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Abstract. An uncertainty quantification study is carried out in the problem of frontal collision of two
elastic bodies. The time of contact and the resultant force function involved during the collision are
the quantities of interest. If the initial conditions and the mechanical and geometrical properties were
known, the response prediction would be deterministic. However, if the data contains any uncertainty,
a stochastic approach becomes appropriate. Based on the Principle of Maximum Entropy (PME), and
under certain restrictions on the parameter values, we derive the probability density function (PDF) for
each of the stochastic parameters to construct a probabilistic model. Two cases are dealt with: one of a
collision involving two spheres and another of the collision of two discs. In the first case, a parameter
involving geometry and material properties is assumed stochastic. Since an analytical model exists, the
propagation of the uncertainty of the time of contact can be done analytically. However, the interaction
force function can only be computed from the solution of a nonlinear ordinary differential equation,
hence not analytically. Given the PDF of the parameter, the problem of uncertainty propagation is tackled
using Monte Carlo simulations. The comparison of both approaches yields an excellent agreement. With
respect to the collision of two discs, first the small deformation problem, within the Hertz theory, is
addressed with a Monte Carlo method. When the discs undergo large deformations, the problem is
approximated using the equations of Finite Elasticity discretized by the finite element method (FEM)
and combined with a Monte Carlo simulations. In a first illustration, the modulus of elasticity is assumed
stochastic with a gamma PDF. Further, the disc collision problem is analyzed when two parameters are
stochastic: the modulus of elasticity and the Poisson’s ratio. It is shown that under certain dispersion
ranges, the PDF of the interaction force function undergoes a qualitatively change exhibiting bimodality.
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1 INTRODUCTION

The collision among solid bodies involves magnitudes such as the time of contact and inter-
action forces which are not easily obtained from physical measurements due to the complexity
of this phenomenon (Hessel et al., 2006). In a very small time, large forces are developed in
a frontal collision between elastic bodies (Buezas et al., 2010). The interest in collision prob-
lems is quite old (Timoshenko, 1913), some articles deals with rigid-body collisions (Cataldo
and Sampaio, 2000, 2001b,a, 2002), discrete systems (Sampaio and Tavares, 1998), continuous
systems (Sampaio and Soize, 2007; Ritto et al., 2012). For collision of deformable bodies some
books have appeared (Johnson, 1985; Popov, 2010; Stronge, 2000).

Recently, Langley (2012) reports a study on the the characteristics of the interaction force
function produced when two randomly vibrating elastic bodies colliding with each other, or
when a single randomly vibrating elastic body collides with a barrier. On the other hand, when
dealing with mechanical models, uncertainties are always present and taking them into account
improves model predictability (Ritto et al., 2011; Pagnacco et al., 2011). This paper deals with
the quantification of the uncertainties on some of the mechanical properties of elastic bodies
undergoing frontal elastic-collision and their propagation to the time of contact and the inter-
action force function during the collision. Of course, in colliding elastic bodies one deals with
stress fields, but in this paper the resultant force in the direction of the frontal collision is com-
puted and one studies its variation during the collision, that is one studies a stochastic process.
In particular, the study is focused on the collisions of spheres and discs. First, the collision of
two spheres within the well-known Hertz theory (Landau and Lifchitz, 1969; Johnson, 1985)
is tackled. Due to the simple function that relates the time of contact and the impact speed in
this particular case, the uncertainty problem is solved analytically. The analytical solution is
also compared with stochastic simulations. Second, a similar problem involving discs is ap-
proximated through statistical tools. One or two parameters are assumed stochastic and the
propagation of the uncertainty is studied using a probabilistic models derived by the Principle
of Maximum Entropy.

The article is organized as follows. First, a variable that includes geometric and material
properties of the two sphere collision problem is assumed stochastic and the PDF deduced
from the Principle of Maximum Entropy (PME) (Shannon, 1948). Making use of the theorem
regarding a change of variable, the PDF of the time of contact is analytically derived. The
parameters of the PDF found with the PME can be adjusted with experimental data reported
in Hessel et al. (2006). The PDFs of the time of contact and the interaction force function
(evolution of the interaction force during the collision process) are predicted when the speed of
the collision is varied. Afterwards, the same problem is approximated making use of stochastic
simulations. It was found that both, the analytic and the computational approaches, yield similar
results. It follows a section dealing with an analogous problem that involves the collision of two
elastic discs. Here, the Hertz model is compared with a finite elasticity solution for both low
and high speed collisions using the equations of Finite Elasticity discretized by finite elements.
In this case, there is no explicit relationship between the time of contact τ and impact speed v
neither in the Hertz model nor in the Finite Elasticity solution. Hence, the analytical approach
is not feasible and a numerical procedure was the alternative. Two cases are discussed. In
one case, the modulus of elasticity is assumed as a statistic variable with a gamma PDF. The
propagation of the uncertainty yields the PDFs of the time of contact and interaction force.
In the other case, two parameters are varied simultaneously, the modulus of elasticity and the
Poison’s coefficient. The first parameter is represented by a gamma PDF and the second one,
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by a uniform PDF. Also, the influence of the dispersion value is assessed. The evolution of
PDF of the interaction force function exhibits changes from unimodality to bimodality, and
even multimodality, making evident the complexity of the problem. Finally, some comments
are included and some works in progress are described.

