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Abstract. In the present work we use a numerical approach based on a computational constitutive mul-
tiscale model to predict the effective Young’s modulus and the Poisson ratio of a perlitic nodular cast
iron. In order to obtain the Representative Volume Element (RVE), we use a set of micrographies ac-
quired from an optical device. For each micrograph we define two RVE with different shape, rectangular
and hexagonal. The volumetric fraction of graphite and metal matrix and the boundary of each object
were identified on each RVE by using a procedure of image enhanced and segmentation. These set of
RVE was meshed with triangular finite elements. The numerical results obtained from both RVE are
compared and discussed with results obtained with an analytical expression. Finally, some conclusions
are presented.
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1 INTRODUCTION

Cast irons are a Fe-C-Si alloy with 3.0− 4.3%C and 1.3− 3.0%Si. The high carbon content
determines the mechanical properties based in the retained carbon in the solid solution at room
temperature, while silicon promotes the precipitation of carbon in the form of graphite.

At present, cast irons are manufactured in larger quantities than any other type of cast al-
loy (Panchal, 2010), and in some cases they have replaced steel castings. This is mainly due to
their lower melting point, and high carbon content which improves the castability and fluidity
during the pouring process. Others important properties of cast iron are the lower levels of
defects produced during the filling of a mold and a wide range of mechanical properties as indi-
cated in the Table 1. There are two main factors that control these properties: (a) type, size and
size distribution of graphite nodules, and; (b) type of matrix and defects present: ferrite/pearlite
relation, its own characteristic and the presence of microstructural defects.

Grade Tensile Strength (MPa) Yield Strength (MPa) Hardness(HB) Elongation (%)

60− 40− 18 42000 28000 149− 187 18
65− 45− 12 45000 32000 170− 207 12
80− 55− 06 56000 38000 187− 255 6
100− 70− 03 70000 47000 217− 267 3
120− 70− 02 84000 63000 240− 300 2

Table 1: Mechanical properties of SGI’s (spheroidal graphite iron) according to ASTM A536.

The goal of the metallurgist is to design a process producing a microstructure which yields
the expected mechanical properties. This requires knowledge of the relations between mi-
crostructure and mechanical properties in alloys as well as identification of the factors affecting
the microstructure. Actually, the use of RVE in the context of micro-mechanics is commonly
used to determine the effective properties of materials. Thus, a proper choice of the RVE is
decisive in the study of materials, from the point of view of the principles and laws of the
micro-mechanics and multi-scale theories. In general, an RVE should be characterized by: (a)

to be statistically representative of the macro-scopic response of the continuum, and (b) its
dimension must be larger than the minimum size of the heterogeneity that characterizes the
microstructure of the material. However there are numerous definitions of RVE (Hill, 1963;
Hashin, 1983; Drugan and Willis, 1996; Trusov and Keller, 1997; van Mier, 1997; Evesque,
2000; Gitman et al., 2007), in general, an RVE can be considered as the minimum volume of
material whose behavior is equivalent to a volume of a homogeneous fictitious material.

From an engineering point of view, the main applications and uses of RVE are: (a) the mod-
eling and study of the influence of heterogeneities at the nano, micro and meso-structural level
(localization) and (b) the obtaining of the effective properties from the properties of micro-
constituents (homogenization).

From the above mentioned, we highlights the importance of an adequate representation of a
material by an RVE. There are two prevailing philosophies for generating the RVE for heteroge-
neous finite element modeling: (a) synthetic microstructures, usually obtained from computer
algorithms, and (b) microstructure obtained directly from experiments conducted in the labo-
ratory. Most papers in research fields related with multi-scale theories and effective properties
of alloys are based on RVE obtained from synthetic techniques. Therefore, the microstructures
are characterized by periodic idealized microgeometries, such as classic arrays composed of
cubic spheres embedded in a homogeneous matrix and idealized form of cylinders with varying

A.D. BOCCARDO, F.D. CARAZO, S.M. GIUSTI1800

Copyright © 2012 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



aspect ratios (Rintoul and Torquato, 1997; Torquato, 1998; Bochenek and Pyrz, 2002; Zeman
and Sejnoha, 2001; Roberts and Garboczi, 1999). The RVE obtained by this way are applicable
only in cases where the microstructure consists of periodic arrays characterized by homoge-
neous, uniform and one size heterogeneities. In general, in the alloys (including a large number
of composite materials) the microstructure does not satisfy these requirements. A clear example
is the alloy studied in this paper, SGI. Figure 1 show two micrographs corresponding at two dif-
ferent points of a melt part which have different cooling rates. Can be observed a non-uniform
distribution of the “spheres” of graphite (which correspond to the black color phase in both
figures), much less a constant size and shape. These quantities are of great importance in the
effective properties of a continuous medium (Bohm et al., 1994; Deve, 1999).

