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Abstract. Low order non-linear mechanical models for vocal folds, in the phonation process, have been
shown to be useful in the case of normal and disordered voice studies. Despite their relative simplicity,
they are able to simulate the main features of the vocal fold dynamics. A good example is the so-called
two-mass Lous model, which uses few input parameters and has shown excellent results in understand-
ing phonation phenomena. However, to model a real voice, it is required to infer a set of parameters
of the model. Recently, some authors pointed out the advantage of using probabilistic approaches to
characterize vocal fold dynamics. In this paper, a numerical stochastic model for voice production is
used to simulate several vowel utterances. Then, the vocal fold tension probability density function is
considered unknown and estimated from vowel utterances, using a Monte Carlo Markov Chain. Results
show a good match between the estimated and actual probability densities.
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1 INTRODUCTION

The physical process responsible for voice production involves various phenomena such
as turbulence, vibration of biological structures, and aero-acoustical couplings, which can be
modeled and simulated in details, but at a high computational cost (Cook et al. (2009)). A good
compromise between computational cost and accuracy is obtained using low-order models, such
as Lous et al. (1998) model, and referred to as Lous model in the present paper. A discussion
about the accuracy of the model can be found in Ruty et al. (2007).
In Sec. 2, Lous model for vowel utterance production is described together with its stochastic
reformulation inspired by a recent paper by Cataldo et al. (2009). As no experimental data are
available for random realizations of vowel utterances, the numerical model described in Sec. 2 is
used to build a consistent set of data. This numerical model consists of generating independent
realizations of the vocal fold tension, and simulating the corresponding set of voice utterances,
which is a stochastic process.

Section 3 is devoted to the description of a modified Metropolis-Hastings Monte Carlo
Markov Chain (M-H MCMC). The algorithm herein described aims to infer the supposedly
unknown probability density function (p.d.f.) of the tension factor, based on the observable
p.d.f. of the voice fundamental frequency.

Finally, an application, is discussed together with qualitative results in Sec. 4.

2 DETERMINISTIC AND ASSOCIATED STOCHASTIC MODEL OF THE PHONA-
TORY SYSTEM FOR VOWEL PRODUCTION

2.1 Deterministic model

The two-mass model used here is the one created by Lous et al. (1998), and was constructed
after Ishizaka and Flanagan (1972) model, considering an improved description of the airflow.

The complete model is composed of two coupled subsystems: one subsystem modeling the
vocal folds, which is called source, and one subsystem modeling the vocal tract, which is called
filter.

The source subsystem is composed by two mass-spring-damper oscillators coupled by a
linear spring, as represented in Fig. 1.

Figure 1: Schematic representation of Lous model.

The geometry of the space between the two plates representing the vocal folds is described
by three quantities: the glottal height at point x at the instant t (h(x, t)), the glottal depth (lg)
towards z-direction, and the glottal length (given by the distance x3 − x0). The glottal flow is
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denoted by φg(t) and the dynamics of the vocal folds are given by Eq. 1:
md2y1(t)

dt2
+ r(y1(t))

dy1(t)
dt

+ s(y1(t))y1(t)
+kc(y1(t)− y2(t)) = f1(psub, psup(t), hg1(t), hg2(t))

md2y2(t)
dt2

+ r(y2(t))
dy2(t)
dt

+ s(y2(t))y2(t)
+kc(y2(t)− y1(t)) = f2(psub, psup(t), hg1(t), hg2(t))

(1)

where hg1(t) and hg2(t) are the glottal heights, y1(t) and y2(t) are the corresponding position
for masses 1 and 2 relative to their rest position, r(y1,2(t)) and s(y1,2(t)) are, respectively, the
damping and stiffness functions, which will be described later. kc is the stiffness constant of
the linear spring which couples the two mass-spring-damper systems. f1 and f2 are the forces
applied to the vocal folds due to the pressure field in the glottis and the acoustic pressure at the
vocal tract inlet, as defined later. The sub-glottal pressure is given by the constant ψsub and the
supra-glottal pressure is given by the function ψsup(t). The displacement of each vocal fold is
considered to be perpendicular to the direction of the airflow.

The elasticity and damping functions (s(y1,2(t)) and r(y1,2(t))) are piecewise linear functions
of the position of the vocal folds and they take into account the vocal-folds collision.

The elasticity function is given by Eq. 2:

s(yi(t)) =

{
kyi(t) , hgi(t) > hlim,
(k + 3k)yi(t) , hgi(t) 6 hlim.

i = 1, 2. (2)

where k is a constant. As proposed in Pelorson et al. (1994), the contact between the vocal
folds occurs before the eventual full glottis closure, considering contact for hg1,2(t) 6 hlim,
where hlim is a positive constant.

The damping function is given by Eq. 3:

r(yi(t)) =

{
2ξ
√
mk , hgi(t) > hlim,

2(ξ + 1)
√
mk , hgi(t) 6 hlim.

i = 1, 2. (3)

where ξ is the damping factor of the oscillators and is constant.

