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Abstract. This study concerns the computation of eigenelements of random matrices and dynamic

frequency responses of linear stochastic mechanical systems. Two new strategies, based on transposing

standard deterministic deflated inverse power method and subspace inverse power method into stochastic

framework, are introduced via polynomial chaos expansion. Null and repeated-eigenvalue situations are

addressed. Effectiveness of the proposed schemes is demonstrated through three simple examples.
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1 INTRODUCTION

This study concerns the propagation of uncertainties for structural dynamic problems. More

specifically, stochastic solutions in the frequency domain are sought for linear problems when

random properties are considered in the mechanical model in the inertial and elastic properties.

Evaluating these random results are generally referred to as Stochastic Finite Element Methods

(SFEM) (Ghanem and Spanos, 1991). For solving these stochastic problems, Monte Carlo

Simulation (MCS) and spectral strategies enable to handle any kind of variations, of any size.

The Polynomial Chaos (PC) expansion is a spectral representation of random processes which

can be used in stochastic equations to represent unknown stochastic quantities. Since it uses a

Hilbertian framework, the PC expansion is able to represent any second-order random quantity

with any probability law.

Linear dynamic response is e.g. more efficiently dealt with in the modal space. To deal with

the modal space one has first to solve an eigenvalue problem. This problem can either be a

differential eigenvalue problem or a matrix eigenvalue problem, depending on whether a con-

tinuous model or a discrete model is used to describe the given system. For stochastic problems,

probabilistic characterization of the eigensolutions of random matrix and of differential opera-

tors turn out to be of interest. SFEM with PC expansion are well developed for linear algebraic

systems, but are less developed for the random eigenvalue and for the random response of dy-

namic problems. Challenging conditions for an eigenanalysis arise when part of the spectrum is

clustered, that is, when there are repeated or closely spaced eigenvalues. This situation occurs

frequently for complex mechanisms. In (Ghanem and Ghosh, 2007), the eigenvalue problem

with distinct roots is rewritten as a set of non-linear equations and the methodology is latter

extended in (Ghosh and Ghanem, 2008, 2012) to address the case of repeated roots. However,

while the linear stochastic dynamic problem is carried out without approximation in this way,

the computational effort involved appears to be more time consuming than the one involved in

linear statics. Hence, to be more efficient numerically, the reference (Verhoosel et al., 2006)

proposes a stochastic inverse power method for evaluating the random eigenvector associated

to the lowest random eigenvalue. In (Verhoosel et al., 2006), a spectral shift strategy is carried

out and normalization of normal modes is achieved only in the mean sense.

In this paper, discrete linear systems, or discretized continuous systems, having -or not- null

or repeated eigenvalues are considered. The deterministic modal method, the deflated inverse

power method, and the subspace inverse power method are transposed to the stochastic frame-

work in an efficient way, from a numerical point of view. The organization of this paper is as

follows. The first section addresses the modal dynamic problem, considering the deterministic

and the stochastic frameworks. The second section recalls basic considerations of the PC repre-

sentation and numerical strategies associated to them in the context of the dynamic responses,

either from the direct or from the modal way. The third section addresses the proposed nu-

merical strategies for the stochastic deflated inverse power method and the stochastic subspace

inverse power method. Finally, three examples are chosen to demonstrate the effectiveness of

the proposed methodologies.

2 PROBLEM STATEMENT

2.1 Deterministic problem

Let us considers the discrete –or discretized– linear deterministic problem of computing the

the dynamic response of a system subjected to a forcing which is defined in the frequency
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domain (ω = 2πf ):
(

k− ω2m+ jcω
)

u (ω) = f (ω) (1)

where k, m, and c are n-dimensional real symmetric structural matrices, being respectively the

stiffness, mass, and damping matrices. The frequency response functions are u (ω) when f (ω)
is chosen as the n× n identity matrix i over a specified frequency band, ωmin ≤ ω ≤ ωmax.

Since the problem is linear with respect to the frequency response, it is interesting to in-

troduce the modal representation associated to the above spatial representation. Restricting

ourselves to proportional-damped systems, the modal representation is real and is defined as:

{

kφ = mφλ

φTmφ = µ
(2)

with ξ = φTcφ and where:

• φ is the normal-mode matrix formed with the eigenvectors as columns;

• λ is the diagonal matrix formed with the corresponding eigenvalues, that are the squares

of the natural circular frequencies; and

• µ is the diagonal modal mass matrix that is imposed to be the identity matrix, i.e. µ = i,

in this study.

Notice that a widely used convention consists in ordering the eigenvalues in ascending values,

that is λ1 ≤ λ2 ≤ · · · ≤ λn, while the associated eigenvectors are: φ = {φ1, φ2, · · · , φn}.
Hence, when there is clustered eigenvalues, switching of the ordering of eigenvectors can oc-

cur for a small change in the physical parameters. For example, considering distinct natural

frequencies of a simple plate with varying dimensions, ordering of a torsional and a flexural

mode can be switched due to the modification of these frequencies. However, these two modes

can be recognized experimentally, when compared before and after modifications, because they

keep their shapes. Thus, a Modal Assurance Criterion (MAC) will indicate that they are nearly

parallel, showing then that they correspond to the same physical modes1.