On the other hand, there are numerous papers in which the RVE are obtained from micro-
graphs (Terada and Kikuchi, 1996; Fischmeister and Karlsson, 1977; Li et al., 1999; Ghosh
and Moorthy, 1995; Berryman and Blair, 1987; Hollister and Kikuchi, 1994), but none of these
cases corresponds to metallic alloys.

In the case of SGI, the importance to obtain an adequate RVE from the micrographs is ev-
idenced by observing and comparing the micrographs shown in Figures 1(a) and 1(b). There
are several differences in the size distribution of graphite nodules, the presence of micropores,
and graphite nodules of low quality. All these properties affect the quality of the alloys by
contributing to generate crack initiation zones and concentrations of stresses and strains at the
micro-level. In this paper the concept of RVE is used in the sense of "statistical volume ele-
ment" (Ostoja-Starzewski, 2006). Another interpretation from which the RVE proposed in this
paper can be considered periodic, is given by (Drugan and Willis, 1996), where the RVE can be
considered as the volume element for which the macro-scopic constitutive properties are precise
enough to represent the overall constitutive response of the continuum medium. Then, a RVE
can be considered valid if the moduli values are within of the 5% of the value of the module
given at macro-scopic level. At this point, takes a great preponderance determines upper and
lower bounds in the effective properties calculated from the RVE.

(a) (b)

Figure 1: Micrographies of semipearlitic SGI corresponding ar two differents points.

This work presents a comprehensive methodology to determines the effective properties in
heterogeneous continuum medium from micrographs, which involves the combination of digi-
tal image processing and quantification and characterization of microstructure. The main scope
of this paper is to compare the numerical results obtained from numerical simulations carried
out with two RVE shape: rectangular and hexagonal. To achieve this objective we presents a
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computational constitutive multi-scale model to predict elastic constants such as Young’s mod-
ulus of a pearlitic SGI by taking into account the influence of graphite, matrix volumetric phase
fractions, and nodularity of samples used in the study. Numerical values are compared with
results obtained from an analytical formula (Mazilu and Ondracek, 1990).

2 MULTI-SCALE MODELING

This section presents a summary of the multi-scale constitutive theory upon which we rely for
the estimation of the macro-scopic elasticity properties. This family of (now well established)
constitutive theories has been formally presented in a rather general setting by Germain et al.
(1983) and later explorated, among others, by Michel et al. (1999) and Miehe et al. (1999) in
the computational context. When applied to the modeling of linearly elastic periodic media, it
coincides with the asymptotic expansion-based theory described by Bensoussan et al. (1978)
and Sanchez-Palencia (1980).

The starting point of this family of constitutive theories is the assumption that any point x
of the macro-scopic continuum is associated to a local RVE whose domain Ωµ, with boundary
∂Ωµ, has characteristic length lµ, much smaller than the characteristic length l of the macro-
continuum domain Ω, as hown in Figure 2. For simplicity, we consider that the RVE domain
consists of a matrix, Ωm

µ , containing inclusions of different materials occupying a domain Ωi
µ

(see Figure 2).

Figure 2: Macro-scopic continuum with a locally RVE.

An axiomatic variational framework for this family of constitutive theories is presented in
detail by de Souza Neto and Feijóo (2006). Accordingly, the entire theory can be derived from
five basic principles: (1) The strain averaging relation; (2) A simple further constraint upon the
possible functional sets of cinematically admissible displacement fields of the RVE; (3) The
equilibrium of the RVE; (4) The stress averaging relation; (5) The Hill-Mandel Principle of
Macro-Homogeneity, which ensures the energy consistency between the so-called micro and
macro-scales of the material. These are briefly stated in the following.

