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Abstract. The nonlinear planar response of a cantilever rotating slender beam to a principal 
parametric resonance of its first bending mode is analyzed considering the effect of shear 
deformation. The equation of motion is obtained in the form of an integro-partial differential 
equation, taking into account mid-plane stretching, a rotation speed and modal damping. A 
composite linear elastic material is considered and the cross-section properties are assumed to 
be constant given the assumption of small strains. The beam is subjected to a harmonic 
transverse load in the presence of internal resonance. The internal resonance can be activated 
for a range of the beam rotating speed, where the second natural frequency is approximately 
three times the first natural frequency. The method of multiple scales method is used to derive 
four-first ordinary differential equations that govern the evolution of the amplitude and phase 
of the response. These equations are used to determine the steady state responses and their 
stability. Nonlinear normal modes are obtained for the two models, considering and 
neglecting the effect of shear deformation. The results of the analysis show that the 
equilibrium solutions are influenced by the transverse shear effect. When this effect is ignored 
the amplitude of vibration is reduced significantly, thus altering the dynamic response of the 
beam. This alteration can lead to an incorrect stability prediction of the periodic solutions.  
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1 INTRODUCTION 

Vibrations of rotating blades or beams have been a subject of constant research interest 
since they are applied in the design of helicopter blades, turbopropeller blades, wind-turbine 
blades and robotic arms. The most simplified representation of a rotating beam is a one-
dimensional Euler-Bernoulli model. A uniform rotating beam of doubly symmetric cross-
section is a special case (no torsional motion: i.e., out-of-plane (flapping) vibration and in-
plane (lead-lag) vibration are uncoupled). Owing to the stiffening effect of the centrifugal 
tension, one can expect the natural frequencies to increase with an increase in the speed of 
rotation. In several publications a cantilever beam under rotating speed has been considered 
and approximate methods such as Rayleigh-Ritz, Galerkin, finite element methods, etc., has 
been used to derive natural frequencies (Schilhansl, 1958; Wang et al. 1976; Leissa, 1981; 
Hodges and Rutkowski, 1981). However, the nonlinear dynamic analysis of rotating beam is 
rather rare in the literature (Pesheck et al. 2002a, b; Apiwattanalunggarn et al. 2003; Turhan 
and Bulut, 2009). Systematic procedures have been developed to obtain reduced-order models 
(ROMs) via nonlinear normal modes (NNMs) that are based on invariant manifolds in the 
state space of nonlinear systems (Shaw and Pierre 1993, 1994; Shaw et al., 1999). These 
procedures initially used asymptotic series to approximate the geometry of the invariant 
manifold and have been used to study the nonlinear rotating Euler–Bernoulli beam (Pesheck 
et al., 2002a). Pesheck et al. (2002b) employed a numerically-based Galerkin approach to 
obtain the geometry of the NNM invariant manifolds out to large amplitudes. These 
procedures can be applied to more general nonlinearities over wider amplitude ranges, and 
have been applied to study the vibrations of a rotating Euler–Bernoulli beam (Pesheck et al., 
2001). Apiwattanalunggarn et al. (2003) presented a nonlinear one-dimensional finite-element 
model representing the axial and transverse motions of a cantilevered rotating beam, which is 
reduced to a single nonlinear normal mode using invariant manifold techniques. They used 
their approach to study the dynamic characteristics of the finite element model over a wide 
range of vibration amplitudes. As it can be noted, the interest of most of works about 
nonlinear dynamic of rotating beams are focus on the reduced-order model as the invariant 
manifold solution. Turhan and Bulut (2009) investigated the in plane nonlinear vibrations of a 
rotating beam via single- and two-degree-of-freedom models obtained through Galerkin 
discretization. They performed a perturbation analyses on single- and two-degree-of-freedom 
models to obtain amplitude dependent natural frequencies and frequency responses. In the last 
four references, the computational cost associated with generating the manifold solution and 
the efficiency of the resultant model was mainly analyzed. 

On the other hand, the effect of shear flexibility in the case of composite materials is a 
phenomenon very important and crucial in some beam models. For example, it has been 
demonstrated the significance of this effect in linear and nonlinear static analysis (Sapkás and 
Kollár, 2002; Machado and Cortínez, 2005a,b; Sapountzakis and Mokos, 2008; Machado, 
2010) and in linear dynamic cases (Machado et al., 2007; Machado and Cortínez, 2009). The 
objective of this paper is to analyze the influence of the shear deformation effect on the 
nonlinear dynamic response of a composite rotating beam. In particular, the case of internal 
resonance of a cantilever rotating beam subjected to a harmonic transverse load is explored. 
The modal interaction represents an interesting nonlinear dynamical problem to determine the 
influence of shear deformation on the numerical results.   

