktat sense, the goal of the pro-
posed hybrid method is to get the best out of these two algost the simplicity of FISTA and
the versatility of VFSA, with a reasonable computationadaum. One advantage of the method
is that, since VFSA is an stochastic algorithm, the uncetyaof the solutions can be estimated
due to the large number of solutions that are tested dur@gntlersion process.

The proposed method was tested on noisy synthetic normed+mot (NMO) corrected
prestack data. For the approximation to the Zoeppritz egpnsmive used the well-known two-
term Shuey’s equatiorBhuey 1985. To account for absorption and dispersion effects associ-
ated with the wave propagation through the earth, we coresideetime-varying Ricker wavelet
(Ricker, 1940 as the source signature both to generate the data and dhengversion pro-
cess. To this end, we allowed for a wavelet central frequénegrly decreasing with time, and
a constant phase rotation linearly varying with time. Thesemeters were estimated during
the inversion process, together with the reflectors pastand amplitudes, as mean to take into
account the fact that only an approximate source waveletiiig available. The results show
that high-resolution AVA attributes can be derived fromgyodata accurately, even when the
number of reflectors is not knowanpriori, and the initial wavelet is inaccurate.

2 THEORY

The convolutional model is used as the base of the inversethad {Yilmaz, 2001). This
model assumes that the medium is composed of a series of diatllgd, homogeneous and
isotropic layers. Then, the trasdor thei-th angle of incidencé; can be expressed as

Ny
s(0;) =Y wy  Lr(6;) + n(6)), i=1,--- N (1)

where the symbol#” denotes convolutionw, is source wavelet of dimensidn, at timet, r(6;)
is the vector of dimension, that contains the primary reflection coefficients (reflestly and
n(0;) is the random noise. Both(0;) ands(6;) have dimensiorl; = L,, + L, — 1. Finally, I,
isal, x L, matrix given by

1 I,m=t,
Lil,m} = { 0  otherwise (2)

Equation () can be expressed in matrix form as

N,
s(0;) = > W,Lr(6;) + n(6;), (3)

Copyright © 2013 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



1704 D.0. PEREZ, D.R. VELIS, M.D. SACCHI

whereW; is the convolution matrix of dimensioh, x L, corresponding to the wavels&t;.
Then, setting

Nr
W=> Wi, 4)
t=1
equation 8) can be expressed as

For a given angle of incidencg the reflection coefficient for a reflector at samplean be
approximated, in a general form, as

Tt(e) = Z xtkgk(e% (6)
k=1

wherez;, are coefficients that depend on physical properties of thksrat each side of the
interface (velocities and densities), ands the order of the chosen Zoeppritz approximation
(usuallyn = 2 or 3). The functiong),(¢) depend on the angle of incidence which must be less
than the critical angle.

When the reflectivity is sparse-spike, we can use equafipto (fepresent the tracgo,) by
only changing the appropriate indices of the malyix If there areM non-zero spikes at the
samplesr;, wherej = 1,...,M andM < L,, thent = 7,..., 7). Then, matricedV,, and
W, are quite sparse. Thus, combining equatidfst@ (6), and omitting the noise term for
simplicity, the traces(9;) associated with a sparse-spike reflectivity can be rewrédse

wherex = (211, , Ty, > Tin, -+, Tam) L, andA(6;) is @ matrix of dimensior, x Mn
that can be expressed as
A(6;) = (War(0:)].- [ Wa(0:)). (®)

Here, W is a convolution matrix of dimensioh, x M defined in the same way th&V, but
now considering that = 74, ..., 757, only. Since usually\/ < L,, the constraint given by the
sparse-spike assumption reduces significantly the sizeeahtatrices required for the inversion
process, decreasing at the same time the computationadfabst method.