The first basic axiom – the strain averaging relation – states that the macro-scopic strain
tensor E at a point x of the macro-scopic continuum is the volume average of its micro-scopic
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counterpart Eµ over the domain of the RVE:

E :=
1

Vµ

∫

Ωµ

Eµ (1)

where Vµ is a total volume of the RVE and

Eµ := ∇suµ (2)

with uµ denoting the micro-scopic displacement field of the RVE. Equivalently, in terms of
RVE boundary displacements, the homogenized strain (Equation 1 and 2) can be written as

E =
1

Vµ

∫

∂Ωµ

uµ ⊗s n (3)

where n is the outward unit normal to the boundary ∂Ωµ and ⊗s denotes the symmetric tensor
product.

As a result of axiom (Equation 1) and, in addition, by requiring without loss of generality
that the volume average of the micro-scopic displacement field coincides with the macro-scopic
displacement u, any chosen set Kµ of admissible displacement fields of the RVE must satisfy

Kµ ⊂ K∗

µ :=

{

v ∈
[

H1(Ωµ)
]2

:

∫

Ωµ

v = Vµu ,

∫

∂Ωµ

v ⊗s n = Vµ E, JvK = 0 on ∂Ωi
µ

}

(4)

where K∗
µ is the minimally constrained set of cinematically admissible RVE displacement fields

and JvK denotes the jump of function v across the matrix/inclusion interface ∂Ωi
µ, defined as

[[(·)]] := (·)|m − (·)|i (5)

with subscripts m and i associated, respectively, with quantity values on the matrix and inclu-
sion. Now, without loss of generality, uµ may be decomposed as a sum

uµ (y) = u+ ū (y) + ũµ (y) (6)

of a constant (rigid) RVE displacement coinciding with the macro-displacement u, a field
ū (y) := Ey, linear in the local RVE coordinate y (whose origin is assumed without loss of
generality to be located at the centroid of the RVE) and a fluctuation displacement field ũµ(y)
that, in general, varies with y. With the above split, the micro-scopic strain field (Equation 2)
can be written as a sum of a homogeneous strain (uniform over the RVE) coinciding with the
macro-scopic strain and a field Ẽµ := ∇sũ corresponding to a fluctuation of the micro-scopic
strain about the homogenized (average) value.

Eµ = E+ Ẽµ (7)

The additive split (Equation 6) allows the constraint (Equation 4) to be expressed in terms of
displacement fluctuations alone. It is equivalent to requiring that the (as yet to be defined) set
K̃µ of admissible displacement fluctuations of the RVE be a subset of the minimally constrained

space of displacement fluctuations, K̃∗
µ:

K̃µ ⊂ K̃∗

µ :=

{

v ∈
[

H1(Ωµ)
]2

:

∫

Ωµ

v = 0,

∫

∂Ωµ

v ⊗s n = 0, [[v]] = 0 on ∂Ωi
µ

}

(8)
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At this point we introduce the further assumption that K̃µ is a subspace of K̃∗
µ. Then, we have

that the space of virtual displacement of the RVE, defined as

Vµ :=
{

η ∈
[

H1(Ωµ)
]2

: η = v1 − v2; ∀v1,v2 ∈ Kµ

}

(9)

coincides with the space of micro-scopic displacement fluctuations, i.e.,

Vµ = K̃µ (10)

The next axiom establishes that the macro-scopic stress tensor T is given by the volume
average of the micro-scopic stress field Tµ over the RVE, i.e.,

T :=
1

Vµ

∫

Ωµ

Tµ (11)

The present paper is focused on RVEs whose matrix and inclusion materials are described
by the classical isotropic linear elastic constitutive law. That is, the micro-scopic stress tensor
field Tµ satisfies

Tµ = CµEµ (12)

where Cµ is the fourth order isotropic elasticity tensor:

Cµ =
E

1− ν2
[(1− ν) I+ ν (I⊗ I)] (13)

with E and ν denoting, respectively, the Young’s modulus and the Poisson’s ratio. These pa-
rameters are given by

E :=

{

Em if y ∈ Ωm
µ

Ei if y ∈ Ωi
µ

and ν :=

{

νm if y ∈ Ωm
µ

νi if y ∈ Ωi
µ

(14)

The parameters Ei and νi constant within each inclusion but may in general vary from inclu-
sion to inclusion. In Equation 13 we use I and I to denote the second and fourth order identity
tensors, respectively.