Then, the solution u (ω) is such that:

u (ω) = φx (ω) (3)

for x (ω) which satisfies the uncoupled modal equations:

(

λ− ω2i+ jξω
)

x (ω) = φTf (ω) (4)

2.2 Stochastic problem

When the system has random parameters, its response becomes a stochastic process, U (ω,̟),
such that

(

K (̟)− ω2M (̟) + jC (̟)ω
)

U (ω,̟) = f (ω) ∀̟ ∈ Ω (5)

1However, care must be taken when natural frequencies are repeated. In this situation any combination of

associated normal modes leads to another also valid normal mode; that is the associated eigenspace has dimension

bigger than one. In such case, shapes of both modes of the previous example looks like a mix of the two original

modes. Then, a specific procedure must be involved to avoid difficulties in following their evolution.
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where (Ω,A, Prob) is the probability space associated with the underlying physical experiments

and where upper case letters denotes random variables corresponding to deterministic ones

which are denote by the same letter in lower case. The stochastic eigenproblem associated to

this model is:
{

KΦ = MΦΛ

ΦTMΦ = µ
(6)

where the argument ̟ is dropped for brevity. Then, U (ω) can be express as:

U (ω) = ΦX (ω) (7)

for:
(

Λ− ω2i+ jΞω
)

X (ω) = ΦTf (ω) (8)

where:

Λ = ΦTKΦ and Ξ = ΦTCΦ. (9)

One can notice that, due to the possible switching, or even mixing, of eigenvectors in the

deterministic problem, the stochastic eigenproblem can be difficult to solve when there is clus-

tered eigenvalues. Indeed, studying distributions of normal modes according to their ordering

can have no physical meaning in this situation. Thus, to study the distribution of a physical

mode, numerical tools to follow the evolution of the mode and the rotation of subspaces when

there is eigenvalues with a multiplicity greater than one must be required. In this work, for the

MCS, the MAC tool is chosen to avoid potential discontinuities in the stochastic eigenproblem.

3 PROPAGATION OF UNCERTAINTIES USING POLYNOMIAL CHAOS REPRE-

SENTATION

Several methods can be applied to get a representation of U(ω) for given distributions of the

random input properties. From them, as an attractive alternative to the MCS, the PC represen-

tation consists in the expansion of the random process over a set of orthogonal polynomials.

Wiener first introduced it in 1938 (Wiener, 1938) and used only Hermite polynomial basis to

represent Gaussian random processes. More recently, works on generalized Polynomial Chaos

propose a list of polynomial basis corresponding to non-Gaussian distributions (Xiu and Karni-

adakis, 2002). In effect, one can use any distribution as kernel and orthogonalize a polynomial

basis of L2 with respect to the probability measure generated by the chosen distribution. Ernst

et al. (Ernst et al., 2012) demonstrated the L2-convergence for any L2 functionals, that is for

any second-order random process (i.e. with finite variance).

3.1 Direct dynamic frequency response

Considering a generic random vector or random matrix, G, the PC representation proposes to

express it as a polynomial (truncation of a series) using a set of ng +1 orthogonal polynomials,

denoted ψg , in variables ζi, i ∈ {1, , 2, . . . d}, that are collected in a d-dimensional vector ζ :

G(̟) =

ng
∑

g=0

Ψg(ζ(̟))gg (10)

where ng +1 = (d+h)!
d!h!

, h being the order of the expansion. Generally, for a practical implemen-

tation, the order of expansion results from a truncation which has to be chosen accordingly a
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suitable criterion. For the structural matrices K (ζ), M (ζ), or C (ζ) and for responses U(ω, ζ)
the adopted PC representation are:

K (ζ) =

nk
∑

k=0

Ψk (ζ)kk, M (ζ) =
nm
∑

m=0

Ψm (ζ)mm, C (ζ) =
nc
∑

c=0

Ψc (ζ) cc (11)

and:

U(ω, ζ) =
nu
∑

u=0

Ψuuu (ω) . (12)

Coming back to the generic random vector or matrix G, the ng vectors or matrices of determin-

istic coefficients gg, now used to describe G, can be evaluated in two ways: using an intrusive

or a non-intrusive method. The non-intrusive method can be always used to find the coefficients

of the stochastic variables when they are represented by a PC expansion. It uses the orthogo-

nality of the polynomials with respect to the appropriated inner product to evaluate each vector

of deterministic coefficients gg:

gg =
< G (ζ) ,Ψg (ζ) >

< Ψg (ζ) ,Ψg (ζ) >
(13)

where< G (ζ) ,Ψg (ζ) >=
´

Rd G (ζ)Ψg (ζ) pζ (ζ) dζ represents the inner product introduced

by the PDF pζ (ζ). To evaluate this inner product, it is introduced a partition, ζi, the integrations

points, w the vector which collects the quadrature weights and ngp the number of points, the

above integration can be done using a Gauss quadrature rule:

< G (ζ) ,Ψg (ζ) >=

nGP
∑

i=1

G (ζi)Ψg (ζi) {w}i . (14)

In this way, the residual associated to the difference between G(̟) and its PC representation is

orthogonal to its PC representation. This strategy to determine the representation can be referred

to as a strong characterization (Ghosh and Ghanem, 2012) and can be used to find coefficients

of input stochastic variables such as kk, mm or cc for the structural matrices as well as to model

the output stochastic variables such as uu (ω) for responses U(ω, ζ).
The intrusive method, or weak characterization, follows a variational approach. As a first

step, the PC representation introduced for the stochastic variables are put into the governing

equations. For instance, relation 5 produces:

(

nk
∑

k=0

Ψkkk − ω2

nm
∑

m=0

Ψmmm + j
nc
∑

c=0

Ψcccω

)(

nu
∑

u=0

Ψuuu (ω)

)

= f (ω) (15)

Next, the vectors coefficients are given by solving the system which is obtained by taking ex-
pectations of the equations produced by the projection of relation 15 onto the set of polynomials
Ψ:

nu
∑

u=0

(

nk
∑

k=0

〈ΨiΨkΨu〉kk − ω2
nm
∑

m=0

〈ΨiΨmΨu〉mm + j

nc
∑

c=0

〈ΨiΨcΨu〉 ccω
)

uu (ω) = 〈Ψi〉 f (ω) i = 0, . . . , nu

(16)

This leads to a deterministic matricial system of the form:

(

K − ω2M+ jCω
)

U (ω) = F (ω) (17)
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where:

K =

















nk
∑

k=0

〈Ψ0ΨkΨ0〉kk

nk
∑

k=0

〈Ψ0ΨkΨ1〉kk · · ·
nk
∑

k=0

〈Ψ1ΨkΨ0〉kk

nk
∑

k=0

〈Ψ1ΨkΨ1〉kk

...
. . .

















U =







u0

u1
...






F =







〈Ψ0〉 f
〈Ψ1〉 f

...







(18)

The matricesM and C have similar form as the matrix K. Relation 17 is a linear system of

deterministic equations which involves expectations of three PC products.

From a numerical point of view, the weak characterization provides a set of n× ng coupled

algebraic equations, while the strong characterization determines gg from integrations, requir-

ing at least a set of experiments for a quadrature rule. When the order of expansion is adequate,

the coefficients obtained from both characterizations should be identical when the same orthog-

onal basis is considered. However, this is not true for an inadequate truncation since the weak

characterization couples the coefficients, while the strong characterization determines each co-

efficient independently.

3.2 Modal frequency response

The direct strategy proposed in the previous section by using the intrusive method is ex-

pensive numerically when considering a large frequency band since it involves solving a large

system many times. As the structural matrices do not depend on the frequency, the modal re-

sponse presented in subsection 2.2 is relevant. Considering only a particular, single mode, Φr,

modal quantities can be represented in the chosen basis as:

Φr (ζ) =

nλ
∑

φ=0

Ψφ (ζ)φrφ, and Λr (ζ) =

nλ
∑

λ=0

Ψλ (ζ)λrλ (19)

and the relation 6 , taken in the weak sense, becomes:























nλ
∑

φ=0

nk
∑

k=0

〈ΨiΨkΨφ〉kk φrφ =

nλ
∑

φ=0

nλ
∑

λ=0

nm
∑

m=0

〈ΨiΨmΨφΨλ〉mm φrφ λrλ

nλ
∑

φ=0

nm
∑

m=0

nλ
∑

λ=0

〈ΨiΨφΨmΨλ〉φT

rφmmφrλ = 〈Ψi〉µ
i = 0, . . . , nλ (20)

which can be rewritten in a matricial form as:

{

KΦr =M′
Φr Λr

Φ
T
rM′

Φr = Υ
(21)

when collecting:

Φr =







φr0

φr1
...






Λr =







λr0

λr1
...






Υ =







〈Ψ0〉µ
〈Ψ1〉µ

...






=







〈Ψ0〉 i
0
...






(22)
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and:

M′
Φr =



















nλ
∑

φ=0

nm
∑

m=0

〈Ψ0ΨkΨφΨ0〉mmφrφ

nλ
∑

φ=0

nm
∑

m=0

〈Ψ0ΨkΨφΨ1〉mmφrφ · · ·
nλ
∑

φ=0

nm
∑

m=0

〈Ψ1ΨkΨφΨ0〉mmφrφ

nλ
∑

φ=0

nm
∑

m=0

〈Ψ1ΨkΨφΨ1〉mmφrφ

...
. . .



















. (23)

This is a non-linear system of deterministic equations which involves expectations of four

PC products. The reference (Ghanem and Ghosh, 2007) proposes to solve it using a Newton-

Raphson method starting from a statistically sampled initial value.

Then, synthesis of U (ω) leads to consider:

U (ω) =
n
∑

r=1

nλ
∑

φ=0

Ψφφrφ Xr (ω) (24)

for Xr (ω) =
nx
∑

x=0

Ψx xrx (ω) such that:

(

ΦT

rKΦr − ω2ΦT

rMΦr + jΦT

rCrΦrω
)

Xr (ω) = ΦT

r f (ω) (25)

or:
(

ΦT

rKΦr − ω2 + jΦT

rCΦrω
)

Xr (ω) = ΦT

r f (ω) (26)

since normal modes are mass normalized. It is, in the weak sense:

nx
∑

x=0





nλ
∑

φ=0

nk
∑

k=0

nλ
∑

λ=0

〈ΨiΨφΨkΨλΨx〉φT
rφ (kk + jωck)φrλ − ω2 〈ΨiΨx〉



 xrx (ω) =
〈

Ψ2
i

〉

φT
rif (ω) i = 0, . . . , nx

(27)

This is a linear system of deterministic equations which involves expectations of five PC prod-

ucts. Then it is more efficient computationally to use PC representation of modal quantities.

