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Resumen. La resolución del problema de coordinación hidrotérmica de corto plazo comprende tanto el
pre-despacho (Unit Commitment), como el despacho económico de las unidades térmicas e hidráulicas
en forma integral para un horizonte de tiempo semanal o diario con paso horario. Con el objetivo de evi-
tar correcciones post-despacho en el presente trabajo se modelan de manera detallada las restricciones
asociadas a la red de transmisión. La definición tradicional del problema de coordinación hidrotérmica
de corto plazo, minimiza sólo el costo del uso de combustible y no incluye el tratamiento de la contami-
nación producida por la emisión de distintos tipos de gases provenientes de la operación de las centrales
térmicas. Uno de los aportes novedosos del presente trabajo es la consideración de restricciones am-
bientales. El otro aporte es el método de resolución que combina la Descomposición Generalizada de
Benders con el método de Haces. Esta combinación de ambos se asemeja a una versión estabilizada del
método planos cortantes, que reduce drásticamente el conocido efecto de tailing-off que los métodos de
Benders tienen. A través de la misma se logra descomponer el problema original en un problema maestro
cuadrático entero mixto y un subproblema no lineal, de manera que el primero proponga los despachos
considerando variables enteras y el segundo controle la factibilidad eléctrica del despacho propuesto
considerando una linealización de las restricciones que surgen al considerar las características de la red.
El esquema de resolución propuesto se aplica a un caso de prueba de 24 barras y a una red real de tamaño
medio.
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1. INTRODUCTION

Nowadays, the production of clean energy is an extremely important topic. Although hy-
draulic generation is growing nowadays, fossil fuels represent a reliable and affordable source
of energy, necessary to satisfy the demand for electric energy. Coordinating thermal and hy-
draulic electricity generation is then a crucial problem faced generally by governmental agen-
cies. This work aims to solve the Short Term Hydrothermal Coordination Problem (STHTC)
whose objective is to decide between the two kinds of generation in a short period of time.

Economies based on fossil fuels has brought with it the potential harmful problem of the
emission of gaseous and particulate products of combustion, which when reaches a pre-specified
threshold, is termed pollution (Bellhouse y Whittington, 1996). Environmental concerns are be-
coming increasingly relevant for companies as regulations on pollutants become more stringent,
therefore these concerns must be considered in scheduling models.

Conventional power generation plants causes pollution through the emission of several gases
into the atmosphere. Among these gases are carbon dioxide (CO2), sulfur dioxide (SO2) and
nitrogen oxides (NOx) which have a global environmental impact (greenhouse effect) and local
effects such as acid rain and reduced visibility among others. In this work, environmental con-
cerns are considered as a cost given by quadratic functions of thermal power generated by each
unit. These functions are used to penalize the amount of emission of each gas.

STHTC considering a centralized dispatch has been used world-wide. Solving this problem
defines the operation state and power level of each generation unit (thermal and hydraulic) of
an interconnected power system achieving the lower operative cost, satisfying technical and
operative constraints of generators and transmission network, among others.

The STHTC problem without considering environmental constraints has been studied con-
sidering different formulations and using different resolution techniques as dynamic program-
ming, Lagrangean relaxation and methods based on Benders decomposition.

The use of dynamic programming to solve the STHTC problem was also mentioned in Wood
y Wollenberg (1984). It provides the possibility of modeling complex objective functions and
constraints, and it is both easy to understand and to implement as well as to integrate and to
combine with other optimization methods. Although dynamic programming allows modeling
non-linear and non-convex problems, because of its combinatorial characteristic (Hillier et al.,
1990), to have reasonable calculation times only a small number of thermal units can be con-
sidered. This fact makes it impractical for large problems, as is the case of STHTC. In Rubiales
et al. (2007), this approach is applied to a hydrothermal system with pumped-storage units.
This article mentions the problem of dimensionality and the approach presented in Lemarechal
y Sagastizabal (1997), is suggested for its resolution.

While the application of Lagrangian relaxation to Economic Dispatch (ED) problems has
been done since the mid-nineties, approaches considering network issues can be seen only in
the last ten years. For example, Ongsakul y Petcharaks (2005), shows the numerical solution of
the ED and Unit Commitment (UC) problems addressed by a Lagrangian relaxation variation
called ILR by Improved Lagrangian Relaxation. It was applied to the IEEE 24-bus test case
only considering thermal units and DC network constraints.

Lagrangian relaxation and Benders method are applied in Lu y Shahidehpour (2005), to solve
the problem of UC on a set of thermal units considering a detailed network. This algorithm was
applied to a case of 118 buses network with a planning horizon of 24 hours. Among more
recent works that consider hydroelectric units is Finardi et al. (2005), which combines the use
of Lagrangean relaxation with sequential quadratic programming. Although in Finardi et al.
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(2005), the authors define a detailed model of hydroelectric plants, network constraints are not
considered.

Another approach which uses a combination of augmented Lagrangian relaxation and dy-
namic programming is presented in Wang et al. (1995b). In this work, the decomposition and
coordination technique is used for generation scheduling with transmission and environmental
constraints. Even though numerical results indicate that the proposed approach is fast and effi-
cient in dealing with numerous system constraints, the network model used does not accurately
represent real power networks. Therefore, post-dispatch corrections are necessary.

The approach presented in Catalão et al. (2008), allows short-term scheduling of thermal
units, designed to simultaneously address the economic issue of the fuel cost incurred on the
commitment of the units and the environmental consideration due to emission allowance trad-
ing. In Catalão et al. (2008), the STHTC considering emission constraints is modeled by a
multi-objective optimization problem, which is solved by a combination of the weighted sum
method with the ε-constraining method. However, in Catalão et al. (2008), the authors do not
consider network which are necessary to avoid post-dispatch corrections.