The linearity of Equation 12 together with the additive decomposition indicated in Equation 7
allows the micro-scopic stress field to be split as

Tµ = T̄µ + T̃µ (15)

where T̄µ is the stress field associated with the uniform strain induced by ū (y), i.e., T̄µ = CµE,
and T̃µ is the stress fluctuation field associated with ũµ (y), i.e., T̃µ = CµẼ.

A further axiom of the theory is the so-called Hill-Mandel Principle of Macro-Homogeneity
(Hill (1965) and Mandel (1971)). This principle establishes that the power of the macro-scopic
stress tensor at an arbitrary point of the macro-continuum must equal the volume average of the
power of the micro-scopic stress over the RVE associated with that point for any cinematically
admissible motion of the RVE.

The general theory is completed by a final axiom which establishes that the RVE must satisfy
equilibrium. Then, with the introduction of Equation 15 into the classical virtual work varia-
tional equation, we have that the RVE mechanical equilibrium problem consists of finding, for a
given macro-scopic strain E, a cinematically admissible micro-scopic displacement fluctuation
field ũµ ∈ Vµ, such that

∫

Ωµ

T̃µ · ∇
s
η = −

∫

Ωµ

T̄µ · ∇
s
η ∀η ∈ Vµ (16)
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2.1 Classes of multi-scale constitutive models

The characterization of a multi-scale model of the present type is completed with the choice
of a suitable space of cinematically admissible displacement fluctuations Vµ ⊂ K̃∗

µ. We list
below the four classical possible choices:

• Homogeneous strain model or Taylor model. For this class of models the choice is

Vµ = VT

µ :=
{

ũµ ∈ K̃∗

µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ

}

(17)

In this case, the strain is homogeneous over the RVE, i.e. Eµ = E in Ωµ. The reac-

tive RVE body force and external traction fields, (qµ,bµ) ∈
(

VT
µ

)⊥
, may be arbitrary

functions.

• Linear boundary displacement model. For this class of models the choice is

Vµ = VL

µ :=
{

ũµ ∈ K̃∗

µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ

}

(18)

The only possible reactive body force over Ωµ orthogonal to VL
µ is bµ = 0. On ∂Ωµ, the

resulting reactive external traction, qµ ∈
(

VL
µ

)⊥
, may be any function.

• Periodic boundary fluctuations model. This class of models is typical of the analysis of
periodic media, where the macro-scopic continuum is generated by the repetition of the
RVE. In this case, the geometry of the RVE must satisfy certain geometrical constraints
not needed by the other two classes discussed here. Considering for simplicity the case of
polygonal RVE geometries (see Figure 3), we have that the boundary ∂Ωµ is composed of
a number of pairs of equally-sized subsets {Γ+

i ,Γ
−

i } with normals n+
i = −n−

i . For each
pair {Γ+

i ,Γ
−

i } of sides there is a one-to-one correspondence between points y+ ∈ Γ+
i and

y
− ∈ Γ−

i .

Figure 3: Typical RVE geometries for periodic media.

The periodicity of the structure requires that the displacement fluctuation at any point
y
+ coincide with that of the corresponding point y−. Hence, the space of displacement

fluctuations is defined as

Vµ = VP

µ :=
{

ũµ ∈ K̃∗

µ : ũµ(y
+) = ũµ(y

−) ∀ pairs (y+,y−) ∈ ∂Ωµ

}

(19)

Again, only the zero body force field is orthogonal to the chosen space of fluctuations.

qµ(y
+) = −qµ(y

−) ∀ pairs (y+,y−) ∈ ∂Ωµ (20)
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• Minimally constrained or Uniform RVE boundary traction model. In this case, we chose

Vµ = VU

µ := K̃∗

µ (21)

Again only the zero body force field is orthogonal to the chosen space. The boundary
traction orthogonal to the space of fluctuations satisfies the uniform boundary traction

condition (de Souza Neto and Feijóo, 2006):

qµ (y) = Tn (y) ∀y ∈ ∂Ωµ (22)

where T is the macro-scopic stress tensor defined in Equation 11.

