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Abstract. Numerical rock physics offers an alternative approach to laboratogsumements, being
repeatable and essentially free from experimental errors. In this walpgresent a set of oscillatory
numerical experiments to determine the coefficients of the stress-strainnslatia poroelastic medium
saturated by a single fluid. The experiments represent a set of lowefney (quasi-static) compress-
ibility tests applied to a representative sample of bulk material, where the fluehoagh time to reach
pressure equilibration. Each test is associated with a boundary-vabkepr formulated in the space-
frequency domain and solved with a finite-element procedure. The médtigyds used to estimate the
poroelasticity coefficients of a homogeneous sample of isotropic Utsirastaredsaturated with either
brine or CQ, and the eight coefficients corresponding to a periodic sequence asttiopic layers
of brine-saturated mudstone and £&€aturated sandstone. This medium is transversely isotropic in the
long-wavelength limit.
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1 INTRODUCTION

Routine measurements in the laboratory are time-consurmekggnsive and relatively in-
formative, given the limited possibility to inspect the gigal processes involved. Numerical
experiments are inexpensive and informative since theiphlysrocess of wave propagation can
be inspected during the experiment. Numerical rock physfiles in many cases an alternative
procedure to laboratory measurements, being repeatathlessentially free from experimen-
tal errors. In particular, it is useful when the rock propertare well established, e.g., from
dry-rock measurements or well logs.

The purpose of this paper is to present a collection of nuwrakexperiments yielding the
coefficients of the stress-strain relations in a fluid-sstd porous and anisotropic medium. A
suitable model for fluid-saturated porous rocks is Biot'otiggBiot, 1956ab, 1962 Carciong
2007, since Biot's poroelasticity equations have shown to rdpoe the main features of the
static and dynamic behaviour of rocKdjller et al, 2010. The wet-rock bulk modulus, also
termed Gassmann moduluk,., can be written in terms of the dry-rock bulk modulus,,,
effective-stress coefficient;, and coupling modulug3, as Carciong 2007)

K,=K,, +aB,

which depends on the properties of the single constitudriteegporous medium.

The oscillatory experiments performed here are based orita-élement (FE) numerical
code that solves Biot’s differential equation of motion at lisequencies. These experiments
are completely controlled and may be an alternative to acqate the most costly real-field or
laboratory experiments. Numerical experiments emplothedinite-element method have been
recently introduced to study the mesoscopic-loss mechmimsporous mediagantos et a).
2009 Carcione et a).201]) and to obtain the stiffnesses of effective transverselirapic me-
dia (Picotti et al, 201Q Santos et al2011).

In this work, we perform the simulation of compressibiligsts in the space-frequency do-
main to compute the poroelasticity coefficients of an igutrdhomogeneous medium, and the
eight poroelasticity coefficients of a sequence of thin ptastic layersGelinsky and Shapiro
1997. These eight coefficients correspond to the quasi-statit, Wwhere the fluid pressure is
equilibrated across layer boundaries due to the diffusfaheoBiot slow wave.

2 REVIEW OF BIOT'S THEORY.

We consider a porous solid saturated by a single phase, essiple viscous fluid and as-
sume that the whole aggregate is isotropic. et (uf) anda/ = (@), i = 1,--- ,m denote
the averaged displacement vectors of the solid and fluidgshasspectively, wherne denotes
the Euclidean dimension. Also let

uf = (! — )

be the average relative fluid displacement per unit volummitd material, withy denoting the
effective porosity. Set = (u*, u/) and note that

(=-V-u/
represents the change in fluid content. £gtu®) be the strain tensor of the solid and set
e=V-u’ = Eii-
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Also, leto;;, 7,7 = 1,--- ,m, andp; denote the stress tensor of the bulk material and the fluid
pressure, respectively.
Following (Biot, 1962), the stress-strain relations of an isotropic medium cawiiigen as

oij(u) = 2pei;(u’) + di5(Ace — BC), (1a)

pr(u) = —Be+ M(. (1b)
The coefficientu is equal to the shear modulus of the bulk material, consttierde equal to
the shear modulus of the dry matri@éssmannl951). Also

2
Ae=Ke— —p=E.—2p, (2)
m

with K. being the bulk modulus of the saturated material. The coeffis in (L) can be obtained
from the relationsGassmanjil951), (Carciong 2007,

=1 Km

o = K 1
a—¢ ¢\

M — e
(Ks +Kf) ’

(3)
K, = K,, + a2M,

B =aM,

where K, K,, and K, denote the bulk moduli of the grains composing the matriy, rdatrix
and saturant fluid, respectively. The coefficiens known as the effective stress coefficient of
the bulk material.