2 COLLISION BETWEEN SPHERES. STATEMENT OF THE PROBLEM

The time of contact, τ , between two colliding spheres in function of the collision speed, v,
when small deformations are assumed, is given by (Landau and Lifchitz, 1969; Hessel et al.,
2006),

τ = αvγ (1)

where α and γ are parameters. Within the Hertz theory, they assume the following values

α = 2.94
5

√
µ2
m

k2
; γ = −1

5
(2)

in which the reduced mass is µm = m m′/(m + m′), k = 4
√
rr′/(r + r′)/5D and D =

3 [(1− ν2)/E + (1− ν ′2)/E ′] /4. E and ν stand for the modulus of elasticity and the Poisson’s
ratio of each sphere, respectively, m is the mass of one sphere, and r denotes the radius of the
sphere. The prime denotes the second sphere data.

Each quantity involved in the determination of α is a positive scalar which makes α also
positive. One could tackle it as a positive stochastic variable. In fact, a negative value of
those parameters would lead to negative time of contact which is meaningless. If a stochastic
approach is applied to this problem, first a PDF should be chosen for the input variable. A
statistical concept of entropy was introduced by Shannon in the theory of communication and
transmission of information (Shannon, 1948). He derived the Principle of Maximum Entropy
which states that, subject to known constraints, the PDF which best represents the current state
of knowledge is the one with largest entropy. The measure of uncertainties of a random variable
X is defined by the following expression

S(fX) = −
∫
fX(X)log(fX(x))dX (3)

in which fX stands for the PDF of X.
It is possible to demonstrate that the application of the principle under the contraints of pos-

itiveness and bounded second moment, leads to a gamma PDF (see for instance, Pérez (2007))
for the random variable under study. This situation applies to the variable α, i.e. the gamma
PDF is

f(α) =
αd−1e−α/b

bdΓ(d)
(4)

where d and b are the two parameters of the distribution that are related to the mean µ and the
variance σ2, as follows,

µ = bd; σ2 = b2d. (5)

Now, given the distribution of the parameter α, the natural question is: what are the distributions
of the time of contact, a random variable, and of the interaction force function, a stochastic
process (hence a distribution for each instant)? As was mentioned before, the simplicity of this
problem, allows for an analytical analysis in the following sections and afterwards a comparison
with a numerical approach.
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2.1 Change of variable

The probability of finding a value of the random variable X , with PDF f(X), between m
and n is

P (m < X < n) =

∫ n

m

f(X)dX (6)

Then, the following theorem (see, for instance, Spiegel (1998); Rubinstein (2007)) applies

Theorem 1 Let X be a continuous random variable with PDF f(X). Let us define U = φ(X)
and its inverse function X = ψ(U). Then, the PDF of U is given by g(U) where

g(U) |dU | = f(X) |dX| (7)

or

g(U) = f(X)

∣∣∣∣dXdU
∣∣∣∣ = f (ψ(U)) |ψ′(U)| . (8)

The application of this theorem to the time of contact τ (see Eq. (1)) yields

g(τ) = f(α)

∣∣∣∣dαdτ
∣∣∣∣ = f

( τ
vγ

) 1

vγ
. (9)

As mentioned before, α is assumed with a gamma PDF, and consequently,

g(τ) =

(
τ
vγ

)d−1
e−( τ

vγ )/b

bdΓ(d)vγ
. (10)

3 COLLISION BETWEEN SPHERES

In this subsection, the collision problem between two spheres will be tackled numerically.
The mean data is extracted from the values of the experiment reported by Hessel et al. (2006).
The case corresponds to the problem of two identical steel spheres with 2r = 2r′ =0.0381
m, mass m = m′ =0.2258 kg, Poissons ratio ν = ν ′ =0.3 and modulus of elasticity E =
E ′ = 2.1 1011 Pa (recall Eq. (2)). The mean value of α reported in this reference is µα =
(1.138) 10−4. The standard deviation of α will be varied from a lower bound of σα = 2 10−5.
The results are reported for an impact speed of v = 20 m/s.