Using Λr =

nλ
∑

λ=0

Ψλλrλ and Ξr =

nξ
∑

ξ=0

Ψξξrξ, the above expression is rewritten:

(

Λr − ω2 + jΞrω
)

Xr (ω) = ΦT

r f (ω) (28)

to produce, in the weak sense:

nx
∑

x=0





nλ
∑

λ=0

〈ΨiΨλΨx〉λrλ − ω2 〈ΨiΨx〉+ jω

nξ
∑

ξ=0

〈ΨiΨξΨx〉 ξrξ



 xrx (ω) =
〈

Ψ2
i

〉

φT
rif (ω) i = 0, . . . , nx

(29)

which is a linear system of deterministic equations which involves expectations of three PC

products. This leads to a deterministic matricial system of the form:

(

Jr − ω2Ir + jDrω
)

Xr (ω) = Rr (ω) (30)

Mecánica Computacional Vol XXXII, págs. 681-703 (2013) 687

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



where:

Jr =



















nλ
∑

λ=0

〈Ψ0ΨλΨ0〉λrλ

nλ
∑

λ=0

〈Ψ0ΨλΨ1〉λrλ · · ·
nλ
∑

λ=0

〈Ψ1ΨλΨ0〉λrλ

nλ
∑

λ=0

〈Ψ1ΨλΨ1〉λrλ

...
. . .



















Xr =







xr0

xr1

...






Rr =







〈

Ψ2
0

〉

φT
r0f

〈

Ψ2
1

〉

φT
r1f

...







(31)

while matrices Ir andDr have a similar form to the matrix Jr. Thus, to evaluate U (ω) once the

stochastic eigenproblem is solved, assuming it provides the PC representation of eigenvectors

and eigenvalues, it is sufficient to solve 27 to obtain the modal displacement matrix coefficients

(that is a vector, if f (ω) also is). It corresponds to the equation of a single degree of freedom

system, thanks to the normal modes basis that decouples mechanical degrees of freedoms.

4 NUMERICAL METHODS FOR THE DETERMINATION OF NORMAL MODES

BASIS

Considering the deterministic normal modes basis problem, it exists numerical methods ded-

icated to its efficient determination ((Géradin and Rixen, 1997)).

4.1 Deterministic methods

From a numerical point of view, Lanczos method and power method are adapted to find

eigenvectors of large numerical problems. The inverse power method is the most basic method

of computing an eigenvector φ1 associated to the lowest eigenvalue |λ1| > 0 for the generalized

problem 2 when considering a positive-definite stiffness matrix. The algorithm of this method

is:

1. Choose an initial vector φ
(0)
1 such that φ

(0)T
1 mφ

(0)
1 = 1,

2. Compute λ
(0)
1 = φ

(0)T
1 kφ

(0)
1

3. For k = 1, 2, . . . do:

(a) Let f
(k)
1 = mφ

(k−1)
1

(b) Solve kφ
(k)
1 = f

(k)
1

(c) Normalize φ
(k)
1 such that

∥

∥

∥φ
(k)
1

∥

∥

∥

m

= φ
(k)T
1 mφ

(k)
1 = 1

(d) Compute λ
(k)
1 = φ

(k)T
1 kφ

(k)
1

4. End

This algorithm repeats the step 3 until λ
(k)
1 converges to within some tolerance ǫ, being

∣

∣

∣
λ
(k)
r − λ(k−1)

r

∣

∣

∣
< ǫ

∣

∣

∣
λ
(k)
r

∣

∣

∣
. If it converges, it converges to the eigenvector φ1 corresponding

to the lowest eigenvalue |λ1|. Noticed that even if φ
(0)
1 is orthogonal to φ1, it is expected that

φ1 would be recovered numerically due to round-off errors. However, the power method fails

to converge if |λp| = |λ1|, but λp 6= λ1. In addition, convergence is not ensured when there are

repeated or null eigenfrequencies: the convergence depends on the starting guess vector.
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Then, deflation can be carried out to construct the next lowest eigenvalue |λ2| and so on for

the next ones. In such a way, the eigenvalue |λp|, for p > 1, is obtained by introducing an

orthogonalization step before the normalization, as:

φ(k)
p = φ(k)

p −
p−1
∑

q=1

φqφ
T

qmφ(k)
p (32)

This orthogonalization step is also necessary when considering semi-definite stiffness matrix

where the first eigenvectors correspond to the null space of k, in which case a generalized

inverse is applied within iterations. The deflated inverse power method algorithm corresponding

to this situation is:

1. Find the null space φ0 of k such that φ0T
mφ0 = i and let φq ← φ0

2. For each sought mode r, do:

(a) Choose an initial vector φ(0)
r such that φT

qmφ(0)
r = 0 and φ(0)T

r mφ(0)
r = 1,

(b) Compute λ(0)
r = φ(0)T

r kφ(0)
r

(c) For k = 1, 2, . . . do:

i. Let f
(k)
r = mφ(k−1)

r

ii. Solve kφ(k)
r = f

(k)
r

iii. Orthonormalize φ(k)
r , that is such that φT

qmφ(k)
r = 0 and

∥

∥

∥φ
(k)
r

∥

∥

∥

m

= φ(k)T
r mφ(k)

r = 1

iv. Compute λ(k)
r = φ(k)T

r kφ(k)
r

(d) Let φq ←
[

φq, φ
(k)
r

]

3. End

However, this algorithm does not ensure the convergence of the eigenvectors when there are

repeated eigenvalues. In practice, it depends on the choice made for the starting guess vector.