In recent years, due to the advantages that Generalized Benders decomposition (GBD) have
shown for the resolution of large scale problems, several papers that address the short-term
study using GBD (Geoffrion, 1972) have been presented. A method based on Benders decom-
position to solve the problem of multistage hydrothermal coordination is presented in Diniz
et al. (2006). In this representation, the hydroelectric sector is modeled with a high level of
detail but applies a linear DC losses model of transmission lines. T. Akbari (2009) presents a
multi-stage stochastic model for short-term transmission expansion planning solved combining
Benders decomposition with Montecarlo simulation method. One of the later studies that con-
siders the application of GBD to the problem of STHTC considering environmental concerns
is Rubiales et al. (2012). The principal drawback of this method is the slow convergence of the
algorithm due to the tailing-off effect presented by this resolution scheme.

In this paper a sophisticated version of STHTC considering environmental concerns is solved.
This version covers both the unit commitment of thermal and hydropower units, and the eco-
nomic dispatch of them. From a system operator point of view, solving this problem considering
realistic aspects (such as those applied in this work) is an essential tool to define the daily dis-
patch of generating units. The main advantage of this approach to those which do not consider
AC power flow is the fact that, if the latter ones are applyed, large corrections must be made
for real operation use (Miguélez et al., 2004). The last fact, not only makes harder the system
operator work but also many times the system is operated in a non-optimal way. All these facts
lead to a very complex optimization problem, which is solved by using a novel decomposition
approach based on GBD and Bundle methods. The latter drastically reduces the well-known
tailing-off effect the former presents. The combination of those methods together with an ade-
quate choice of the stopping criterion drastically reduces the total resolution time with respect
to previous results presented in Rubiales et al. (2012) without any substantial differences in the
final schedule.

The proposed algorithm is developed using Generalized Algebraic Modeling of System
(GAMS). The applicability of this software to solve optimization problem in the power in-
dustry has been probed in several works. Among others, in A. Lashkar Ara (2010) the Optimal
Power Flow problem is formulated as a nonlinear optimization problem with both equality and
inequality constraints and solved using GAMS. The approach presented in S. M. Ezzati (2011)
use the same software and Mixed Integer Non Linear Programming (MINLP) for solving Secu-
rity Constrained Optimal Power Flow (SCOPF).
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This paper is organized as follows. In section 2 the nomenclature is presented. The definition
of the short-term hydrothermal coordination problem considered in this work and in Rubiales
et al. (2012) is presented in section 3. Section 4 described the resolution methodology which
combines GBD with Bundle methods. Then, its application to several cases is shown in section
5. And finally, concluding remarks are given in section 6.

2. NOMENCLATURE

Sets

t ∈ T time periods associated with the planning horizon.

i ∈ I thermal units.

j ∈ J hydroelectric units.

b ∈ B system buses.

ib ∈ ct(b) thermal units directly connected to bus b.

jb ∈ ch(b) hydroelectric units directly connected to bus b.

b′ ∈ cb(b) Set of system buses directly connected to bus b.

r ∈ R reservoirs or dams.

Variables

ptt,i active power generated by thermal unit i for period t.

utt,i state of the thermal unit i for period t.

stt,i binary variable indicating that the thermal unit i has started for period t.

ett,i continuous variable that is used for the purpose of checking that the minimum and
maximum time of operation of each thermal unit is accomplished.

qtt,i reactive power generated by thermal unit i for period t.

εp−t,b active power deficit on bus b for period t.

εp+t,b active power excess on bus b for period t.

εq−t,b reactive power deficit on bus b for period t.

εq+t,b reactive power excess on bus b for period t.

at,r water volume of the reservoir r for period t.

qTt,r across-turbine outflow of the reservoir r for period t.

qIt,r inflow of reservoir r for period t.

qSt,r spilled outflow of reservoir r for period t.
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vt,b voltage on bus b for period t.

θt,b′ voltage angle for period t on bus b.

µkt,i lagrange multiplier associated to the active power generated by the thermal unit i at time
t in the cut generated at iteration k.

λkt,j lagrange multiplier associated to the active power generated by the hydroelectric unit j at
time t in the cut generated at iteration k.

πkt,i lagrange multiplier associated to the thermal unit i state at time t in the cut generated at
iteration k.

ψkt,j lagrange multiplier associated to the hydroelectric unit j state at time t in the cut generated
at iteration k.

Constants

Ai quadratic cost coefficient of thermal unit i.

Bi linear cost coefficient of thermal unit i.

Ci free cost coefficient of thermal unit i.

Di start-up cost coefficient of thermal unit i.

Ep− penalty coefficient due to active power deficit.

Ep+ penalty coefficient due to active power excess.

Eq− penalty coefficient due to reactive power deficit.

Eq+ penalty coefficient due to reactive power excess.

ptLOWi y ptUPi minimum and maximum active power output of thermal unit i.

qtLOWi y qtUPi minimum and maximum reactive power output of thermal unit i.

phLOWj y phUPj minimum and maximum active power output of hydroelectric unit j.

qhLOWj y qhUPj minimum and maximum reactive power output of hydroelectric unit j.

onLOWi minimum on-time of thermal unit i.

offLOWi minimum off-time of thermal unit i.

∆PTUPi maximum active power difference for two consecutive periods of unit i.

ϑUPi maximum fuel for unit i for whole planning horizon.

ζt spinning reserve required for period t.

Ψp−t,b active power load for period t on bus b.