Therefore the nonlinear planar vibration of a rotating cantilever beam with harmonic 
transverse load in the presence of internal resonance is analyzed. The model is based on one-
dimensional formulation where the geometric cubic nonlinear terms are included in the 
equation of motion due to midline stretching of the beam. The linear frequencies of the 
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system are dependent on the rotation speed and this effect is used to activate the internal 
resonance. For a particular rotation speed the second natural frequency is approximately three 
times the first natural frequency and hence the first and second modes may interact due to a 
three-one internal resonance. Principal parametric resonance of first mode considering 
internal resonance is analyzed here. Principal parametric resonance of second mode in 
presence of 3:1 internal resonance is not considered here due to lack of space and is studied in 
another paper. For a comprehensive review of nonlinear modal interactions, we refer the 
reader to Nayfeh and Mook (1979), Nayfeh and Balachandran (1989), and Nayfeh (1996). 

The method of multiple scales (MMS) is used to attack directly the governing nonlinear 
partial differential equation of motion of the beam and reduced the problem to sets of first-
order nonlinear modulation equations in terms of the complex modes of the beam. These 
modulation equations are numerically analyzed for stability and bifurcations of trivial and 
nontrivial solutions. Bifurcation diagrams representing system responses with variation of 
parameters like amplitude and frequency of the lateral excitation load, frequency detuning of 
internal resonances and damping are computed with the help of a continuation algorithm 
(Nayfeh and Balachandran, 1995). The trivial state stability plots are presented. The effect of 
shear deformation is illustrated on the frequency response curves. The analysis is 
supplemented by considering the variation of the beam lengths, rotation speed, load 
amplitude, modal damping and internal resonance parameter.  

2 NON-LINEAR EQUATIONS OF MOTION 

We consider the dynamic response of a rotating box beam subjected to harmonic 
transverse loads (see Figure 1). The origin of the beam coordinate system (x, y, z) is located at 
the blade root at an offset R0 from the rotation axis fixed in space. R0 denotes the radius of the 
hub (considered to be rigid) in which the blade or beam is mounted and which rotates about 
its polar axis through the origin 0. We assume that the motion is planar and the laminate 
stacking sequence is assumed to be symmetric and balanced (Barbero, 1999). A doubly 
symmetric cross-section box-beam is used and so out-of-plane (flapping) and in-plane (lead-
lag) vibration are uncoupled. Considering rotary inertia and the transverse shear, the non-
linear equations of motion of a rotating beam yields (Machado et al. 2007; Librescu, 2006):  

( ) 2 2
0

1A u EA u v A R x u 0
2

ρ ρ
′⎛ ⎞′ ′− + − + + Ω =⎜ ⎟

⎝ ⎠
,                                           (1) 

( ) ( )  cos( )y zA v GS v N v F tρ θ ϖ′ ′′ ′− − − = ,                                                   (2) 

( ) Z z Z z y zI EI GS v 0ρ θ θ θ′′ ′− − − = ,                                                                (3) 

where Ω is the beam rotation speed, ρA is the mass per unit length. EA, EIz and GSy are the 
axial, flexural and shear rigidity, ϖ is the excitation frequency, F describes the applied 
transverse harmonic load and N is the axial beam force. The axial and transverse 
displacements are denoted as u and v, respectively; while θz is the angle of rotation due to 
bending. Overdots indicate differentiation with respect to time and primes with respect to the 
axial co-ordinate. 
If the inertial effects along the longitudinal direction are neglected and considering the radius 
of the hub R0 = 0, by the direct integration the Eq. (1) in conjunction with the boundary 
condition of zero axial load at the free and then substituting the axial beam force expression 
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and making some arrangements on Eq. (2), the motion equations are:  

( )    cos( )
2 2 L

2 2 2
y z

0

L x EAA v GS v A x v A v v v dx F t
6 2 2L

ρ θ ρ ρ ϖ
⎛ ⎞

′′ ′ ′ ′′ ′′ ′− − + Ω − Ω − − =⎜ ⎟
⎝ ⎠ ∫ ,     (4) 

( ) Z z Z z y zI EI GS v 0ρ θ θ θ′′ ′− − − = ,                                                                                    (5) 

To eliminate the spatial dependence we introduce an approximation in Eq. (4) considering the 
average value of the axial and centrifugal force along the beam. Finally, introducing a 
nondimensional quantity for x* = x/L and dropping the asterisk the expressions can be 
conveniently rewritten as 

 dx cos( )
1

2
1 2 z

0
v v v v v v f tα α θ λ χ γ ϖ′′′ ′ ′′ ′′ ′+ + + − − =∫ ,                             (6) 

 z 3 z 4 5 zv 0θ α θ α α θ′′ ′+ − + = .                                                                      (7) 

On the other hand, the cantilever boundary conditions demand that 

    and       at ,

  and      at ,

z

z

v 0 0 x 0

v 0 0 x 1

θ

θ

= = =

′′′′ = = =
                                                         (8) 

where 

,   ,  ,  ,   ,
   

 = ,  = ,   = ,     .

y y y yz
1 2 3 4 52 2

z z z
2 2

4

GS GS GS GSEI
A L A L I L I L I

EA Ff
6 2 AL 2 A

α α α α α
ρ ρ ρ ρ ρ

χ γ λ
ρ ρ

= − = = − = =

Ω Ω
=

                       (9) 

X

Z
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h
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Figure 1. A schematic description of the rotating box beam. 