The fundamental frequency of the vocal folds is very sensitive to the variation of the vo-
cal fold tension factor q (Ishizaka and Flanagan (1972),Cataldo et al. (2009)), related to the
stiffness and mass associated to the mass-spring-damper systems modeling the vocal folds (re-
spectively k and m). The values of mass and stiffness to be used are defined by m = m̂

q
, and

k = qk̂. Then, an increase in q causes a diminution of the mass participating of the vibration m
and an increase of the stiffness k. This tension factor were introduced in Ishizaka and Flanagan
(1972) to simulated the diminution of the active mass during vocal fold vibration as the stiffness
increases.

The airflow through the glottis is assumed to be quasi-steady, incompressible, and unidimen-
sional (along the x axis Pelorson et al. (1994)). As suggested in Lous et al. (1998), the viscosity
and fluid inertia are approximated by adding an inertive term and a Poiseuille term to Bernoulli
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equation. The pressure distribution along the glottis, denoted by ψ(x, t), can be described by
the modified Bernoulli’s energy equation and it is given by Eq.4:

ψ(x, t) =


ψsub − ρ

2

(
φg(t)

lg(h(x,t)−hsub)

)2
−12µl2gφg(t)

∫ x

x0

1
l3gh

3(x,t)
dx , x < xs

−ρdφg(t)

dt

∫ x

x0

1
lgh(x,t)

dx

ψsup(t) , x > xs

(4)

where φg(t) is the volumic flow inside the glottis, xs the position of detachment of a free jet
from the vocal folds, hsub the height at x0, ρ the density of air and µ the air dynamic viscosity.
The position of the free jet detachment is defined by Eq.5.

hs(t) = min(αhg1(t), hg2(t)). (5)

The value of α is set to 1.1 Lous et al. (1998), when viscous and inertive terms are consid-
ered.

The force applied on the oscillators at y1(t) and y2(t), due to the pressure field, considering
only the component normal to the plates, is given by Eq.6:

fi(t) =

∫ xi

xi−1

(
x− xi−1

xi − xi−1

)
ψ(x, t)dx+

∫ xi+1

xi

(
xi+1 − x

xi+1 − xi

)
ψ(x, t)dx, (6)

where i = 1, 2.

The filter subsystem, coupled to the source subsystem, is described as an acoustic tube with
variable cross section, having for input the supraglottal pressure ψsup(t) and for output ψr(t).
For the sake of simplicity, the vocal tract is represented by a concatenation of cylindrical tubes
and at the end of the last acoustic tube a radiation load equivalent to that of a disc in an infinite
plane is imposed (Fant (1960)).

For the whole system (source + filter), the input is the subglottal pressure ψsub, which is
constant, and the output is the function ψr(t), the pressure at the lips. Details about Lous model
can be found in Lous et al. (1998).

2.2 Stochastic model

The present section briefly presents the methodology used to generate the testing data sets.
Measurement of the mechanical parameters of the vocal folds for various independent vowel
utterance were not available, neither in-vitro nor in-vivo, to us. Then, for practical reasons, all
of the data presented in is this work are simulated numerically.

Recently, Cataldo et al. (2009) discussed the uncertainties of some parameters in Ishizaka
and Flanagan’s model and probability density functions were constructed for them, using the
Maximum Entropy Principle. Herein, the same idea is used, but applied to the Lous model, for
parameter q.

The random variable Q is then associated with the parameter q, and, the corresponding
stochastic model is constructed by substituting in the deterministic Lous model.
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The p.d.f pQ(q) of the random variable Q has to verify the constraints given in Cataldo et al.
(2009).
Applying the Maximum Entropy Principle yields to the gamma probability density function
given by Eq. 7:

pQ(q) = 1]0,+∞[(q)
1
Q

(
1
δ2Q

) 1

δ2
Q ×

× 1

Γ
(
1/δ2Q

) ( q
Q

) 1

δ2
Q

−1

exp

(
− q

δ2QQ

)
(7)

where the positive parameter δQ = σQ/Q is the relative deviation of the random variable Q
such that δQ < 1/

√
2 and where σQ is the standard deviation of Q.

The Gamma function Γ is defined by Γ(α) =

∫ +∞

0

tα−1e−tdt.

To generate the realizations of the output radiated pressure, the Monte Carlo Method is used.
First, independent realizations q(θi) of the random variable Q are generated using the prob-
ability density function defined by Eq. 7. For each realization Q(θ) of the random variable
Q, a realization of the output acoustic pressure, Ψr(t, θ), is calculated using the Lous model
equations.

3 INFERENCE OF THE TENSION’S FACTOR P.D.F.

The stochastic process Ψr(t) is represented in this work as a non-linear mapping of a random
variable Q, by Lous model. Due to this non-linear mapping, the analytical resolution of the
inverse problem, i.e. the inference of the p.d.f of Q given Ψr(t), is intractable. Nevertheless,
using numerical approximations, an estimate of this p.d.f can be obtained.

