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Abstract. In the modeling of dynamical systems, uncertainties are present and they must be taken into
account to improve the prediction of the models. It is very important to understand how they propagate
and how random systems behave. The aim of this work is to discuss the probability distribution func-
tion (PDF) of the amplitude and phase of the response of random linear mechanical systems when the
stiffness are random. The novelty of the paper is that the computations are done analytically whenever
possible. The propagation of uncertainties is then characterized. The PDF of the response of a system
with random stiffness near the resonant frequency of the mean system has a complex structure and can
presents multimodality in certain conditions. In Statistics a mode is a maximum of the PDF, and the
modes describe the most probable values of the random variable. This multimodality makes approxima-
tions of the statistics, the mean for example, very difficult and sometimes meaningless since the behavior
of the mean system can be quite different of the mean of the realizations. More complex systems, discrete
and continuous, are also discussed and they show similar behaviour.
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1 INTRODUCTION

In the modelling of dynamical systems, uncertainties are present and must be taken into
account to improve the prediction furnished by the models. Namely, it is essential to understand
how uncertainties propagate and how random systems behave.

The aim of this work is to discuss the Frequency Response Function (FRF) of random linear
mechanical systems when uncertainty is considered in the stiffness to see for what conditions
one has multimodal behaviour. In order to make understanding easier, we consider in the sequel
the situation of a one degree of freedom system where damping is assumed deterministic and
stiffness is random. This simplification allows analytical developments which widely simplify
the analysis and clarify the use of the concepts, but is not a limitation: the situation where
damping is also random may be studied into an analogous way. Our main objective is to show
that a FRF (represented in amplitude and phase) of a random linear mass-spring-damper system
is frequently - in a sense that will be precisely defined in the sequel - multimodal for a fixed
frequency near a peak of the mean system. This work will explain and mathematically justify
such a multimodal behaviour for dynamical systems and will characterise the conditions for its
appearance, explaining thus the meaning of frequently. In addition, it will be shown that the
multimodal behaviour is also found for more complex linear systems, discrete or continuous.

This multimodal behaviour of the frequency response function, to the best of our knowl-
edge, has been few discussed in the literature. In Udwadia (1987a) the case of a single degree
of freedom system with three random variables - the mass, the damping and the stiffness - is
investigated regarding the probability distribution function of the natural frequency of this sys-
tem. In Udwadia (1987b), the results of the response of a random system subjected to harmonic
excitations, deterministic transient excitations, and random stationary excitations are presented
for the system considered in Udwadia (1987a), but only for parameters having uniform distri-
butions. In this work, multimodality appears, but expressions of analytical probability density
functions are given only in an integral form (they are not explicit) due to the complexity in-
volving with the three random parameters. In Heinkelé et al. (2006), the frequency response
function of a single degree of freedom having a single random variable - the damping - is inves-
tigated using different tools and no statistical multimodality appears. In Pagnacco et al. (2009),
a similar approach than that presented here is used, but for systems having both random stiffness
and random damping and for only one particular frequency: the resonant frequency of the mean
system; after the completion of this work it became clear that the multimodal behaviour comes
only from the randomness of the stiffness, and not from the damping. In facts, the damping
smooths the possible discontinuities in the probability distribution function (PDF), in particular
at the extrema, but, by itself, causes no multimodal behaviour. Hence this work studies only the
influence of the stiffness.

The idea of this work appeared when we tried to approach the mean FRF of discrete systems
with chaos polynomial expansion and Monte Carlo simulations. The results were excellent
except in small regions near the peaks of the mean system. The approximation did not improve
increasing the number of terms and order of randomness. This strange behaviour claimed for
explanation and this paper is our answer to that.

Indeed, to roughly understand what happens, let us consider an one DOF system with random
stiffness, say homogeneously distributed. For each realisation the stiffness changes and so does
the peak of the FRF. Near the peak of the mean system the distribution of values of the FRF of
the different realisations is rather complex and the FRF of the mean system and the mean FRF
are quite different, as one sees in Figure 3. Near the peak of the mean system the mean value
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is not representative of the behaviour, as is shown in this work, and tentatives to approach it by
using polynomials chaos approximations (PCA) are doomed to failure.

Given the PDF of the stiffness we compute analytically the PDF of the amplitude and phase
of the FRF - for the one DOF system and we give the envelopes of the FRF of the realisations.
These envelopes will give the domain of definition of the PDF of the amplitude and phase
of the FRF for a fixed frequency. When it becomes impossible to obtain an analytical result,
we may get an approximation instead, but the analytical results facilitate the construction of a
benchmark, that will be useful to test the approximations obtained, for example, by PCA of the
PDF.

We will now shortly describe the content of each section. Section 2 describes how the am-
plitude and the phase of the FRF of the SDOF system relate with the stiffness for a fixed,
deterministic frequency, that can be any non-negative real number. It also gives a general re-
sult to show how the PDF of the stiffness relates to the PDF of the amplitude and the phase.
A special case is computed analytically. Section 3 discusses the case where the stiffness has
uniform distribution. The envelopes of the FRF are defined and the mean and variance of the
FRF for a fixed frequency are computed. The statistical modes of the amplitude and phase are
computed analytically. Section 4 discuss the case where the stiffness has a Gamma distribution
and presents the same results as in the last section. Section 5 discusses MDOFs and continu-
ous systems and the results are computed with Monte Carlo simulations, in order to show that
multimodality appears again for these cases. Section 6 presents some conclusions.