3 METHOD OF ANALISIS 

The present system of rotating cantilever beam is analyzed in the form of a first-order 
uniform expansion through the MMS applied directly to the partial differential Eqs. (6-7) and 
the associated boundary conditions Eq. (8). The direct perturbation technique has been used 
considering its advantage over the discretization perturbation technique (Nayfeh el al. 1992; 
Nayfeh, 1996). Though the direct perturbation method and the discretization-perturbation 
method, both for linear and nonlinear systems, yield identical results for infinite modes, the 
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former gives better results for finite mode truncation if a higher order perturbation scheme 
were used. In such a case, employing the direct perturbation method would be more 
straightforward, even though the algebra might be more involved. 

We seek an approximate solution to this weakly nonlinear distributed parameter system in 
the form of a first-order uniform expansion and introduce the time scale Tn = εnt, n = 0,1,2,... 
The time derivatives are 

...,   ..., ,     0,1,2,....
2

2
0 1 0 0 1 n2

n

d dD D D 2 D D D n
dt dt T

ε ε ∂
= + + = + + = =

∂
              (10) 

A small parameter ε is introduced by ordering the linear damping and load amplitude as 
, f fμ εμ ε= = . Moreover, the displacement v(x,t) and the measure of the rotation θz (x,t) are 

expanded as: 

( ) ( ) ( ), , , , , ...1 0 1 2 0 1v x t v T T x v T T xε= + +                                         (11) 

( ) ( ) ( ), , , , , ...z 1 0 1 2 0 1x t T T x T T xθ θ ε θ= + +                                         (12) 

Substituting Eqs. (10-12) into Eqs. (6-8) and equating coefficients of like powers of ε on both 
sides, we obtain 

 
Order ε0 : 

    
 

2
0 1 1 1 2 1 1 1

2
0 1 3 1 4 1 5 1

D v v v v 0

D v 0

α α θ χ λ

θ α θ α α θ

⎧ ′′ ′ ′′ ′+ + − + =⎪
⎨

′′ ′+ − + =⎪⎩
                                                                           (13) 

 
Order ε1 :              

 

dx cos( )
1

2 iv 2
0 2 1 2 2 1 2 2 0 1 1 v 0 1 1 1

0

2
0 2 3 2 4 2 5 2 0 1 1 0 1

D v v v v 2D D v 2 D v v v f t

D v 2D D 2 Dθ

α α θ χ λ μ γ ϖ

θ α θ α α θ θ μ θ

⎧ ′ ′′ ′ ′′ ′+ + − + = − − − +⎪
⎨
⎪ ′′ ′+ − + = − −⎩

∫
  (14) 

The solution to the first-order perturbation Eq. (13) can be expressed as   
i( , , ) ( ) ( ) ,  m 0T

1 0 1 m m 1
m 1

v T T x x A T e ccωϑ
∞

=

= +∑                                         (15) 

i( , , ) ( ) ( ) ,  m 0T
1 0 1 m m 1

m 1

T T x x A T e ccωθ φ
∞

=

= +∑                                         (16) 

where φm(x) and ϑm(x) are the mode shapes, ωm are the natural frequencies and cc stands for 
complex conjugate.  
Substitution of Eqs. (15) and (16) into the set of Eq. (13) leads to the following expressions 
(omitting the notation of x dependence) 

    2
m m 1 m 2 m m m 0ω ϑ α ϑ α φ χϑ λϑ′′ ′ ′′ ′− + + − + = ,                                                                   (17) 

2
m m 3 m 4 m 5 m 0ω φ α φ α ϑ α φ′′ ′− + − + = .                                                                   (18) 
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Sorting out θm and vm from Eqs. (17) and (18), respectively; the results are derived and 
replaced into the Eqs. (18) and (17) to decoupling both equations. Therefore, the following 
equations are obtained: 

iv
1 m 2 m 3 m 4 m 5 m

iv
1 m 2 m 3 m 4 m 5 m

0

0

β ϑ β ϑ β ϑ β ϑ β ϑ

β φ β φ β φ β φ β φ

′′′ ′′ ′+ + + + =

′′′ ′′ ′+ + + + =
 ,                                (19) 

where  

( ) ( )
( ) ( )

,   ,   ,

,    .