Let  denote the fluid viscosity ang the absolute permeability. Then, Biot’'s equations in
the diffusive range, stated in the space-frequency donaai@iot, 1956ab, 1962 Carcione
2007

V-o(u) =0, 4)
(Z) iwu! (z,w) + Vpg(u) =0,

wherew = 27 f is the angular frequency= +/—1 and we have assumed no body forces.

3 OSCILLATORY TESTS. ISOTROPIC CASE

To determine the coefficients in the stress-strain relatiequation4) is solved in the 2D
case on a reference squdee= (0, L)? with boundaryT" in the (z;, x3)-plane containing a
representative volume of homogeneous bulk material witlnbdary conditions representing
compressibility tests. Since the sample is homogeneoushenfiuid does not support shear
deformations, the shear modulusvill be assumed to be known and equal to the shear modulus
of the dry sample. For samples with heterogeneities in tble pooperties an specific numerical
experiment can be designed to obtai(Santos et al2009.

Setl' =T uTrBur?ur?, where

I ={(z;,23) €T 2y =0}, TF={(xy,23) €T 2, =1L},
FB:{(xl,x3)EF:x3:0}, I'" = {(zy,23) €T : x5 = L}.
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Denote by the unit outer normal ol and lety be a unit tangent oh so that{v, x} is an
orthonormal system on.

As afirst step, we determine the complex plane-wave modolus# 0, i.e., the fluid is not
allowed to flow in or out of the samplé & 0). This experiment is associated with the solution
of (4) with the following set of boundary conditions.

olu)v-v=—AP, (x,23) €7, (5)
o(uy-x =0, (r,z3)eTurturk (6)
u' v =0, (r,23)eclurf ()
u' =0, (x,23)€lP, (8)
u' v =0, (z1,25)€T. 9)

The solid is not allowed to move on the bottom bounday the fluid is not allowed to flow in
or out of the sample, a uniform compression is applied on thearyl’” and no tangential
external forces are applied on the boundaries) I'* U T'?. For a periodic sample obtained by
a mirror reflection with respect to thg-axis of the domair2, this experiment mimics exactly
the one described by White et alWhite et al, 1975. It was shown in $antos et a].2009
that uniqueness holds for the solution #) (ith the boundary conditionsb)-(9) for w > 0
sufficiently small.

Denoting byV? the original volume of the sample, its (complex) oscillgteolume change,
AV®(w), we can define thequivalentcomplex plane-wave modulus.(w), by using the rela-
ion
o AVb(w) AP

Ve E(w)

The use of a low enough frequency, compared to the locatiothefBiot relaxation peak
(Carcione 2007), implies E.(w) ~ E.(0) = A + 2u = K. + 3u. After solving @) with
the boundary condition$)-(9), the vertical displacements;(x;, L,w) onT'? allow us to ob-
tain an average vertical displacemerit’ (w) suffered by the boundary”. Then, for each
frequencyw, the volume change produced by the compressibility tesbeaapproximated by

(10)

AV (w) = Lud" (w),

which enable us to computé.(w) by using equation1(0).
To determine the coefficient8 and M, associated with the change in fluid conténive
solve equation4) with the boundary conditions

o(wv-v=—AP" (1,13) €7, (11)
c(w)v-x =0, (x,23) €7, (12)
pr(u) = APT (zy,23) € TT, (13)
o(wv-x =0, (v,r3)cFurf (14)
' -v=0, (x1,23)€Tl"uUl" (15)
u' =0, (v1,13)€T?, (16)
uw v=0, (x1,73) eTFUT?UTE. (17)

For this experiment;; = 95 = 0, and the volume change of the sample is

AV
Ve

(18)

€ — £33 —
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Note that the applied fluid pressure on the bounddrinduces fluid flow across such boundary.
Then, measuring the average relative fluid displacemﬁml, L,w) onTT allows us to obtain
an average fluid displacemeazﬁ’T(w) across that boundary. Then, for each frequencyhe
change in fluid conteng per unit bulk volume associated with this compressibikdytf can be
approximated by

AV Luf”
Hence, using the coefficierf.(w), already determined from the previous experiment, we get
from (1), (11), (12) and 3):

AP’ =E.e— B¢, (20)
APl = —Be+ M(., (21)
and from Q0)-(21):
b
B E.e+ AP (22)
¢
and AP/
M= #. 23)
From these equations we have
B

These equations hold at a very low frequency, such that thgimary parts of the field variables
and material coefficients are small enough to be neglected.

