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∗Dépt. AéroSpatiale, Mécanique et mAtériaux (ASMA), Université de Liège, Belgium.
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Abstract. In this paper an extension of a large strain elastoplastic constitutive model based on
hyperelasticity and multiplicative decomposition of deformation gradient tensor due to Garcı́a
Garino is extended to viscous case following a previous workof Ponthot based on Perzyna type
model. The integration of constitutive model is based on numerical scheme originally designed
for the elastoplastic problem that naturally includes the rate dependent case. Consequently
the algorithm proposed by Ponthot for viscoplasticity is easily taken into account in the frame-
work of hyperelasticity and irreversible thermodynamics of solids. For the case of metals, a
unified stress update algorithms for elastoplastic and elasto-viscoplastic constitutive equations
submitted to large deformations is obtained. The plastic corrector step is, in case of J2 flow
theory material behavior, an extension to the viscoplasticrange of the classical radial return
algorithm for plasticity. The resulting unified implicit algorithm is both efficient and very in-
expensive. Moreover, if there is no viscosity effect (rate-independent material) the presented
algorithm degenerates exactly into the classical radial return algorithm for plasticity.
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1 INTRODUCTION

This paper presents preliminary results of a large strain viscoplastic model based on hyperelas-
ticity. The large strain model structure is taken from previous work of Garcı́a Garino,1–3 derived
in the context of the ideas of Simo and Ortiz4–6 for the rate independent case. Viscoplastic case,
based on Perzyna type model, comes from a work of Ponthot7 where a unified algorithm for
elasto/viscoplastic problems has been proposed.

The kinematics of the resultant constitutive model is basedon the multiplicative decomposi-
tion of deformation gradient tensor.8 Stresses can be derived from a hyperelastic potential and
the model is written in the framework of internal variables theory and thermodynamics of irre-
versible solids.9 The stress update algorithm proposed by Ponthot treats the elasto/viscoplastic
problem in a unified way. For a J2-flow material model, it is a simple generalization to rate-
dependent problems of the radial return algorithm for rate-independent plasticity, including a
generalized consistency condition.

The classicalelasticpredictor -plasticcorrector split problem is used in order to derive nu-
merical scheme of the model. In this way a fully implicit algorithm is designed. The resultant
update algorithm is written in terms of kinematics quantities instead of the usual one defined for
the stress tensor. In the work it is shown that the unified elasto/viscoplastic stress update pro-
posed by Ponthot7 is naturally included in the (previous) numerical structure of rate independent
case, as regards the update be rewritten in terms of kinematic variables.

A complete review of the state of the art is not included into the goals of this prelimary work.
A comprehensive account of the problem can be found in the textbooks of Lubliner,9 for the
fundamentals, and Ottosen and Ristinmaa10 both for theory and numerical discussion.

In order to integrate in time the ODE resulting from this kindof problems many algorithms
can be developed. The attributes that one strives for are accuracy, reliability, efficiency and ease
of computer implementation. The radial return algorithm presented by Wilkins11 and Maenchen
and Sack12 satisfies all of these attributes. Subsequently developed algorithms have been shown
to fall short of Wilkins’ method with respect to both simplicity and accuracy, see e.g. Krieg and
Krieg,13 Yoder and Whirley14 and Ortiz and Popov15 in a small strain framework.

Consequently, radial return is now extensively used in finitelement codes for large-scale
computations of elastoplastic behavior, see e.g. Key,16–18 Hallquist,19–21 Hughes,22 Simo, Ortiz
and Taylor23–27among many others.

This integration scheme is both inexpensive and accurate. In addition, it allows to write
down a closed-form expression for the so-called consistentelastoplastic tangent modulus. Use
of this consistent modulus (and not the continuum modulus) for the establishment of the global
tangent stiffness matrix is essential in preserving the quadratic rate of convergence in Newton’s
procedure required by implicit algorithms.

However, regarding elastic-viscoplastic modeling of material behaviour, the situation is com-
pletely different. At the present time, many different algorithms have been developed in order to
integrate elastic-viscoplastic equations, see e.g. Hughes and Taylor28 , Suliciu,29 Pan,30 Rubin,31

Bruhns and Rott,32 or Golinval33 for a valuable discussion. However, none of them actually ex-
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hibits the same level of performance as the radial return algorithm for plasticity. Moreover,
none of the schemes described in Golinval33 is amenable to consistent linearization. This fact
is highly penalizing and precludes an efficient treatment ofviscoplastic problems in large-scale
finite element or finite difference codes.