2
1 3 1 2 3 3 5 2 4 1 5 1 3

2 2 2
4 5 5 5

β α χ α β α λ β α χ α α α α ω α α χ

β λ ω α β ω α ω

= − = − = − − + + −

= − = −
           (20) 

Solving the set of Eq. (19) along with the specified cantilever boundary conditions, the mode 
shapes are obtained. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) 1 4 1 3 2 41 2

2 3 3 4 3 22 1

3 1 4 3 4 2

i x i x i xi x2 2 2 2
m 2 3 1 2 4 1 3 4 1 1 3 2

i x i x i xi x2 2 2 2
1 4 2 3 4 2 1 2 3 1 4 3

i x i x i x i2 2 2
2 4 3 1 2 4 1 3 4

x e h h e h h e h h e h h

e h h e h h e h h e h h

e h h e h h e h h e

λ λ λ λ λ λλ λ

λ λ λ λ λ λλ λ

λ λ λ λ λ λ λ

ϑ λ λ λ λ

λ λ λ λ

λ λ λ

+ + ++

+ + ++

+ + +

⎡= − − + − − − + −⎣

− − + − − − + − −

− − + − − − + ( ) ( )

( ) ( ) ( )

4 1

3 42

x 2
2 3 4

i ii 2 2 2
3 4 2 2 4 3 2 3 4

h h

e h h e h h e h h

λ

λ λλ

λ

λ λ λ

+ ⎤− ⎦
⎡ ⎤− − − + −⎣ ⎦

   (21) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) 1 3 1 4 2 31 2

2 4 3 22 1

3 1 3 4 4 2

i x i x i xi x2 2 2
m 3 2 4 1 2 3 4 1 4 2 3 1

i x i xi x2 2 2 2
3 1 4 2 1 3 4 3 4 1 3 2 2 1 2 3

i x i x i x i2 2 2
1 2 4 3 4 1 2 3 2 1 3 4

x e h h h e h h h e h h h e

h h h e h h h e h h h e h h h

e h h h e h h h e h h h e

λ λ λ λ λ λλ λ

λ λ λ λλ λ

λ λ λ λ λ λ

φ λ λ λ

λ λ λ λ

λ λ λ

+ + ++

+ ++

+ + +

⎡= − − − − − −⎣

− + − + − + −

− − − − − − + ( )

( ) ( ) ( ) ( ) ( ) ( )

4 1

4 3 3 42

x
1

i x i ii2 2 2 2 2
2 3 4 3 1 2 4 3 4 2 2 4 3 2 3 4

h

h h e h h h e h h e h h e h h

λ λ

λ λ λ λλλ λ λ λ λ

+

+ ⎤ ⎡ ⎤− + − − − − + −⎣ ⎦⎦

   

(22) 

where λi are the eigenvalues which satisfy the relation 
4 3 2

1 i 2 i 3 i 4 i 5i i 0β λ β λ β λ β λ β− − + + = ,            i = 1,2,3,4                                   (23) 

and hj are the coefficients that relate the solution of Eq. (19)  

( )  2 2 2
j j 1 j j

2 j

ih i λ λ α λ χλ ω
α λ

= − + − + ,          j = 1,2,3,4.                                 (24) 

Finally, the characteristic equation is 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) .

2 3 1 4 1 3 2 4

3 41 2

i i i i2 2 2 2 2 2 2 2
2 3 1 4 2 3 1 4 1 3 2 4 1 3 2 4

ii 2 2 2 2
1 2 3 4 1 2 3 4

h h h h e e h h h h e e

h h h h e e 0

λ λ λ λ λ λ λ λ

λ λλ λ

λ λ λ λ λ λ λ λ

λ λ λ λ

+ + + +

++

− − + + − − − −

+ − − + =
 

                   (25) 

The linear natural frequencies of the cantilever beam vary with the rotation speed for different 
modes for variation of parameters like flexural stiffness and beam mass. For specific 
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combinations of system parameters, the lower natural frequencies can be commensurable, 
leading to internal resonance in the system and nonlinear interaction between the associated 
modes. We analyze the specific case of two mode interaction corresponding to particular 
system parameters. A three-to-one internal resonance ω2 ≅ 3ω1  is considered for a range of 
rotation beam speed. Since none of these first two modes is in internal resonance with any 
other mode of the beam, all other modes except the directly or indirectly excited first or 
second mode decay with time due to the presence of damping and the first two modes will 
contribute to the long term system response (Nayfeh, 1996). Hence we can replace Eqs. (15) 
and (16) by 

( ) ( ) ( ) ( ) ( ), , ,1 0 2 0i T i T
1 0 1 1 1 1 2 1 2v T T x A T x e A T x e ccω ωϑ ϑ= + +                         (26) 

