Asociacion Argentina AMCL

de Mecanica Computacional

Mecanica Computacional Vol XXXII, pags. 1689-1700 (articulo completo)
Carlos G. Garcia Garino, Anibal E. Mirasso, Mario A. Storti, Miguel E. Tornello (Eds.)
Mendoza, Argentina, 19-22 Noviembre 2013

RESULTS ON THE SIMULTANEOUS USE OF CLASSICAL
TIKHONOV-PHILLIPS AND BOUNDED-VARIATION
REGULARIZATION METHODS FOR INVERSE ILL-POSED
PROBLEMS

Gisela L. Mazzieri®?, Ruben D. Spie&“and Karina G. Temperini&¢

Anstituto de Matematica Aplicada del Litoral, IMAL, CONICET-UNL, Giiemes 3450, S3000GLN,
Santa Fe, Argentinattp://www.imal.santafe-conicet.gov.ar/

bDepartamento de Matematica, Facultad de Bioquimica y Ciencias Bioldgicas, Universidad Nacional
del Litoral, Santa Fe, Argentina.

‘Departamento de Matematica, Facultad de Humanidades y Ciencias, Universidad Nacional del
Litoral, Santa Fe, Argentina.

dDepartamento de Matematica, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral,
Santa Fe, Argentina.

Keywords: Inverse problem, ill-posedness, regularization, Tikhonov-Phillips, bounded varia-
tion.

Abstract. Several generalizations of the traditional Tikhonov-Phillips regularization method for in-
verse ill-posed problems have been proposed during the last two decades. Many of these generalizations
are based upon inducing stability throughout the use of different penalizers which allow the captur-
ing of diverse properties of the exact solution (e.g. edges, discontinuities, borders, etc.). However, in
some problems in which it is known that the regularity of the exact solution is heterogeneous and/or
anisotropic, it is reasonable to think that a much better option could be the simultaneous use of two or
more penalizers of different nature. Such is the case, for instance, in some image restoration problems in
which preservation of edges, borders or discontinuities is an important matter. In this work we present
some new results on the simultaneous use of penalizetd ahd of bounded-variation (BV) type. For
particular cases, existence and unigueness results are shown. Open problems are discussed and some
results in applications to signal and image restoration problems are presented.
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1 INTRODUCTION
We consider the general problem of findimgn an equation of the form

Tu = v, (2)

wherel : X — Y is a bounded linear operator between two infinite dimensional Hilbert spaces
X and ), the range ofl" is non-closed and is the data, which is supposed to be known,
perhaps with a certain degree of error. It is well known that under these hypotheses pitjblem (
is ill-posed and it must be regularized before any attempt is made to approximate its solutions
(Engl et al.(1996). The most usual way of regularizing a problem is by means of the use of
theTikhonov-Phillips regularization methaghose general formulation can be given within the
context of an unconstrained optimization problem. In fact, given an appropriate pefglizer

with domainD C X, the regularized solution obtained by the Tikhonov-Phillips method and
such a penalizer, is the minimizey, (provided it exits), oveD, of the functional

Jaw (u) = ||Tu —v|* + aW (u), (2)

whereq is a positive constant called regularization parameter. For general pendlizetsfi-
cient conditions guaranteeing existence, uniqueness and weak and strong stability of the mini-
mizers under different types of perturbations, where fouriddazzieri et al.(2012).

Each choice of an admissible penaliz&roriginates a different regularization method pro-
ducing a particular regularized solution possessing particular properties. Thus, for instance, the
choice of W (u) = |ul|* gives raise to the classical Tikhonov-Phillips method of order zero
producing always smooth regularized approximations which approximatea®*, the best
approximate solution (i.e. the least squares solution of minimum norm) of prode(sde
Engl et al.(1996). Similarly, the choice oil' (u) = ||ul|,, (where|-||,, denotes the total vari-
ation norm) results in the so called “bounded variation regularization metiaair @nd Vogel
(1999, Rudin et al.(1992)). The use of this penalizer is very appropriate when preserving dis-
continuities, borders or edges is an important matter. The method, however, has as a drawback
that it tends to produce piecewise constant approximations and therefore, it will likely be highly
inappropriate near regions where the exact solution is sm@&itaribolle and Lion§1997)
producing the so called “staircase effect".