The subspace inverse power method is an alternative to this algorithm to effectively deal with

the repeated eigenvalues case, independently of the choice of the starting guess vector. This

method consists in handling simultaneously a set of nr modes φ(k) , while preserving their

orthonormality within iterations. The algorithm is:

1. Find the null space φ0 of k such that φ0T
mφ0 = i

2. Choose an orthonormalized initial matrix φ(0) such that φ0T
mφ(0) = 0 and φ(0)T

mφ(0) = i

3. Compute λ(0) = φ(0)T
kφ(0)

4. For k = 1, 2, . . . until convergence of λ(k) do:

(a) Let f (k) = mφ(k−1)

(b) Solve kφ(k) = f
(k)

(c) Orthonormalize φ(k) such that φ0T
mφ(k) = 0 and φ(k)T

mφ(k) = i

(d) Compute λ(k) = φ(k)T
kφ(k)

5. End
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4.2 Determination of the stochastic normal modes basis using the deflated inverse power

method and polynomial chaos representation

The deflated inverse power method is a suitable alternative to the Newton-Raphson method

to solve the system 20 in order to build the stochastic normal mode basis.
The proposed algorithm for the deflated inverse power method is the following:

1. For each sought mode r, do:

(a) Choose an initial vector Φ
(0)
r to represents Φ(0)

r

(b) Find Φ
(0)1
r with a unit modal mass from Φ

(0)
r and let Φ

(0)
r ← Φ

(0)1
r

(c) Evaluate Λ
(0)
r from a modal projection of K over Φ(0)

r

(d) If

∣

∣

∣Λ
(0)
r

∣

∣

∣ > 0 do for k = 1, 2, . . . until convergence of Λ
(k)
r :

i. Let F (k)
r =MΦ

(k−1)
r

ii. Solve KΦ
(k)
r = F (k)

r

iii. If r > 1, find Φ
(k)⊥
r that orthogonalizes Φ

(k)
r to Φq for q ∈ {1, . . . , r − 1} and let Φ

(k)
r ←

Φ
(k)⊥
r

iv. Evaluate Φ
(k)1
r that normalizes modal mass to unity and let Φ

(k)
r ← Φ

(k)1
r

v. Evaluate Λ
(k)
r from a modal projection of K over Φ

(k)
r

2. End

A simple starting guess for Φ
(0)
r can be produced from the normalized normal mode φr of the

deterministic nominal mechanical system, in which case Φ
(0)
r0 = φr while Φ

(0)
rφ = 0 for φ > 0.

However, it has to be noted that even when the deterministic eigenvector is effectively mass

normalized, its stochastic counterpart may not be. Then, the normalization substep (b) of this

algorithm holds in any cases. Modal projections, orthogonalization, and normalization steps are

detailed in the following subsections. Notice that choosing the suggested starting guess for Φ
(0)
r

enables the algorithm to deal with null eigenvalues, in which case the substep (d) is bypassed.

4.3 Modal projections

Modal projections of structural matrices are performed easily in a strong characterization.

Considering a mass-normalized normal mode Φq and the stiffness matrix K, the modal projec-

tion Λq is defined as:

Λq (ζ) = Φq (ζ)K (ζ)Φq (ζ) (33)

while its PC representation is: Λq (ζ) =

nλ
∑

λ=0

Ψλ (ζ)λqλ for: λqλ =
< Λq (ζ) ,Ψφ (ζ) >

< Ψ2
φ (ζ) >

.

They are given numerically from a quadrature rule:

λqλ =
1

< Ψ2
λ (ζ) >

ngp
∑

i=1

Λq (ζi)Ψφ (ζi)wi (34)

where:

Λq (ζi) =

nλ
∑

φ=0

nk
∑

k=0

nλ
∑

λ=0

Ψφ (ζi)Ψm (ζi)Ψλ (ζi)φ
T

qφkkφqλ. (35)

An identical strategy enables the computation of modal damping.
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4.4 Orthogonalization step

The orthogonalization step consists in searching the PC representation of Φ(k)⊥
r orthogonal

to Φq, when knowing the PC representation of Φq and the one of Φ(k)
r for q < r. For mass-

normalized normal modes Φq, the orthogonalization condition is defined by:

ΦT

qMΦ(k)⊥
r = 0 (36)

and is achieved for:

Φ(k)⊥
r = Φ(k)

r −ΦqΦ
T

qMΦ(k)
r (37)

which is for the PC representation of the stochastic variables:

nλ
∑

φ=0

Ψφ (ζ)φ
(k)⊥
rφ =

nλ
∑

φ=0

Ψφ (ζ)φ
(k)
rφ−

nλ
∑

φ=0

nλ
∑

ϕ=0

nm
∑

m=0

nλ
∑

λ=0

Ψφ (ζ)Ψϕ (ζ)Ψm (ζ)Ψλ (ζ)φqφφ
T

qϕmmφ
(k)
rλ

(38)

Then, φ
(k)⊥
rφ can be found straightforwardly from:

nλ
∑

φ=0

〈ΨiΨφ〉φ(k)⊥
rφ =

nλ
∑

φ=0

〈ΨiΨφ〉φ(k)
rφ −

nλ
∑

φ=0

nλ
∑

ϕ=0

nm
∑

m=0

nλ
∑

λ=0

〈ΨiΨφΨϕΨmΨλ〉φqφφ
T
qϕmmφ

(k)
rλ i = 0, . . . , nλ

(39)

that is:

φ
(k)⊥
ri = φ

(k)
ri −

1

〈Ψ2
i 〉

nλ
∑

ϕ=0

nλ
∑

φ=0

nm
∑

m=0

nλ
∑

λ=0

〈ΨiΨφΨϕΨmΨλ〉φqφφ
T

qϕmmφ
(k)
rλ i = 0, . . . , nλ (40)

However, the above expression involve expectations of five PC products. Hence, an enhanced

–more efficient– strategy is desirable from a numerical point of view to find φ
(k)⊥
rφ . From:

nλ
∑

φ=0

Ψφ (ζi)φ
(k)⊥
rφ = Φ(k)⊥

r (ζi) ∀i (41)

we know that:

φ
(k)⊥
rφ =

< Φ(k)⊥
r ,Ψφ (ζ) >

< Ψ2
φ (ζ) >

(42)

or:

φ
(k)⊥
rφ =

1

< Ψ2
φ (ζ) >

ngp
∑

i=1

(Ψφ (ζi)wi)
(

Ψφ (ζi)φ
(k)⊥
rφ

)

(43)

when sampling points ζi are the ones of the Gauss quadrature. To express
(

Ψφ (ζi)φ
(k)⊥
rφ

)

, it

is known from the relation 37 that:

Φ(k)⊥
r (ζ) =

nλ
∑

φ=0

Ψφ (ζ)φ
(k)
rφ −

nλ
∑

φ=0

nλ
∑

ϕ=0

nm
∑

m=0

nλ
∑

λ=0

Ψφ (ζ)Ψϕ (ζ)Ψm (ζ)Ψλ (ζ)φqφφ
T

qϕmmφ
(k)
rλ

(44)
and we state that the above equality holds if:

(

Ψφ

(

ζj

)

φ
(k)⊥
rφ

)

= Ψφ

(

ζj

)

φ
(k)
rφ −

nλ
∑

ϕ=0

nm
∑

m=0

nλ
∑

λ=0

Ψφ

(

ζj

)

Ψϕ

(

ζj

)

Ψm

(

ζj

)

Ψλ

(

ζj

)

φqφφ
T
qϕmmφ

(k)
rλ ∀ζj

(45)
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Hence, evaluating the above relation at sampling points ζi enables the evaluation of φ
(k)⊥
rφ from

the relation 43.

For large structural systems, this strategy is suitable to construct orthogonalized statics or

inertial modes that are necessary to enrich a truncated normal mode basis, as well as for modal

synthesis methods (Géradin and Rixen, 1997).

4.5 Normalization step

The normalization step consists in searching Φ(k)1
r which is defined by:

Φ(k)1T

r MΦ(k)1
r = 1 (46)

It is achieved for:

Φ(k)1
r =

1
∥

∥

∥
Φ(k)

r

∥

∥

∥

M

Φ(k)
r (47)

where:

∥

∥

∥Φ
(k)
r

∥

∥

∥

M
=

(

Φ(k)T

r MΦ(k)
r

)1/2

while Φ(k)1
r (ζ) =

nλ
∑

φ=0

Ψφ (ζ)φ
(k)1
rφ with

φ
(k)1
rφ =

< Φ(k)⊥
r ,Ψφ (ζ) >

< Ψ2
φ (ζ) >

.

In practice, as for the enhanced formulation proposed for the orthogonalization step, it can

be performed from a quadrature rule:

φ
(k)1
rφ =

1

< Ψ2
φ (ζ) >

ngp
∑

i=1

Φ(k)1
r (ζi)Ψφ (ζi)wi. (48)

where:

Φ(k)1
r (ζi) =

(

Φ(k)T

r (ζi)M (ζi) Φ
(k)
r (ζi)

)−1/2

Φ(k)
r (ζi) (49)

This is an enhanced formulation from a numerical point of view since:

• it does not involved the non-linear solution of the equations obtained by the weak charac-

terization;

• it does not requires expectations of a four PC terms product as it is by the weak charac-

terization.

4.6 Determination of the stochastic normal modes basis using the subspace inverse power

method and polynomial chaos representation

The subspace inverse power method is a suitable alternative to the deflated inverse power

method to solve the system 20 in order to build the stochastic normal modes basis.

The proposed algorithm is the following. For an initial set of nr modes Φ(0) having the PC

representation Φ
(0), do:

1. Orthonormalize initial matrix Φ
(0)

2. Evaluate Λ
(0) from a modal projection of K over Φ(0) and let Λ

(k)
q and Φ

(0)
q the subset of Λ(k) and Φ

(0)

which corresponds to non null eigenvalues

3. For k = 1, 2, . . . until convergence of Λ
(k)
q do:
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(a) Let F (k)
q =MΦ

(k−1)
q

(b) Solve KΦ
(k)
q = F (k)

q

(c) Orthonormalize Φ
(k)

(d) Evaluate Λ
(k)
q from a modal projection of K over Φ

(k)
q

4. End

In this algorithm, the substep (c) implies the orthogonalization of all normal modes, including

the rigid body modes, when they exist. The starting guess Φ
(0) is produced from the nor-

mal mode matrix φ of the deterministic nominal mechanical system. Orthonormalization is

achieved as in the above subsections 4.4 and 4.5:

1. Evaluate Φ
(k)1
1 that normalizes modal mass to unity and let Φ

(k)
1 ← Φ

(k)1
1

2. For r ← 2 to nr,

(a) Find Φ
(k)⊥
r that orthogonalizes Φ(k)

r to Φ
(k)
p for p ∈ {1, . . . , r − 1} and let Φ

(k)
r ← Φ

(k)⊥
r

(b) Find Φ
(k)1
r that normalizes the modal mass to unity and let Φ

(k)
r ← Φ

(k)1
r

3. End

and the convergence condition for Λq becomes: max
r∈{1, ..., nr}

(
∥

∥

∥
Λ
(k)
r −Λ

(k−1)
r

∥

∥

∥

∥

∥

∥
Λ
(k)
r

∥

∥

∥

)

< ǫ.