In recent works Carosio and coauthors34, 35have discussed the problem in the context of con-
tiuum and consistent viscoplasticity and Alfano et al.36 presented general solución procdedures
in elasto/viscoplasticity.

In some works rate dependent Perzyna models are discussed inthe framework of large strain
models: Wang and Sluys37 have proposed an incremental model for the elastic problem and the
integration of the problem is carried out using a midpoint rule. Ponthot7 has proposed model
based on hypoelasticty for the elastic problem and viscoplastic effects are integrated with a
unified (plastic/viscoplastic) stress update procedure. Simo38 has discussed the problem for a
Duvaut-Lyons model type.

The discussed integration scheme proposed in this work is both inexpensive and accurate. In
addition, it allows to write down a closed-form expression for the so-called consistent elasto-
plastic tangent modulus. Use of this consistent modulus (and not the continuum modulus) for
the establishment of the global tangent stiffness matrix isessential in preserving the quadratic
rate of convergence in Newton’s procedure required by implicit algorithms.39

Therefore, it exhibits all its (good) properties, including accuracy, stability and existence of
a consistent tangent operator. The fact that the integration procedure is based on a fully implicit
backward Euler algorithms also avoids the need to define an instantaneous relaxation time, as is
the case in the procedure proposed by Simo and Ortiz.6, 40 Moreover the algorithm is unified in
the sense that the same routines are able to integrate both elasto-plastic and elasto-viscoplastic
models. The former case is simply obtained by setting the viscosity parameter to zero.

2 LARGE STRAIN ELASTOPLASTIC MODEL

In this point the proposed constitutive model is briefly presented. The elastoplastic constitutive
model1–3 can be written in the three different configurations. However for the purpose of this
work it is enough to present the results for the current configuration. First main results of kine-
matics problem are given followed by a summary of constitutive equations. Finally a particular
case of metals is discussed.

2.1 Kinematics

The kinematics of the problem is based on the very well known multiplicative decomposition
of deformation gradient tensorFFF in its elastic and plastic components,8 as is it shown in equa-
tion 1. In figure 1 original and deformed configurationoΩ and tΩ, respectively as well as the
intermediate configurationtΩe can be seen.

FFF = FFF e FFF p (1)

Almansi strain tensoreee and its elastic and plastic components,eeee andeeep, respectively, are the
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Figure 1: Kinematics of large strain elastoplastic solid: configurations

variables used in the constitutive model. The Almansi strain is defined in equation 2 terms of
spatial metric tensorggg and Finger tensorbbb−1 = FFF−T FFF−1

eee =
1

2
(ggg − bbb−1) (2)

The elastic component of Almansi strain tensor is defined in equation 3 in terms of of spatial
metric tensorggg and elastic component of Finger tensorbbbe−1 = FFF e−T FFF e−1

eeee =
1

2
(ggg − bbbe−1) (3)

The rate of deformation tensorddd is obtained computing the Lie derivativeLv
41 of Almansi

strain tensor, and admits an additive decomposition it its elastic and plastic compenentesddd =
ddde + dddp.

2.2 Constitutive Model

In this section the equations that define the model in the current configuration are presented.

eee = eeee + eeep (4)

ddd = ddde + dddp (5)

σσσ =
∂ψe(eeee, bbbe−1)

∂eeee
(6)

•

γ≥ 0 f ≤ 0
•

γ f = 0 (7)

dddp =
•

γ
∂g

∂σσσ
(8)

Dp = τττ : dddp + ppp :
•

ααα≥ 0 (9)
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whereσσσ denotes Cauchy stress tensor,ψe(eeee, bbbe−1) is the elastic free energy,f andg accounts
for yield criteria and plastic potential, respectively, and γ is the plastic multiplier. Plastic dissi-
pation is denoted byDp andααα andppp are a proper set of internal variables and their conjugate
thermodynamical forces.

