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Abstract. In the nineteen sixties and the seventies, rapid development of Modern Continuum Mechanics
was based on the fundamental ideas set forth in the biblical treatise, The Non-Linear Field Theories of
Mechanics, by Truesdell and Noll. Of them, one of the most important ideas is the principle of material
frame-indifference (MFI). Unfortunately, due to the original somewhat loose statements, attempts for
better interpretation of MFI appeared again and again throughout the following decades even until these
days. Some involving serious misunderstandings and misinterpretations, hidden behind some seemingly
plausible physical arguments or some impressive yet over-sophisticated mathematics.

As we understand, the essential meaning of MFI is the simple idea that material properties are inde-
pendent of observers. In order to explain this, we shall describe what a frame of reference (regarded as an
observer) is, and one shall never forget that any configuration/motion implies a previous choice of frame.
Transformation properties for kinematic quantities can usually be derived from the deformation/motion
under change of frame. For a non-kinematic quantity, such as force and stress, frame-indifference prop-
erty (also known as objectivity) can not be derived and hence must be postulated. Frame-indifference
postulate for the stress, sometimes unsuitably called the principle of frame-indifference, is a universal
assumption which has nothing to do with material properties. This has caused some great confusions in
the interpretation of “material” frame-indifference in the literature.

Mathematically, the principle of material frame-indifference can be stated as invariance of constitu-
tive function under change of frame. However, great care must be observed of what such constitutive
functions are. They should not simply be the constitutive functions relative to some reference configura-
tion in two different frames, because a choice of reference configuration may change material properties.
We shall carefully state the domain of constitutive functions and with clear and simple mathematical rea-
soning deduce the well-known condition of material objectivity as a consequence of objectivity postulate
and the principle of material frame-indifference.

In this paper we show some misunderstandings and misstatements found in the very recent literature
and we show how to correct them.
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1 INTRODUCTION

Constitutive equations relates motion and forces of a material body. Hooke, in 1678 (Hooke
(1931)), was the first to state a constitutive equation for a spring and to remark that the response
of the spring is unaffected by a rigid motion. Later in 1829, Poisson and Cauchy (Poisson
(1829); Cauchy (1829)), remarked also rotational-invariance of material response. Zaremba in
1905 (Zaremba (1903)) and Jaumann in 1906 (Jaumann (1906)), on the other hand, demanded
invariance of response of a material for all observers. While all these ideas and some similar
ones may be regarded as somewhat obvious, it might be more subtle to state them clearly. Var-
ious invariance ideas of material response were integrated for the first time in the fundamental
treatise, The Non-Linear Field Theories of Mechanics, by Truesdell and Noll (Truesdell and
Noll (2004)). In the nineteen sixties and the seventies, rapid development of Modern Contin-
uum Mechanics was based on the fundamental ideas set forth in this treatise. Of them, one of
the most important ideas is the principle of material frame-indifference (MFI). Unfortunately,
due to the original somewhat loose statements in mathematical terms, attempts for better inter-
pretation of MFI appeared again and again throughout the following decades even until these
days (Frewer (2009); Gurtin et al. (2010); Murdoch (2003, 2005); Noll (2006); Noll and Seguin
(2010); Ryskin (1985); Woods (1981)).

As we understand, the essential meaning of MFI is the simple idea that material properties are
independent of observers. In order to explain this, we shall describe what a frame of reference
(regarded as an observer) is, and one shall never forget that any configuration/motion implies a
previous choice of frame (except some frame-free formulation (Noll (2006); Noll and Seguin
(2010))). Transformation properties for kinematic quantities can usually be derived from the
deformation/motion under change of frame. For a non-kinematic quantity, such as force and
stress, frame-indifference property (also known as objectivity) cannot be derived and hence
must be postulated. Frame-indifference postulate for the stress, sometimes unsuitably called
the principle of frame-indifference, is a universal assumption which has nothing to do with
material properties. This has caused some great confusions in the interpretation of “material”
frame-indifference in the literature.

Mathematically, the principle of material frame-indifference can be stated as invariance of
constitutive function under change of frame. However, great care must be observed of what such
constitutive functions are. They should not simply be the constitutive functions relative to some
reference configuration in two different frames, because a choice of reference configuration may
change material properties. We shall carefully state the domain of constitutive functions and the
notion of observer-independence to deduce the well-known condition of material objectivity as
a consequence of objectivity postulate and the principle of material frame-indifference.

In this paper we shall remark on some misunderstandings and misstatements found in the
very recent literature. Conventional notations now widely used in continuum mechanics text-
books will be followed. The main concepts, such as placement, configuration, deformation, that
are essential are clearly described. For allowing different observers possibly belong to differ-
ent Euclidean spaces as suggested by someone with more critical mind (Murdoch (2005)), our
formulations take this into consideration, for which we introduce some notions of isometries in
Euclidean spaces with changes in orientation as well as scaling.

Isometries in Euclidean spaces

For a Euclidean space E, there is a vector space V, called the translation space of E, such
that the difference v = x2 − x1 of any two points x1,x2 ∈ E is a vector in V. We also require
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that the vector space V be equipped with an inner product (·, ·)V, so that length and angle can
be defined.

Let V∗ be the translation space of another Euclidean space E∗ and L(V,V∗) be the space of
linear transformations from V to V∗. ForA ∈ L(V,V∗), the transpose (or more generally called
adjoint) of A, denoted by A> ∈ L(V∗,V) satisfies (u, A>v∗)V = (Au,v∗)V∗ for u ∈ V and
v∗ ∈ V∗.