5 NUMERICAL APPLICATIONS

5.1 First application

The first application concerns a system having two degree of freedom and involving three

random variables. Introducing ζl for l = {1, 2, 3}, three uncorrelated standard normal vari-

ables, the random structural matrices are:

K = µa

(

1 +
ζ21 − 1√

2

σa

µa

)[

1 −1
−1 1

]

(50)

and:

M =

[

1 0
0 1

]

+
1√
2

σa

µa

[

ζ22 − 1 0
0 ζ23 − 1

]

. (51)

The parameters are: µa = 20 and σa

µa
= 5 %. Notice that positive definiteness is ensured for the

stiffness and masses as long as σa

µa
<
√
2.

Hermite polynomials up to the second degree (10 terms) are used for the PC representation

of the stochastic eigensolutions. Eigensolutions of the nominal system are:

φ =
1√
2

[

1 1
1 −1

]

and λ =

[

0 0
0 40

]

(52)

showing that the first normal mode is a rigid body mode. Then, considering the stochastic

eigenproblem, the first eigenvalue is deterministic, indeed it is null. The amplitude of the nor-

malized rigid-body mode is however stochastic since it has a unit norm with respect to an inner

product defined by the stochastic mass metric. The PC representation of this first normal mode

Mecánica Computacional Vol XXXII, págs. 681-703 (2013) 693

Copyright © 2013 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 1: PDF of the second eigenvalue for the first application; thick grey lines are for MCS, dashed black lines

are for PC expansion.

is obtained by normalizing the starting guest which is built from the nominal system. The sec-

ond normal mode is sought from the deflated inverse power method presented above, using

the enhanced strategy for the orthogonal step. Since the iteration matrix K is not invertible, a

Moore-Penrose pseudo inverse is involved for the generation of a new iterate. When starting

from the nominal second mode the convergence towards the stochastic second normal mode is

reached in two iterations. Figure 1 shows the PDFs of the second eigenvalue and Figure 2 shows

the PDFs of the eigenvectors components obtained. These results are compared to a MCS which

has been carried out using 5× 105 sample size. A satisfactory agreement is achieved.

5.2 Second application

The second application is inspired by the simplified three DOFs model of the bladed disk of

the reference (Ghosh and Ghanem, 2012). Introducing ζl for l = {1, 2, 3, 4}, four uncorrelated

standard normal variables, the random structural matrices are:

K = µb





1 0 0
0 1 0
0 0 1



+
σb√
2





ζ21 − 1 0 0
0 ζ22 − 1 0
0 0 ζ23 − 1



+ µc

(

1 +
ζ24 − 1√

2

σc

µc

)





2 −1 0
−1 2 −1
0 −1 2





(53)

and:

M =





1 0 0
0 1 0
0 0 1



+
1√
2

σb

µb





ζ21 − 1 0 0
0 ζ22 − 1 0
0 0 ζ23 − 1



 (54)

The parameters used are the ones proposed in the reference (Ghosh and Ghanem, 2012): µb =
100, µc = 20, while σb

µb
= σc

µc
= 5 % and Hermite polynomials up to the fourth order (70 terms)

are used for the PC representation of the stochastic eigensolutions and of the stochastic dynamic

responses.

The deflated inverse power method presented above requires 30, 39, and 3 iterations to con-

verge towards the three stochastic normal modes when the normal modes of the nominal system
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Figure 2: PDFs of the two components (column-wise) of the two normal modes (row-wise) for the first application;

thick grey lines are for MCS, dashed black lines are for PC expansion.
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Normal mode r 1 2 3

Mean 111.7 140.0 168.5
Standard deviation 0.681 2.40 3.87

Table 1: Statistics of normal modes frequencies for the second application.

Figure 3: PDFs of the three eigenvalues for the second application; thick grey lines are for MCS, dashed black

lines are for PC expansion.

are used as starting guesses. These normal modes are:

φ =
1

2





1
√
2 1√

2 0 −
√
2

1 −
√
2 1



 (55)

Results for means and standard deviations of stochastic eigenvalues are given in Table 1 and

their PDFs are plotted in Figure 3. CDFs of the normal modes components are shown in Figure

4. The obtained results are compared to a MCS which has been carried out using 5×105 sample

size and a Modal Assurance Criterion to identify and to order the stochastic normal modes.