2.2 The homogenized elasticity tensor

The assumed type of the material response in the micro-scale implies that the macro-scopic
response is linear elastic. That is, there is a homogenized elasticity tensor C such that

T = CE (23)

A closed form for the homogenized constitutive tensor can be derived by the approach sug-
gested by Michel et al. (1999) and relies on the representation of the RVE equilibrium problem
(Equation 16) as a superposition of linear variational problems associated with the cartesian
components of the macro-scopic strain tensor. The resulting expression for C reads

C = C̄+ C̃ (24)

where C̄ is the volume average macro-scopic elasticity tensor

C̄ =
1

Vµ

∫

Ωµ

Cµ (25)

and the contribution C̃ (generally dependent upon the choice of space Vµ) is defined as

C̃ :=

[

1

Vµ

∫

Ωµ

(T̃µkl
)ij

]

(ei ⊗ ej ⊗ ek ⊗ el) (26)

where T̃µij
= Cµ∇

sũµij
is the fluctuation stress field associated with the fluctuation displace-

ment field ũµij
∈ Vµ that solves the linear variational problem

∫

Ωµ

Cµ∇
sũµij

· ∇s
η = −

∫

Ωµ

Cµ(ei ⊗ ej) · ∇
s
η ∀η ∈ Vµ (27)

for i, j = 1, 2 (in the two-dimensional case). In the above, {ei} denotes an orthonormal basis
for the two-dimensional Euclidean space.

For a more detailed description on the derivation of Expressions 24–27) we refer the reader
to Michel et al. (1999); de Souza Neto and Feijóo (2006) and Giusti et al. (2009b).
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(a) Two views of double 1in. Y-block mold. (b) 3D view and cut’s plane of
1in. Y-block.

(c) Cut plane A. (d) Cut plane B. (e) Cut plane C.

Figure 4: Mold, 1in. Y-block and locations of the samples used for metallurgical study.

3 EXPERIMENTAL PROCEDURE

The micrographs used in the research were obtained from 1in Y-blocks (see Figure 4(a))
of slightly hypereutectic pearlite SGI. The alloy used in the experiments was melted in a high
frequency induction furnace of 15 kN capacity. The load consisted of: 23.26% SAE 1010 steel
scrap, 23.26% SGI scrap, 6.6% pig iron, 41.8% of the puddle. To adjust the carbon content
was employed 1.6% carbon (90% performance), 2.0% of steel sheets and steel shavings, 0.15%
of SiCa and to adjust the silicon content was added Fe75%Si. The base metal was overheated
to 1650°C for a period of about 20 minutes. Inoculation and nodularization treatments were
carried out following the Sandwich Method, in which the substances are placed in a ladle and
are covered with steel sheets and steel shavings, and then the liquid metal is poured from the
furnace (Elliot, 2005). The treatment of the liquid was carried out with the addition of 1.5%
FeSiMgCe (nodulizant) and 0.7% Fe75%Si (post-inoculation treatment). The molten metal was
subsequently poured into the ladle to fill the Y-blocks. Then, the blocks were divided into 25
parts as shown in Figure 4(e).

The main elements of the chemical composition of the cast alloy are listed in Table 2.
The location of the samples used in the analysis of the Y-blocks are shown in Figures 4(c), 4(d),

and 4(e), and the points analyzed in each sample are indicated in Figure 4(c) and 4(d). The
preparation of the samples consisted in the successive rough grinding using waterproof abrasive
papers with grades ranging: 180, 240, 400, 600, 800 and 1000. Next, each sample was polished
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Element C Si Mn P S Cr Cu Sn Mg CE

wt-% 3,55 2,78 0.49 0.012 0.010 0.023 0.89 0.010 0.054 4.52

Table 2: Average chemical composition (main elements) of samples, wt-%.

with diamond paste of granulometry of 6 µm. The samples were observed under an optical
microscope Olympus PMG 3 equipped with a video camera connected to a computer.

The micrography were processed with a analyzer program of object. the result is three im-
age (original than improved illumination, segmented and with contour of nodules detected, see
Figures 6 to 9), more the necessaries information for construct the element finite mesh. For
the implementation of hexagonal RVE, we cut the original micrography with a regular hexagon
inscribed. The mesh was create with program called GMSH (Geuzaine and Remacle, 2009).