The N systems of equationg) can be re-arranged into a unique system of equations in the
form

s = Ax, 9)
whereA ands are the “stacks” ofA (;) ands(6;), respectively.
Assuming Gaussian noise, the solutran be obtained by minimizing the discreparicy
between the observed datand the modeled data:
E=|A%—s|3. (10)

In an inverse problem the relation between the model paemhand the measured data is not
necessarily linear, then a global optimization technigaie lse used to find a correct solution
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to avoid local minima and other convergence issBagand and Omreg2003. In practice, we
minimize £ with respect to the positions; and the parameters that define the wavetets
using Very Fast Simulated Annealing (VFSA)@ber, 1989 (see Appendix). In each iteration

of the VFSA, given thel/ values ofr; and the parameters that define the wavelets, equajon (
becomes linear. Hence, the optimum vedtaan estimated by solving the sparse least-squares
problem @0), which leads to

%= (ATA) " (ATs). (11)

VFSA is a powerful and versatile non-linear optimizatiogalithm that does not require the
use of gradients or derivatives to find the global minimum éfraction. It is also independent
of the initial model. However, the computational cost of itieeative process until convergence
can be very high if the number of model parameters is unnadgskrge, and the initial model
is too far from the optimum solution. To avoid these undestensequences, we decided to
estimate the number of reflectab$ and their initial approximate positior) using a shrinkage-
thresholding algorithm.

To this end we first obtain an estimated sparse solution odybem of equation®) using
M = L,. This new system can be expressed as

s = By, 12)

whereB is a matrix of dimensiorl, x nL,, andy is a vector of dimensionL,. To construct
the model matrixXB an initial estimate of the wavelet is required. A sparsetsmhof the system
given by equationX?) can be estimated throughnormregularizationQldenburg et a) 1983,
which implies to find the vectay that minimizes

By —s [|34+X [y |1, (13)

where )\ is a trade-off parameter used to balance the weight or impfaitte two terms. We
use the Fast Iterative Shrinkage-Thresholding Algoritkh$TA) (Beck and Teboull2009 to
solve this non-linear inverse problem (see Appendix).

Step-by-step, the proposed hybrid inverse strategy isliasvfo

1. Aninitial seismic wavelet is estimated from the avaitabata.

2. Matrix B (equation 12)) is constructed using the approximate wavelet, and aralinit
sparse solutioly is estimated using FISTA through the minimization of equai{lL3).

3. BothM and7;, j =1,---, M, are determined based on the non-zero componetts of

4. VFSA is used to minimize equatiofh(), which includes the tuning of the initial wavelet
and adjusting the position of the reflectors. Amplitudesaotined using equatiod ()
at each annealing iteration.
3 NUMERICAL EXAMPLES
3.1 The synthetic data

To test the proposed method we generated a synthetic NM@ated gather consisting of
31 traces withy; € (0°,30°), and 6 reflectors with times between 0.04 and 0.24 s. The AVA re
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sponse was modeled using the two-terms Shuey approxim@ilarey 1985. So, equationq)
becomes

r(0) = I + Gy sin®(0). (14)

The coefficientsd and G, which are the objective of the inversion, are knowrirasrcept
andGradient Data traces were generated by convolving the reflectdtigh a phase-rotated
Ricker wavelet of central frequengy (Ricker, 1940. In order to account for the expected time-
varying attenuation and other propagation effects thahgédhe shape of the source wavelet,
in this example the central frequengy and the phase rotatiop, are allowed to vary lin-
early from fi = 30 Hz andy! = 20° for the first sample of the data, tf = 20 Hz and
90'('; = 40° for the last sample of the data. Gaussian noise was addedstaitidard deviation
o = maxy; |s(0;)|/SNR, where SNR is the signal-to-noise ratio. Figutasandlb show the
Interceptand Gradientused to generate the data. Figutesand 1c show the noisy data with
SNR=20 and 10, respectively. Figute shows the wavelets for those particular times where
the reflectors are located. Note the broadening of the puiseaithef, andy, time variations.
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Figure 1: a) Actual Intercept and b) actual Gradient, c) ndata with SNR=20, d) noisy data with SNR=10, and
d) evolution of the wavelet as a function of the propagatioret