In certain types of problems, particularly in those in which it is known that the regularity
of the exact solution is heterogeneous or anisotropic, it is reasonable to think that using and
spatially adapting two or more penalizers of different nature could be more convenient. During
the last 15 years several regularization methods have been developed in light of this simple
reasoning. Thus, for instance, in 1997 Blomgegral. (Blomgren et al(1997) proposed the
use of the following penalizer, by using the variaifespaces:

W(u) = /Q |VaulPVuD oy, (3)

Wherelin(l)p(r) = 2, limp(r) = 1 andp is a decreasing function. Thus, in regions where

the modulus of the gradient afis small the penalizer is approximately equaIHthquig(m
corresponding to a zero-order Tikhonov-Phillips method (appropriate for restoration in smooth
regions). On the other hand, when the modulus of the gradienisdarge, the penalizer resem-
bles the bounded variation seminoffiVu|| ;. q,, Whose use, as mentioned earlier, is highly
appropriate for border detection purposes. Although this modéli@s quite reasonable, prov-

ing basic properties of the corresponding generalized Tikhonov-Phillips functional turns out to
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be quite difficult. A different way of combining these two methods was proposed by Chambolle
and Lions/Chambolle and Lion§¢1997). They suggested the use of:

Wg(u):/ ]Vu|2dx—|—/ |Vu|dz,
[Vul<p [Vul>5

where( > 0 is a given threshold. Thus, in regions where borders are more likely to be present
(IVu| > ), penalization is made with the bounded variation seminorm while a standard order-
one Tikhonov-Phillips method is used otherwise. This model was shown to be successful in
restoring images possessing regions with homogeneous intensity separated by borders. How-
ever, in the case of images with non-uniform or highly degraded intensities, the model is ex-
tremely sensitive to the choice of the threshaldMore recently penalizers of the form

W(u):/Q]VuW(x)dx, (4)

for certain functiong with range in|[1, 2|, were studied irChen et al.(200€ andLi et al.
(2010. Itis timely to point out here that all previously mentioned results work only for the case
of denoising, i.e. for the cask = id.

In this work we propose the use of a model for general restoration problems, which combines,
in an appropriate way, the penalizers corresponding to zero-order Tikhonov-Phillips method
and the bounded variation seminorm. Although several mathematical issues for this model still
remain open, as we shall see in Section 5, its use in some signal and image restoration problems
has proved to be very promising. The purpose of this article is to introduce the model, prove
some theorems regarding the existence of the corresponding regularized solutions, and present
a few results on their application to some signal and image restoration problems.

2 PRELIMINARIES

From now on(2 will denote a convex region iR", n = 1, 2, 3, whose boundarys? is Lips-
chitz continuous. The following Theorem, whose proof can be fou#tar and Voge(1994)
(Theorem 3.1), guarantees the well-posedness of the unconstrained minimization problem

v = min J(u). (5)

u€LP(Q)

Theorem 2.1 Let.J a functional BV-coercive defined di(Q2). If 1 < p < = and.J is lower
semicontinuous, then the probles) pas a solution. Ip = "+, n > 2 and in addition.J is
weakly lower semicontinuous, then a solutions also exists. In either case, the solution is unique

if J is strictly convex.

The following theorem, whose proof can also be founéhAoar and Vogel(1994 (Theorem
4.1), focuses on the existence and unigueness of minimizers of functionals of the form

J() = Tu—v|* + ao(u), (6)
wherea > 0 andJy(u) denotes the bounded variation seminorm.

Theorem 2.2 Suppose that satisfies the restrictions of Theoréiril and Ty, # 0. Then the
functional ) has a minimizer.

Copyright © 2013 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



1692 G.L. MAZZIERI, R.D. SPIES, K.G. TEMPERINI

Note here that@) is a particular case of2f with W (u) = Jy(u). The following theorem,
whose proof can be found ikazzieri et al.(2012), gives conditions guaranteeing existence
and uniqueness of minimizers d)(for general penalizer8/(u). This Theorem will be very
important for our main results in the next section.