Ψq−t,b reactive power load for period t on bus b.
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Gbb′ and Bbb′ real and complex components of the admittance matrix at position bb′.

aLOWr y aUPr minimum and maximum volume limits of reservoir r.

vLOWb y vUPb minimum and maximum voltage limits of bus k. b.

ΩUP
bb′ power flow limit between two buses b and b′.

3. PROBLEM DEFINITION

In this section the STHTC problem applied to centralized electricity markets based on audit-
ed costs is defined. As it was stated in Rubiales et al. (2012) this definition consider Environ-
mental concerns. The minimization problem objective function is given by (1). If environmental
constraints are not considered, it corresponds to the cost related to produce the electricity needed
to meet a fixed demand, which is estimated for each period. Emission control may be included
as an extra cost of generation (Ramanathan, 1994) or as an extra constraint which limits the
total emission generated by each thermal unit during the planning horizon. In this approach the
former methodology is chosen and different types of emissions (CO2, SO2, NOx, etc.) are con-
sidered. Like fuel cost curves, the CO2, SO2 and NOx emission functions can be expressed as
quadratic costs for each emission type. The total cost function fo summarize costs associated
with fuel consumption and startup of thermal units and penalties related with different types of
emissions. This function is defined as follows:

fo =
∑
t

∑
i

Pt,i(ptt,i, utt,i, stt,i)

+
∑
q

∑
t

∑
i

wqEq,t,i(ptt,i, utt,i)
(1)

Pt,i = Aipt
2
t,i +Biptt,i + Ciutt,i +Distt,i (2)

Eq,t,i = Xq,ipt
2
t,i + Yq,iptt,i + Zq,iutt,i (3)

Hence, power generation cost Pt,i and pollution generated Eq,t,i for each unit are defined as
a quadratic curve. The coefficients Xq,i, Yq,i and Zq,i are generally obtained by curve fitting.
The number of terms and segments in the emission curve depends upon the characteristic of the
unit (Ramanathan, 1994). It should be mentioned that hydrothermal units does not have costs
associated to environmental concerns and to power generation. Environmental costs of hydro-
electric units are not present in fo because only emission costs are considered. The electricity
generated by these units is derived from the force or energy of falling water which is accumu-
lated in unit reservoir and they do not consume any kind of fuel. However, the use of water to
generate power hydroelectrically in a given time comprise the use of water for future generation
and vice-versa. The main issue is to know the total volume of water to be spent in the planning
horizon. In the literature, there are two methods for dealing with this issue Wood y Wollenberg
(1984). The first one considers that the total amount of water in the reservoir is available in the
short term, but a value to the amount of water that is not spent is assigned to motivate hydro-
electric plants to keep water beyond the horizon of analysis. The second approach considers that
a known fixed volume of water is available to be used in the planning horizon (obviously, less
than the total volume of water in the reservoir) as a result of long-term programming that takes
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into account other modeling aspects (uncertainty in weather, demand, etc.). In this work, the
second approach is adopted, avoiding the need to assign the value of water. This fixed volume
of water available during the horizon of analysis is considered in the definition of the initial and
final volume for each reservoir.

The constraints were divided into five groups, which are detailed below.

3.1. Constraints associated with thermal units only

utt,ipt
LOW
i ≤ ptt,i ≤ utt,ipt

UP
i (4)

Equation (4) represents box constraints associated with the active power of each thermal
unit. Thus, given the discontinuity the power of a thermal unit has, it is necessary to introduce
binaries variables to properly address possible states of operation.

utt,iqt
LOW
i ≤ qtt,i ≤ utt,iqt

UP
i (5)

Equation (5) represents box constraints associated with the reactive power of each thermal
unit. As for active power, binary variables to represent the possible states of operation should
be introduced.

utt,i − utt−1,i = stt,i − ett,i (6)
stt,i + ett,i ≤ 1

In order to determine when a unit is powered-on or powered-off, in (6) a binary stt,i and a
continuous ett,i variable (between 0 and 1) are defined. Only at this time, they take the value 1
if it corresponds, for any other condition these value is 0. More precisely, stt,i takes the value 1
if the unit i is turned on on period t (0 for other cases). On the other hand, ett,i takes the value
1 if the unit i is turned off on period t. These variables were introduced not only to consider the
starting cost of a thermal unit but also to model minimum on and off time of each unit.

utt,i + utt−1,i + ...+ utt+onLOW
i −1,i ≥ stt,ion

LOW
i (7)

(1− utt,i) + (1− utt−1,i) + ...+ (1− utt+offLOW
i −1,i) ≥ ett,ioff

LOW
i (8)

Constraints modeling minimum on and off time of each unit are shown in (7) and (8).

−∆PTUPi ≤ (ptt−1,i − ptt,i) ≥ ∆PTUPi (9)

Equation (9) defines ramping constraints for thermal units.

∆T
∑
t

f(ptt,i) ≤ ϑUP (10)

The maximum amount of fuel available for a thermal unit during planning horizon is consid-
ered in (10). In some papers this constraint groups a set of units within a plant.

Mecánica Computacional Vol XXXI, págs. 3531-3554 (2012) 3537

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



3.2. Constraints associated with hydro power units only

uht,iph
LOW
j ≤ pht,j ≤ uht,iph

UP
j (11)

uht,iqh
LOW
j ≤ qht,j ≤ uht,iqh

UP
j (12)

Equations (11) and (12) represent minimum and maximum active and reactive power output
of hydraulic unit generation. In order to avoid losing generality, discontinuities in hydraulic
units are also considered.

pht,j = qTt,jβj (13)

Equation (13) represents the linear relationship between water flow across turbine and the
power generated by each hydraulic unit. There are several approaches to model this relationship.
In those applied to systems mainly served by hydropower, such as Brazil, great importance is
given to the accuracy of this relationship (Diniz y Maceira, 2008). The expression considered
in this work is the one used in most of the referenced works where the power generation units
are mostly thermal. The chosen relationship allows to solve the optimization problem using
decomposition techniques and to have enough known parameters. In other works, because of
the linear nature of the production function for the case of plants with a great fall, the flow
variable is eliminated leaving everything in terms of power generated. However, it is preferred to
explicitly maintain the variable representing the flow; sometimes these variables are eliminated
to make the problem more compact.