Remark. In an inner product space, since the norm is defined as ‖u‖V =
√

(u,u)V, from the
identity, ‖u + v‖2

V = ‖u‖2
V + ‖v‖2

V + 2(u,v)V, it follow that

‖u‖2
V = ‖u∗‖2

V∗ ⇐⇒ (u,v)V = (u∗,v∗)V∗ ,

for any corresponding u,v ∈ V and u∗,v∗ ∈ V∗. tu

Definition. I ∈ L(V,V∗) is called an isometric transformation if ‖Iu‖V∗ = ‖u‖V for any
u ∈ V. Let O(V,V∗) denote the set of all isometric transformations in L(V,V∗).

From the above observation, an isometric transformation preserves the norm as well as the
inner product, the length and the angle.

Definition. (Isometry): A bijective map i : E→ E∗ is an isometry if for x ∈ E,

x∗ = i(x) = I(x− x0) + x∗0, (1)

for some x0 ∈ E, x∗0 ∈ E∗ and some I ∈ O(V,V∗).

Let L(V) = L(V,V) be the space of linear transformations and O(V) = O(V,V) be the
group of orthogonal transformation on V. Note that O(V,V∗) does not have a group structure
in general. The transformation (1) is often referred to as a Euclidean transformation when
E = E∗ and V = V∗. In this case I ∈ O(V) is an orthogonal transformation.

For I ∈ O(V,V∗), it follows that I>I = IV and I I> = IV∗ are identity transformations.
Hence I> = I−1 and I> ∈ O(V∗,V) is an isometric transformation from V∗ to V. Moreover,
if R ∈ O(V,V∗), then I>R ∈ O(V) and I R> ∈ O(V∗) are orthogonal transformations
on V and V∗ respectively. Indeed, isometric transformation is the counterpart of orthogonal
transformation when two different vector spaces are involved.

2 FRAME OF REFERENCE

The event worldW is a four-dimensional space-time in which physical events occur at some
places and certain instants. Let T be the collection of instants andWs be the placement space
of simultaneous events at the instant s, then the neo-classical space-time (Noll (1973)) can be
expressed as the disjoint union of placement spaces of simultaneous events at each instant,

W =
⋃
s∈T

Ws .

A point ps ∈ W is called an event, which occurs at the instant s and the place p ∈ Ws. At
different instants s and s̄, the spacesWs andWs̄ are two disjoint spaces. Thus it is impossible
to determine the distance between two non-simultaneous events at ps and ps̄ if s 6= s̄, and hence
W is not a product space of space and time. However, it can be set into correspondence with a
product space through a frame of reference onW .
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Definition. (Frame of reference): A frame of reference is a one-to-one mapping

φ :W → E× R,

taking ps 7→ (x, t), where R is the space of real numbers and E is a three-dimensional Euclidean
space. We shall denote the map taking p 7→ x as the map φs :Ws → E.

In general, the Euclidean spaces of different frames of reference may not be the same. There-
fore, for definiteness, we shall denote the Euclidean space of the frame φ by Eφ, and its transla-
tion space by Vφ. We assume that Vφ is an inner product space.

Of course, there are infinite many frames of reference. Each one of them may be regarded
as an observer, since it can be depicted as a person taking a snapshot so that the image of φs
is a picture (three-dimensional at least conceptually) of the placements of the events at some
instant s, from which the distance between two simultaneous events can be measured. A se-
quence of events can also be recorded as video clips depicting the change of events in time by
an observer.

Now, suppose that two observers are recording the same events with video cameras. In
order to compare their video clips regarding the locations and time, they must have a mutual
agreement that the clock of their cameras must be synchronized so that simultaneous events
can be recognized and since during the recording two observers may move independently while
taking pictures with their cameras from different angles, there will be a relative motion, a scaling
and a relative orientation between them. We shall make such a consensus among observers
explicit mathematically.

-

�
�

�
�	

@
@
@
@R

ps ∈ W

(x, t) ∈ Eφ × R (x∗, t∗) ∈ Eφ∗ × R∗

φ φ∗

Figure 1: A change of frame

Let φ and φ∗ be two frames of reference. They are related by the composite map ∗ :=
φ∗ ◦ φ−1,

∗ : Eφ × R→ Eφ∗× R, taking (x, t) 7→ (x∗, t∗),

where (x, t) and (x∗, t∗) are the position and time of the same event observed by φ and φ∗

simultaneously. In general Eφ and Eφ∗ are different Euclidean spaces. Physically, an arbitrary
map would be irrelevant as long as we are interested in establishing a consensus among ob-
servers, which requires preservation of distance between simultaneous events and time interval
as well as the sense of time.

Definition. (Euclidean change of frame): A change of frame (observer) from φ to φ∗ taking
(x, t) 7→ (x∗, t∗), is an isometry of space and time given by

x∗ = Q(t)(x− x0) + c∗(t), t∗ = t+ a, (2)

for some constant time difference a ∈ R, some relative translation c∗ : R → Eφ∗ with respect
to the reference point x0 ∈ Eφ and some Q : R→ O(Vφ,Vφ∗).
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We have denoted O(Vφ,Vφ∗) = {Q ∈ L(Vφ,Vφ∗) : ‖Qu‖Vφ∗ = ‖u‖Vφ , ∀u ∈ Vφ}.
Euclidean changes of frame will often be called changes of frame for simplicity, since they
are the only changes of frame among consenting observers of our concern for the purpose of
discussing frame-indifference in continuum mechanics.