The metallurgical study consists in the determination of graphite and metal matrix volume
fraction (the last is a mixture of ferrite and pearlite), and the graphite phase characterization
which consists in the determination of size and roundness of each nodule and corresponding
main and minor axis from the ellipse interpolated from each nodule. From the above measure-
ments, the nodularity corresponding to each sample was calculated from SinterCast (1997):

Nodularity =

∑nodules
i=1

Ai + 0.5
∑intermediates

j=1
Aj

∑nodules>10µm
k=1

Ak

100 (28)

where Ai, Aj and Ak are the surface areas of nodules whose roundness is greater than 0.625,
intermediates nodules whose roundness is greater than 0.525 and less than 0.625 (see Figure 5),
and all nodules of the sample with diameter which is greater than 10 µm, respectively. In our
case, the major axis of all nodules are greater than 10 µm. Note that the above expression is able
to obtain the nodularity of the SGI, for the case of compacted and flake graphite see SinterCast
(1997).

Figure 5: Classification of graphite nodules (SinterCast, 1997).

Figure 5 shows the classification of graphite nodules according to roundness, which is cal-
culated as follows (Castro et al., 2003):

Roundness =
4πS

P
(29)

where S and P are the surface and perimeter of nodules respectively.
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For compacted graphite cast irons the nodularity is typically in the range of 0−10%, whereas
that for SGI, the nodularity is approaching 100% and for flake graphite and according to Sin-
terCast (1997) a nodularity of −5% describes a fully lamellar graphitic structure. The graphite
Young’s modulus varies as a function of nodularity according to (Sjogren, 2007)

Ei = 0.173Nodularity + 18.9 (30)

Applying Equation 30 for the case of SGI with 100% nodularity, the graphite Young modulus
is 36.2 GPa.

(a) Original. (b) Segmented. (c) Nodule contours. (d) FEM mesh.

Figure 6: Images corresponding to 14C × 100_E hexagonal sample (see Figure 4(d)).

(a) Original. (b) Segmented. (c) Nodule contours. (d) FEM mesh.

Figure 7: Images corresponding to 14C × 100_E rectangular sample (see Figure 4(d)).

(a) Original. (b) Segmented. (c) Nodule contours. (d) FEM mesh.

Figure 8: Images corresponding to 14C × 100_I hexagonal sample (see Figure 4(d)).

(a) Original. (b) Segmented. (c) Nodule contours. (d) FEM mesh.

Figure 9: Images corresponding to 14C × 100_I rectangular sample (see Figure 4(d)).
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4 RESULTS AND DISCUSSION

The aim of this section is to present the obtained results from the multi-scale analysis using
two diferents RVE (hexagonal and rectangular) and a comparison with the classical analytical
expression of the Young’s modulus for SGI as mentioned in the previous section. The analytical
expression in which this work is based is given by

Eeff = Em







1−
π

A



1−
1

9
(

1 + 1.99
B

{

Em

Ei
− 1

}) −
1

3
(

1 + 1.68
B

{

Em

Ei
− 1

})

−
5

9
(

1 + 1.04
B

{

Em

Ei
− 1

})











, (31)

with

A =

(

4π
3ci

)2/3

ar−1/3

√

1 + (ar−2 − 1) cos2 αi

and B =

(

4π

3ci

)1/3

ar1/3
√

1 + (ar−2 − 1) cos2 αi (32)

where Eeff , Em, and Ei, are the Ypung’s modules of the cast iron, the matrix and the inclusion
of graphite, respectively; ci is the volume fraction of the graphite, ar is the aspect ratio of
the inclusions, and cos2 αi describe the orientation of the inclusions. For the special case of
random statistical orientation cos2 αi = 0.33. A detailed explanation of this expression is given
by Boccaccini (1997).

In the resolution of the set of variational problems (Equation 27), for each multi-scale model
described in Section 2.1, the numerical procedure described in Giusti et al. (2009a) was used.
The finite element mesh used was build with triangular linear elements. The numbers of ele-
ments and nodes used in each FEM’s mesh are shown in Table 3.

Sample Rectangular RVE Hexagonal RVE
Elements Nodes Elements Nodes

12Cx100_C 406900 204477 250764 126130
12Cx100_E 421760 211907 250142 125287
12Cx100_I 406940 204497 255752 128624
14Cx100_E 431388 216721 257098 129297
14Cx100_I 424174 213114 260652 131047
22Cx100_C 409826 205940 255012 128254
22Cx100_E 411134 206594 250142 125819
22Cx100_I 415094 208574 258536 130016
24Cx100_E 426040 214047 263504 132500
24Cx100_I 428000 215027 255002 128249
24Dx100 409552 205803 266450 133973
25Dx100 410132 206093 248574 125035

Table 3: Elements and nodes for the meshes for rectangular and hexagonal RVE.