Figure 1 shows three gamma PDFs f(α) for the parameter α obtained for the adopted value
of the mean µα and three values of σα. After applying the change of variable technique (Eq.
(10)) the PDF g(τ) of the time of contact variable τ is obtained and shown in Fig. 2. It can
be observed that, for the case of σα = 2 10−5 both distributions f(α) (Fig. 1) and g(τ) show
symmetry and resemble a gaussian distribution. However, it should be noted that they still
keep the property of being zero when the variable is zero, which is consistent with the positive
domain of the random variable. As the dispersion increases, the PDFs tend to skew to the left,
getting closer to the typical gamma distributions. Recall that all the distributions f(α) have the
same expected value µα = 1.138 10−4. The same happens for the time of contact, resulting
µτ = 6.2508 10−5s as should be expected from the relationship (1).

3.1 Variation in the impact speed and interaction force function

The above calculations were carried out with a fixed value of the impact speed. It is inter-
esting to analyze the effect on the distribution g(τ) when the value of this speed is changed.
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Figure 1: Gamma probability density functions for the parameter α for three values of the standard deviation σα.

Figure 2: Probability density functions for the time of contact τ for three values of the standard deviation σα.
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Figure 3: Collision of two steel spheres. Contour lines of the function g(v, τ) with σα = 2 10−5.

Figure 4: Collision of two steel spheres. Function g(v, τ) with σα = 2 10−5.
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Figure 5: Curves τ vs. v and the 5% y 95% bounds for a dispersion σα = 2 10−5.

Figure 3 shows the contour lines of the function g(v, τ) if σα = 2 10−5 and Fig. 4 depicts a
three dimensional graph of g(v, τ) The distribution of the time of contact τ is apparent at each
cut of function g(v, τ) at a constant value of v.

Now, the cumulative probability functions can be found integrating the PDFs as follows.

G(z, v) =

z∫
0

g(v, τ) dτ (11)

and serve as a tool to obtain bounds and confidence intervals of the stochastic variable. For
instance, if one requires an interval between the 5% and the 95% of statistical significance,
the integral (11) should be evaluated as follows. For the 5% bound, x is sought such that
G(x, v) = 0.05 and analogously with the 95% bound, x such that G(x, v) = 0.95. Figures 5, 6
and 7 depict the bounds corresponding to 5%, 50% y 95% of probability for the cases in which
σα = 2 10−5, 4 10−5, 6 10−5, respectively.

The interaction force can be also evaluated when the parameter α is assumed random (always
with a gamma distribution). It is necessary to solve the equation of motion for the interaction
force between the spheres (see for instance Landau and Lifchitz (1969); Hessel et al. (2006);
Puttock and Thwaite (1969)). Obviously, this interaction force and the time of contact given
by Eq. (1) are related to the same problem. Figure 8 includes the temporal variation of the
interaction force calculated with an impact relative velocity of 20 m/s calculated for the bounds
5%, 50% and 95% respectively, and also the mean value, in all cases with σα = 4 10−5. As can
be observed, the latter is not coincident with the 50% bound, as would be the case if a gaussian
distribution had been chosen.

4 MONTE CARLO SIMULATION AND COMPARISON WITH THE ANALYTICAL
RESULT FOUND VIA THE CHANGE OF VARIABLE

Up to this point, all the results were obtained after assuming the distribution given by Eq.(4)
and the change of variable of Eq.(10). The equation of motion for the same problem described
in Section 3 and governed by an ordinary equation of motion is now solved. The interaction
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Figure 6: Curves τ vs. v and the 5% y 95% bounds for a dispersion σα = 4 10−5.

Figure 7: Curves τ vs. v and the 5% y 95% bounds for a dispersion σα = 6 10−5.

F.S. BUEZAS, M.B. ROSALES, R. SAMPAIO2692

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 8: Impact force during contact for the bounds 5%, 50% and 95 % and the expected value FM .

force is governed by a relationship of the type

F = Cx3/2 (12)

where x is the separation distance between the two centers when the spheres start the collision
(see e.g. Landau and Lifchitz (1969)) and C is a constant. As mentioned before, these equations
derive from the equilibrium problem of elastic bodies that are in contact, stated by Hertz. In
fact, the expression can be written as

F 2/3 =
x

3

√
9
2r

(
1−ν2
E

)2 (13)

The time of contact (Eq. (1)) is obtained from this equation combined with the second Newton’s
law (the reader can refer to Landau and Lifchitz (1969) for more details).