All consenting observers form an equivalent class, denoted by E, among the set of all ob-
servers, i.e., for any φ, φ∗ ∈ E, there exists a Euclidean change of frame from φ → φ∗. From
now on, only classes of consenting observers will be considered. Therefore, any observer,
would mean any observer in some E, and a change of frame, would mean a Euclidean change
of frame.

3 MOTION AND DEFORMATION

In the space-time, a physical event is represented by its placement at a certain instant so that
it can be observed in a frame of reference. Let a body B be a set of material points.

Definition. (Configuration): Let ξ : B → Wt be a placement of the body B at the instant t, and
let φ be a frame of reference, then the composite map ξφt := φt ◦ ξ,

ξφt : B → Eφ

is called a configuration of the body B at the instant t in the frame φ.

A configuration thus identifies the body with a region in the Euclidean space of the observer.
In this sense, the motion of a body can be viewed as a continuous sequence of events such that
at any instant t, the placement of the body B inWt is a one-to-one mapping

χ
t : B → Wt,

and the composite mapping χφt := φt ◦ χt,

χ
φt : B → Eφ, x = χ

φt(p) = φt(χt(p)), p ∈ B,

is the configuration of the body at time t, with Bχt := χ
φt(B) ⊂ Eφ (see the right part of

Figure 2). The motion can then be regarded as a sequence of configurations of B in time,
χ
φ = {χφt , t ∈ R | χφt : B → Eφ}. We can also express a motion as

χ
φ : B × R→ Eφ, x = χ

φ(p, t) = χ
φt(p), p ∈ B.

Note that in our discussions, we have been using t ∈ R as the time in the frame φ corresponding
to the instant s ∈ T with s = t for simplicity without loss of generality.

p ∈ B

Wt0 Wt

X ∈ Bκ ⊂ Eφ x ∈ Bχt ⊂ Eφ

�
�
�

�
�
�

�
�
��+

Q
Q
Q
Q
Q
Q
Q
Q
QQs

-

? ?

��������)

PPPPPPPPq

χ
κφ( · , t)

κφ χ
φt

κ χ
t

φt0 φt

Figure 2: Motion χφt , reference configuration κφ and deformation χκφ( · , t)
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Reference configuration

We regard a body B as a set of material points. Although it is possible to endow the body
as a manifold with a differentiable structure and topology for doing mathematics on the body,
to avoid such mathematical subtleties, usually a particular configuration is chosen as reference
(see the left part of Figure 2),

κφ : B → Eφ, X = κφ(p), Bκ := κφ(B) ⊂ Eφ,

so that the motion at an instant t is a one-to-one mapping

χ
κφ(·, t) : Bκ → Bχt , x = χ

κφ(X, t) = χ
φt(κ

−1
φ (X)), X ∈ Bκ,

from a region into another region in the same Euclidean space Eφ for which topology and
differentiability are well defined. This mapping is called a deformation from κ to χ

t in the
frame φ and a motion is then a sequence of deformations in time.

For the reference configuration κφ, there is some instant, say t0, at which the reference
placement of the body is chosen, κ : B → Wt0 (see Figure 2). On the other hand, the choice
of a reference configuration is arbitrary, and it is not necessary that the body should actually
occupy the reference place in its motion under consideration. Nevertheless, in most practical
problems, t0 is usually taken as the initial time of the motion.

4 FRAME-INDIFFERENCE

The change of frame (2) gives rise to a linear mapping on the translation space, in the fol-
lowing way: Let u(φ) = x2 − x1 ∈ Vφ be the difference vector of x1,x2 ∈ Eφ in the frame φ,
and u(φ∗) = x∗2 − x∗1 ∈ Vφ∗ be the corresponding difference vector in the frame φ∗, then from
(2), it follows immediately that

u(φ∗) = Q(t)u(φ),

where Q(t) ∈ O(Vφ,Vφ∗) is the isometric transformation associated with the change of frame
φ→ φ∗.

Any vector quantity in Vφ , which has this transformation property, is said to be objective
with respect to Euclidean transformations, objective in the sense that it pertains to a quantity of
its real nature rather than its values as affected by different observers. This concept of objectivity
can be generalized to any tensor spaces of Vφ.

Let

s : E→ R, u : E→ VE, T : E→ VE ⊗ VE,

where E is the Euclidean class of frames of reference and VE = {Vφ : φ ∈ E}. They are scalar,
vector and (second order) tensor observable quantities respectively. We call f(φ) the value of
the quantity f observed in the frame φ.

Definition. (Frame-indifference): Relative to a change of frame from φ to φ∗, the observables
s, u and T are called frame-indifferent (or objective) scalar, vector and tensor quantities respec-
tively, if they satisfy the following transformation properties:

s(φ∗) = s(φ),

u(φ∗) = Q(t)u(φ),

T (φ∗) = Q(t)T (φ)Q(t)>,
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where Q(t) ∈ O(Vφ,Vφ∗) is the isometric transformation of the change of frame from φ to φ∗.

More precisely, they are also said to be frame-indifferent with respect to Euclidean trans-
formations or simply Euclidean objective. For simplicity, we often write f = f(φ) and f ∗ =
f(φ∗).

The definition of objective scalar is self-evident. For the definition of objective tensors, we
consider an inner product (u, Tv)V. For any objective vectors u∗ = Qu, v∗ = Qv, it follows
that

(u∗, T ∗v∗)V∗ = (Qu, T ∗Qv)V∗ = (u,Q>T ∗Qv)V.