3.3. Constraints associated with both types of generation

∑
i

(utt,ipt
UP
t,i − ptt,i) +

∑
j

(uht,jph
UP
t,j − pht,j) ≥ ζt (14)

Constraint (14) represents the spinning reserve of the whole system for each period.
Nodal balance of active power for each period is defined in equation (15), where Pt,bb′ (16)

represents the real part of power flow (active) presented in the line between bus b and b′. The
set cb(b) on which the sum is applied, corresponds to the buses directly connected to the bus b.

∑
ib∈ct(b)

ptt,ib +
∑

jb∈ch(b)

pht,jb + Ψpt,b =
∑

b′∈cb(b)

Pt,bb′ (15)

Pt,bb′ = (16)
vt,bvt,b′(Gbb′ cos(θt,b − θt,b′) +Bbb′ sin(θt,b − θt,b′))

Equation (17) defines the nodal balance of reactive power for each period. Qt,bb′ (18) repre-
sents the complex part of power flow (reactive) presented in the line between bus b and b′

∑
ib∈ct(b)

qtt,ib +
∑

jb∈ch(b)

qht,jb + Ψqt,b =
∑

b′∈cb(b)

Qt,bb′ (17)
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Qt,bb′ = (18)
vt,bvt,b′(Gbb′ sin(θt,b − θt,b′)−Bbb′ cos(θt,b − θt,b′))

A deeper explanation about how equations (15-18) are obtained goes beyond the scope of
this work and is presented in classical books such as (Wood y Wollenberg, 1984) and (Grainger
y Stevenson, 1994).

3.4. Hydraulic related constraints

at+1,r = at,r + ∆T (qIt,r − qTt,r − qSt,r) (19)

Reservoir water balance is represented in (19). Although only one unit per reservoir is con-
sidered, it should be easily extended to several units for the same reservoir. Equation (20) rep-
resents box constraints to reservoir water volume.

aLOWr ≤ at,r ≤ aUPr (20)

3.5. Network related constraints

−ΩUP
bb′ ≤ vt,bvt,b′ [Gbb′ cos(θt,b − θt,b′)−Bbb′ sin(θt,b − θt,b′)]−Gbb′v

2
t,b ≤ ΩUP

bb′ (21)

vLOWb ≤ vt,b ≤ vUPb (22)

Constraints associated with transmission lines and transformers capacity are defined in (21),
while allowed voltage levels for each bus are considered in (22).

3.6. Maintenance of system components

In order to address constraints associated with system elements which are temporarily out of
service, or conversely, whose operation is forced for some other reason, the above constraints
should be modified. For instance, the availability of thermal or hydraulic units for a given period
can be previously defined forcing binaries variables utt,i or uht,j .

4. RESOLUTION METHOD

To simplify the resolution of the problem avoiding falling into infeasible solutions, penalties
for being unable to provide active or reactive power to the system are include into the problem
formulation. They are represented by variables εp−t,b, εp

+
t,b, εq

−
t,b and εq+t,b. They allows closing the

nodal balance (active and/or reactive) for any condition, preventing the occurrence of infeasi-
bility in the optimization problem. If these variables are different from zero at the final solution
then the proposed generating schedule cannot satisfy the active and/or reactive power demand
in any bus. Following these considerations, equations (15) and (17) are redefined as (23) and
(24) respectively.

∑
ib∈ct(b)

ptt,ib +
∑

jb∈ch(b)

pht,jb + εp−t,b − εp
+
t,b −Ψpt,b = Pt,bb′ (23)
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∑
ib∈ct(b)

qtt,ib +
∑

jb∈ch(b)

qht,jb + εq−t,b − εq
+
t,b −Ψqt,b = Qt,bb′ (24)

And the objetive function (1) including deficits and excesses penalizations is redefined as
follows:

fo =
∑
t

∑
i

Aipt
2
t,i +Biptt,i + Ciutt,i +Distt,i (25)∑

t

∑
b

Ep−εp−t,b +Ep+εp+t,b + Eq−εq−t,b + Eq+εq+t,b

When applied to real cases the scale of the resulting problem formulation is usually large.
Therefore, many authors have considered decomposition methods (Baptistella y Geromel, 1980;
Pereira y Pinto, 1983; Habibollahzadeh y Bubenko, 1986; Carneiro et al., 1990; Conejo y Medi-
na, 1994; Bai y Shahidehpour, 1996; Demartini et al., 1997; Enamorado et al., 2000; Alguacil y
Conejo, 2000; Finardi y da Silva, 2006; Sifuentes y Vargas, 2007; Norbiato dos Santos y Diniz,
2009; Takigawa et al., 2010; Rubiales et al., 2012).

4.1. Benders method

The Benders method presented in (Benders, 1962) showed its utility in many applications,
specially for large scale problems with variables that when are fixed the problem became a linear
programming problem. In 1972 A. M. Geoffrion (Geoffrion, 1972) generalized the approach
allowing for subproblems not necessarily linear.

As any variable partitioning method, it applies when the problem can be formulated in the
form

mı́n f1(x) + f2(y)
x ∈ X, y ∈ Y,
g(x, y) ≤ 0.