2 UNCERTAINTY IN THE SINGLE DEGREE OF FREEDOM SYSTEM

We consider the following Single Degree Of Freedom (SDOF) linear oscillator subject to an
external harmonic forcing q in the frequency domain (Lin, 1967):(

k − ω2 + jcω
)
u (ω) = q (ω) (1)

ω being the circular frequency. In this equation, the mass is normalised to unity and k and c are
the stiffness and damping system parameters. Since the response u (ω) is a complex quantity,
we need two real functions to characterise it. We choose the amplitude |u| and phase θ since it
is the most used representation1. Thus, the system response amplitude and phase are given by:

|u| (ω) =
q (ω)√

(k − ω2)2 + 4η2kω2
and tan (θ (ω)) = −2η

√
kω

k − ω2
(2)

where we assume a damping ratio η = c
2
√
k

such that 0 ≤ η < 1. But with respect to the
definition of the FRF, a unit external forcing should be chosen for the sequel (i.e. q (ω) = 1).
This system is sketched on Figure 1. FRFs examples obtained for five stiffness values varying
(±20

√
3 %) around a 10, 000 N/m central stiffness and a 3 % damping ratio are presented on

Figure 2.
This system becomes stochastic if the stiffness parameter or the external forcing (or both)

are random quantities.

1However, it is not more difficult to study the real and imaginary parts. In such case it can be demonstrate
that statistical multimodality occur also frequently with generally four statistical modes for the real part and two
statistical modes for the imaginary part.
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Figure 1: SDOF system
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Figure 2: FRFs of a SDOF system; Five stiffness values are considered; (a) response amplitude;
(b) response phase;

2.1 Amplitude of the response: a general result

Let us consider the situation when only the SDOF stiffness constant k is random. Random
variables will be denoted capitalising the letter that represents the deterministic variable, hence
K in this case. First, in this section, we will give a general result that is valid for a general
probability distribution function (PDF), and then, in the following sections, we will establish
more detailed results for two particular PDF of the stiffness: the ones given by the Maximal
Entropy Principle (Udwadia, 1989; Kapur and Kesavan, 1992) are: 1) the uniform distribution
when the domain is fixed to be a bounded interval; and 2) the Gamma distribution if the domain
is supposed to be the positive real.

Let pK the PDF of K having k as the mean and σk as the standard deviation. Without loss
of generality, the domain of K is considered to be an interval having the boundaries kinf and
ksup that may or may not belong to the interval. Then we will denote (kinf , ksup) the domain of
definition for pK . For this domain, the parenthesis imply that it is not known if the boundaries
belong or not to the interval of definition. For the left parenthesis, if the boundary belongs, the
parenthesis is changed to a ], if not to [. For the right parenthesis it is similar. For example, for
an uniform PDF k ∈ [kinf , ksup] with kinf = k −

√
3σk and ksup = k +

√
3σk, and the interval

is closed, that is, the boundaries belong to the interval. On the other hand, for a Gamma PDF,
k ∈ ]kinf , ksup[ with kinf = 0, ksup = +∞ , and the interval is open, the boundaries do not
belong to the interval.

Let us compute the PDF of the response of the system for a fixed ω 6= 0 (the special extremal
-static- case ω = 0 is not considered in this work). Its random system response amplitude,
denoted by U (ω), without the bars to simplify the notation, and phase Θ (ω), are given by:

U (ω) = |U | (ω) =
f (ω)√

(K − ω2)2 + 4η2kω2
and tan (Θ (ω)) = − 2η

√
kω

K − ω2
(3)
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where we assume a deterministic unit external forcing, f (ω) = 1. In this expression, the
damping ratio does not need to have the same expression as for deterministic system and is now
chosen to be redefined as η = c

2
√
k
. Since K is the single random variable of the problem, the

PDF pU is evaluated by the formula (Zwillinger and Kokoska, 2000):

pU (u) =
1∣∣∣d|U |

dK

∣∣∣
k1

pK (k1) + · · ·+ 1∣∣∣d|U |
dK

∣∣∣
kn

pK (kn) (4)

where kj for j = 1, . . . , n denotes the roots of the algebraic equation u (k, ω) = u , for ω fixed
(notice that n = 1 for a bijective function). That is, one seeks all the stiffnesses, k, that give a
fixed amplitude u.

For ω fixed in the interval ω2 < kinf there is only one root, k1 = 1
u

√
1− 4η2kω2u2 +ω2. For

ω fixed in the interval ω2 > ksup there is also only one root k1 = − 1
u

√
1− 4η2kω2u2 + ω2. In

either case one can write, from relation (4):

pU (u, ω) =
1

u2
√

1− 4η2kω2u2
× pK (k1 (u, ω)) (5)

If kinf ≤ ω2 ≤ ksup, two roots could occur: k1,2 (u) = ∓ 1
u

√
1− 4η2kω2u2 + ω2, depending on

some conditions for u given by equation (6). We will have:

pU (u, ω) =



pK(k1)

u2
√

1−4η2kω2u2
if k1(u) > kinf and k2(u) ≥ ksup

pK(k1)+pK(k2)

u2
√

1−4η2kω2u2
if k1(u) > kinf and k2(u) < ksup

pK(k2)

u2
√

1−4η2kω2u2
if k1(u) ≤ kinf and k2(u) < ksup

. (6)

Thus, the PDF pU may have a discontinuity if the fixed frequency ω2 ∈ (kinf , ksup) and if
the stiffness distribution pK does not vanish at the boundaries of its domain. In fact, the sum
of stiffness densities in the PDF pU comes from an aliasing of the distribution when taking the
square of the apparent stiffness K − ω2 since it is distributed -at least partially- around the zero
value (kinf − ω2 ≤ 0 ≤ ksup − ω2).