Therefore, if s = (u, Tv)V is an objective scalar, that is, (u∗, T ∗v∗)V∗ = (u, Tv)V, then it
implies that T is an objective tensor satisfying T ∗ = QT Q>.

Transformation properties of motion

Let χφ be a motion of the body in the frame φ, and χφ∗ be the corresponding motion in φ∗,

x = χ
φ(p, t), x∗ = χ

φ∗(p, t∗), p ∈ B.

Then from (2), we have

χ
φ∗(p, t∗) = Q(t)(χφ(p, t)− xo) + c∗(t), p ∈ B,

from which, one can easily show that the velocity and the acceleration are not objective quanti-
ties,

ẋ∗ = Qẋ + Q̇(x− xo) + ċ∗,

ẍ∗ = Qẍ + 2Q̇ẋ + Q̈(x− x0) + c̈∗. (3)

A change of frame (2) with constantQ and c∗(t) = c0 +c1t, for constant c0 and c1 (so that Q̇ =
0 and c̈∗ = 0), is called a Galilean transformation. Therefore, from (3) we conclude that the
acceleration is not Euclidean objective but it is objective with respect to Galilean transformation.
Moreover, it also shows that the velocity is neither a Euclidean nor a Galilean objective vector
quantity.

Transformation properties of deformation gradient

Let κ : B → Wt0 be a reference placement of the body at some instant t0 (see Figure 3), then

κφ = φt0 ◦ κ and κφ∗ = φ∗t0 ◦ κ (4)

are the corresponding reference configurations of B in the frames φ and φ∗ at the same instant,
and

X = κφ(p), X∗ = κφ∗(p), p ∈ B.

Let us denote by γ = κφ∗ ◦ κ−1
φ the change of reference configuration from κφ to κφ∗ in the

change of frame, then it follows from (4) that γ = φ∗t0 ◦ φ
−1
t0 and by (2), we have

X∗ = γ(X) = Q(t0)(X − xo) + c∗(t0). (5)
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Wt0

p ∈ B

X ∈ Bκ ⊂ Eφ X∗ ∈ Bκ∗ ⊂ Eφ∗
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Figure 3: Reference configurations κφ and κφ∗ in the change of frame from φ to φ∗

On the other hand, the motion in referential description relative to the change of frame is
given by x = χ

κ(X, t) and x∗ = χ
κ∗(X∗, t∗). Hence from (2), we have

χ
κ∗(X∗, t∗) = Q(t)(χκ(X, t)− xo) + c∗(t).

Therefore we obtain for the deformation gradients, F = ∇XXXχκ in the frame φ and F ∗ =
∇XXX∗χκ∗ in the frame φ∗, by the chain rule and the use of (5),

F ∗(X∗, t∗) = Q(t)F (X, t)Q(t0)>, or simply F ∗ = QFQ>0 , (6)

where Q0 = Q(t0) is the isometric transformation due to the change of frame at the instant t0
when the reference configuration is chosen.

The deformation gradient F is not a Euclidean objective tensor. However, the property (6)
also shows that it is objective with respect to Galilean transformations, since in this case, Q(t)
is a constant isometric transformation.

Remark 1. The transformation property (6) stands in contrast to F ∗ = QF , the widely used
formula which is obtained “provided that the reference configuration is unaffected by the change
of frame” as usually implicitly assumed, so that Q0 reduces to the identity transformation. On
the other hand, the transformation property (6) has also been derived elsewhere in the literature
(Murdoch (2000) and Ogden (1997) Sec. 2.2.8). tu
Remark 2. Remember that a configuration is a placement of a body relative to a frame of
reference and any reference configuration is not an exception. Therefore, to say that the “refer-
ence configuration is unaffected by the change of frame” is at best an assumption (Truesdell and
Noll (2004) p. 308), or simply a misunderstanding (Gurtin et al. (2010) Sec. 20.1). For the same
reason, two consenting observers cannot independently choose their reference configurations,
because they must choose the configuration of the body at the same instant of their respective
frames of reference (see discussions in (Liu (2005); Murdoch (2005))). tu

5 GALILEAN INVARIANCE OF BALANCE LAWS

In classical mechanics, Newton’s first law, often known as the law of inertia, is essentially a
definition of inertial frame.

Definition. (Inertial frame): A frame of reference is called an inertial frame if, relative to it,
the velocity of a body remains constant unless the body is acted upon by an external force.

We present the first law in this manner in order to emphasize that the existence of inertial
frames is essential for the formulation of Newton’s second law, which asserts that relative to an
inertial frame, the equation of motion takes the simple form:

m ẍ = f. (7)
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Now, we shall assume that there is an inertial frame φ0 ∈ E, for which the equation of motion
of a particle is given by (7), and we are interested in how the equation is transformed under a
change of frame.

Unlike the acceleration, transformation properties of non-kinematic quantities cannot be de-
duced theoretically. Instead, for the mass and the force, it is conventionally postulated that they
are Euclidean objective scalar and vector quantities respectively, so that for any change from φ0

to φ∗ ∈ E given by (2), we have

m∗ = m, f∗ = Q f,

which together with (3), by multiplying (7) with Q, we obtain the equation of motion in the
(non-inertial) frame φ∗,

m∗ẍ∗ = f∗ + m∗ i∗, (8)

where i∗ is called the inertial force given by

i∗ = c̈∗ + 2Ω(ẋ∗ − ċ∗) + (Ω̇− Ω2)(x∗ − c∗),

where Ω = Q̇Q> : R→ L(Vφ∗) is called the spin tensor of the frame φ∗ relative to the inertial
frame φ0.