In order to verify the analytical results and to extend the methodology to other problems in
which the analytical approach is not feasible, a numerical experiment was carried out. Equa-
tion (12) is approximated assuming α as a random variable and the Monte Carlo method as the
stochastic solver. By the use of a random number generator that simulates the gamma distribu-
tion, the hertzian model of contact is approximated. Approximately, the number of realizations
was two thousands obtained from the distribution given in Eq.(4), i.e. µα = 1.138 10−4 and
σα = 0.6 10−4.

Figure 9 shows the difference between the value of the dispersion σ propagated to the solu-
tion of the time of contact (numerical simulation) and the value of σ0 obtained in the analytical
evaluation (also propagated by the differential relationship dτ = vγdσ ). As can be observed,
the two values of dispersion tend to match after 700 realizations, approximately. This could
be a good criterion to decide the number of realizations necessary to obtain significant statistic
results.

The histograms found with the 2000 realizations are shown in Fig. 10 for the parameter
α and the propagation to the time of contact τ . The resemblance to the shape of the gamma
distribution is apparent. It should be noted that the seesaw shape of the histograms would be
smoothed if the number of bins were increased as well as the number of realizations. However,
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Figure 9: Collision between two spheres. Convergence study of the time of contact using the Monte Carlo method.
σ and σ0 correspond to the standard deviation found with the numerical simulation and the analytical approach,
resp.

Figure 10: Collision between two spheres. Histograms found with Monte Carlo simulation and 2000 realizations.
Left graph: parameter α; right graph: time of contact τ .

here the aim is to obtain a probability density estimate. The same comment applies to Figs. 13
and 15.

An interesting analysis can be done using the ksdensity(x) function of MATLAB that com-
putes a probability density estimate of the sample in the vector x, i.e. given the results of the
experiments in the form of histograms, this function yields a numerical estimate of a probability
density function. Figure 11 depicts the obtained result from the previous numerical experiments
via Monte Carlo simulations along with the PDFs found with the analytical approach (Eqs. (4)
and (10)) using the change of variable technique.

5 COLLISIONS BETWEEN TWO DISCS

The problem of the collision of two discs is herein analyzed. The discs problem presents
the advantage that it can be reduced to a 2D study. This feature will become useful when the
large deformation problem is approximated regarding a drastic reduction on the computational
time. With the aim of evaluating the distributions of the time of contact, a comparison of the
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Figure 11: Collision between two spheres. Reconstruction of the PDFs from the numerical simulations using
Monte Carlo method. Full lines: distributions found with the analytical approach. Dashed lines: distributions
reconstructed from data of Fig. 10.

results found with the model of Eq. (13) will be compared with a nonlinear model of collision
(Buezas et al., 2010) for two rubber discs. The latter approach is stated in a lagrangian reference
and within the elastic range. A finite elements algorithm was written for the governing system
of equations within FlexPDE software environment (PDE Solutions Inc., 2009). The main
statement of the finite deformations elastic model is outlined next.

Finite deformations elastic model: Equations of motion and constitutive law. Since the
problem is stated in the lagrangian , or material reference, only the following equation has to be
approximated,∇X ·P + ρ0b = ρ0A. P is the first Piola-Kirchhoff stress tensor, ρ0 = ρ(X, t0)
is the mass density of the initial configuration, A = V̇ = ∂V/∂t = ∂2x/∂t2 is the acceleration
field, b are the body forces and, x = x(X,t) is the spatial position vector. ∇X or ∇X · repre-
sents the gradient and the divergence with respect to the material coordinates X. Within this
frame, the boundary conditions are imposed on the initial boundary whose position is known by
hypothesis: x(∂V 1) = x̄, t0(∂V

2) = t̄0. t0 is the tension vector of Piola - Kirchhoff calculated
for the rule t0 = P ·N. Thus, the problem at the boundary, as well as the initial conditions and
the equations of motion, are fully stated. Once the differential problem is approximated, both,
the position of the boundary and the location of any part of the body, will be known for each
instant. The second Piola-Kirchhoff stress tensor may also be useful. As is known, it is sym-
metric and is given by P = FS where [F]ij = ∂xi/∂Xj is the deformation gradient tensor, xi
is the ith component of the current position vector (spatial description), Xj is the jth component
of the reference position vector (material description), X. Then, the equations of motion can be
rewritten as∇X ·(FS)+ρ0b = ρ0A. The relationship F · S =(det F) σ (F−1)T = P relates P,
S and σ (the Cauchy stress tensor—spatial description). Regarding the constitutive law, in this
work we will deal with elastic materials which satisfy S = g(E) were g is a certain tensorial
function, [E]ij =1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+ ∂uk
∂Xi