Moreover we will denote (uinf , usup) the domain of definition for pU with the same conven-
tion as above for the parenthesis. Hence, if the bounds belongs or not to the domain has to be
evaluated separately for each given PDF. Moreover, since uinf (ω) and usup (ω) are functions of
the circular frequency ω, they corresponds to the lower and upper envelopes of the amplitude
responses. The bounds of the domain of definition of the PDF are obtained from these envelopes
when the frequency ω is fixed.

Statistical modes of the PDF pU are also of great interest. To assess if there is more than one
mode in an open interval, one can search for roots of the first derivative of pU in its domain of
definition to see if there are interior points of minimum. If there is one, this indicate that there
are two maxima, either interior or in the boundaries. If the domain is closed, the extrema have
to be analysed independently. Thus, without the choice of a special form for the stiffness PDF,
it is not possible to decide this question. We will see that in our case of interval, pU can be
written as the product of two functions as

pU (u, ω) = g (u, ω)× pK (u) (7)
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and the analysis of the generic function g shows an answer. Indeed, since we have

∂pU
∂u

=
∂g

∂u
pK + g

∂pK
∂u

(8)

we could say that pU would be at its minimum close to the minimum of g if the term g ∂pK

∂u

could be neglected. Hence, finding ∂g
∂u

(u, ω) = 0 leads to a minimum for the function g at the
value u0 (ω) = σk√

2kηω
. This leads also to a minimum of pU (u) if u0 belongs to the domain of

pU , i.e. if u0 (ω) ∈ [uinf , usup] and if g (u0 (ω) , ω) ∂pK

∂u
(u0 (ω)) can be neglected. Thus, we can

conclude that the SDOF system PDF amplitude could have more than one statistical mode for a
variety of stiffness distribution, depending on the domain of pU , or more precisely, on the fixed
frequency ω, the damping ratio η, the mean k and the coefficient of variation σk

k
.

2.2 Phase of the response: a general result

Phase PDF pΘ (θ) can be evaluated following the same strategy as given by formula (4). We
have

dk

dθ
(u, ω) = −2

√
kηω

sin (θ)2 (9)

which leads to

pΘ (θ, ω) =
2
√
kηω

sin (θ)2 × pK (θ) (10)

for2 ω 6= 0 and on the domain (θinf , θsup) =
(

tan−1

(
− 2η
√
kω

kinf−ω2

)
, tan−1

(
− 2η
√
kω

ksup−ω2

))
with the

same convention as above for the parenthesis.
To study the existence of more than one statistical mode, we follow the same reasoning as be-

fore. If we neglect the term ∂pK

∂θ
= 0, finding ∂pΘ

∂θ
= 0 leads to seek for the root−2pΘcot (θ) = 0

which is θ0 = −π
2
. Thus, we can conclude that the SDOF system phase PDF could have more

than one statistical mode for a variety of stiffness distributions, depending on the frequency
excitation ω, and the stiffness distribution parameters.

3 SDOF SYSTEM WITH UNIFORM RANDOM STIFFNESS

Let us consider that K has an uniform distribution, say

pK (k) =

{
1

2
√

3σk
if k ∈

[
k−
√

3σk, k +
√

3σk

]
0 if not

(11)

For such a system, one can note that F , the natural frequency, is also a random variable. It is
F = 1

2π

√
K and has a distribution pF (f) = 8π2f ×pK (k(f))= 4π2f√

3σk
, according to the relation

(4), which is defined over (finf , fsup) =
[√

k−
√

3σk

2π
,

√
k+
√

3σk

2π

]
. Thus, the mean of this random

variable

E [F ] =
4π2

3
√

3σk

(
f 3

sup − f 3
inf

)
(12)

2For ω = 0, the phase remains deterministic (θ = 0) whatever the stiffness is random or not.
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is not equal to the natural frequency of the mean system which is f0 = 1
2π

√
k. At last, to

complete this statistic, note that

E
[
F 2
]

=
π2

√
3σk

(
f 4

sup − f 4
inf

)
(13)

while the statistical mode is located at fsup.

3.1 Amplitude of the response

Relations (5), (6) and (11) give the PDF of the response amplitude.

3.1.1 Upper and lower envelopes for the amplitude

The upper envelope of the system response amplitude, denoted usup (ω), is the function

usup (ω) =



1√
(k−
√

3σk−ω2)
2
+4η2kω2

forω2 ∈
[
0, k −

√
3σk

]
1

2ηω
√
k

forω2 ∈
[
k −
√

3σk, k +
√

3σk
]

1√
(k+
√

3σk−ω2)
2
+4η2kω2

forω2 ∈
[
k +
√

3σk,+∞
[ (14)

Thus, the system response U (ω) is unbounded if η → 0 for all ω2 ∈
[
k −
√

3σk, k +
√

3σk
]
.

The lower envelope , denoted uinf (ω), is

uinf (ω) =


1√

(k+
√

3σk−ω2)
2
+4η2kω2

forω2 ∈
[
0, k

]
1√

(k−
√

3σk−ω2)
2
+4η2kω2

forω2 ∈
[
k,+∞

[ (15)

Thus, bounds of the amplitude response PDF are given by the domain [uinf (ω) , usup (ω)] for a
fixed frequency ω.