Note that the inertial force vanishes if the change of frame φ0 → φ∗ is a Galilean transfor-
mation, i.e., Q̇ = 0 and c̈∗ = 0, and hence the equation of motion in the frame φ∗ also takes the
simple form,

m∗ẍ∗ = f∗,

which implies that the frame φ∗ is also an inertial frame.
Therefore, any frame of reference obtained from a Galilean change of frame from an inertial

frame is also an inertial frame and thus, all inertial frames form an equivalent class G, such that
for any φ, φ∗ ∈ G, the change of frame φ→ φ∗ is a Galilean transformation. The Galilean class
G is a subclass of the Euclidean class E.

In short, we can assert that physical laws, like the equation of motion, are in general not (Eu-
clidean) frame-indifferent. Nevertheless, the equation of motion is Galilean frame-indifferent,
under the assumption that mass and force are frame-indifferent quantities. This is usually re-
ferred to as Galilean invariance of the equation of motion.

Motivated by classical mechanics, the balance laws of mass, linear momentum, and energy
for deformable bodies,

ρ̇+ ρ div ẋ = 0,

ρ ẍ− div T = ρ b, (9)

ρ ε̇+ div q − T · grad ẋ = ρ r,

in an inertial frame are required to be invariant under Galilean transformation. Since two inertial
frames are related by a Galilean transformation, it means that the equations (9) should hold in
the same form in any inertial frame. In particular, the balance of linear momentum takes the
forms in the inertial frames φ, φ∗ ∈ G,

ρ ẍ− div T = ρ b, ρ∗ẍ∗ − (div T )∗ = ρ∗b∗.
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Since the acceleration ẍ is Galilean objective, in order this to hold, it is usually assumed that
the mass density ρ, the Cauchy stress tensor T and the body force b are objective scalar, tensor,
and vector quantities respectively. Similarly, for the energy equation, it is also assumed that
the internal energy ε and the energy supply r are objective scalars, and the heat flux q is an
objective vector. These assumptions concern the non-kinematic quantities, including external
supplies (b, r), and the constitutive quantities (T, q, ε).

In fact, for Galilean invariance of the balance laws, only frame-indifference with respect to
Galilean transformation for all those non-kinematic quantities would be sufficient. However,
similar to classical mechanics, it is postulated that they are not only Galilean objective but
also Euclidean objective. Therefore, with the known transformation properties of the kinematic
variables, the balance laws in any arbitrary frame can be deduced.

To emphasize the importance of the objectivity postulate for constitutive theories, it will be
referred to as Euclidean objectivity for constitutive quantities:

Euclidean objectivity. The constitutive quantities: the Cauchy stress T , the heat flux q and the
internal energy density ε, are Euclidean objective (Euclidean frame-indifferent),

T (φ∗) = Q(t)T (φ)Q(t)>, q(φ∗) = Q(t) q(φ), ε(φ∗) = ε(φ), (10)

where Q(t) ∈ O(Vφ,Vφ∗) is the isometric transformation of the change of frame from φ to φ∗.

Note that this postulate concerns only frame-indifference properties of balance laws, so that
it is a universal property for any deformable bodies, and therefore, do not concern any aspects
of material properties of the body.

6 CONSTITUTIVE EQUATIONS IN MATERIAL DESCRIPTION

Physically a state of the thermomechanical behavior of a body is characterized by a de-
scription of the fields of density ρ(p, t), motion χ(p, t) and temperature θ(p, t). The material
properties of a body generally depend on the past history of its thermomechanical behavior.

Let us introduce the notion of the past history of a function. Let h(·) be a function of time.
The history of h up to time t is defined by

ht(s) = h(t− s),

where s ∈ [ 0,∞) denotes the time-coordinate pointed into the past from the present time t.
Clearly s = 0 corresponds to the present time, therefore ht(0) = h(t).

Mathematical descriptions of material properties are called constitutive equations. We pos-
tulate that the history of thermomechanical behavior up to the present time determines the prop-
erties of the material body.

Principle of determinism. Let φ be a frame of reference, and C be a constitutive quantity, then
the constitutive equation for C is given by a functional of the form,

C(φ, p, t) = Fφ(ρt, χt, θt; p), p ∈ B, t ∈ R, (11)

where the first three arguments are history functions:

ρt : B × [ 0,∞)→ R, χt : B × [ 0,∞)→ Eφ, θt : B × [ 0,∞)→ R.

We call Fφ the constitutive function of C in the frame φ. Such a functional allows the
description of arbitrary non-local effect of an inhomogeneous body with a perfect memory of
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the past thermomechanical history. With the notation Fφ, we emphasize that the value of a
constitutive function may depend on the frame of reference φ.

For simplicity, for further discussions on constitutive equations, we shall restrict our attention
to material models for mechanical theory only, and only constitutive equations for the stress
tensor will be considered. General results can be found elsewhere (Liu (2002, 2009)).

In order to avoid possible confusions arisen from the viewpoint of employing different Eu-
clidean spaces, we shall be more careful about expressing relevant physical quantities in the
proper space.

Let the set of history functions on a set X in some space W be denoted by

H(X ,W) = {ht : X × [0,∞)→W}.