3.2 Using FISTA to estimate the initial model

To use FISTA to estimate an initial model we first need to setexappropriate trade-off pa-
rameter\ in equation {3). In general, the selection of this parameter depends omdise level
of the data at hand. Clearly, Xfis too large, a very sparse solution would be obtained, ktat da
may not be honored and thus some of the reflectors may be miSeeuersely, if\ is too small,
data would be over-fit and there would be too many spuriousateils, leading to non-sparse
solutions. Further, an excessively large number of reftedtaplies an unnecessary compu-
tational cost in the VFSA stage. Therefore, an appropritaeg)y is required to select this
key parameter. There are various methods to estithatach as the L-curve criterion, the dis-
crepancy principle, and the generalized cross-validatrdgarion Farquharson and Oldenburg
2004). Since we are interested in sparse solutions that fit theg dag want to keep the number
of reflectors to a minimum, provided that data are honoretlawuit overfitting. To estimate the
correct parametek we analyzed the variation of the different magnitudes ofnest that are
involved in the equationl@®), and built a set of curves as a guide (Fig@)e These curves
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have been built by applying FISTA on both data sets, and tbanting the number of non-zero
reflectors while varying\ from 0 to 15. Thick continuous lines in Figurga and2b show the
variation of the number of reflectors as a functiompivhile thin dashed lines show the actual
number of reflectors, which is equal to 6 in both cases. Frasdlturves we can infer that, to
obtain a solution with 6 (or less) reflectorsshould be no smaller than 14. Since the actual
number of reflectors is not knowapriori, and in order guarantee that data would be honored,
we decided to choose a smaller value forThis gave us the opportunity to test the behavior
of VFSA against a number of reflectors larger than the actonal ¢dence, in these numerical
examples we chosk = 12, which lead to solutions with 8 and 10 reflectors for the dath w
SNR=20 and 10, respectively.

a)

e e =
w o N MO

Number of reflectors

O

o 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
A A

Figure 2: Number of reflectors as a function of the trade-affmeter\: a) SNR=20, b) SNR=10.

Once estimated an appropriate trade-off parametee analyzed the behavior of the solu-
tions given by FISTA using different wavelets. FiguBas 3b, 3f and3g show the solutions for
thelnterceptandGradientobtained using a wavelet with an incorrect variation of thage ro-
tationy,, while the variation of the central frequengyis the one used to generate the data (i.e.
30 Hz - 20 Hz). On the other hand, Figui@ 3e, 3i and 3j show the solutions using a wavelet
with the correct variation of the phase rotation (28° — 40°), but with an incorrect variation
of the central frequency. For comparison, Figudesnd3h show the solution given by FISTA
using the exact wavelet. All these solutions where obtaagulying FISTA on the data with
SNR=10 and using the trade-off parameler= 12 as indicated above. As can be observed,
FISTA solutions are very sensitive to the wavelet. The usthefcorrect wavelet produces a
very good solution, as concluded by comparing Figeand3h with the actualnterceptand
Gradientshown in Figureda andlb. All reflector positions and amplitudes are correctly-esti
mated, with almost no spurious spikes. On the other handigbé®f an incorrect wavelet gives
solutions that are sparse, as desired, but unstable, shawelatively large number of spurious
spikes of significant amplitudes.

3.3 The FISTA+VFSA hybrid algorithm

Clearly, FISTA solutions using incorrect wavelets are nateptable. Even though, they
might be good initial models for the VFSA stage, as we will\ghater. In practice, the estima-
tion of an accurate wavelet from noisy data is a very diffitatik, usually requiring complex
processes and the uagriori information such as sonic profiles from well logsenry, 1997,
which are rarely available. As an initial estimate to be usgdrISTA, we decided to use a
unigue time invariant zero-phase Ricker wavelet with= 25 Hz. This is a very raw approxi-
mation to the actual wavelet contained in the data, but seiffic¢o provide an initial estimate to

Copyright © 2013 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



1708 D.0. PEREZ, D.R. VELIS, M.D. SACCHI
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Figure 3: FISTA solutions using different wavelets (datédhwsNR=10); a), b), f) and g) wavelets with correct
central frequency but incorrect phase rotation; d), e)ng h) wavelets with correct phase rotation but incorrect
central frequency; ¢) and h) solutions with the correct etve

be fed into the VFSA stage. During this inversion stage, wehsesearch ranges for the time-
varying central frequencies and phase rotatiais60) Hz and(—90°,90°), respectively. The
reflectors were free to move in time, but as a constraint Bidside reflectors were forbidden.
For statistical purposes we carried out 100 inversionsgudifierent seeds for the generation
of the pseudo random numbers used in VFSA. As a stop critevamset a maximum of 2000
iterations (cost function evaluations) or when the misfis\ess or equal than the noise level.