3.1.2 Statistic for fixed frequency of the PDF of the amplitude

We now compute analytically the first and second moments for the amplitude system re-
sponse. These results are important for comparison with numerical simulations. They are given
by

E [U ] (ω) =

usup(ω)ˆ

uinf(ω)

upU (u, ω) du and E[U2](ω) =

usup(ω)ˆ

uinf(ω)

u2pU (u, ω) du (16)

They could be evaluated analytically easily if we neglect the damping (this hypothesis is
valid for a small damping when ω2 /∈

[
k −
√

3σk, k +
√

3σk
]

or for medium damping at low
and high frequency):

E [U ] (ω) ≈
usup(ω)ˆ

uinf(ω)

1√
3σku

du =
1√
3σk

ln

(
usup (ω)

uinf (ω)

)
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E
[
U2
]

(ω) ≈
usup(ω)ˆ

uinf(ω)

1√
3σk

du =
1√
3σk

(usup (ω)− uinf (ω))

But to obtain an exact estimation of these expectations over the full frequency range, it is
necessary to consider both the damping and the discontinuity which appears in the PDF (Eq.
(6)) for ω2 ∈

[
k −
√

3σk, k +
√

3σk
]
. Solving equations (6) for the variable u leads to lo-

cate the discontinuity for the PDF at the value u1 (ω) = 1√
(k−
√

3σk−ω2)
2
+4η2kω2

for the fre-

quency range
[
k −
√

3σk, k
]

while it is located at u1 (ω) = 1√
(k+
√

3σk−ω2)
2
+4η2kω2

for the range[
k, k +

√
3σk

]
. Thus, we have

E [U ] (ω) =

usup(ω)ˆ

uinf(ω)

1

2
√

3σk

1

u
√

1− 4η2kω2u2
du

=
1

2
√

3σk

(
arccot

√
4η2kω2usup (ω)− 1− arccot

√
4η2kω2uinf (ω)− 1

)

for the range ω2 ∈
[
0, k −

√
3σk

]
∪
[
k +
√

3σk,+∞
[
, while we have

E [U ] (ω) =

u1(ω)ˆ

uinf(ω)

1

2
√

3σk

1

u
√

1− 4η2kω2u2
du+

usup(ω)ˆ

u1(ω)

1

2
√

3σk

2

u
√

1− 4η2kω2u2
du (17)

or

E [U ] (ω) =
1√
3σk

arccot
√

4η2kω2usup (ω)− 1

1

2
√

3σk

(
arccot

√
4η2kω2u1 (ω)− 1 + arccot

√
4η2kω2uinf (ω)− 1

)

for ω2 ∈
[
k −
√

3σk, k +
√

3σk
]
. Similarly, we have

E
[
U2
]

(ω) =
1

4
√

3ηω
√
kσk

(
arcsin

(
2ηω

√
kusup (ω)

)
− arcsin

(
2ηω

√
kuinf (ω)

))
(18)

for the range ω2 ∈
[
0, k −

√
3σk

]
∪
[
k +
√

3σk,+∞
[

and

E
[
U2
]

(ω) =
1

2
√

3ηω
√
kσk

arcsin
(

2ηω
√
kusup (ω)

)
−

1

4
√

3ηω
√
kσk

(
arcsin

(
2ηω

√
ku1 (ω)

)
+ arcsin

(
2ηω

√
kuinf (ω)

))

for ω2 ∈
[
k −
√

3σk, k +
√

3σk
]
. From these two results, it is possible to evaluate the standard

deviation of the response, σU , by σ2
U = E [U2]− E [U ]2.

The Figure 3 shows the system response amplitude, considering an uniform stiffness with
a 10, 000 N/m mean stiffness, for two stiffness coefficients of variation (σk

k
) and two damping
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Figure 3: Amplitude of the response for a SDOF having a uniform stiffness (grey area shows
the region of variation), mean of the system responses (solid thick line) and response of the
mean system (dashed line); (a) 1% damping ratio, 5% coefficient of variation; (b) 10% damping
ratio, 5% coefficient of variation; (c) 1% damping ratio, 50% coefficient of variation; (d) 10%
damping ratio, 50% coefficient of variation;
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Figure 4: PDF of the amplitude response at various frequencies for a SDOF system having an
uniform stiffness (with a 3 % damping ratio and a 20 % coefficient of variation)

ratios. The region of variation is represented by the grey area. The mean of the system responses
and the response of the mean system are also represented.

Then, considering the case of a 20 % stiffness coefficient of variation and a 3 % damping
ratio, the Figure 4 shows the PDF of the amplitude at several frequencies. It is seen on this
figure that various PDF shapes are obtained.

3.1.3 Statistical modes of the amplitude response

At low (ω → 0) or at high (ω → ∞) frequencies, the PDF pU (•, ω) is monotonically de-
creasing, thus the lower envelope uinf (ω) is a statistical mode. But for intermediate frequency,
the shape of this PDF could be more complex. It can have a minimum when its first derivative
vanishes, at u0 (ω) = 1√

6kηω
, if this value is in the domain definition of pU (•, ω), i.e. if u0 (ω) ∈

[uinf , usup]. For example, if we consider the simplest situation when ω =
√
k (which is the nat-

ural circular frequency of the mean system having a unit mass), if u0

(√
k
)
≤ 1√

(2ηk)
2
+3σ2

k

, or

equivalently, if
σk

k
≤
√

2

3
η (19)

the amplitude system response U will have only one statistical mode, since u0

(√
k
)
/∈[

uinf

(√
k
)
, usup

(√
k
)]