Then the constitutive equation for the stress tensor, T (φ, p, t) ∈ Vφ ⊗ Vφ, can be written as

T (φ, p, t) = Fφ(χt; p), φ ∈ E, p ∈ B, χt ∈ H(B,Eφ). (12)

Condition of Euclidean objectivity

Let φ∗ ∈ E be another observer, then the respective constitutive equation for the stress,
T (φ∗, p, t∗) ∈ Vφ∗ ⊗ Vφ∗ , can be written as

T (φ∗, p, t∗) = Fφ∗((χt)∗; p), p ∈ B, (χt)∗ ∈ H(B,Eφ∗),

where the corresponding histories of motion are related by

(χt)∗(p̄, s) = Qt(s)(χt(p̄, s)− xo) + c∗t(s),

for any s ∈ [ 0,∞) and any p̄ ∈ B in the change of frame φ→ φ∗ given by (2).
We need to bear in mind that according to the assumption referred to as the Euclidean objec-

tivity (10), the stress is a frame-indifferent quantity under a change of observer,

T (φ∗, p, t∗) = Q(t)T (φ, p, t))Q(t)>.

Therefore, it follows immediately that

Fφ∗((χt)∗; p) = Q(t)Fφ(χt; p)Q(t)>, (13)

where Q(t) ∈ O(Vφ,Vφ∗) is the isometric transformation of the change of frame φ→ φ∗.
The relation (13) will be referred to as the condition of Euclidean objectivity. It is a relation

between the constitutive functions relative to two different observers. In other words, different
observers cannot independently propose their own constitutive equations. Instead, the condition
of Euclidean objectivity (13) determines the constitutive function Fφ∗ once the constitutive
function Fφ is given or vice-versa. They determine one from the other in a frame-dependent
manner.

7 PRINCIPLE OF MATERIAL FRAME-INDIFFERENCE

It is obvious that not any proposed constitutive equations would physically make sense as
material models. First of all, they may be frame-dependent. However, since the constitutive
functions must characterize the intrinsic properties of the material body itself, it should be
observer-independence in certain sense. Consequently, there must be some restrictions imposed
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on the constitutive functions so that they would be indifferent to the change of frame. This is
the essential idea of the principle of material frame-indifference.

Remark 3. In the case that does not distinguish the Euclidean spaces relative to different
observers, i.e., Eφ = Eφ∗ = E and Vφ = Vφ∗ = V, as adopted usually in the literature
(Truesdell and Noll (2004); Liu (2002, 2009)), the principle of material frame-indifference can
simply be postulated as

Fφ( • ; p) = Fφ∗( • ; p), p ∈ B. (14)

where • represents the history of motion in H(B,E) which is the common domain of the two
functionals, and their values are in the same tensor space V⊗ V.

This states that for different observers φ, φ∗ ∈ E, they all have the same constitutive function,
Fφ = Fφ∗ . Note that in (14) the material point p is superfluously indicated to emphasize that it is
valid only when the material description is used, because presumably the presence of reference
configuration in the change of frame may change the properties of materials. tu

Recall that a change of frame ∗ : φ→ φ∗ is associated with an isometry between Eφ and Eφ∗
and conversely, given an isometry

i : Eφ → Eφ∗ , i(x) = I(x− xi) + x∗i ,

there is a change of frame i : φ → φi (with the same notation for simplicity). For this change
of frame I ∈ O(Vφ,Vφ∗) and Eφi = Eφ∗ . Therefore, it must satisfy the following condition of
Euclidean objectivity (13),

Fφi(i(χt); p) = I(t)Fφ(χt; p) I(t)>, χt ∈ H(B,Eφ), (15)

for which i(χt) ∈ H(B,Eφ∗), and the values of Fφi ∈ Vφ∗ ⊗ Vφ∗ .
Now, consider another isometry between Eφ and Eφ∗ ,

j : Eφ → Eφ∗ , j(x) = J (x− xj) + x∗j .

Similarly, there is a change of frame j : φ→ φj with J ∈ O(Vφ,Vφ∗), and Eφj = Eφ∗ , and we
have the condition of Euclidean objectivity,

Fφj(j(χt); p) = J (t)Fφ(χt; p)J (t)>, χt ∈ H(B,Eφ), (16)

for which j(χt) ∈ H(B,Eφ∗), and the values of Fφj ∈ Vφ∗ ⊗ Vφ∗ as before.
Note that the two isometries induce two changes of frame from φ to two different frames

φi and φj in the same Euclidean space Eφ∗ . Moreover, the two constitutive functions Fφi and
Fφj have the common domain H(B,Eφ∗) and their values are in the same space Vφ∗ ⊗ Vφ∗ .
Therefore, we can postulate:

Principle of material frame-indifference. Let φi and φj be two frames of reference induced
by two isometries i, j : Eφ → Eφ∗ , then the corresponding constitutive function Fφi and Fφj
must have the same form,

Fφi( • ; p) = Fφj( • ; p), p ∈ B, (17)
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where • represents the history of motion in H(B,Eφ∗).

This simple relation renders mathematically the basic idea of frame-indifference of material
behavior: the constitutive function, which models the intrinsic behavior of the material, is in-
dependent of observer – form invariance of constitutive functions, Fφi = Fφj (equivalence of
(14) when Eφ = Eφ∗).

We can now easily deduce the restriction on the constitutive function imposed by the princi-
ple of material frame-indifference. From the relation (15) and (16), we have

Fφ(χt; p) = I(t)>Fφi(i(χt); p) I(t) = I(t)>Fφj(i(χt); p) I(t)

= I(t)>Fφj(j ◦ (j−1 ◦ i)(χt); p) I(t)

= I(t)>J (t)Fφ((j−1 ◦ i)(χt); p)J (t)>I(t).