( ) ( ) ( ) ( ) ( ), , ,1 0 2 0i T i T
1 0 1 1 1 1 2 1 2T T x A T x e A T x e ccω ωθ φ φ= + +                         (27) 

where cc stands for the complex conjugate of the preceding terms and Ai are the unknown 
complex-valued functions. In order to investigate the system response under internal and 
external resonance conditions, two detuning parameters σi are introduced: 

3 ,    .2 1 1 1 2ω ω ε σ ϖ ω ε σ= + = +                                                 (28) 

Substituting Eqs. (26-27) and (28) into the set of Eq. (14),  

        

( ) ( ) ( )

( )

( ) ( ) ( )

3

3

, ,

 ,

, , ,

1 0 1 11 0

1 0 1 2

1 0 1 11 0

i T Ti T2 iv
0 2 1 2 2 1 2 2 1 1 2 1

i T T

i T Ti T2
0 2 3 2 4 2 5 2 3 1 4 1

D v v v v T x e T x e
1 f e cc NST
2

D v T x e T x e cc NST

ω σω

ω σ

ω σω

α α θ χ λ

θ α θ α α θ

+

+

+

⎧ ′ ′′ ′+ + − + = Γ + Γ
⎪
⎪ + + +⎨
⎪
⎪ ′′ ′+ − + = Γ + Γ + +⎩

  (29)  

where the terms Γm are defined in Appendix. NST stands for terms that do not produce secular 
or small divisor terms. As the homogeneous part of Eq. (29) with its associated boundary 
conditions has a nontrivial solution, the corresponding nonhomogeneous problem has a 
solution only if a solvability condition is satisfied (Nayfeh and Mook, 1979). This requires the 
right-hand side of Eq. (29) to be orthogonal to every solution of the adjoint homogeneous 
problem, which leads to the following complex variable modulation equations for the 
amplitude and phase 

( ) ( ) 12 8 8 0,
2

1 1 2 1i T i T2
1 1 1 1 11 1 1 12 2 2 1 2 1 1i A A A A A A A A A e f eσ σμ γ γ δ′ + + + + − =                 (30)     

( ) ( )2 8 8 0,1 1i T3
2 2 2 2 21 1 1 22 2 2 2 1i A A A A A A A A e σμ γ γ δ −′ + + + + =                           (31)     

where prime denotes differentiation with respect to the slow time T1 and μm, γm, δm and f1 are 
defined in Appendix. Overbar indicates complex conjugate. The terms in the above equations 
involving the internal frequency detuning parameter σ1 are the contributions of internal 
resonance in the system. 
Introducing a Cartesian coordinates Eq. (32), the following amplitude and phase Eqs. (33-36) 
are finally obtained: 

( ) ( ) i1             , .
2

k 1T
k k 1 k 1A p T iq T e k 1 2ν= − =⎡ ⎤⎣ ⎦                                    (32) 
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( ) ( ) ( ) ,2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 12 1 2 2 1 1 1 2 2 1 1p p q q p q q p q 2 p q p q p qμ ν γ γ δ ⎡ ⎤′ = − − + + + + − − +⎣ ⎦           (33) 

( ) ( ) ( ) 12 ,
2

2 2 2 2 2 2
1 1 1 1 1 11 1 1 1 12 1 2 2 1 1 1 2 2 1 1 1q q p p p q p p q p q q p p q fμ ν γ γ δ ⎡ ⎤′ = − + − + − + − + − +⎣ ⎦  

 (34)                             

( ) ( ) ( ) ,2 2 2 2 2 2
2 2 2 2 2 21 2 1 1 22 2 2 2 2 1 1 1p p q q p q q p q q 3 p qμ ν γ γ δ′ = − − + + + + + −                               (35) 

( ) ( ) ( ) ,2 2 2 2 2 2
2 2 2 2 2 21 2 1 1 22 2 2 2 2 1 1 1q q p p p q p p q p 3q pμ ν γ γ δ′ = − + − + − + + −                             (36) 

where  

,         31 2 2 2 1ν σ ν σ σ= = −                                                                       (37) 

and the prime indicates the derivative with respect to T1. 
 