To compute frequency responses functions, the structural forces and damping matrices are

f (ω) =





1 0 0
0 1 0
0 0 1



 and C =





1 0 0
0 1 0
0 0 1



. Figure 5 and 6 show i) the mean; ii) the 5 per-

centile; and iii) the 95 percentile of the amplitude of the nine frequency responses functions, as

well as their second statistical moment. Notice that computing the mean amplitude requires all

the terms of the PC expansion, and not only the first one. Hence, agreement with MCS can only

be achieved for an adequate truncation of the PC expansion. For the stochastic eigenproblem,

a satisfactory agreement is achieved. However, discrepancies occur at some frequencies ranges

for the standard deviation of the amplitude response. This indicates that the order of truncation

is inadequate in these ranges for the frequency responses, while it is adequate for the stochastic

normal modes.
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Figure 4: CDFs of the three components (column-wise) of the three normal modes (row-wise) for the second

application; thick grey lines are for MCS, dashed black lines are for PC expansion.
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Figure 5: Frequency responses amplitudes of the three DoF system for the second application using the PC expan-

sion up to the 4th order; Mean, 5% and 95 % lines of confidence interval are represented; From up to down is for

the first to the last degree of freedom; From left-hand to right-hand is for an excitation applied from the first to the

last degree of freedom; Thick grey lines are for MCS, dashed black lines are for PC expansion.
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Figure 6: Second moment of frequency responses amplitudes of the three DoF system for the second application

using the PC expansion up to the 4th order; From up to down is for the first to the last degree of freedom; From

left-hand to right-hand is for an excitation applied from the first to the last degree of freedom; Thick grey lines are

for MCS, dashed black lines are for PC expansion.
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Normal mode r 1 2 3

Mean 99.75 159.4 160.8
Standard deviation 2.51 4.55 5.54

Table 2: Statistics of normal modes frequencies for the third application.

5.3 Third application

The third application is the simplified three DOFs model of the bladed disk of the reference

(Ghosh and Ghanem, 2012). Introducing ζl for l = {1, 2, 3, 4}, four uncorrelated standard

normal variables, the random structural matrices are:

K = µb





1 0 0
0 1 0
0 0 1



+
σb√
2





ζ21 − 1 0 0
0 ζ22 − 1 0
0 0 ζ23 − 1



+ µc

(

1 +
ζ24 − 1√

2

σc

µc

)





2 −1 −1
−1 2 −1
−1 −1 2





(56)

and M is the identity. The parameters are: µb = 100, µc = 20, while σb

µb
= σc

µc
= 5 %

and Hermite polynomials up to the fourth degree are used for the PC representation of the

stochastic eigensolutions and for the PC representation of the stochastic dynamic responses.

Eigensolutions of the deterministic system are:

φ =
1

6





2
√
3
√
6 3

√
2

2
√
3
√
6 −3

√
2

2
√
3 −2

√
6 0



 λ =





100 0 0
0 160 0
0 0 160



 (57)

This application is interesting since two of the three normal modes have the same natural

frequency.

In this situation, the stochastic deflated inverse power method has difficulties to converge,

hence the stochastic subspace inverse power method is preferred. Finding the three stochastic

modes with this method requires seventy five iterations for a maximum relative precision ǫ =
10−6 for the eigenfrequencies when starting from eigenvectors of the nominal system. Results

of means and standard deviations of stochastic eigenvalues obtained are given in Table 2.

To compute frequency responses functions, the structural forces, and the damping matrices

are f (ω) =





1 0 0
0 1 0
0 0 1



 and C =





1 0 0
0 1 0
0 0 1



. Figures 7 and 8 show i) the mean; ii) the 5

percentile; and iii) the 95 percentile of the amplitudes of the nine frequency response functions,

as well as their second statistical moments. The obtained results are compared to a MCS which

has been carried out using 5×105 sample size. A satisfactory agreement is achieved, especially

around the resonant frequencies, showing that eigenvalues multiplicity is handled effectively.

6 CONCLUSION

This study concerns stochastic discretized linear dynamic problems that may have large vari-

ations. It is limited to symmetrical structural matrices and proportional damping. The normal

mode basis is chosen to express the structural spatial frequency responses and it is done in an

efficient way. The PC representation is the chosen spectral approach for random quantities since

it can effectively handle any stochastic variations. Within this framework, from the normal basis

construction up to the modal synthesis, we propose efficient strategies in order to maintain the
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Figure 7: Frequency responses amplitudes of the three DoF system for the third application using the PC expansion

up to the 4th order; Mean, 5% and 95 % lines of confidence interval are represented; From up to down is for the

first to the last degree of freedom; From left-hand to right-hand is for an excitation applied from the first to the last

degree of freedom; Thick grey lines are for MCS, dashed black lines are for PC expansion.
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Figure 8: Second moment of frequency responses amplitudes of the three DoF system for the third application

using the PC expansion up to the 4th order; From up to down is for the first to the last degree of freedom; From

left-hand to right-hand is for an excitation applied from the first to the last degree of freedom; Thick grey lines are

for MCS, dashed black lines are for PC expansion.
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computational effort similar to the one involved for stochastic linear static problems. Indeed,

as for linear stochastic static problems, required expectations are limited to the product of three

PC terms for all the computations steps while Newton-Raphson strategy and MCS are avoided.

Then, using the proposed strategies, the stochastic deflated inverse power method and the

stochastic subspace inverse power method have a reduced computational effort for the con-

struction of normal modes bases. Indeed, considering a stochastic application, the main step of

these methods involves the resolution of a linear system which have the same size as the one

produces by the static case. The two proposed methods can handle null eigenvalues, but the

stochastic subspace inverse power method has the additional advantage to deal effectively also

with repeated eigenvalues.

Three applications are studied to demonstrate the effectiveness of the proposed strategies.

Comparisons of obtained results with the ones computed with MCS are satisfactory. In addition,

it is found that frequency responses are more difficult to represent with PC than the stochastic

normal modes.
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