∂uk
∂Xj

)
is the lagrangian finite strain tensor (also known as

Green-St. Venant) and u = x(X,t)−X is the displacement vector. In particular, the following
constitutive law is proposed: S = λ tr(E)I + 2µE where λ and µ are constants. This law is
also known as St. Venant–Kirchhoff material model.

Contact model. As a first approach to the contact model, let us suppose that a deformable
body interacts with a rigid and fixed obstacle. The contact condition is that the deformable
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Figure 12: Scheme of the contact of a deformable body against a rigid contact.

body does not penetrate in the rigid obstacle. Let a body B occupy the domain Ω in a two- or
three-dimensional space (Fig. 12). The body boundary Γ = ΓF ∪ΓD∪ΓC is smooth enough and
is in contact with a rigid fixed body. Part ΓF of the boundary Γ corresponds to the boundary
region at which the stresses are prescribed (natural conditions). ΓD is the region where the
displacements are prescribed (geometric conditions) and ΓC , where there is contact with the
rigid body. There, the displacements v = xB −xR are the difference between the coordinate of
the point at the deformable body boundary and the corresponding one at the rigid boundary (see
Fig. 12). The Signorini problem (unilateral contact) is stated as vN ≤ 0; tcN ≤ 0; vN tcN = 0
(subscript N denotes the normal direction; vN is the normal component of v and tcN is the
contact force in the normal direction). Thus, there is no contact when vN ≤ 0 and tcN = 0
and there is contact when vN = 0 and tcN ≤ 0. These conditions constitute a non-continuous
or non-smooth problem since tcN is a multi-valuated application of the vN field (or simply, tcN
is not a function of vN ). An alternative to solve this problem is a regularization by replacing
the rigid condition by a smooth or regular one. The non-holonomic problem is replaced by
a problem without constrain. The boundary condition will be always natural, by imposing a
functional relationship between stresses and displacements. i.e. the problem is regularized by
means of the following function: tcN = −k (vN)m if vN > 0 or tcN = 0 if vN ≤ 0 where
k is a sufficiently large number in order to approximate the non-smooth problem and m is an
arbitrary constant (m = 1 for the linear approximation). After some studies, the value of k was
assumed as 100 times the numerical value of E. This problem can be extended to the contact
between two deformable bodies. When dealing with infinitesimal strains and displacements,
the contact problem is easily approximated by introducing a change of variable in the Signorini
problem which is now double. That is, when dealing with body B1, d(x1, x2) ≥ 0, tcN1 ≤ 0
and x1 tcN1 = 0. Regarding body B2, d(x2, x1) ≥ 0, tcN2 ≤ 0 and x2 tcN2 = 0. d(x1, x2) and
d(x2, x1) are both the distance between x1 (B1) and x2 (B2). When infinitesimal displacements
are assumed, then unit vectors satisfy N2 = −N1 and the pair of points x1 and x2 are known
before the problem is approximated, and are located on the normal to each surface. Instead,
if the displacements or strains are considered finite, there is no knowledge about which pair
of points will contact, neither about the corresponding normal unit vectors. In this case, the
minimum of the distances between all possible pair of points have to be evaluated as well as the
corresponding unit normal vectors.

Interaction force and time of contact. After solving the elasticity problem the fields are
known. If V0 is the non-deformed volume of the body, the acceleration of the center of mass
can be calculated as ACM = 1

V0

∫ ∫ ∫
A(X, t) dV0. The interaction force function then results

F(t) =
∫ ∫ ∫

A(X, t)ρ0 dV0.
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The time of contact is the time during which the interaction force is not null.

Two situations will be examined. First, the modulus of elasticity is assumed to be the only
random variable of the first model. Both small and large deformations will be considered and
the previsions of both models will be compared. Second, the modulus of elasticity and the
Poisson’s coefficient will be supposed random, hence two random variables are involved in the
second model.

The large deformation problem is approximated through the finite elasticity equations dis-
cretized via finite elements; details can be found in (Buezas et al., 2010).