. On the other hand, i.e. when u0

(√
k
)
> 1√

(2ηk)
2
+3σ2

k

or σk

k
>
√

2
3
η

E. PAGNACCO, R. SAMPAIO, J. SOUZA DE CURSI3366

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



1 2 3 4 5 6

x 10
-3

500

1000

1500

2000

0.5 %

3 %

(a)

0 1 2 3 4 5

x 10
-3

500

1000

1500

2000

2500

3000

0.6 %

10 %

(b)

Figure 5: PDF of the amplitude response for a SDOF system having an uniform stiffness with
various densities and damping ratio at frequency ω2 = k; (a) amplitude PDF for σk

k
= 5 %

and η = {0.5 %, 1 %, 1.5 %, 2 %, 2.5 %, 3 %}; (b) amplitude PDF for η = 1 % and σk

k
=

{0.6 %, 1 %, 2.5 %, 10 %}

there are two statistical modes since u0

(√
k
)
∈
[
uinf

(√
k
)
, usup

(√
k
)]

. Multiple statistical
mode existence condition depends thus on the fixed frequency ω, the damping ratio η, the mean
k, and the coefficient of variation σk

k
. Figure 5 shows examples of amplitude PDF for various

damping ratio and various stiffness coefficient of variation when the frequency is fixed at the
natural frequency of the mean system. All these examples have two statistical modes, except in
the case of a very low stiffness coefficient of variation, i.e. the 0.6 % curve on the right.

Considering now the frequency range
]
0, k −

√
3σk

[
, the existence condition for multi-

modality, which occurs again when u0 (ω) ∈ [uinf (ω) , usup (ω)], is evaluated to be(
k −
√

3σk
)
− ω2

√
2kω

< η <

(
k +
√

3σk
)
− ω2

√
2kω

(20)

while, for the frequency ω2 ≥ k +
√

3σk, we would have

ω2 −
(
k +
√

3σk
)

√
2kω

< η <
ω2 −

(
k −
√

3σk
)

√
2kω

(21)

These conditions are less restrictive for the frequency range
[
k −
√

3σk, k +
√

3σk
]
, since only

the lower bound has to be considered (indeed, u0 (ω) is always less than usup for this fre-
quency range). Thus, the existence condition for u0 (ω) ∈ [uinf , usup] in the frequency range[
k −
√

3σk, k
]

is given by

η <

(
k +
√

3σk
)
− ω2

√
2kω

(22)

while it is given by

η <
ω2 −

(
k −
√

3σk
)

√
2kω

(23)

for the frequency range
[
k, k +

√
3σk

]
.
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Having the existence condition of multiple statistical modes, one can see that they could
appear frequently in the vicinity of the resonant frequency of the mean system (ω =

√
k ) since

the damping ratio is generally small for real systems.
From another point of view, an interesting question is “What range of frequency leads to

multimodality ?”. It is sufficient for this to solve conditions (20) and (21) for ω2 to obtain:

k (1 + η2)−
√

3σk−kη
√

2− 2
√

3σk

k
+ η2 < ω2 < k (1 + η2)+

√
3σk+kη

√
2 + 2

√
3σk

k
+ η2

To conclude about the number of statistical modes for the frequency range
[
k −
√

3σk, k
[
∪]

k, k +
√

3σk
]
, we have to consider also the discontinuity of the PDF. Then, it will exist only

one statistical mode if the previous conditions (22) or (23) are not fulfilled, whereas there are
two or three statistical modes if they are fulfilled. Figure 4 shows examples of response am-
plitude PDF at four frequencies taken in the range

[
k −
√

3σk, k
[
∪
]
k, k +

√
3σk

]
. They are

the third, fourth, sixth and seventh ones PDF (the fifth one being the PDF at ω2 = k, the reso-
nant frequency of the mean system). All of them exhibit a discontinuity. The fourth and sixth
ones have three statistical modes while the others have only two statistical modes. In fact, three
statistical modes arise when the discontinuity is located before the PDF minimum, i.e. when
u1 (ω) < u0 (ω) or

1√(
k −
√

3σk − ω2
)2

+ 4η2kω2

<
1√

6kηω
(24)

for the frequency range
[
k −
√

3σk, k
[

or

1√(
k +
√

3σk − ω2
)2

+ 4η2kω2

<
1√

6kηω
(25)

for the frequency range
]
k, k +

√
3σk

]
.

Thus, statistical modes can be located on the envelopes uinf (ω) , usup (ω) and the discon-
tinuity u1 (ω) (depending on the system properties, the random parameters, and the excitation
frequency ω). Another comment concerns the upper envelope which could tend to infinite for
the (ideal) system having no damping. Thus, the rightmost mode of the PDF diminishes its
value when the damping decreases and the domain of definition increases. From this behaviour,
we conclude that this mode will be difficult to detect if it has to be found by Monte Carlo
simulations.

Finally, this multimodal behaviour of the response implies that the mean and the standard
deviation of the system response given in the previous section are insufficient to characterise
the response distribution, at least in the vicinity of the resonant frequency of the mean system.