Table1 summarizes the statistical results of the estimated ws/elss it can be seen, all
mean solutions are very close to the actual values for akk#ienated magnitudes. The small
values of the standard deviations show the capacity of tbpgsed method to successfully
estimate a time-varying Ricker wavelet given a very raw ahigistimate.

] SNR=20 | SNR=10 |
| | Mean valug| Standard deviation Mean value| Standard deviation
fé 28.9 0.71 29.5 0.69
fi ] 205 0.43 20.3 0.41
st 18.4 3.59 31.3 1.45
ol 40.5 2.48 39.2 0.77

Table 1: Statistical results of the estimated wavelet patamafter 100 realizations. Actual central frequencies
and phase rotation parameters g 20) Hz and(20°, 40°), respectively.

Figure4 shows thdnterceptandGradientsparse solutions. We can observe that the method
gives good results even in the presence of a significant anobuoise. Figurela andde show
the actualinterceptand Gradient Figures4b and4f show the sparse solutions obtained by
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FISTA using the initial approximate wavelet for the datahMNR=10. Actually, these are
the initial models used for the subsequent VFSA stage. EBgfg, 4d, 49 and4h show the
mean sparse solutions and their corresponding standaiatidego, for both the SNR=20 and
SNR=10 cases, after the VFSA stage. As expected, the estirpalitions from the data with
SNR=20 are more accurate than the ones obtained from the d¢at&MR=10. As shown in
the figure, the mean solutions in the two cases are very sitilthe actual values. As in the
case of the wavelet parameters (Tabjethe standard deviations are very small, showing the
consistence of the method to find sparse solutions that hbeabserved data.

It is worth noting that the FISTA solution using the approaieinitial wavelet is, in fact, not
too far from the desired solution. However, as shown in tleipus section, it has too many
spurious spikes of significant magnitude. In the solutiotamied by VFSA those spurious
spikes did not disappear at all, but due to the capacity oaltperithm to move the position of
the reflectors, most of them where relocated to places wihere is only noise. Then, their
amplitudes were reduced to negligible values.

a) b) FISTA ©) d)
Actual (fp=25Hz, ¢y =0") Mean solution, SNR=20 o Mean solution, SNR=10 o
T T T T T T
P
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- L _ L ) — L i
S| & o136 | B
o o L i L N L 1
£
Sl & oasa} -
E - | - | % - I~ 1B |
0.232 | B B i L 1= L 48
-
0.280 4 S
1 1 1 1 1 1
-0.15 0 0.15 -0.15 0 0.15 0 0.01 -0.15 0 0.15 0 0.01
e) f) 9) h)
T T T T T T T T
—
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Figure 4: a) and e) Actudhterceptand Gradient b) and f) FISTA solutions with the approximate wavelet
(SNR=10); c) and g) FISTA+VFSA solutions for the data withFS&20; d) and h) FISTA+VFSA solutions for
the data with SNR=10.

4 CONCLUSIONS

In this work we presented a hybrid algorithm for sparse-spgiA inversion. The proposed
hybrid algorithm is based on the usage of the Fast Iterativensage-Thresholding Algorithm
and Very Fast Simulated Annealing. The objective of the metls to obtain high resolution
AVA attributes from prestack data, suchlagerceptandGradientand, simultaneously, perform
an adjustment of the source wavelet. To this end, an iniiatse solution is obtained with
the very efficient FISTA using an initial approximate wavel€hen, in a second stage, VFSA
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Is used to tune both the the initial wavelet estimate andefeator positions. Numerical test
using synthetic data showed that the proposed method ibleafmaobtain satisfactory sparse
solutions and a good estimation of the source wavelet, evéreipresence of noise and a poor
initial estimation of the wavelet. The use of a stochastitnoization method, such as VFSA,
allowed one to obtain many solutions that fit the data by usiiffgrent seeds, and thus the
solution uncertainties can be estimated. The small valustsndard deviations obtained for all
the inverted magnitudes tell us about the consistency aingtiod.
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APPENDIX
About the Fast Iterative Shrinkage-Thresholding Algorithm