Theorem 2.3 (Existence and uniqueness) L&t ) be normed vector spaces, € L(X,)),

y € Y, D C X aconvex set andV : D — R a functional bounded from below} -
subsequentially weakly lower semicontinuous, and suchWhdiounded sets are relatively
weakly compact it’. More precisely, suppose thHt satisfies the following hypotheses:

e (H1): 3+ > 0suchthatV(z) > —y Vx € D.
e (H2): for everylW-bounded sequender,,} C D such thatr,, = = € D, there exists a
subsequencér,,; } C {,} such thatV (z) < liminf; .. W(z,,).
e (H3): for everylW-bounded sequende,, } C D there exist a subsequenge, } C {z,}
andz € D such thatz,,, — .
Then the functionaly(z) = ||Tz — y||*> + oW (x) has a global minimizer. If moreové¥’ is
convex and’ is injective or ifI¥/ is strictly convex, then such a minimizer is unique.
3 MAIN RESULTS

In this section we will state our main results concerning existence and uniqueness of min-
imizers of particular generalized Tikhonov-Phillips functionals with combih&é8V penal-
izers. Due to brevity and since complete proof of these results will appear in a forthcoming
paper, we will not include all proofs here, limiting our discussion only to those considred more
relevant. In what follows$2 shall denote a bounded open convex subsé@&"ofvith Lipschitz
boundary and : 2 — |0, 1] a measurable function.

Definition 3.1 We define the function&V, ,(u) by

Woo(u) = Sup/ —udiv(fv) dz, u measurable, (7)
Q

veVy
whereV, = {v: Q@ — R" such thatv € C}(Q) and|/(z)| < 1Vz € Q}.
It is not difficult to prove the following two lemmas.
Lemma 3.2 If u and® belong toC* () thenW, ,(u) = |0 |Vul || 11(q)-

Observation: From de density 6f (2) in W**(Q) it follows that LemmaB3.2 holds foru, 6
wW(€2).

Lemma 3.3 The functionallV, , defined by T) is weakly lower semicontinuos with respect to
the L? topology,V p € [1, 00).

Theorem 3.4 LetX = L?(f2), Y a normed vector spacé, € L(X,)),v € ), a,, a, positive
constants and/, the functional defined by

Jo(u) = [|Tu — o5, + au|[VI = O ull? ) + o Wou(u),  ue L*(Q). (8)

If there exists, € R, such thatd) < f(x) < g5 < 1 a.e.x € , then the functional§) has a
unique global minimizer* € L*(Q). If moreoverd € C*(2) and there exists, € R such that
0<e <0(x)a.e.xc thenu* € BV(Q).
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Proof: Due to Theoren?.3it is sufficient to show that the functional
W () = o[ VI = Oullfa, + e Wo(u), u € L*(Q)

satisfies hypothesi#i1), (H2) and(H3). Clearly(H1) holds withy = 0.
To prove H2) let {u,} C L*(Q) such that,, — v € L*(Q2) andW (u,,) < ¢ < oo. We want
to show thatl' (u) < liminf W (u,). Sincey/1 — 0 € L>(2) one has/1 — 0 u,, — v/1 — O u.

The conditiond(z) < e, < 1 a.e.z € Q clearly implies that|/1 — 6 ul|,2, is a norm.
Then, from the weak lower semicontinuity pf/1 — 0 ul|?, , it follows that

V1 = ful|fz) < 1irrlriiorolf||\/1 — O un |72 9)

On the other hand, from the weak lower semicontinuityigf, in L?(Q) (Lemmg3.3) it follows
that
Woo(u) < liminf Wy, (uy,). (20)

n—oo

From 9) and (L0) we conclude that

W(u) = an[[V1 = Oulf2q, +  Wo,(u)
< oy liminf [|v1 -0 Un |72y + 2 lim inf T, (u,)

< lim inf <a1 VT = B2y + %WO,g(un))
= lim inf W (u,),

what provesi2). To prove H3) let {u,,} C L?*(2) be such thatV (u,) < ¢ < co, Vn. We
want to show that there exi$ti,, } C {u,} andu € L*(Q) such that,,, — u. For this note
that

(1 =) unllZ2i0) < V1= Ounllfo) < W(un) < c. (11)

Thus the existence of a weakly convergent subsequence follows from the boundedngss of
in L2(Q). Hence, by Theorei®.3, J,(u) given by B) has a global minimizet* € L*(Q). The
conditiond(z) < e; < 1 a.e.x € Q clearly implies the strict convexity of, and therefore the
uniqueness of the global minimizer.