3.2 Phase of the response

From the relations (10) and (11) we have

pΘ (θ, ω) =

√
kηω√

3σk sin (θ)2 (26)

which is defined on the domain
[
tan−1

(
− 2η

√
kω

k−
√

3σk−ω2

)
, tan−1

(
− 2η

√
kω

k+
√

3σk−ω2

)]
.
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Figure 6: Phase of the response of a SDOF system having a uniform random stiffness; Mean
phase of the system response (thick solid line) and phase response of the mean system (dashed
line); grey area shows the region of variation; (a) 1% damping ratio, 5% coefficient of variation;
(b) 10% damping ratio, 5% coefficient of variation; (c) 1% damping ratio, 50% coefficient of
variation; (d) 10% damping ratio, 50% coefficient of variation;

The Figure 6 illustrate this phase response, considering an uniform stiffness with a 10, 000
N/m mean stiffness, two stiffness coefficients of variation (σk

k
) and two damping ratios. The

region of variation is represented by the grey area. The mean of the system responses and the
response of the mean system are also represented.

Then, considering the case of a 20 % stiffness coefficient of variation and a 3 % damping
ratio, the Figure 7 shows the PDF response phase at several frequencies: the first one located at
a very low frequency range, the second one a little before ω2 = k , the third one at ω2 = k, and
the last one a little after ω2 = k. It is seen on this figure that various PDF shapes are obtained.
For low frequencies (ω → 0) , the PDF pΘ (•, ω) is monotonically increasing, thus the upper
envelope θsup (ω) is a statistical mode, while at high frequencies pΘ is monotonically decreasing
leading to a statistical mode at the lower envelope.

For intermediate frequency, this PDF could have a minimum when its first derivative van-
ishes, at θ0 (ω) = −π

2
, if this value is on the domain definition of pΘ, i.e. if θinf (ω) < θ0 (ω) <

θsup (ω) or, by taking the cosines of this inequality, if

k −
√

3σk < ω2 < k +
√

3σk (27)

Thus, there is one statistical mode at θsup (ω) if ω2 ≤ k −
√

3σk, one statistical mode at
θinf (ω) if ω2 ≥ k +

√
3σk, and two statistical modes at θsup (ω) and θinf (ω) otherwise.
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Figure 7: PDF of the phase response at various frequencies for a SDOF system having an
uniform stiffness (with a 3 % damping ratio and a 20 % coefficient of variation)

4 SDOF SYSTEM WITH GAMMA RANDOM STIFFNESS

Let us assume now a Gamma distribution for the stiffness, having the PDF

pK (k; a, b) =


(
k
b

)a−1 exp(− k
b )

bΓ(a)
if k > 0

0 if not
(28)

where a =
(
k
σk

)2
and b =

σ2
k

k
are positive values.

For such a system, one can note that the natural frequency F has the bell shape distribution
given by

pF (ϕ) =
2

ϕΓ(a)

(
4π2ϕ2

b

)a
exp

(
−4π2ϕ2

b

)
(29)

which is defined over ]0,+∞[. We have

E [F ] =

√
bΓ
(
a+ 1

2

)
2πΓ (a)

and E
[
F 2
]

=
k

4π2
(30)

and a mode located at the value

√
b(a− 1

2)
2π

.

4.1 Amplitude of the response

From the domain definition of this random stiffness, we deduce that the system response
PDF given by the relation (5) and (6) can be simplified to

pU (u, ω) =
pK (k1; a, b) + pK (k2; a, b)

u2

√
1−

(
2
√
kηuω

)2
(31)

since pK (k1; a, b) will vanish when the root k1 becomes negative.
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To find the PDF support, we consider the relation (3). The idea is the following: since

K ∈ ]0,+∞[, K − ω2 ∈
]
−k,+∞

[
, (K − ω2)

2 ∈ ]0,+∞[,
√

(K − ω2)2 +
(
2
√
kηω

)2
∈]

2η
√
kω,+∞

[
, and U (ω) ∈

]
0, 1

2η
√
kω

[
. Then, we have

uinf = 0 (32)

and
usup (ω) =

1

2η
√
kω

(33)

The Figure 8 shows the system response amplitude, considering a Gamma stiffness with a
10, 000 N/m mean stiffness, for two stiffness coefficients of variation and two damping ratios.
The upper envelope is represented by a thin solid line and the response of the mean system is
given by the dashed line. But to give more insights on this system, it is possible to represent the
mean of the system response and confidence intervals by using numerical tools to evaluate them.
Then, confidence intervals are represented by two grey areas: the dark grey area corresponds to
the 95 % confidence interval, while the light grey corresponds to the 99 % confidence interval
and the mean of the system response is represented by a thick solid line.

However, it is possible to give some analytical results by considering a Normal approxima-
tion of the Gamma distribution. It is the subject of the appendix, where expectations (equations
(39) and (40)) and statistical modes are determined for the frequency ω2 = k with the condition
on the system parameters to give multimodality.

Considering now the case of a 20 % stiffness coefficient of variation and a 3 % damping ratio,
the Figure 9 shows the PDF of the amplitude at several frequencies. It is seen on this figure that
various PDF shapes are obtained: a bell shape at low frequencies and various bimodal shapes
otherwise. From these graphs, it is clear that the mean value is not a representative value of
the system responses when the frequency is not low. Thus, knowing the mean and standard
deviation of the system response is insufficient to characterise its response distribution.

The Figure 10 shows more examples of PDF when stiffness coefficient of variation and
damping ratios are varied. On this figure, two statistical modes are exhibiting only when the
random parameters satisfies the condition (38). Moreover, the Figure 11 shows a situation
where the PDF exhibits three statistical modes for a 60% stiffness coefficient of variation with
a 5% damping ratio. This behaviour is even found more pronounced for a higher coefficient
of variation, but it is not expected by the normal approximation of the Gamma law since this
approximation does not hold for such high values of the coefficient of variation.