5.1 One stochastic parameter. Small and large deformations.

Within the Hertz theory, the linear elastic model is not governed by a relationship as simpler
as the one corresponding to the spheres problem (Eq. (13)). According to Puttock and Thwaite
(1969), the equation that relates the interaction force and the interpenetration (total displacement
of the mass centers) is,

x =
F

a

(
1− ν2

πE

)[
1 + ln

(
8a3πE

(1− ν2)F r

)]
. (14)

The disc radius is r = 1, the mass density is ρ = 2500 and the thickness is 2a = 2. All
the values are measured in the S.I. units. Since it is very hard, if not impossible, to obtain
an explicit expression of the force by direct inversion, an implicit differential equation has to
be approximated to produce the inverse numerically. Additionally, no closed algebraic simple
solution exists for the time of contact as function of the impact speed analogous to Eq. (1) of the
spheres case. Consequently, Eq. (14) is approximated numerically. Two cases will be studied: a
linear case (small deformations, low impact speed) and a non-linear case (larger deformations,
higher impact speed). As before, a gamma PDF was derived for the variable E. A typical
mean value of the modulus of elasticity for rubbers will be employed: E = 5 109 Pa. The
Poisson coefficient is assumed deterministic with a value ν = 0.3. Equation 14 together with
the second Newton’s law permits the approximation of the problem by Monte Carlo simulation.
The distributions of the time of contact obtained from the propagation of the uncertainty in the
modulus of elasticity are shown in Fig. 13 for a value of impact speed of 10 m/s and a dispersion
σ = 109 Pa found with Monte Carlo simulations and 2000 realizations. Also, a convergence
study was carried out to determine the appropriate number of realizations and it is shown in
Fig. 14. It can be observed that with 2000 realizations a reasonable convergence of the results
is obtained.

Since the Hertz theory assumes small deformations, it is not valid when larger deformations
are involved. In this case, a finite deformation model is employed using the theory of Finite
Elasticity discretized by finite elements. Large deformations are obtained for an impact speed
of 100 m/s. Figure 15 includes the distributions of the modulus of elasticity and the time of
contact found with the small and large deformations theories, respectively. From them, it can
be observed that the propagation of the uncertainty to the time of contact is larger for the large
deformations case where the dispersion results to be στ = 1.94 10−7 while in the linear case the
result is στ = 1.52 10−7s. Figure 16 compares the distributions on the time of contact obtained
for the two cases, using the ksdensity MATLAB routine, as before. It can be seen that the higher
impact speed problem is not adequately modeled with the Hertz theory, as expected.
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Figure 13: Collision between two discs. Histograms found with Monte Carlo simulations and 2000 realizations.
Small deformation case. Left graph: modulus of elasticity; right graph: time of contact.

Figure 14: Collision between two discs. Convergence study of the standard deviation of the time of contact with
Monte Carlo simulations.
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Figure 15: Collision between two discs. Histograms found with Monte Carlo simulations and 2000 realizations.
Top graph: modulus of elasticity; lower left graph: time of contact for the small deformations example (v = 10
m/s) ; right graph: time of contact for the large deformation example (v = 100 m/s).
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Figure 16: Collision between two discs at v = 100 m/s. Reconstruction of the time of contact PDFs from the
numerical simulations using Monte Carlo method reconstructed from data of the lower graphs of Fig. 15. Full
line: result from the linear theory; dashed line: result from the finite deformation theory.
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Figure 17: Temporal variation of the contact force. Case 1. Modulus of elasticity E(gamma PDF) µE = 1 107 Pa.
σE = µE/5. Poisson’s ratio with uniform PDF. Some randomly chosen realizations (blue full lines), mean of the
realizations (dashed red) and the simulation of the mean problem (black full line).

5.2 Two stochastic parameters. Large deformations.

The collision of the two discs is now studied in the range of large deformations, solving the
Finite Elasticity problem via a finite element discretization. Two parameters are simultaneously
assumed stochastic: the modulus of elasticity and the Poisson’s ratio. As before, the PDF
distribution for the modulus of elasticity is derived from the application of the PME. Thus, and
under the restriction of positiveness, a gamma PDF is obtained. As is known, the Poisson’s
coefficient for the standard materials is bounded between 0 and 0.5. Then, if this is the only
information available on the stochastic variable, the application of the PME yields a uniform
PDF in that range. A numerical illustration is carried out assuming the collision of two discs
made of a soft rubber, of the same mass density ρ = 960 kg/m3. The number of realizations
was of 1250 for discs of radius r = 0.1 m, thickness a = 0.01 m that collide at v = 1 m/s.
The modulus of elasticity E and the Poisson’s ratio ν are assumed stochastic. The gamma PDF
for E is assumed with mean µE = 1 105 Pa and a uniform distribution for ν within the range
[0, 0.5], i.e. µν = 0.25. Of course, as already stated, in the finite elasticity approach one deals
with a continuum. In order to calculate the interaction force function, a mean acceleration ẍ is
first obtained and then all the forces integrated throughout the domain.