The underlined composite mapping q = (j−1 ◦ i) is a Euclidean transformation (an isometry)
from Eφ to itself,

q : Eφ → Eφ, q(x) = Q(t)(x− x0) + r(t),

where Q = J >I ∈ O(Vφ) is an orthogonal transformation on Vφ, and some x0, r(t) ∈ Eφ.
Therefore, from the above relations, we obtain the following consequence of the principle of
material frame-indifference:

Condition of material objectivity. In a frame of reference φ, the constitutive function Fφ
must satisfies the condition,

Fφ(q(χt); p) = Q(t)Fφ(χt; p)Q(t)>, p ∈ B, (18)

for any history of motion χt ∈ H(B,Eφ) and any Euclidean transformation

q : Eφ → Eφ, q(x) = Q(t)(x− x0) + r(t),

with some orthogonal transformation Q(t) ∈ O(Vφ), and some x0, r(t) ∈ Eφ.

Since the condition (18) involves only one single frame of reference φ, it imposes a restriction
on the constitutive function Fφ. Sometimes, the condition of material objectivity is referred
to as the “principle of material objectivity”, to impart its relevance in characterizing material
property and Euclidean objectivity, as a more explicit form of the principle of material-frame
indifference. Indeed, the original principle of material frame-indifference in the fundamental
treatise (Truesdell and Noll (2004)) was formulated in the form (18) instead of more intuitive
expression (17).

Remark 4. There is an apparent similarity between the two relations (13) and (18). We em-
phasize that in the condition of Euclidean objectivity (13), Q(t) is the orthogonal (isometric)
transformation associated with the change of frame from φ to φ∗. While the condition of mate-
rial objectivity (18) is valid in a single frame φ for an arbitrary orthogonal transformation Q(t).
Nevertheless, this apparent similarity still causes some confusions in the literature, in the occa-
sional use of the “principle of frame-indifference”, which may mean one condition for someone
or the other condition for someone else (Gurtin et al. (2010); Ryskin (1985); Woods (1981)).
From our discussions so far, as we understand, the frame-indifference should not be regarded as
a physical principle, it merely concerns the transformation properties due to changes of frame
for kinematic or non-kinematic quantities, while the principle of material frame-indifference
concerns material properties relative to different observers. tu
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8 CONSTITUTIVE EQUATIONS IN REFERENTIAL DESCRIPTION

For mathematical analysis, it is more convenient to use referential description so that mo-
tions can be defined on the Euclidean space instead of the set of material points. Therefore,
for further discussions, we shall reinterpret the principle of material frame-indifference for con-
stitutive equations, or equivalently the condition of material objectivity, relative to a reference
configuration.

Let κ : B → Wt0 be a reference placement of the body at some instant t0 (see Fig. 2), then
κφ = φt0 ◦ κ : B → Eφ is the reference configurations of B in the frame φ, and

X = κφ(p) ∈ Eφ, p ∈ B, Bκ = κφ(B) ⊂ Eφ.

The motion χ : B × R→ Eφ relative to the reference configuration κφ is given by

χ
κ(·, t) : Bκ → Eφ, x = χ(p, t) = χ(κ−1

φ (X), t) = χ
κ(X, t), χ = χ

κ ◦ κφ.

We can define the corresponding constitutive functions with respect to the reference configura-
tion,

Fφ(χt; p) = Fφ(χtκ ◦ κφ; κ−1
φ (X)) := Fκ(χtκ;X),

and from (18), the condition of material objectivity for the constitutive function in the reference
configuration can be restated as

Fκ(q(χtκ);X) = Q(t)Fκ(χtκ;X)Q(t)>, X ∈ Bκ, (19)

for any history of motion χtκ ∈ H(Bκ,Eφ) and any Euclidean transformation

q : Eφ → Eφ, q(χκ(X, t)) = Q(t)(χκ(X, t)− x0) + r(t),

for some orthogonal transformation Q(t) ∈ O(Vφ), and some x0, r(t) ∈ Eφ.

Remark 5. Note that the condition (19) is valid for any Euclidean transformation q : Eφ → Eφ,
which can also be interpreted as a time-dependent rigid deformation of the body in the Euclidean
space Eφ. This interpretation is sometimes viewed as an alternative version of the principle of
material frame-indifference and is called the “principle of invariance under superimposed rigid
body motions”. tu

Simple materials

According to the principle of determinism (11), thermomechanical histories of any part of
the body can affect the response at any point of the body. In most applications, such a non-local
property is irrelevant. Therefore, it is usually assumed that only thermomechanical histories in
an arbitrary small neighborhood of X affects the material response at the point X , and hence
the global history functions can be approximated at X by Taylor series up to certain order in
a small neighborhood of X . In particular, when only linear approximation is concerned, the
constitutive function is restricted to a special class of materials,

Fκ(χtκ(·),X) = Hκ(∇XXXχtκ(X),X),

so that we can write the constitutive equation for the stress as

T (X, t) = Hκ(F
t
κ;X), F t

κ ∈ H({X}, L(Vφ)), X ∈ Bκ, (20)
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where F t
κ = ∇XXXχtκ is the deformation gradient and the domain of the history is a single point

{X}. Note that although the constitutive function depends only on local values at the position
X , it is still general enough to define a material with memory of local deformation in the past.
A material with constitutive equation (20) is called a simple material. The class of simple
materials is general enough to include most of the materials of practical interests, such as:
elastic solids, viscoelastic solids, as well as elastic fluids and Navier-Stokes fluids.