2.3 Constitutive Model for Metals

For the case of metals under large strains, the elastic strains are negligible. In this case the
tensorFFF e approches to the Identity. Consequently tensorbbbe−1 tends to the spatial metric tensor
ggg. In this case the distinction between intermediate and current configurations have no meaning
and elastic strains are small. Then it is possible to write the elastic componenent of free energy
function as a quadratic function of elastic component of Almansi strain tensoreeee and material
constantsλ andµ as it is shown in equation 10.

ψe =

[

1

2
λ tr(eeee)2 + µ (eeee : eeee)

]

(10)

From equation (6) the Cauchy stress tensor results:

σ = λ tr(eeee) 111 + 2 µ eeee (11)

This model has been used previously by the authors1–3 as an alternative to the neohookean
models proposed by another authors.4–6

Plasticity is taken into account by means of an associative flow rulef = g. The yield function
is the very well known Von Mises or J2 model given in equation 12.

f(σσσ, σy) = σ̄ − σy = 0 (12)

whereσ̄ =
√

3

2
sss : sss denotes equivalent stress,sss is the deviatoric stress tensor andσy is the

current yield stress.
Flow rule can be written now in terms of yield criteriaf :

dddp =
•

γ nnn where nnnij =
sssij√
sssklssskl

(13)

where(n : nn : nn : n = 1) is the unit outward normal to the yield surface and plastic multiplier γ can
be computed from the Kuhn Tucker conditions given in equation (7).

The hardening law relates yield stressσy and the rate of the effective plastic strain
•

ǭp defined

as
•

ǭp =
√

2

3
dddp : dddp as shown in equation (14).

•

σy = h
•

ǭp =

√

2

3
h

•

γ (14)

andh is a material parameter that corresponds to the slope of the effective stress vs. effective
plastic strain curve under uniaxial loading conditions, also known as hardening module in the
case linear hardening.
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3 LARGE STRAIN VISCOPLASTIC MODEL

In this section viscoplastic problem is presented and theoretical details are derived with empha-
sis in flow rule and consistency condition. Main results of elastoplastic kinematics are still valid
taking into account that inelastic variables in this case describe the rate dependent case.

eee = eeee + eeevp (15)

ddd = ddde + dddvp (16)

(17)

whereeeevp anddddvp are viscous counterpart of plastic components of Almansi strain tensoreeep and
rate of deformation tensordddp respectively.

Given the uncoupled format chosen for free energy function its elastic component remains
unchanged in this case. Then Cauchy stress are computed fromequations 6 and 10.

Contrary to the case of rate independent plasticity, the effective stress̄σ is no longer con-
strained to remain less or equal to the yield stress but one can haveσ̄ ≥ σy . Therefore we
define theoverstressd as

d = 〈σ̄ − σy〉 (18)

where〈x〉 denotes the Mac Auley brackets defined by〈x〉 = 1/2(x+ |x|). Clearly, an inelastic
process can only take place if, and only if, the overstressd is positive, consequentlyf ≥ 0.

For example, classical viscoplastic models of the Perzyna type42, 43 may be considered as
penalty regularization of rate-independent plasticity where the consistency parameter has been
•

γ replaced by an increasing function of the overstress e.g.

•

γ
vp

=

√

3

2

〈

σ̄ − σy

η(ǭvp)1/n

〉m

(19)

whereγvp accounts forviscoplastic multiplier, n is a hardening exponent,m is a rate sensitivity
parameter,̄ǫvp is the equivalent viscoplastic flow andη is a viscosity parameter.

In that case, the evolution equations are still of the form

dddvp =
•

γ nnn (20)

•

ǭvp =

√

2

3
γ or

•

σy= h
•

ǭvp (21)

which are quite similar to the rate-independent case given in equations 13 and 14.
Combining equations (19), (20) and (21) gives:

•

ǭvp =

√

2

3
dddvp : dddvp =

√

2

3

•

γ
vp

=

〈

σ̄ − σy

η(ǭvp)1/n

〉m

(22)

so that, in the viscoplastic range, a new constraint is defined.7
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f̄ = σ̄ − σy − η(ǭvp)1/n(
•

ǭvp)1/m = 0 (23)

This criterion is ageneralization of the classical von-Mises criterionf = 0 for rate-dependent
materials. The latter can simply be recovered by imposingη = 0 (no viscosity effect), result
that has been pointed out in the literature by another authors.10, 36, 37

REMARKS

1. The key point feature of the stress update algorithm due toPonthot7 is the viscoplastic
generalization of the classical Von Mises criterion given in eq. (23), that follows from
the introduction of the viscoplastic parameter given in eq.(19).