5.2.1 Two disc collision. Two stochastic parameters. Case 1

The collision is simulated for the problem described at the beginning of Subsection 5.2. Here
the dispersion of parameter E is assumed σE = µE/5.

Figure 17 shows the temporal variation of the interaction force (only a few realizations ran-
domly chosen from the total of 1250, are depicted). Also, the mean of the realizations (dashed
red) and the simulation of the mean problem (i.e. the problem approximated with the mean
values of the stochastic parameters) (black full line) are plotted. As expected, the two latter
curves do not coincide. Additionally, two green dashed lines found with µ ± σ, respectively.
It is observed that the lower green curve is not valid at the end of the studied interval since no
negative force is admissible. In this problem, adhesion was not considered and consequently,
traction negative forces are not possible. These µ ± σ curves make sense when dealing other
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Figure 18: Idem Fig.17. Probability density function of the interaction force at t = 0.0475s. Bimodal distribution.

types of PDF, like a Gauss distribution. Here, they represent arbitrary bounds. In Fig. 17 a
narrowing of curves region is observed around t = 0.0475 s, after the beginning of the impact.
If the PDF of the force is constructed for this particular instant, a particular phenomenon is
observed (Fig. 18). The PDF exhibits a bimodality. If a previous instant is observed, only one
mode is observed. The phenomenon can be best depicted in the evolution of the PDF plotted in
Fig. 19. The folding of the surface is evident after the interaction force reaches its maximum
value. Then, this qualitative change may be regarded as a stochastic bifurcation.

The autocorrelation function R(k) = E[(Xi − µ)(Xi−k − µ)]/σ2 is another interesting sta-
tistical measure whereE stands for the expected value and k is the considered time displacement
(sometimes named lag). Here, the interaction force is found at every pair of instants (ti,ti−k).
As is known, this function varies within the range [−1, 1] indicating the degree of linear depen-
dence, where 1 denotes a perfect correlation and −1, perfect anti-correlation. As it approaches
zero, the force is closer to uncorrelated. As the coefficient tends to −1 or 1, the stronger the
correlation between the stochastic variables. If the variables are independent, the coefficient
is 0, although the converse statement is not true. Figure 20 shows the autocorrelation of the
interaction force for Case 1. The blue and red regions depict the values −1 and 1 respectively.
Again, the region close to t = 0.0475 s exhibits a region of a narrow positive correlation. This
is related to the observed narrowing of the dispersion curves of Fig.17.

5.2.2 Two disc collision. Two stochastic parameters. Case 2

The same problem approximated as Case 1 is herein tackled assuming a standard deviation
value σE = 2µE/5 i.e. twice the dispersion value assumed in Case 1. All the other data
remain unchanged. Some of the realizations are shown in Fig. 21. As before, the mean of
the simulations and the simulation of the mean problem are also plotted. As the dispersion of
the modulus of elasticity is increased, the dispersion of the curved at the bottleneck close to
t = 0.0475 s is higher. This expected result yields a smoothing of the two peaks of the force
PDF as shown in Figs. 22 and 23. Compare with the previous case corresponding plots Figs.
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Figure 19: Idem Fig.17. Evolution of the probability density function of the interaction force.

Figure 20: Idem Fig.17. Autocorrelation coefficient. Blue color corresponds to the value−1 (fully anticorrelated).
Red color corresponds to the value 1 (fully correlated).
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Figure 21: Temporal variation of the interaction force. Case 2. Modulus of elasticityE(gamma PDF) µE = 1e7 Pa.
σE = µE/5. Poisson’s ratio with uniform PDF. Ten random realizations (blue full lines), mean of the realizations
(dashed red) and the simulation of the mean problem (black full line).

18 and 19. Also, as expected, the autocorrelation function (Fig. 24) exhibits a widening of the
bottleneck at t = 0.0475 s (Cf. with Fig. 20).

Although not shown herein, other cases with this and other geometries, show multimodal
PDF representing the interaction force. An observed trend is that for smaller dispersion, the
multimodality (bimodality in the present illustrations) becomes more evident.