4 EULER-BERNOULLI BEAM MODEL 

The purpose of this section is to present the unshearable beam model used to compare the 
nonlinear dynamic results obtained with the present model. Neglecting rotary inertia and the 
transverse shear, the non-linear equations of motion of a rotating beam yields (Machado and 
Saravia, 2010): 

  dx cos( )
2 2L

iv 2 2 2

0

EA A LA v EI v v x v A v x F t
2L 2 3

ρρ ρ ϖ
⎡ ⎤⎛ ⎞Ω′ ′′ ′+ − + − + Ω =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦∫ .        (38) 

Introducing a nondimensional quantity for x* = x / L, substituting this relationship in Eq. (38) 
with the corresponding boundary conditions, adding damping μ, and dropping the asterisk the 
expressions can be conveniently rewritten as: 

    and    at 
dx cos( ),     

  and    at 

1
iv 2

0

v 0 v 0 x 0
v v 2 v v v v v f t BC

v 0 v 0 x 1
α μ χ γ λ ϖ

′= = =⎧′′ ′′ ′ ′+ + − − + = ⎨ ′′ ′′′= = =⎩∫ .   (39) 

Following the same methodology of MMS, as described in the previous section 3, we arrive 
to the same modulation equations Eqs. (33-36). The main difference between both models 
(with and without shear deformation effect), is in the eigenvalues and modes used to obtain 
the coefficients that govern the modulation equations. In this case the unshearable mode 
shapes ϑm(x) of the rotating cantilever beam is:  

{( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

4 m 3m 2 m 1m 4 m

2 m 3m 1m 4 m

1m 3m 2 m 4 m

x x 2 2 2
m 2m 1m 4m 1m 2m 4m 4m 1m 2m

x 2 2 2
3m 1m 4m 1m 3m 4m 4m 1m 3m

x 2 2 2
3m 2m 4m 2m 3m 4m 4m 2m 3m

x e e e e e
e e e e
e e e e

β β β β β

β β β β

β β β β

ϑ β β β β β β β β β

β β β β β β β β β

β β β β β β β β β

⎡ ⎤= + − − + − + −⎣ ⎦
⎡ ⎤+ − − − − −⎣ ⎦
⎡+ − − + − + −⎣ }

( ) ( ) ( ) .

2 m

1m 3m

2
2m

2 2
1m 3m 1m 2m 3m 3m 1m 2m

e
e e

β

β β

β

β β β β β β β β

⎤ ⎡−⎦ ⎣
⎤− + − + − ⎦

 (40) 

where βim are the eigenvalues which satisfy the relation 
4 2 2
im im im m 0αβ χβ λβ ω− + − = ,            i = 1,2,3,4                                   (41) 

and the characteristic equation is: 
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5 RESULTS AND DISCUSSION 

For the analysis of the rotating beam subjected to principal parametric resonance of the 
first mode (i.e., ϖ ≅ ω1) in presence of 3:1 internal resonance, system parameters are taken as 
mentioned earlier corresponding to the commensurable natural frequencies of the first and 
second mode of the system. The second natural frequency and three times the first natural 
frequency are plotted as functions of Ω in Figure 2. As it can be observed, the internal 
resonance is perfectly tuned when Ω is 529 rpm. The beam geometrical characteristics used 
are: L = 15 m, h = 0.3 m, b = 0.7 m, e = 0.05 m. The analyzed material is graphite-epoxy 
whose properties are E1 = 144 GPa, E2 = 9.65 GPa, G12 = 4.14 GPa, G13=4.14 GPa, G23 = 3.45 
GPa, ν12 = 0.3, ν13  =  0.3, ν23 = 0.5, for a sequence of lamination {0/0/0/0}.  

The influence of shear deformation is analyzed for the natural frequencies in function of 
the rotation speed. When the shear effect is neglected (see Fig. 2b), ω2 is larger in comparison 
with its inclusion (see Fig. 2a) and the internal resonance is tuned for a larger rotation speed 
of about 810 rpm. It can be noticed that in this case the first frequency ω1 is very similar in 
both models due to the beam slenderness (h/L = 0.02). However, the second frequency 
obtained without shear effect disagrees with the present model in about 32%, for the non-
rotating beam condition.     
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Figure 2. Variations of three times the first ω1 and second ω2 natural frequencies with the rotation speed Ω. (a) 

with and (b) without shear deformation effect.  

The equilibrium solutions of Eqs. (33-36) correspond to periodic motions of the beam. 
Steady-state solutions are determined by zeroing pi´= qi´= 0 the right-hand members of the 
modulation Eqs. (33-36) and solving the non-linear system. Stability analysis is then 
performed by analyzing the eigenvalues of the Jacobian matrix of the non-linear equations 
calculated at the fixed points. The frequency-response curves are shown in Figure 3, for an 
internal and external resonance condition and considering two forcing amplitude values f = 
0.05 and 0.025. The modal amplitude ai curves are obtained in function of the external 
detuning parameter σ2. In this case, modal damping di = 0.05 and internal detuning parameter 
σ1= 0.04. The amplitudes a1 and a2 are obtained by means of the following expression: 
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The corresponding nonlinear interaction coefficients defined in Eqs. (30) and (31), are 
presented in Table 1. The coefficients correspond to a specific value of the rotating speed Ω = 
326.82 rpm for which ω1 = 10.67 Hz and ω2 = 32 Hz in the case of the present model and ω1 
= 10.82 Hz and ω2 = 42.3 Hz when shear effect in neglected. 