(26)

and fixing the value of x the resulting problem is an easier solved problem.
Calling ϕ(x) the optimal value of the subproblem

ϕ(x) = mı́n f2(y)
y ∈ Y,
g(x, y) ≤ 0,

(27)

the original problem can be written in the following form

mı́n f1(x) + ϕ(x)
x ∈ X, (28)

where we have considered that ϕ(x) = +∞ in the case that there is no y ∈ Y such that
g(x, y) ≤ 0.

In most of the practical cases, the optimal value function ϕ is convex and it is easy to compute
one subgradient using the Lagrange multipliers associated to the constraints in (27). In those
cases it is possible to approximate the function ϕ by a cutting plane model

ϕk(x) = sup{fi + ξTi (x− xi), i = 1, . . . , k} (29)
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Figura 1: Evolution of the cutting planes algorithm

where fi and ξi are the function value and a subgradients of ϕ for some points xi in X.
In fact, it can be shown that under some hypothesis the function ϕ is equivalent to

ϕ(x) = sup{ϕ(y) + ξT (x− y), y ∈ X, ξ ∈ ∂ϕ(y)}.

Now, the definition in (29) can be seen as a finite evaluation approximation of this formula,
made upon cutting planes that in the convex case are support planes, see figure 1 for a graphical
example. The interest of this formulation is that subgradients of ϕ are automatically obtained at
each evaluation of ϕ through formula (27).

It may happen that the subproblem for some value of x is infeasible and there are no mul-
tipliers to build a cutting plane. In those cases it is possible to include feasibility cuts, as it is
shown in (Bonnans et al., 2006). However, in this work feasibility cuts will not be necessary
because subproblems are always feasible.

The Benders method starts with an initial solution x0 ∈ X and obtains the actual value ϕ(x0)
solving the subproblem (27). After computing the first k− 1 iterations there is a point xk−1 and
a cutting plane approximation ϕk−1. Then it solves the master problem

mı́n f1(x) + ϕk−1(x)
x ∈ X, (30)

that, considering the formula (29), can be reformulated as

mı́n f1(x) + z
x ∈ X,
z ≥ fi + ξTi (x− xi), i = 1, . . . , k.

(31)

Calling xk the solution to the master problem, the algorithm keeps iterating until the gap be-
tween upper and lower bounds is small enough. The lower bound is given by the solution of the
master problem and the upper bound is given by the solution to the subproblem.
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4.2. Bundle Method

Benders method can be seen as a cutting planes method and, as it is shown in the literature
(Bonnans y Lemaréchal, 2006), algorithms based on cutting planes can present instabilities and
bad numerical behavior which is observed as a very poor convergence rate. To cope with those
problems Lemaréchal in (Lemarechal, 1978; Lemaréchal et al., 1995) introduced the Bundle
method which can see as a stabilized cutting planes method. The stabilizing property of that
method is explained in the next section and inspires the algorithm presented in this work.

Bundle methods were designed to accelerate the convergence of the cutting planes method.
In order to avoid oscillations it is crucial that the algorithm at each step keeps the best obtained
solution. With this extra information, two sequences of points are generated:

the sequence of points yk, called candidates, over which the cutting plane model f̂k is
made up.

the sequence of points xk, called stability centers, where the objective function sufficient-
ly decreased.

In the case presented here (taken from (Bonnans y Lemaréchal, 2006)), the stabilization is
obtained thanks to a quadratic penalization introduced in the objective function of the subprob-
lem. This penalization can be seen as a mechanism to not letting the next candidate point going
far away from the last stability center.

The general bundle algorithm can be resumed as:

Step 0: k = 0, δ0 =∞, tol = ε, m ∈ (0, 1), for a given x0 compute f(x0) and ξ0 ∈ ∂f(x0).

Step 1: If δk ≤ tol END.

Step 2: Solve the stabilized optimization problem

mı́n
y
ϕk(y) +

1

2
τ k‖y − xk‖2 (32)

obtaining yk+1 and the subgradient ξk+1.

Step 3: Compute

δk+1 = f(xk)− ϕk(yk+1)− 1

2
τ k‖y − xk‖2.

Step 4: Test
f(xk)− f(yk+1) ≥ mδk+1. (33)

True: Accept candidate as new stability center xk+1 = yk+1.

False: xk+1 = xk.

Step 5: Improve cutting plane model with yk+1 and ξk+1. Set k to k+1 and go to Step 1.

The quadratic term in the objective function of problem (32) together with the penalization
parameter τ k focus the search around the last good obtained solution (the current stability cen-
ter). The parameter can be updated at each iteration to constraint the search around the stability
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center. There is no an optimal accepted rule to do it. In (Bonnans et al., 2006) the authors study
the so called reversal form for the update given by

1

τ k+1
=

1

τ k
+

〈
xk+1 − xk, ξk+1 − ξk

〉
‖ξk+1 − ξk‖2

, (34)

and also mention on other works which study different rules, some of them based on vari-
able metrics. The use of variable metrics allows to obtain in some difficult cases, superlinear
convergence (see for example Parente et al. (2011)). For the numerical tests, and after many
experiments in this work we propose the rule

τ k =

α
∑
k

f(yk)β+1(
f(yk)− f̂(yk)

)β∑
k

‖xk‖2
, (35)

where α and β are parameters calibrated to improve the convergence rate. For the parameter m
in the decrease test, many tests were made to adjust it to a good value.

As it is noted in (Lemarechal y Sagastizabal, 1997), the principal advantages of this method
are:

converges toward an optimal point,

higher robustness,

better stability properties,

possibility of reducing the used memory without compromising the convergence rate.