4.2 Phase of the response

The phase PDF pΘ (θ, ω) for a Gamma distribution is obtained from the relations (10) and

(28) with k (θ) = ω2 − 2
√
kηω

tan(θ)
. It is defined on the domain

]
tan−1

(
−2η
√
k

−ω

)
, 0
[
.

The Figure 12 shows the system response phase for two damping ratios when considering
Gamma random stiffnesses of 10, 000 N/m mean for two coefficients of variation. As for the
amplitude, the region of variation are represented by grey areas, and the mean of the system
responses and the response of the mean system are also represented.

The behaviour of the phase PDF when the stiffness follows a Gamma distribution is shown
on Figure 13. Comparing these PDFs with the uniform ones given on Figure 6, we can see that
they vanish smoothly at theirs bounds.
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Figure 8: Amplitude response for a Gamma stiffness with the upper envelope (thin solid line),
the mean of the system responses (thick solid line) and the response of the mean system (dashed
line); dark grey and light grey areas show the 95 % and 99 % confidence region (respectively);
(a) 1% damping ratio, 5% coefficient of variation; (b) 10% damping ratio, 5% coefficient of
variation; (c) 1% damping ratio, 50% coefficient of variation; (d) 10% damping ratio, 50%
coefficient of variation;

Figure 9: PDF of the amplitude response at various frequencies for a SDOF system having a
Gamma stiffness (with a 3 % damping ratio and a 20 % coefficient of variation)
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Figure 10: Amplitude response PDF for a Gamma stiffness at ω2 = k; (a) σk

k
= 5 % and

η = {1 %, 2 %, 3 %} (b) σk

k
= {1 %, 2.5 %, 5 %, 10 %} and η = 1 %
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Figure 11: Amplitude response PDF for a Gamma stiffness having a σk

k
= 60 % coefficient of

variation; (a) complete domain; (b) zoom of the first mode
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Figure 12: Phase response for a Gamma stiffness with the lower envelope (thin solid line), the
mean of the system responses (thick solid line) and the response of the mean system (dashed
line); dark grey and light grey areas show the 95 % and 99 % confidence region (respectively);
(a) 1% damping ratio, 5% coefficient of variation; (b) 10% damping ratio, 5% coefficient of
variation; (c) 1% damping ratio, 50% coefficient of variation; (d) 10% damping ratio, 50%
coefficient of variation;

Figure 13: PDF of the phase response at various frequencies for a SDOF system having a
Gamma stiffness (with a 3 % damping ratio and a 20 % coefficient of variation)
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Figure 14: Two degrees of freedom system

Table 1: Natural frequencies and damping ratio of the mean aluminium plate

Normal mode # 1 2 3 4
Natural frequency [Hz] 4.40 10.7 11.3 17.6

Damping ratio [%] 1.81 0.74 0.70 0.45

5 MULTIPLE DOFS SYSTEMS AND CONTINUOUS STRUCTURES

Continuous linear systems or systems with MDOFs having uncertainties could exhibit sim-
ilar behaviour, that is showing multiple statistical modes around resonant frequencies for the
amplitude PDF. To illustrate these assertion, numerical experiments conducted by Monte-Carlo
simulation (Rubinstein and Kroese (Rubinstein and Kroese, 2008)) are presented on two exam-
ples: a two DOFs system and a plate.

5.1 Two DOFs system

A two DOFs system sketched in Figure 14 having 1.5 and 0.5 kg masses and a Gamma
distribution with a 1, 000 and 150 N/m mean stiffness and a 5 % coefficient of variation is
considered. Its damping ratios are 0.3 and 0.6 %. Consequently, the mean system has two
resonant frequencies located at 2.05 Hz and 4.50 Hz.

Its amplitude responses are presented on Figure 15 for each degree of freedom when a unit
force is applied on the first DOF. On this figure, the grey area depicts the 95 % confidence
interval obtained by Monte Carlo simulations involving a 106 sample size.

The Figure 15 shows also the histograms obtained for the two DOFs at various frequencies.
They exhibit again two statistical modes around the resonant frequencies. However, multi-
modality is more pronounced for the second DOF (the unexcited one).

Moreover, the histogram close to the second resonant frequency for the driving point has a
shape similar to the one obtained in this study for the SDOF system near its resonant frequency.
On the contrary, the shape of the others histograms closed to the resonant frequencies looks
like the one obtained for the SDOF system of Pagnacco et al. (2009) when the stiffness and the
damping are random: they vanish smoothly at their maximal bound.

5.2 Continuous plate

We consider a continuous plate. This enable to investigate situations where normal modes
are coupled by choosing a quasi-square geometry. In our example, we have chosen a 1 × 1.05
m2 plate in order to couple the second and the third normal modes of the plate having the mean
stiffness. It is made of aluminium alloy with a 1 mm thickness. Boundary conditions are simple
supports, leading to a simple analytical expression for the frequency response. The Table 1 gives
natural frequencies obtained for the mean stiffness and the damping ratio chosen. The Figure
16 shows the location of the measurements points retained for the following illustrations. The
point 1 is chosen as the driving point.
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(a)

(b)

Figure 15: Two degrees of freedom system amplitude response and PDF at various frequencies;
Mean system responses amplitude (solid line) and 95 % confidence region (grey area); (top)
Driving point FRF; (down) Transfer FRF
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1

2 3

Figure 16: Location of measurements points for the plate

In this example, the Young modulus is considered uncertain and follows a Gamma distribu-
tion with a 5% coefficient of variation. Figure 17 shows the amplitude response of the mean
plate (solid line) with the 95 % confidence region (grey area) and the mean of amplitude re-
sponses (dashed line) for the three measurements points (see the drawing located at the left up
corner of each FRF). Stochastic results for this plate are obtained through Monte Carlo numer-
ical simulations.