 
Table 1. Coefficients of the modulation equations, Eqs. (30 and 31) for L= 15 m and Ω = 326.82 rpm. 

Model γ11 γ12 γ21 γ22 δ1 δ2 
With shear 30.9 910.5 -112.1 -669.5 -146.7 6.4 
Without shear 26.5 842.3 -87.5 -599.2 -136.5 4.5 

 
The response curve corresponding to the first amplitude shows a noticeable hardening-

spring type behavior for both forcing amplitude (Figure 3a and 3c). The amplitude of the 
indirectly excited second mode is smaller in comparison with the first mode (Figure 3b and 
3d). In the Figures, solid (dotted) lines denote stable (unstable) equilibrium solutions and thin 
solid lines denote unstable foci. 
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Figure 3. Frequency-response curves for first and second modes, when σ1 = 0.04, Ω = 326.82 rpm and di = 0.05. 
Considering the forcing amplitude (a-b) f = 0.05 and (c-d) f = 0.025. Solid (dotted) lines denote stable (unstable) 

equilibrium solutions and thin solid lines denote unstable foci. Black (red) curves correspond to a shear 
(unsheareable) model. 

The response curves exhibit an interesting behavior due to saddle-node bifurcations (where 
one of the corresponding eigenvalues crosses the imaginary axis along the real axis from the 
left- to the right-half plane) and Hopf bifurcations (where one pair of complex conjugate 
eigenvalues crosses the imaginary axis transversely from the left to the right-half plane). As 
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σ2 increases from a small value, the solution increases in amplitude and loses stability via a 
Hopf bifurcation at H1 and regains its stability via a saddle-node bifurcation at SN2. The jump 
effect takes place beyond the saddle-node bifurcations SN3. An exchange-energy between 
both modes is observed in the region of the unstable foci solution where the amplitude of the 
first mode decreases while the second mode amplitude increases considerably.  
The effect of the forcing amplitude is clearly proportional in the first mode, where the 
maximum amplitude decreases to its half value when f decreases to 0.025. However, in the 
second mode the larger amplitude corresponds to the first peak when  f decreases to 0.025. It 
is due that the second mode does not depend directly on the forcing force but of the internal 
resonance effect (interaction modes). 
The amplitude response obtained disregarding the shear effect is shown in red color curves. It 
can be observed that the dynamic behavior is similar to that obtained with the present model. 
In the first mode (Fig. 3a and c), the response reaches the same maximum amplitude value but 
predicts an earlier jump effect in comparison with the black curve. Contrary, in the second 
mode the red curves do not reach to the maximum amplitude obtained when the shear effect is 
considered (black curve). In this case the unstable region predicted for the unshearable model 
is smaller in comparison with the present model. It is due because to, in spite of the beam 
slenderness, the second frequency presents a difference of about 32% between both models. 

In the second example the beam length is reduced to L = 10m, so the natural frequencies 
increased as also the rotating speed for the internal resonance condition. The corresponding 
nonlinear interaction coefficients are presented in Table 2. The coefficients correspond to a 
specific value of the rotating speed Ω = 861.9 rpm for which ω1 = 18.95 Hz and ω2 = 52.85 
Hz in the case of the present model and ω1 = 20.3 Hz and ω2 = 94.1 Hz when the shear effect 
in neglected. 

 
Table 2. Coefficients of the modulation equations, Eqs. (30 and 31) for L= 10 m and Ω = 861.9 rpm. 

Model γ11 γ12 γ21 γ22 δ1 δ2 
With shear 30.9 910.5 -112.1 -669.5 -146.7 6.4 
Without shear 26.5 842.3 -87.5 -599.2 -136.5 4.5 

 
The frequency-response curves presented in Figures 4 are similar to the previous case (see 
Figures 3 c and d). However, in this case the bending of the amplitude curves is larger in 
comparison with the longer beam (hardening-spring type). It is well known that the effect of 
shear deformation in more noticeable when the beam length decreases. In this case the beam 
slenderness is h/L = 0.03 and the difference between both models in the second frequency ω2 
is about 78%. 
The jump effect for large values of the detuning parameter σ1 is characterized by the great 
amplitude reached previously to the saddle-node bifurcation SN3. It can be observed from the 
figures that this amplitude is smaller when the shear effect is neglected. The difference is 
about the 17% in the SN3 values obtained by means of both models. In the previous example 
this discrepancy has been of about the 14%.  
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Figure 4. Frequency-response curves for first and second modes, when  f = 0.025, σ1 = 0.04, Ω = 861.9 rpm and 
di = 0.05. Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable 

foci. Black (red) considering (disregarding) shear effect. 