Bundle ideas can be applied to Benders method to improve its stability. To do so, the Bundle
methodology is applied to the problem (31) for the minimization of the function (nondiferen-
tiable in general) f1(x) + ϕ(x).

4.3. Decomposed problem

The optimization problem of minimizing the function (1) constrained to (4-22) is written
under the following form

mı́n
ym

fm(ym) + ϕ(ym), (36)

where ym and fm represents the variables and the objective function of the master problem
respectively. The function ϕ represents the subproblem, the variable of the subproblem is called
ysp and fsp(ym, ysp) is the objective function of the subproblem. Now, the constraints must be
included in each one of the problems. Different choices will correspond to a different behavior
of the Benders algorithm. In this case all the binary variables and the active power variables are
considered for the master problem letting all the others variables belong to the subproblem. We
have then

ym = (utt,i, ptt,i, uht,j, pht,j, stt,i, ett,i) . (37)

For the master-problem objective function, we considered the start-up costs of the thermal units
together with the quadratic terms of the thermal generation costs and those related to the envi-
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ronmental concerns. Thus, we obtain

fm(ym) =
∑
t

∑
i

Pt,i(ptt,i, utt,i, stt,i)

+
∑
q

∑
t

∑
i

wqEq,t,i(ptt,i, utt,i)
(38)

The constraints considered for the master problems are all those that not contain the variables
of the subproblem: (4), (6-11), (13), (14), (19), (20).

Now the subproblem objective function becomes

fsp =
∑
t

∑
b

Ep−εp−t,b + Ep+εp+t,b+

+ Eq−εq−t,b + Eq+εq+t,b.

(39)

Together with the variables that appear in this function, the subproblem has also the reactive
power variables qtt,i, qht,j the corresponding slack variables (εp−t,b, εp

+
t,b, εq

−
t,b, εq

+
t,b), the angles

θt,b and the voltages vt,b. The remaining constraints (5), (12), (15), (17), (21), (22) are considered
in the subproblem with the values of master variables fixed by the master problem.

With the proposed decomposition the resulting master problem is numerically more complex
than the subproblem. Indeed, it is a quadratic mixed integer problem. The subproblem has a
linear objective function and non linear constrains, but the non linearity of the constraints is non
harmful in practice and the solvers used can deal well with them.

It is worth mentioning also that the subproblem becomes temporally uncoupled obtaining
several optimal flow problems where the values of the start-up variables utt,i, uht,j and the
active power generation ptt,i, pht,j are given by the master problem solution at each iteration.

In order to simplify the introduction of cutting plane equations some dummy equations were
added:

ptt,i = ptkt,i : µkt,i,
pht,j = phkt,j : λkt,j,
utt,i = utkt,i : πkt,i,
uht,j = uhkt,j : ψkt,j,

(40)

where uht,j , pht,j , utt,i y ptt,i are now subproblem variables, uhkt,j , ph
k
t,j , ut

k
t,i y ptkt,i are given

by the master problem at the k iteration and µkt,i, λ
k
t,j , ψ

k
t,j, π

k
t,i are the corresponding multipliers.

The addition of cutting planes to the master problem is made in the same way that in (30)
and (31). The master objective function has the term

∑
t zt which corresponds with ϕ(ykm), and

the cutting planes are:

zt ≥ zt
k +

∑
j

λkt,j(uht,j − uhkt,j)+

+
∑
j

ψkt,j(pht,j − phkt,j)+

+
∑
i

µkt,i(ptt,i − ptkt,i)+

+
∑
i

πkt,i(utt,i − utkt,i).

(41)
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Figura 2: Convergence comparison - 24 buses test case

5. RESULTS

In Rubiales et al. (2012) the STHTC problem stated previously was solved using a Gen-
eralized Benders Decomposition approach. The results presented in this work make emphasis
in analyzing the strategy proposed by the algorithm and in evaluating the correctness of the
approach comparing it with Powerworld Simulator results. The present work improves the per-
formance of the GDB approach including a stabilization mechanism based on Bundle method.
This section compare the performance obtained by both techniques. The previously detailed
algorithm (section 4) is applied to the IEEE 24-buses test system and to a larger real power
system.

The characteristics of the electrical systems used in tests are described below:

5.1. IEEE 24-bus system

In this case, the system consists of 26 units of which, 18 are supposed to be thermal and
8 hydraulic. Units characteristics, power line characteristics and Demand profiles are obtained
from (Wang et al., 1995a).

In figure 2 a comparison between algorithms convergence is presented. Gray lines show up-
per and lower bounds values of Generalized Benders Decomposition (BD) algorithm presented
in (Sifuentes y Vargas, 2007) and (Rubiales et al., 2012). These are ones of the first approach-
es which consider AC power flows network constraints and serve as a starting point for the
present work. Black lines show upper and lower bounds values of the novel decomposition
approach presented in this work, which combines Generalized Benders Decomposition with
Bundle methods. As it was shown in figure 2, the later methodology considerably decreases the
tailing-off effect which is the main drawback of the former approach. Furthermore, deficits or
excesses of active and reactive power are even lower than 10−3 MW, which are negligible in
electric power systems. Remarkably, over several runs, these values make the method converge
slowly. Because they are heavily penalized (in order to avoid network misconfigurations) small
changes in these values greatly influence the objective function. These changes do not impact
in the power generated in both, hydro and thermal power units, and even in the configuration
of the network. Therefore, one possible implementation of the stopping criterion may consider
a greater tolerance for the difference between the bounds (10−1) not allowing that excess and
deficit values in each bus be more than a given tolerance.