For the Euclidean transformation q : Eφ → Eφ and x = χ
κ(X, t) from (19), we have

∇XXXq(χtκ(X)) = ∇xxxq(χtκ(X))∇XXXχtκ(X) = QtF t
κ(X).

Therefore, we obtain the following main result for simple materials:

Condition of material objectivity. For simple materials relative to a reference configuration,
the constitutive equation T (X, t) = Hκ(F

t
κ;X) satisfies

Hκ(Q
tF t

κ;X) = Q(t)Hκ(F
t
κ;X)Q(t)>, (21)

for any history of deformation gradient F t
κ ∈ H({X}, L(Vφ)) and any orthogonal transforma-

tion Q(t) ∈ O(Vφ).

Remark 6. The condition (21) is the most well-known result in constitutive theories of con-
tinuum mechanics. It is the ultimate goal to obtain this result regardless of whoever agree or
disagree with each other on frame-indifference and the principle of material frame-indifference
controversy. tu

Form invariance

It is also interesting to see how the principle of material frame-indifference in the form
invariance of (17) takes in referential description. Let κ : B → Wt0 be a reference placement
of the body at some instant t0, and i : Eφ → Eφ∗ be an isometry, then

κi : B → Eφ∗ , κi = i ◦ κφ = i ◦ φt0 ◦ κ,

is the reference configurations of B in the frame φi = i ◦ φt0 under the isometry i, and

X i = κi(p) ∈ Eφ∗ , p ∈ B, Bκi = κi(B) ⊂ Eφ∗ .

The motion χ : B × R→ Eφ relative to the reference configuration κi is given by

χ
κi(·, t) : Bκi → Eφ∗ , xi = χ

φi(p, t) = i(χ(p, t)) = χ
κi(κi(p), t),

so that we have

χ
φi = i ◦ χ = χ

κi ◦ κi, χ
κi = i ◦ χ ◦ κ−1

i . (22)

We can define the constitutive functions with respect to the reference configuration κi,

Fφi(i(χt); p) = Fφi(χtκi ◦ κi; κ
−1
i (X i)) := Fκi(χtκi ;X i),

and we can do similar things for another isometry j : Eφ → Eφ∗ . Then from the form invariance
(17), after some calculations, we obtain

Fκi(χtκj ◦ q
∗; X i) = Fκj(χtκj ;Xj), (23)
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for any deformation history χtκj ∈ H(Bκj ,Eφ∗) and the isometry q∗ = j ◦ i−1 : Eφ∗ → Eφ∗ with
its associated orthogonal transformation Q∗ = J I> ∈ O(Vφ∗).

Moreover, from (15) and (16), we obtain by the use of verifiable relations, j ◦ i−1 = κj ◦κ−1
i

and χκj = q∗χκiq
∗−1 (from (22)),

Fκi(q∗(χtκi);X i) = Q∗(t)Fκi(χtκi ;X i)Q
∗(t)>, X i ∈ Bκi , (24)

for any deformation history χκi ∈ H(Bκi ,Eφ∗) and any Euclidean transformation q∗ : Eφ∗ →
Eφ∗ with some orthogonal transformation Q∗(t) ∈ O(Vφ∗).

Of course, we can see that the above condition (24) formulated in the Euclidean space Eφ∗
is equivalent to the condition of material objectivity (19) derived directly from (18) in Eφ.

Remark 7. In the principle of material frame-indifference, we have postulated that constitutive
functions are independent of observers stated as Fφi = Fφj in (17). We emphasize that the form
invariance is valid only when it is formulated in material description. Indeed, from the above
discussion, we have Fκi 6= Fκj in referential description, instead, they must satisfy the relation
(23). tu

Remark 8. It is interesting to give the following example, which shows typically why some
misconception persisted. Let Fκ, F ∗κ and T = Tκ(Fκ), T ∗ = T ∗κ (F ∗κ ), be the deformation
gradients and the constitutive equations for the stress in two different frames relative to some
reference configuration κ. One finds, in most textbooks, that the objectivity conditions are given
by

F ∗κ = QFκ, T ∗κ (F ∗κ ) = Q Tκ(Fκ)Q>,

and the principle of material frame-indifference by

T ∗κ (•) = Tκ(•),

which combine to give the well-known condition of material objectivity,

Tκ(QFκ) = Q Tκ(Fκ)Q>.

This is the correct result equivalent to the condition (21). However, we have already shown
that F ∗κ = QFκ is valid only when the reference configuration is unaffected by the change
of frame, and the principle of material frame-indifference does not imply the form invariance
T ∗κ (•) = Tκ(•) in referential description. Nevertheless, the lucky incident that the two inad-
equate assumptions would lead to the correct general result is quite striking and might have
contributed to some misconception over the decades. tu

9 CONCLUSIONS

This paper discusses some misconceptions related with MFI within the framework of Con-
tinuum Mechanics. This means that space is distinguished from time and relativistic space-time
is not included in the discussion.

Some misconceptions are discussed throughout the paper in the remarks. Unfortunately,
since the publication of Truesdell and Noll’s treatise, controversies about the MFI seems to be
persistent recently in some research papers and books. The authors hope that this paper will
help to clarify the basic concepts and to exert caution about some erroneous interpretations.
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