In this last example the beam length is reduced to L = 5m and the corresponding nonlinear 
interaction coefficients are presented in Table 3. The coefficients correspond to a specific 
value of the rotating speed Ω = 1040 rpm for which ω1 = 41.8 Hz and ω2 = 125.3 Hz in the 
case of the present model and ω1 = 61.1 Hz and ω2 = 369 Hz when the shear effect in 
neglected. 

 

Table 3. Coefficients of the modulation equations, Eqs. (30 and 31) for L= 5 m and Ω = 1040 rpm. 

Model γ11 γ12 γ21 γ22 δ1 δ2 
With shear 433.9 10794.6 -1929.6 -12285.0 -2096.0 99.7 
Without shear 325.8 10923.1 -801.1 -5775.5 -1822.5 39.1 

 

The frequency-response curves presented in Figures 5 are computed with a damping modal 
value of di = 0.1. The effect of shear deformation is larger in comparison with the previous 
examples. The slenderness ratio is h/L = 0.06 and there is a difference between both models 
of about 46% for the first frequency ω2 and 200% in the second frequency ω2. Following the 
same comparison as in the previous examples, in this case the saddle-node bifurcation SN3 
computed disregarding the shear effect is located a 23% lower value than the obtained with 
the present model. 
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Figure 5. Frequency-response curves for first and second modes, when  f = 0.025, σ1 = 0.04, Ω = 1040 rpm and 
di = 0.1. Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote unstable 

foci. Black (red) considering (disregarding) shear effect. 

The influence of the internal detuning parameter σ1 is analyzed in Figure 6, where the effect 
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of shear deformation is also illustrated. The frequency-response curves are computed with the 
same damping modal value of the previous example, but the internal detuning parameter is far 
away from the perfect resonance condition σ1 = 4. It can be observed that the curves are 
similar to the previous Figures, however, for large values of σ2 appear another unstable foci 
solution bounded for two Hopf bifurcation at σ2 = 0.89 (H2) and σ2 = 1.087 (H3). The size of 
this new unstable solution is smaller for the case of disregard the shear effect (red curve). This 
last behavior can be easily observed in the right little frame showed in the Figure 6a. The 
response of the second mode seems to be similar to the previous examples, but the 
multiplicity of the solutions between 0 > σ2 > 1 becomes its dynamic behavior more 
complicated, depending mainly of the initial conditions. Finally, the amplitude peak of the 
second mode is noticeably larger when σ1 = 4 in comparison with the previous case (see 
Figure 5b), while the bifurcation value SN3 is exactly identical in both examples. 
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  Figure 6. Frequency-response curves for (a) first and (b) second modes, when  f = 0.025, σ1 = 4, Ω = 1040 rpm 

and di = 0.1. Solid (dotted) lines denote stable (unstable) equilibrium solutions and thin solid lines denote 
unstable foci. Black (red) considering (disregarding) shear effect. 
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6 CONCLUSIONS 

The nonlinear planar response of a cantilever rotating box beam to a principal parametric 
resonance of its first flexural mode is investigated. The beam is subjected to a harmonic 
transverse load in the presence of internal resonance. The internal resonance can be activated 
for a range of the beam rotating speed, where the second natural frequency is approximately 
three times the first natural frequency. Geometric cubic nonlinear terms are included in the 
equation of motion due to midline stretching of the beam. The material is considered to be 
linear elastic and the cross-section properties are assumed to be constant given the assumption 
of small strains. 

Nonlinear normal modes are computed by applying the method of multiple scales directly 
to the governing integral-partial-differential equation and associated boundary conditions. 
Two sets of four first-order nonlinear ordinary-differential equations describing the 
modulation of the amplitudes and phases of the first two modes are derived. 

The resonant behavior is illustrated by frequency-response curves for a sequence of 
lamination of {0/0/0/0}. The influence of the shear deformation effect is shown in the curves 
considering different rotation speed, damping, detuning parameters, force amplitudes and 
beam lengths. 

Numerical results show that the frequency-response curves exhibit a hardening type 
behavior. The analysis presented demonstrates that the equilibrium solutions are influenced 
by the transverse shear effect. When this effect is ignored the amplitude of vibration is 
reduced significantly, thus altering the dynamic response of the beam. This alteration can lead 
to an incorrect stability prediction of the periodic solutions. For example, the unstable region 
characterized by the jump effect is smaller when the shear effect is neglected. Therefore the 
Euler-Bernoulli model predicts a less critical dynamic scenario than the present shear model.  

On the other hand, when the internal detuning parameter is varied from its perfect 
condition, the frequency-response curves exhibit a more complex behavior.  
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APPENDIX 

The terms used in the Eqs. (29), (30) and (31) are defined as:  
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