Reducing those values, or their impact in the total cost, may require much more iterations
at the ending of the algorithm execution. During these iterations, neither the operation cost nor
the power generated by each thermal unit, present significant changes. These facts require the
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Tabla 1: IEEE 24-buses Problem Resolution Characteristics

Time(s) Iterations Number of Equations of the Problem
Master (Initial) Master (Final) Subproblem

Benders 303 34 2651 3443 24*273
Bundle 125 13 2651 2939 24*273
MSC 69 8 2651 2819 24*273

use of a new convergence criterion based not only on the difference between bound levels, but
also on the deficit or excess of active and reactive power in each bus. This new criterion makes
a significant reduction of the number of iterations. However, the power generated in each unit
does not present significant changes. The previously mentioned fact is valid as long as the non-
zero values of the slack variables are not due to the inability of the system to meet the required
demand. Remarkably, when such cases happen the magnitudes of these values are larger and do
not fluctuate along iterations, moreover, they are stabilized in the values of power deficit that
effectively present the power dispatch. This technique is called Modified Stopping Criterion
(MSC) and results using it are also represented in figure 2 with a black cross.

Numerical experiments were performed on a virtual machine with 1 GB RAM running on
a PC AMD Athlon 2.96 GHz X3 435. The GAMS version used is 23.6 and the solver used
for solving the problem are CPLEX and CONOPT. The resolution time, number of equations
and iterations of different approaches are presented in 1. Both were executed with a relative
tolerance of 10−7.

The size of the solved master problem is 985 variables (and 336 discrete variables). For the
best case (MSC), the number of equations starts at 2651 growing to 2819 at the eighth iteration.
This size growth corresponds to the cuts added at each iteration. One cut is added at each time.
The subproblem is decomposed in 24 problems (each one corresponds to a given time interval),
with 174 variables and 273 equations each one.

5.2. Mid-size real power system

The proposed algorithm was also applied to a section of the Argentinean National Intercon-
nected System which is operated by Transcomahue. This network is located in the Upper Valley
zone and includes the provinces of Neuquen and Rio Negro. The extension of this power net-
work is medium size and has thermal and hydraulic generation. The network modeled considers
the 132 kV voltage level areas and lower voltage buses and lines that reach the generators. The
system demands are considered as bus connections which consume power at 132 kV.

This system has 87 buses, 23 thermal and 6 hydraulic units. The one-line diagram is present-
ed in Figure 3.

Table 2 shows the maximum and minimum active and reactive power characteristics of each
thermal unit. Table 3 represents thermal units quadratic operational costs (A, B and C), startup
costs and environmental coefficients (X, Y and Z). This table also shows the minimum on and
off time of each unit. Note that the cost data are fictitious because they were not provided by
the system operator.

Hydraulic units characteristics are shown in table 4. As cost coefficients, data from the reser-
voirs were not provided; consequently, fictitious values are considered and shown in Table 4.
For the sake of simplicity, line characteristics, and demand profile in each bus are not shown.

As in previous case, the problem is solved using a virtual machine of 1GB RAM running on
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Figura 3: Mid-size real power network

Mecánica Computacional Vol XXXI, págs. 3531-3554 (2012) 3547

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Tabla 2: Thermal Units Power Characteristics

Name Active Power Reactive Power

Min [MW] Max [MW] Min [MW] Max [MW]
P.BAND. 0 70 -50 50

ACAJTG06 40 130 -67.5 82.5
ACAJTG01 15 51 -13.38 19.88
ACAJTG02 15 51 -13.38 19.88
ACAJTG03 15 51 -13.38 19.88
ACAJTG04 15 51 -13.38 19.88
ACAJTG05 15 51 -13.38 19.88

AVALTV 3 30 -30 37.6
AVALTG21 0 17 -100 100
AVALTG22 5 26 0 14
AVALTG23 5 26 0 14

FILOTG 7 23.6 -4 23
CHIUTG02 5 19.4 -10.3 10.81
CHIUTG01 5 19.4 -10.3 10.81
HUINTG01 0 42.73 -8.6 30

CP_13 0 10 -5 10
GR_13A 0 5 -2.5 5
VR_13B 0 5 -2.5 5
CS_13_1 0 5 -2.5 0

RI_33 0 25 0 25
ELOM2 TG 0 18 -5 8
FILOTG3 7 23.6 -7.05 17.14
PHFICT 0 70 -50 50
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Tabla 3: Thermal Units Cost

Name Costs Env. Coef. Operation Min. Time

A B C X Y Z Startup On Off
P.BAND. 0.11 5 150 0.54 13 320 500 6 6

ACAJTG06 0.13 5.5 160 0.52 12.5 310 500 6 6
ACAJTG01 0.15 6 170 0.5 12 300 500 6 6
ACAJTG02 0.17 6.5 180 0.48 11.5 290 500 6 6
ACAJTG03 0.19 7 190 0.46 11 280 500 6 6
ACAJTG04 0.21 7.5 200 0.44 10.5 270 500 6 6
ACAJTG05 0.23 8 210 0.42 10 260 500 6 6

AVALTV 0.25 8.5 220 0.4 9.5 250 500 6 6
AVALTG21 0.27 9 230 0.38 9 240 500 6 6
AVALTG22 0.29 9.5 240 0.36 8.5 230 500 6 6
AVALTG23 0.31 10 250 0.34 8 220 500 6 6

FILOTG 0.35 11 270 0.3 7 200 500 6 6
CHIUTG02 0.37 11.5 280 0.28 6.5 190 500 6 6
CHIUTG01 0.39 12 290 0.26 6 180 500 6 6
HUINTG01 0.41 12.5 300 0.24 5.5 170 500 6 6