To infer the p.d.f of Q from Ψr(t), the voice signal is first parametrized. For each realization
Ψr(t, θ) of Ψr(t), the corresponding realization of the fundamental frequency F0(θ) is calcu-
lated. Then, the equations shown in sections 2.1 and 2.2 are used to map from Q to F0 through
a nonlinear function g(.),

F0 = g(Q). (8)

As the analytical inverse mapping Q = g−1(F0) is not available, a Metropolis-Hastings Markov
Chain Monte Carlo (M-H MCMC) algorithm (Chib and Greenberg (1995)) is implemented to
infer Q from F0.

It is supposed that pF0(f
t
0), the p.d.f. of the target fundamental frequency is known. Given

the experimental distribution for F0, pF0(f
t
0), and the mapping F0 = g(Q), through Lous model,

the Metropolis-Hastings algorithm, for a fixed iteration number N , can be implemented as fol-
lows:

1. Choose Q(θ0), and find by simulation F0(θ0) = g(Q(θ0)),

2. set i = 1,

3. at step i, generate a candidate Q(θc) from the internal Markov kernel ρ(.|Q(θi−1)), and
find by simulation F0(θc) = g(Q(θc)),
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4. compute α = p(g(Q(θc)))ρ(Q(θi−1)|Q(θc))
p(g(Q(θi−1)))ρ(Q(θc)|Q(θi−1))

= p(F0(θc))ρ(Q(θi−1)|Q(θc))
p(F0(θi−1))ρ(Q(θc)|Q(θi−1))

,

5. set Q(θi) = Q(θc) with probability argmin(1, α), else set Q(θi) = Q(θi−1) with proba-
bility 1− α,

6. set i = i+ 1,

7. if i ≤ N return to 3.

The internal Markov kernel ρ(.|Q(θi−1)) causes the support of the posterior distribution to
be progressively explored. It is worth noting that ρ(.|Q(θi−1)) should be chosen so that the
candidate Q(θc) can effectively explore the whole support of the posterior distribution.
Due to steps 4 and 5, values of Q(θi) that maps to more likely F0(θi) are chosen with higher
probability than those mapping to less likely values.

By choosing a symmetric probability function for the transition kernel, the acceptance rate
α can be simplified to Eq.9.

α =
p(g(Q(θc)))

p(g(Q(θi−1)))
=

p(F0(θc))

p(F0(θi−1))
. (9)

In this work, the acceptance rate have a uniform p.d.f. of mean Q(θi−1) and support 2σ.

ρ(Q(θc)|Q(θi−1)) = U(Q(θi−1)− σ,Q(θi−1) + σ), (10)

4 APPLICATION AND DISCUSSION

A target set Q is generated from the p.d.f given by Eq.7 and the statistics presented in Tab.1.

Table 1: Summary of the statistics of the target set.

Parameter Mean Relative Number of
deviation realizations

Q 0.94 2.5% 500

From these realizations, and using the forward Lous model, the associated target p.d.f.
pF0(f

t
0) for F0 is simulated.

During the simulation, the set pF0(f
t
0) is related to the observable data. The p.d.f. pQ(qt),

used to generate the target p.d.f. pF0(f
t
0), is only used for comparison with the estimated distri-

bution, i.e. to validate the algorithm.

The choice of the transition kernel is of great importance, in order to work with a reasonable
computational cost (Gilks et al. (1996)). Its probability density should be chosen so that the
candidate Q(θc) can effectively explore the whole support of the posterior distribution.
Another important parameter is its support 2σ. If it is too big, the support of the posterior dis-
tribution is quickly explored, at cost of the rejection of many candidates. On the other hand,
using a small σ, most of the candidates Q(θc) will be accepted, nevertheless, few will sample
the regions of low probability.
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In the following application the starting point of the chain is Q(θ0) = .84. This value was
set by running the deterministic model for different tension factors Q(θ0) until the simulation
of a fundamental frequency F0(θ0) of reasonable probability, given pF0(f

t
0). The support of the

kernel density is 2σ = 0.30.

Figure 2: Posterior (bars) and target (line) pQ(q) for: n = 100 (left), and n = 500 (right)

Figure 2 shows how the sampling is concentrated in the high probability region during the
first 500 iterations. Very few realizations are sampled from the tails of the distribution.

Figure 3: Posterior (bars) and target (line) histograms for pQ(q) for n = 4000

After 4000 steps, the right tail remains almost unexplored, suggesting σ is too small (0.15).
Nevertheless, as shown on Fig.3, a good match is obtained between the target and simulated
distributions.

5 CONCLUSION

The inverse mapping of a stochastic non-linear model have been implemented using Metropolis-
Hastings Monte Carlo Markov Chain algorithm. Very satisfying results were obtained for the
estimation of the vocal fold tension probability density function when compared to the actual
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one.
Nevertheless, the probability of the values lying in the tails of the p.d.f. are not well inferred,
suggesting that the arbitrarily chosen number of iterations or properties of the Markov Kernel
are not optimal.
As a next step, to be less dependent of arbitrarily chosen variables, an implementation of a more
recent algorithm such as Sequential Monte Carlo algorithm is being made.
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