The values of the parameters corresponding to the metallic matrix and graphite nodules used
for the rectangular RVE are listed in Table 4 (Carazo et al., 2011).
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Sample Graphite vol. Aspect Nodularity Young’s Modulus (GPa) Poisson ratio
frac. (ci) ratio (as) % Em Ei Matrix Graphite

12Cx100_C 9.904 0.827 94.529 206 35.254 0.290 0.2225
12Cx100_E 7.728 0.834 98.047 206 35.862 0.290 0.2225
12Cx100_I 7.653 0.862 99.018 206 36.030 0.290 0.2225
14Cx100_E 7.247 0.736 88.275 206 34.172 0.290 0.2225
14Cx100_I 8.252 0.799 94.114 206 35.182 0.290 0.2225
22Cx100_C 11.605 0.852 88.049 206 34.133 0.290 0.2225
22Cx100_E 9.183 0.835 97.359 206 35.743 0.290 0.2225
22Cx100_I 8.898 0.824 95.765 206 35.467 0.290 0.2225
24Cx100_E 8.043 0.776 92.581 206 34.916 0.290 0.2225
24Cx100_I 8.328 0.758 98.405 206 35.924 0.290 0.2225
24Dx100 7.703 0.797 97.223 206 35.721 0.290 0.2225
25Dx100 11.905 0.819 97.542 206 35.775 0.290 0.2225

Table 4: Constitutive properties of the metal matrix (ferrite plus pearlite) and graphite used in the simulations for
rectangular RVE.

Sample Graphite vol. Nodularity Young’s Modulus (GPa)
frac. (ci) % Taylor Linear Periodic Uniform Eq. 31

12Cx100_C 9.904 94.529 189.089 172.606 171.639 169.617 174.686
12Cx100_E 7.728 98.047 192.852 179.480 178.709 177.176 180.252
12Cx100_I 7.653 99.018 192.992 179.838 179.449 178.632 180.082
14Cx100_E 7.247 88.275 193.548 180.195 179.410 177.042 182.629
14Cx100_I 8.252 94.114 191.904 177.014 176.761 175.856 179.280
22Cx100_C 11.605 88.049 186.055 166.455 165.123 162.487 169.613
22Cx100_E 9.183 97.359 190.365 174.187 173.553 172.483 176.477
22Cx100_I 8.898 95.765 190.826 175.770 175.295 174.296 177.308
24Cx100_E 8.043 92.581 192.240 177.621 176.887 175.559 180.138
24Cx100_I 8.328 98.405 191.836 177.235 176.391 174.748 180.058
24Dx100 7.703 97.223 192.884 179.019 178.104 176.206 180.862
25Dx100 11.905 97.542 185.735 166.601 165.486 164.003 170.271

Table 5: Results corresponding to the differents models and Equation 31 for rectangular RVE.

The numerical results for rectangular RVE corresponding to the different classes of multi-
scale constitutive models (Sub-section 2.1), and for Equation 31, are presented in Table 5 and
ploted in Figures 10 and 11 (Carazo et al., 2011).
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Figure 10: Comparison of the results of multi-scale simulation for rectangular RVE and Equation 31.

Figure 11: Comparison of the results of multi-scale simulation for rectangular RVE and Equation 31.

The values of the parameters corresponding to the metallic matrix and graphite nodules used
for hexagonals RVEs are listed in Table 6.
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Sample Graphite vol. Aspect Nodularity Young’s Modulus (GPa) Poisson ratio
frac. (ci) ratio (as) % Em Ei Matrix Graphite

12Cx100_C 9.326 0.825 93.543 206 35.083 0.290 0.2225
12Cx100_E 7.983 0.846 99.823 206 36.169 0.290 0.2225
12Cx100_I 7.321 0.884 99.342 206 36.086 0.290 0.2225
14Cx100_E 6.890 0.794 98.481 206 35.937 0.290 0.2225
14Cx100_I 10.097 0.851 95.427 206 35.409 0.290 0.2225
22Cx100_C 12.990 0.815 77.176 206 32.251 0.290 0.2225
22Cx100_E 10.511 0.849 97.856 206 35.829 0.290 0.2225
22Cx100_I 10.059 0.837 97.319 206 35.736 0.290 0.2225
24Cx100_E 9.490 0.782 91.095 206 34.659 0.290 0.2225
24Cx100_I 9.742 0.785 99.180 206 36.058 0.290 0.2225
24Dx100 8.661 0.838 100.000 206 36.200 0.290 0.2225
25Dx100 14.119 0.815 96.484 206 35.592 0.290 0.2225

Table 6: Constitutive properties of the metal matrix (ferrite plus pearlite) and graphite used in the simulations for
hexagonal RVE.