CP_13 0.45 13.5 320 0.2 4.5 150 500 6 6
GR_13A 0.47 14 330 0.18 4 140 500 6 6
VR_13B 0.49 14.5 340 0.16 3.5 130 500 6 6
CS_13_1 0.51 15 350 0.14 3 120 500 6 6

RI_33 0.53 15.5 360 0.12 2.5 110 500 6 6
ELOM2 TG 0.43 13 310 0.22 5 160 500 6 6
FILOTG3 0.33 10.5 260 0.32 7.5 210 500 6 6
PHFICT 0.11 5 150 0.1 2 100 500 6 6

Tabla 4: Hydraulic Units Power Characteristics

Name Active Power Reactive Power

Min [MW] Max [MW] Min [MW] Max [MW]
DIVIHI 0 5 -1.34 4.5

ARROHI01 0 42.5 -29.03 26.51
ARROHI02 0 42.5 -29.03 26.51
ARROHI03 0 42.5 -29.03 26.51
CDPIHI01 0 30 -25.4 20
CDPIHI02 0 30 -35 24.23
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Tabla 5: Mid-size Problem Resolution Characteristics

Time(s) Iterations Number of Equations of the Problem
Master (Initial) Master (Final) Subproblem

Benders 2812 49 7789 8941 24*815
Bundle 468 11 7789 8029 24*815
MSC 401 10 7789 8005 24*815
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Figura 4: Convergence comparison - Medium size real case

a PC AMD Athlon 2.96 GHz X3 435. The GAMS version used is 23.6 and the solver used for
solving the problem are CPLEX and CONOPT. The resolution time, number of equations and
iterations of different approaches are presented in Table 5. Both were executed with a relative
tolerance of 10−3.

The size of the solved master problem is 2665 variables (and 1104 discrete variables). For
the worst case (MSC), the number of equations starts at 7789 growing to 8005 on iteration
number 10. This size growth corresponds to the cuts added in each iteration. One cut is added
for each time. The subproblem is decomposed in 24 problems (each one corresponds to a given
time interval), with 601 variables and 815 equations each one. A significant reduction in time
resolution was obtained. Comparing the latter methodology with the one presented in (Sifuentes
y Vargas, 2007) the reduction achieved was from 2812 to 401 seconds.

Figure 4 shows comparison between algorithms convergence. As depicted in section 5.1
gray lines show upper and lower bounds values of Generalized Benders Decomposition (BD)
algorithm and black lines show upper and lower bounds values of the novel decomposition
approach presented in this work (Bundle). The performance obtained considering the Modified
Stopping Criterion (MSC) is represented with a black cross.

Figure 5 shows the evolution of stabilization coefficient values. Considering that in this case
the minimum level of hydroelectric power is 0, neither variable uht,j is considered nor its asso-
ciated to a stabilization coefficient.

These coefficients are defined to penalize the distance to the last found stability center. Its
starting values are close to zero and, as the iterations run, these values are exponentially in-
creased. The effect of this behavior in the algorithm is to further penalize the distance whenever
the solution is better.

Penalization variables used in the subproblem in conjunction with feasibility cuts, serve to
send signals to the master problem, in such a way that solutions generated consider the con-
straints associated with the power network. Although the magnitude of these values must be
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Figura 5: Stabilization coefficients evolution

zero at the optimal solution, for numerical reasons, it is difficult to reach this value. From a
practical standpoint, these values are considered residues and their presence has no effect on the
final dispatch. A greater error source in the final dispatch is the demand forecast which easily
could be between 2 % and 3 % of the total demand value.

6. CONCLUSION

In this work, a detailed version of the STHTC considering environmental concerns was
mathematically formulated. The resolution of this problem defines the unit-commitment and
economical dispatch of thermal and hydraulic unit avoiding post-dispatch corrections. This for-
mulation includes an AC modeling of transmission network, thus the optimization problem to
solve is integer-mixed non-convex, nonlinear and high dimensioned.

The integration of the hydrothermal coordination problem with the resolution of an AC op-
timal power flow for each period on a single problem avoids the startup of units which have not
been scheduled. This last fact would happen if problems are considered separately or with a DC
modeling of the transmission network, which may lead to a non-optimal operation state of the
power system.

The approach applied in this work consists in splitting the original problem into a quadratic
master problem with mixed integer binary variables and a nonlinear subproblem with continu-
ous variables. The former defines the state and the active power dispatched by each unit, whereas
the latter determines the reactive power to meet the electrical constraints through a modified AC
optimal power flow. The mechanism applied to separate it is the most appropriated one for the
type of systems in which the methodology was tested. For the resolution of the optimization
problem a novel approach is developed. It combines Generalized Benders Decomposition with
Bundle methods presented in (Lemarechal y Sagastizabal, 1997). This proposed method resem-
bles a stabilized version of the cutting planes method, which drastically reduces the well-known
tailing-off effect that Benders methods have.

These approaches were applied to the IEEE 24-bus test case and to an 87-bus real sys-
tem comparing resolution performance with the methodology presented in (Sifuentes y Vargas,
2007), which is one of the latest advances in this field. As it was mentioned in section 5 a
remarkably decrease in resolution time was achieved without loosing solution quality.

Regarding future works, a different combination of solving strategies in order to modify the
problem to be solved according to the progress of the iterations should be applied. For example,
in the first iterations a relaxed version of the master problem can be solved only considering DC
constraints in the subproblem, in order to improve resolution time, incorporating the resolution
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of the original master problem and subproblem only in the last iterations. Further improving
the performance of the algorithm requires the application of the Bundle compression technique
presented in (Bonnans et al., 2006). Considering the fact that subproblems can be resolved
uncoupled, also parallel processing should be allowed to reduce total resolution time.
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