2. Thisviscoplasticconstraint is sometimes calleddynamic yield surface10, 42

3. Simo38 pointed out that viscosityη plays the role of penalty multiplier in eq. (23), then
viscoplasticy can be considered as a regularization of elastoplasticity. Consequently
rate independent case (η = 0) and (nonlinear) elastic case (η = ∞) are recovered as
limite cases.

In the elastic regime, bothf andf̄ are equivalent since, in that case

•

ǭvp = 0 and σ̄ ≤ σy (24)

so that one has, similarly to plasticity
f̄ ≤ 0 (25)

Moreover, from relation (19), it can be noted, that as viscosity η goes to zero (rate-independent
case), the consistency parameterγvp remains finite and positive (though indeterminate) since
σ̄ − σy also goes to zero. The extended criterion (23) will play a crucial role in the integration
algorithm described hereafter. It also allows a generalization of the Kuhn-Tucker which, in the
visco-plastic case, can be extended to the following form:

•

γ
vp

f̄ = 0,
•

γ
vp

≥ 0, f̄ ≤ 0 (26)

4 NUMERICAL SCHEME

In this section the numerical scheme necessary to implementthe discussed theoretical model
in a finite element code is derived. This scheme is based on a predictor, elastic, corrector
easto/viscoplasticapproach. First the elastic problem and plastic (rate independent) problems,
derived in previous works of Garcı́a Garino,1, 3 are presented in sections 4.1 and 4.2 respectively.
Then numerical algorithm due to Pothot for viscoplasticityis discussed and recasted in terms of
kinematics variables in section 4.3 in order to discuss the resultant integration scheme.
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4.1 Elastic Problem

In this problem the plastic quantities remain frozen:(t+∆tFFF pTR = tFFF p). The trial (elastic)
component of the deformation gradient tensor results:

t+∆tFFF eTR = t+∆tFFF (t+∆tFFF pTR)−1 = fff tFFF (tFFF p)−1 = fff tFFF e (27)

wherefff is the incremental deformation gradient tensor. The predictor value of the elastic Finger

tensort+∆tbbbe−1TR
is:

t+∆tbbbe−1TR
=

(

t+∆tFFF e−T t+∆tFFF e−1
)TR

= fff−T tbbbe−1 fff−1 (28)

Finally, the trial stressesσσσTR are computed from eqn 28 in terms of the predictor value of

elastic Almansi straint+∆teeeeTR = 1

2
(t+∆tggg − t+∆tbbbe−1TR

).
It is important to note that the elastic problem is reduced tothe computation of a closed

expression. In this way numerical integration of rate equations, typical of hypoelastic models
and usually very expensives, is completely avoided.

4.2 Plastic Problem

In this problem the current configuration remains fixed and the internal variables are updated in
order to satisfy the constitutive law. For this problem Simo5 has proposed to integrate the flow
rule in the original configuration:

•

CCC
p

= 2 φ∗dddp = 2
•

λ φ∗nnn = 2
•

λ NNN (29)

whereCCCp is the plastic component of right Cauchy Green tensor andφ∗ denotes the pull-back
operator.41

Equation 29 is integrated using a Backward-Euler scheme:

t+∆tCCCp − tCCCp = 2 λ t+∆tNNN (30)

whereλ accounts for the numerical counterpart of plastic multiplier
•

γ. Pushing eq (6) forward
the spatial configuration, the updated Finger tensor is found:

t+∆tbbbe−1 = t+∆tbbbe−1TR
+ 2 λ t+∆tnnn (31)

The factor2 λ t+∆tnnn is computed by mean of the radial return algorithm.

4.3 Viscoplastic Problem

Viscoplastic counterpart of rate independent problem presented in previous section can be writ-

ten in terms of viscoplastic component of right Cauchy Greentensor
•

CCC
vp

. Numerical plastic
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multiplier has been denotedλvp for this problem.