For the second part, assume further that C'' (Q2) and there exists; > 0 such that)(x) >
g1 a.e.x € . Following the proof of Theorem 5.1 iklazzieri et al.(2012), it suffices to show
that under this additional hypothesis the weak limiih (H3) above belongs t&V(€2). For this
note that, sincél’ (u,,) is uniformly bounded, from(l) it follows that there exisf’ < oo such
that

HunHLl(sz) <K Vn. (12)

Also, by LemmaB.2, if u € C*(Q2) then

Woo(u) = sup/ —udiv(07) dz = ||0|Vul| 1) = & l[|Vulllrio) = &1 do(u). (13)
Q

vEVy

Using the density of* (Q2) in L?(Q) it follows thatW, ,(u) > &, J,(u) Yu € L*(Q). Thus from
(12) and (L3) it follows that

unllBv@) = l|tnllLr (@) + Jo(un) < ¢ < 00 Vn.
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Hence the fact that the weak limit iHB) is in BV((2) follows from the compact embedding of
BV(€) in to L*(Q2). This result is an extension of the Rellich-Kondrachov Theorem and can be
found, for example, inAdams(1975), Attouch et al.(2006)). [ |

Remark 3.5 Note that ifd(z) = 0 Vz € Q, thenJ, as defined in§) is the classical Tikhonov-
Phillips functional of order zero. On the other hand@ifr) = 1 Vz € Q) thenJ, has a global
minimizer provided thaf 'y, # 0. If moreoverT is injective then such a global minimizer is
unique. These facts follow immediately from Theorems 3.1 and Adanand Voge(1994).

4 FURTHER RESULTS AND OPEN ISSUES

Several other results on existence and uniqueness of global minimizers, under different con-
ditions onf andT can also be established. We state next, without proof, one of them.

Theorem 4.1 Let ) C R™ be a bounded open set with Lipschitz boundafy= L*(Q2), Y a

normed vector spacé, € L(X,)), v € ), a,, a, positive constants anl : 2 — [0, 1] such

thatd € C'(Q), 45 € L'() and 3 € L=(Q). Then the functionald) has a unique global
minimizeru* € BV (Q).

It is important to mentioned at this point that, although numerical results are quite promising,
we were unable to proof any rigorous mathematical results on existence for the important case
corresponding t@ binary (i.e. with values in the sdD, 1}). We are still devoting efforts to

this case. Also, in light of the results #car and Vogel(1994), we establish the following
conjecture, which we were unable to prove up to now.

Conjecture 4.2 Assume there exist a g8t C (2 of positive measure such thdtr) = 1 Vz €
2:. We conjecture that:

(i) If T'xq, # 0thenJ, has a global minimizer.
(i) If moreoverT'|q, is injective, such a global minimizer is unique.

5 APPLICATIONS TO SIGNAL AND IMAGE RESTORATION

The purpose of this section is to present some applications of the simultaneous use of penal-
izers of L2 and of bounded-variation (BV) type to signal and image restoration problems.

Example 5.1: A basic mathematical model for signal blurring is given by convolution via
the following Fredholm integral equation of first kind:

1
o) = [ hit.s)re)ds, 14)
0
whereh(t, s) = \/%Ub exp(—(tQ‘U“%)Q) is a Gaussian kernet, > 0, f is the original signal and

is the convolved signal. For the numerical examples that follow, equéatéym@s discretized
in the usual way (using collocation and quadrature), resulting in a discrete model of the form

v = Au, (15)

where A is an x n matrix, u,v € R" (u; = f(t;), v; = g(t;), t; = £,1 < j < n). For
this case we considered = 350 ando, = 0.05. The datav was contaminated with a 0.1 %
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Figure 1:Original signal(- -) and convolved noisy sign&).

zero-mean Gaussian additive noise (i.e. standard deviation of the order of 0.1&p.0f.
Figure 1 show the original signal (unknown in real life problems) and the blurred noisy signal
which constitutes the data for the inverse problem.