6 FINAL COMMENTS

The study addressed the collision of two elastic bodies. First, the case of two spheres was an-
alyzed with the Hertz theory (small deformations) and using an analytic approach. One param-
eter involving material and geometric properties was assumed stochastic and the propagation
of the uncertainty was studied. The Principle of Maximum Entropy stated in 1948 by Shannon
is a means to select the most appropriate PDF for the stochastic parameter under the known
information. Also, the same problem was approximated via a stochastic solver using Monte
Carlo method. Then, probability density functions and confidence regions were obtained for
the time of contact and the interaction force function. An interesting comparison between the
numerical simulations and the analytical results was possible in this case. It is concluded that
the Monte Carlo method exhibits robustness. This method can always be applied since in fact, it
is the simulation of a real physical experiment. When the stochastic dimension of the problem
is one, i.e. there is only one stochastic parameter, it would be always possible to construct a
numerical functional relationship between the input and the output variables, and then apply the
change of variable technique shown at the beginning of this article. Having this tool, 10 to 50
runs would suffice to construct the derived PDF. Clearly, when we deal with larger stochastic
dimension problems (more stochastic variables), the change of variables would involve a Jaco-
bian transformation and the number of simulations would increase as powers of the dimension.
Here, the Monte Carlo method, or a similar one, would be advantageous. It should be noted
that the interaction force is derived from a non-linear differential equation. The second prob-
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Figure 22: Idem Fig.21. Probability density function of the interaction force at t = 0.0475 s.

Figure 23: Idem Fig.21. Evolution of the probability density function of the interaction force.
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Figure 24: Idem Fig.21. Autocorrelation coefficient. Blue region corresponds to the value−1 (fully anticorrelated).
Red region corresponds to the value 1 (fully correlated).

lem studied deals with the collision of two discs. Two situations were first addressed, low and
high impact speed and a rather soft material (rubber), assuming the modulus of elasticity E as
a statistical variable. In the first case, the linear Hertz theory is applicable since one supposes
small deformations. On the other hand, when the speed is higher, it is shown that it is nec-
essary to use a finite deformation scheme to solve the elastic collision problem. It should be
noted that when dealing with discs there is no explicit relationship between the time of con-
tact τ and impact speed, neither in the Hertz model nor in the finite elasticity solution. Hence,
the analytical approach is not feasible and a numerical procedure is the alternative. Later, the
uncertainty quantification was performed in the two discs collision problem by assuming two
stochastic parameters, the modulus of elasticity E and the Poisson’s ratio ν. A gamma PDF
was derived for E and a uniform PDF for ν. Additionally, the dispersion of E was taken with
two possible values. Several graphs allowed to observe some particular phenomenon around the
instant t = 0.0475 s. In certain cases, specially when the dispersion of the stochastic variables
assumes the smaller values, a qualitative change is present in the PDF distribution of the force.
In effect, in Case 1, a bimodal PDF is obtained at this instant, which is not present in the whole
interval. The temporal variation of the interaction force plots show that, after the maximum
value of the force is attained, there is a narrowing of the region where the statistical realizations
are located and this is reflected in the three-dimensional plot of the evolution of the force. This
effect is more evident with lower dispersion values of the stochastic parameters and the PDFs
undergo bifurcations exhibiting two modes at a particular instant. On the contrary, increasing
the dispersion appears to have an averaging effect on the PDFs.

The collision problem, when dealing with large deformations, is not symmetrical with re-
spect to time reversal. Since the bodies are bounded, at the instant of collision, compression
waves travel the bodies and once they reach boundaries they are reflected as elastic waves, these
reflections continue until the end of the collision. The reflected waves change the stress field
in the bodies and causes the non-symmetry. To explain the multimodality is more complex and
one possible explanation is in the reference (Pagnacco et al., 2011). The problems treated in
this paper are conservative and can not represent exactly a real collision, also only the simplest
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case of collision was treated, the frontal collision. The greatest uncertainty in the collision is
the type of collision, if frontal or not. If it is not frontal the situation is much more complex
as one can see in (Stronge, 2000; Cataldo and Sampaio, 2002). It is also important to remark
that rigid collision is completely different from elastic collision or from plastic collision. The
constitutive equation used for the rubber is not the best one but it simplifies the problem. Even
with all this assumptions, the problem is hard and one needs to solve a complex finite elasticity
problem to get the results.

At present, more cases involving large deformations and elastic bodies of arbitrary geometry
are being studied as well as the introduction of friction and dissipation. The hope is to construct
a deterministic theory of collision for large deformations that allows the construction of a good
stochastic model.
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