Sample Graphite vol. Nodularity Young’s Modulus (GPa)
frac. (ci) % Taylor Linear Periodic Uniform eq.31

12Cx100_C 9.326 93.543 190.061 173.866 173.114 171.957 176.095
12Cx100_E 7.983 99.823 192.442 178.469 177.850 177.179 179.490
12Cx100_I 7.321 99.342 193.560 181.245 180.743 179.375 180.676
14Cx100_E 6.890 98.481 194.283 181.359 180.376 179.237 183.065
14Cx100_I 10.097 95.427 188.775 171.273 170.246 169.043 173.805
22Cx100_C 12.990 77.176 183.430 160.801 159.920 157.231 166.511
22Cx100_E 10.511 97.856 188.113 170.279 169.505 168.202 172.966
22Cx100_I 10.059 97.319 188.872 172.502 171.807 170.542 174.270
24Cx100_E 9.490 91.095 189.739 173.652 171.743 168.802 176.397
24Cx100_I 9.742 99.180 189.445 172.817 172.178 171.091 176.197
24Dx100 8.661 100.000 191.293 176.820 175.487 173.813 177.900
25Dx100 14.119 96.484 181.939 160.435 159.008 155.981 165.331

Table 7: Results corresponding to the differents models and Equation 31 for hexagonal RVE.

The numerical results for hexagonal RVE corresponding to the different classes of multi-
scale constitutive models (Sub-section 2.1) and for Equation 31, are presented in Table 7 and
ploted in Figures 12 and 13.
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Figure 12: Comparison of the results of multi-scale simulation for hexagonal RVE and Equation 31.

Figure 13: Comparison of the results of multi-scale simulation for hexagonal RVE and Equation 31.

As can see in Figures 10 to 13, the Boccaccini’s model is most rigid for both kinds of RVEs
used in the simulation with exception of Taylor’s model.

On the other hand and as can see in the Figure 14 to 16; for linear, periodic and uniform
models, the hexagonal RVE has Young’s module slightly greater than rectangular RVE for vol-
umetric graphite fraction equal to 11.5%. For volumetric graphite fraction greater than 11,5%,
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the behavior is reversed. Should be clarified, the volumetric graphite fraction is not very greater
than 14% for the SGI.

Figure 14: Comparison of the results of linear multi-scale simulation for rectangular and hexagonal RVE.

Figure 15: Comparison of the results of periodic multi-scale simulation for rectangular and hexagonal RVE.
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Figure 16: Comparison of the results of uniform multi-scale simulation for rectangular and hexagonal RVE.

5 CONCLUSIONS

A comparison between a classical analytical expression for the effective Young’s modulus
and the results of a computationally-based multi-scale analysis has been presented in this paper
by using two shapes for the RVE (rectangular and hexagonal). A set of the micrograph was
enhanced and segmented to obtain the volume fraction of metallic matrix and graphite phase
and the boundary of each object. With this information, a finite element mesh was constructed,
for each image. The multi-scale model is based in a classical homogenization procedure over a
variational framework. For this work, only the linear elasticity model was used in the derivation
of the macro-scopic Young’s modulus.

For the analyzed RVEs, the constitutive response of the hexagonal RVE is most rigid than
the rectangular RVE for a volumetric graphite fraction less than 11.5%, for a greater fraction
the behavior is reversed. This conclusion holds for all the multi-scale models.

The results obtained indicate a good match of the analytical expression with the classical
linear boundary displacement multi-scale model. For the other models investigated, the differ-
ence never exceeded the 5%. This difference indicates that the analytical expression given by
Equation 31 could be used in an engineering application for prediction of the effective elastic
parameter. However, for an accurate estimate of the macro-scopic Young’s modulus, a more de-
tailed multi-scale study is needed. In particular, it is necessary take into account, among others,
the shape and size of the RVE. These aspects are currently under investigation.
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