Figure 2 show the regularized solutions obtained with the classical Tikhonov-Phillips method
of order zero with regularization parameter= 1 x 10~% and with penalizer associated to the
bounded variation seminormj, with regularization parameter,,, = 0.1 (in this case an al-
gorithm proposed idensen et a(2012) was utilized). Comparing the regularized solutions in
Figure 2, it’s clearly seen how the regularized solution obtained witl/flpenalizer is signifi-
cantly better then the one obtained with the classical Tikhonov-Phillips method near jumps and
in regions where the exact solution is piece wise constant. Its also observe that the opposite
happens where the exact solution is smooth.
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Figure 2:Regularized solutions obtained with Tikhonov-Phillips (top) and bounded variation seminorm (bottom).

Figure 3 shows the regularized solution obtained with the new comldihed BV (see B))
with regularizations parametetis = a, = 1 x 107%. In this case the functiofy(x) was chosen
to bed(z) = 1 for z € (0,0.4] andf(x) = 0 for x € (0.4,1). Although this choice of(z) is
clearly based upond-prior” information about the regularity of exact solution, other choices
of 6 can be made by using only data information. The improvement of the combihedBV
method with respect to both previous ones, is obvious. Nevertheless the improvement is also
clearly reflected by the Improved Signal-to-Noise Ratio (ISNR) defined as

2
ISNR = 10logy, | 12— ) |
e —
(whereu,, is the restored signal obtained with regularization parametefor the presented
examples, the ISNR was computed in order to have an objective parameter to measure and
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compare the quality of all regularized solutions (see Figure 4).

-4 1 1 1 1 1 1 I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3:Regularized solution obtained with the combinated methddBV.
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Figure 4: ISNR: Tikhonov-Phillips (red), bounded variation seminorm (blue) and combinated méth&y/
(green).

Example 5.2:In this example we present an application to image restoration. For this case
the forward blurring model is given by convolution with a point spread function of “atmospheric
turbulence” type, i.e., with a two-dimensional Gaussian function with horizontal and vertical
standard deviations;, ando,, respectively. Data for the inverse problem is then obtained by
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adding ac % zero-mean gaussian noise to the blurred image. Figure 5 show the original and
blurred noisy images correspondingdp= o, = 3 ando = 0.001.

Figure 5:0Original and blurred noisy images.

Figure 6 contains the regularized solutions obtained with Tikhonov-Phillips method and the
use of penalizer associated to the bounded variation seminorm (in this case the algorithm pro-
posed irDahl et al.(2010) was utilized). Figure 7 shows the restoration image obtained with
the new combined.? — BV method. For this new method, regularization was numerically
obtained as the minimizer of the function8) (vith 6(x) computed at each pixel, as a function
of the modulus of the gradient af (with an appropriate threshold). Finally, Figure 8 show the
ISNR values corresponding to each method.

Figure 6:Regularized solutions obtained with Tikhonov-Phillips and bounded variation seminorm.
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Figure 7:Regularized solution obtained with the combinated meth&dB\V.
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Figure 8: ISNR: Tikhonov-Phillips (red), bounded variation seminorm (green) and combinated methBY
(blue).

6 CONCLUSIONS

In this work we presented some new results on the simultaneous use of penalizérs of
and of bounded-variation (BV) type. For particular cases, existence and uniqueness results
were shown. Open problems were discussed and several results in applications to signal and
image restoration problems were presented. Although these preliminary results are clearly quite
promising, much further research is needed. In particular, besides Conjéduaad in spite
of interesting numerical results, no rigorous mathematical proofs are yet known on the existence
and uniqueness of minimizers of function8) for the case(-) binary (i.e. withd(z) taking
only the values 0 and 1).
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Another important research direction is in regard to the “optimal” choice of the parameters
aq andas. Itis not clear how, if in any way, those parameters are related to the corresponding
optimal values (as given for instance by the-curve method or by Morozov’s discrepancy
principle) of the pure simple cases, Tikhonov of zero order and BV-regularization. The choice
of 4(-) in a somewhat optimal way is also a subject which deserves much further attention.
Research in all these directions is currently under way.
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