Given the cost or objective function

J=] Ax—s[3 A x|, (15)

where A is the model matrixs is the observed dat; is the unknown, and is a trade-off
parametertast Iterative Shrinkage-Thresholding AlgoritffSTA) is a powerful algorithm to
minimize J very efficiently in terms of computational co®dck and Teboulle2009. FISTA
is based on the Iterative Shrinkage Thresholding Algori{l8TA) (Daubechies et gl2004).
These algorithms are an extension of the classical gradigatithm used to solve large-scale
linear inverse problems in a simple way. One of the advastaféSTA and FISTA over other
known methods is that at each iteration only matrix-vectaltiplications are required, making
them simple and cost-effective. ISTA is known to have lingarvergence, but FISTA is shown
to be faster by several orders of magnituBeck and Teboulle2009. In this context, FISTA
promotes sparse-spike solutions in a simple and effectaye w

The process carried out by FISTA to minimize equatidd) s summarized as follows:

1. Seta > 0,02, Whereo, ., is the maximum eigenvalue &’ A..
2. Setz; = xy andt; = 1, wherexg is an initial solution.
3. For each iteratiok = 1,2,3, - - -:
(a) ,
Xi = T)\/Qa {Zk — —AT (AZk — S)} s (16)
(6%

whereTs{-} is a soft-thresholding function which is applied to eachhedat of its
vectorial argument and is defined by

(b) i
L+ /1446 18)

lgt1 = 5
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()
ty— 1

k+1

(d) Check convergence or stopping condition.

Zk+1 = Xk —|— (Xk — Xk:—l) . (19)

Step 1 is required to prevent the argument of the soft-tlaldsig function to become nega-
tive. For more details about FISTA, please refeBaxk and Teboull§2009.

About the Very Fast Simulated Annealing

Simulated AnnealingSA) is a powerful non-linear optimization algorithm thate$ not
require the use of gradients or derivatives to find the glamaimum of any given cost or ob-
jective function. It is named after thennealingprocess, a metallurgical technique consisting
of heating and cooling a metallic material to change its gayproperties (e.g. hardness, duc-
tility, etc.). These changes have been studiedagropolis et al.(1953 using Monte Carlo
techniques Kirkpatrick et al. (1983 generalized this concept and applied it to non-linear op-
timization problems. The unknown parameters of the modey e role of the particles of
the metallic material, and the energy state of the systempigesented by a cost function. SA
optimization is an iterative process. At each iterative $kee model configuration, analogous to
the position of the particles in the metal, is selected “canly” using a predefined probability
density function that depends on a control parameter kn@ataraperature This new model
configuration is later accepted (or rejected) accordingad/tetropolis criterion The Metropo-
lis criterion states that if the cost function decreases niodel is accepted with a probability
equal to one, but, if the cost function increases, the malatcepted with a non zero prob-
ability. This strategy allows the algorithm to accept solog that increase the cost function,
thus avoiding getting trapped in local minima. It is impottéo notice that the temperature
should be slowly decreased during the optimization prode#iewing a preset cooling sched-
ule. When the temperature is high, the space of possible mdexXplored in an approximately
uniform way. On the other hand, at low temperatures the nsosigh smaller values of the cost
function are chosen. Should the temperature of the systeredueed too fast, the particles of
the material, represented by the unknown parameters of duelnwould not reach the state
of minimum energy, represented by the global minimum of th& éunction. For this reason,
the selection of an appropriate cooling schedule is esddatithe proper operation of the al-
gorithm. Finally, note that this acceptance probabilitpeleds on the cost function and the
temperature. The lower the cost function, the higher theadodity, and the lower the tempera-
ture, the lower the probability. Convergence is achievednyhtlow temperatures, there is not
significant decrease in the cost function and the systemtigifowest energy state.

Very Fast Simulated AnnealifgFSA) is a variation of the SA algorithm proposedibgber
(1989. The main differences are the cooling schedule and theghitity density function used
to select new models at each iteration. VFSA uses a longet&lauchy-like distribution that
allows to explore the model space in a more efficient way theinguGaussian or uniform
distributions as in other conventional SA algorithms. Tal®ws to select a faster cooling
schedule to accelerate convergence without limiting thgaciy of the algorithm to escape
from local minima. Figuré shows the workflow of the VFSA.
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Figure 5: Workflow of the Very Fast Simulated Annealidgis the cost function)/* is the model at the k-iteration
andM™ is the temporary model with acceptance probability
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