Figure 17-up shows histograms of the plate driving point displacement response (i.e. at point
1) at various frequencies. Many of them are chosen close to the normal modes frequencies of
the mean plate. Analysis of these graphs indicates again a bi-modal statistical behaviour in case
of uncoupled normal modes, while multi-modal behaviour appeared in the coupled case. The
uncoupled behaviour exhibited here is thus very similar to the one found for the SDOF system
studied in this work. But for the coupled case, many statistical modes appeared with ragged
histogram shapes around the frequencies of interest.

Figure 17-down shows the two cross-displacement responses between the point 1 and the
two other chosen points. This indicates that a multi-modal statistical behaviour is also obtained,
but with dissimilar histogram shapes.

6 CONCLUSIONS

The PDF of the amplitude and the phase of the response of a random linear single-degree-of-
freedom mass-spring-damper system when the stiffness are random was discussed for a general
PDF of the stiffness. Then, to get more precise results, these PDF was discussed for the uniform
and the Gamma distributions, that are the PDF that maximise the uncertainty (entropy) if the
stiffness is bounded or unbounded, respectively.

These PDF were studied for a fixed, deterministic, frequency. They were completely charac-
terised with their envelopes, and, when possible, statistics were derived analytically. Moreover,
the conditions to have multimodes were described. From these conditions, it is concluded that
multimodality occurs very frequently in the vicinity of the resonant frequency of the mean sys-
tem since the damping ratio is generally small for real systems. Hence, in the vicinity of these
frequencies, it is deduced that the mean and the standard deviation of the system response are
not representative of the random system response distribution. However, analytical statistics
remains useful to provided benchmark tests for numerical computations.

But concerning the rightmost mode of the PDF, the analytical result indicate that it dimin-
ishes its value when the damping decreases, while the domain of definition increases. Knowing
this behaviour, we have concluded that this mode, found analytically, would be difficult to detect
for some random system parameters if it has to be found by Monte Carlo simulations.

Some complex systems, discrete and continuous, were also discussed and they show similar
behaviour. This multimodal behaviour of the PDF of the response of random linear systems, to
the best of our knowledge, has not been previously discussed in the literature.
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(a)

(b)

Figure 17: Plate amplitude responses and PDF at various frequencies; FRFs of the mean plate
(solid line), mean FRFs (dashed line) and the 95 % confidence region (grey area) ; measurement
locations are indicated on the grey rectangular area representing the plate (left up corner of the
FRFs graphs)
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APPENDIX A. APPROXIMATION OF THE AMPLITUDE PDF BY A NORMAL DIS-
TRIBUTION

Analysis of the amplitude PDF for statistical modes analytically is rather difficult when the
stiffness follows a Gamma distribution. An approximate way consists in considering a normal
approximation of the gamma distribution for the stiffness K ∼ N

(
k, σ2

k

)
, which is valid if σk

k
tends towards zero:

pK
(
k; k, σk

)
=

1

σk
√

2π
exp

−
(
k − k

)2

2σ2
k

 (34)

In this case kinf = −∞ and ksup = ∞, but we have to notice that the probability of k became
negative tends towards zero if σk

k
tends towards zero. Then kinf < ω2 < ksup and there are

always two roots for the algebraic equation u (k, ω) = u when ω is fixed and is strictly positive.
In this case, the relation (6) leads to the system response PDF

pU (u, ω) =
pK (k1) + pK (k2)

u2
√

1− 4η2kω2u2
(35)

which is defined over
]
0, 1

2η
√
kω

[
. Thus, for a fixed frequency ω =

√
k, this last equation

simplifies to

pU (u, ω) =
1

u2

√
1− 4η2k

2
u2
× 2

σk
√

2π
exp

−
(

1
u

√
1− 4η2kω2u2

)2

2σ2
k

 (36)

Analysis of this result gives a first statistical mode at 1
2ηk

. Moreover, having define η′ = 2ηk
σk

,
roots of this PDF first derivative are

u1,2 =
1

σk

√√√√1

6
+

1

3η′2
±
√

4− 8η′2 + η′4

6η′2
(37)

which lead to a maximum and a minimum for the first and the second value (respectively),
when 4−8η′2 +η′4 ≥ 0. This is an existence condition for another statistical mode. Thus, when

σk

k
>

2

1 +
√

3
η (38)

there is two statistical modes for the response PDF, the first one being located at
1
σk

√
1
6

+ 1
3η′2 +

√
4−8η′2+η′4

6η′2 and the second at 1
2ηk

, while only one mode exist at 1
2ηk

. Note
that in the no damping case, the first mode is at 1√

2σk
, while the second tends to infinite.

Having the response amplitude PDF given by equation (36), it is possible to evaluate some
expectations such as
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E [U ]
(√

k
)

=
1

σk
√

2π
exp

η2k
2

σ2
k

K0

η2k
2

σ2
k

 (39)

and

E
[
U2
] (√

k
)

=
1

2ηkσk

√
π

2
exp

2η2k
2

σ2
k

 erfc

(√
2ηk

σk

)
(40)

where K0 is the modified Bessel function of the second kind of order 0.
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