•

CCC
vp

= 2 φ∗dddp = 2
•

λ
vp

φ∗nnn = 2
•

λ NNN (32)

Following the same steps of plastic corrector the updated figer tensor is computed:

t+∆tbbbe−1 = t+∆tbbbe−1TR
+ 2 λvp t+∆tnnn (33)

From equations (31) and (33) follows that both updates are identical with exception of plastic
multipliersλ and viscoplastic multipliersλvp. Consequently the structure of numerical problem
is preserved and rate dependent case is naturally encompassed as a particular case of corrector
step.

From equation (3 the elastic component of Almansi strain tensor results in terms of the
viscoplastic update of elastic Finger tensor given in equation fingervp:

t+∆teeee =
1

2
(g − t+∆tbbbe−1) =

1

2
(g − t+∆tbbbe−1TR − 2 λvp t+∆tnnn) = t+∆teeeeTR − λvp t+∆tnnn

(34)
Taking into account equation (11), the viscoplastic correction of elastic component of Al-

mansi strain tensor given in equation (34) is written in terms of Cauchy stress tensor as:

t+∆tσσσ = t+∆tσσσTR − 2 λvp µ t+∆tnnn (35)

that is the result shown in equation (51), section 6.3 in the work of Ponthot,7 after integration
over the time interval[t, t+ ∆t], with initial conditions given bytσσσ, tǭvp andtσy.

In order to compute the viscoplastic multiplierλvp an integration procedure very similar
to the radial return method of plasticity, proposed by Ponthot7 is used. The tensort+∆tnnn is
approximated by:

t+∆tnnn =
t+∆tsssTR

√
t+∆tsssTR : t+∆tsssTR

(36)

so that the final values are given by

t+∆tǭvp = tǭvp +

√

2

3
λvp (37)

•

ǭvp =
t+∆tǭvp − tǭvp

∆t
(38)

where the (unknown) scalar parameterλvp stands for

λvp =

∫ t+∆t

t

•

λ dt (39)
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REMARK: It is important to point out that the first order approximation introduced in eq.
(38) is fully consistent with the approximation introducedin eq. (30).

Theλvp parameter is simply determined by the enforcement of thegeneralized consistency
condition, f̄ = 0, at timet = t+ ∆t, i.e.

f̄(λvp) =

√

3

2
[sssTR − 2µ λvpnnn] : [sssTR − 2µλvpnnn] − t+∆tσy(λ

vp)

− η (ǭvp
0 +

√

2

3
λvp)

1

n (

√

2

3

λvp

∆t
)

1

m = 0 (40)

wheret+∆tσy is a given function of̄ǫvp and consequently a given function ofλvp.
The scalar equation (40) is a nonlinear expression where theonly unknown parameter isλvp.

It can be easily solved by a local Newton-Raphson iteration.In the particular case wheren = ∞
(no multiplicative hardening),m = 1 (linear dependence between overstress and viscoplastic
rate of deformation), andh = constant (linear hardening) a closed form solution of this equation
is given by

λvp =
1

2µ

√
sssTR : sssTR −

√

2

3

tσy

1 + 1

3µ
(h + η

∆t
)

(41)

so that it is now obvious that the present algorithm is a generalization to the rate-dependent
case of the classical radial return algorithm. This one is exactly recovered (with no numerical
difficulty) by settingη = 0 (no viscosity effect). In the viscous case, one can see that the rate-
dependent solution (41) is equivalent to rate-independentsolution with a fictitious hardening
given byh∗ = h+ η/∆t.

5 CONCLUSIONS

Preliminary results of a large strain viscoplastic model have been presented. Both theoretical
constitutive model and numerical implementation have beendiscussed.

The structure of elastoplastic model based on hyperelasticity and internal variables theory is
mantained and viscoplastic problem is easily taken into account due the uncoupled structure of
free energy function.

Consequently the structure of the numerical scheme is preserved, the elastic problem remains
with no changes and viscoplastic corrector step ecompass inthe structure of plastic corrector
when stress update algorithm is recasted in terms of kinematics variables. In this way the
numerical format of the problem naturally includes viscoplasticity.

The stress update procedure is easily solved after a local non linear iterations at integration
point level for the general case and various closed forms expresions are derived for different
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particular cases. The discussed procedure recover the results of radial return algorithm for the
inviscid case.

Consequently all the advantages that can be obtained from radial return method like simplic-
ity, robustness and computational efficiency are mantained.

The numerical scheme admits a consistent tangent operator that will be presented in next
works together with numerical applications.
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