Other properties can be obtained by knowing these coeftgidfor instance if<; and K,
are known, the dry-rock modulus and the porosity can be obtbas

K, =(1-a)K, (25)
and , ) L\
() G
respectively. Sinc&,. = K.+ 4u/3, using @), we may also obtain the shear modulus,
= Z(EC—Km—aB). (27)

4 OSCILLATORY TESTS. TRANSVERSELY ISOTROPIC CASE

Here, we consider the case in which the fluid-saturated pestbe medium consists in an
alternating sequence of thin isotropic plane horizontgéils. The frequency-domain stress-
strain relations of a single layerin a sequence oWV layers, are:

O'kl(u) = 2M(n) ekl(us) + O ()\gn) V-u®+ MMMV uf) , (28)

p(u) = "MV uf — MOV ol (29)

where for each layer the coefficients.™, A\, ™ and M ™ can be determined as indicated
in (2)-(3).
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As shown by Gelinsky & Shapiro3elinsky and Shapiral997), a finely-layered medium
behaves as a transversely isotropic (TI) equivalent medaitiong wavelengths, with a vertical
axis of azimuthal symmetry (the;-axis). They obtained the relaxed and unrelaxed limits, i.e
the low- and high-frequency limit real-valued stiffnessespectively. By high-frequency limit
we mean a high enough frequency where the attenuation lefgjle Biot slow compressional
wave is much larger than a mean characteristic, represégtdte period of the stratification.
At this limit, there is no flow and the layers behave like isethmedia, since the slow wave is
highly attenuated and the fluid pressure is no longer eqati#ol. The transition frequency is
given by
kM E,,

nd*
whereE,, = K, + 41/3 andd is the period of the stratification.

The medium behaves as an equivalent (or effective) Tl viastie medium with complex
and frequency-dependent stiffnesseg;, /,J = 1,...,6. Denoting byo;; the stress ten-
sor of the equivalent TI medium, the corresponding stréssrsrelations, stated in the space-
frequency domain, are&C@rcione 2007

(30)

Wy =

o11(u) = pu1 €11 (u®) + pr2 €22(u’) + pi3 e33(u®) — Be(, (31)
o22(u) = pi2 €11(u’) + 11 €22(u’) + P13 €33(u”) — B, (32)
o33(u) = pr13 €11(u”) + P13 €22(u’) + pas es3(u’) — Br(, (33)
o93(u) = 2 pss €a3(u’), (34)
o13(u) = 2 pss €13(u’), (35)
o12(u) = 2 peg €12(u’), (36)
pr(u) = —Bgerr (u®) — Bgeaa(u®) — Bress(u®) + BsC. (37)

In the following, we present a collection of experimentshwjt= 0 and( # 0, performed
on a representative 2D sample of the layered medium to deterthe relaxed stifnesses in
(3D-(37). We employ the same notation defined for the isotropic cabes, we solve Biot’s
equation 4) as follows.

1) ps3: We solve eq4) in 2 with the following boundary conditions

o(uyv-v=—AP, (v,x3) €T, (38)
clw)y-x =0, (x,23) €7, (39)
o(wyy-x =0, (x,r3)cFuUlf, (40)
ut v =0, (x,23) € TPUl”R, (42)
u' =0, (x,23)€l?, (42)
uw v =0, (,13)€T. (43)

In this experiment,e;;(u®) = en(u®) = ¢ = 0 and from eq 83) we can determings; as
follows. Denoting byl” the original volume of the sample and its (complex) osa@itatolume
change byAV (w), we have
AV (w) AP
= — . 44

VT e ()
Computing the average vertical displacemj’ﬁ(w) at the boundary'?, the volume change
produced by the compressibility test can be approximatebyw) ~ Lus” (w), which enable
us to computess(w) by using the relation44).
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i) p11: The boundary conditions are:

o(u)v-v=—AP, (x,23) €T", (45)
o(uyy-x =0, (v,23) e FUTPUr?, (46)
ut v =0, (r,23) e TPUTT, 47
' =0, (x,23) €, (48)
uw' v =0, (z1,25)€T. (49)

Now, e33(u’) = €99(u®) = ¢ = 0 and from eq81) we determinep,, in the same way indicated
for P33
lii) pss: The boundary conditions are:

—o(u)v =g, (x1,23)elTurtur? (50)
ut =0, (x1,23) €5, (51)
uf V= 07 (1'1, fL‘g) S F? (52)

where

(07 AG)? (xlax?)) € FLa
g = (07 _AG)ﬂ (Z’],Qfg) S FRa
(—AG,O), (1'1,.1’3) S .

The change in shape of the rock sample allow us to compgite) by using the relation

AG

tan[f(w)] = @)’

(53)
wheref(w) is the angle between the original positions of the lateraharies and the location
after applying the shear stress&®lsky, 1963. The horizontal displacements(x;, L,w) at
the top boundary? are used to obtain, for each frequency, an average horiatispgacement
u$" (w) at the boundary”. Sincetan[f(w)] ~ v’ (w)/L, we obtainps;(w) from eq 63).

iV) pes: Since this stiffness is associated with shear waves trayel the (z,, =5 )-plane, we
rotate the sample 9@nd apply the shear test indicated fgs.

V) p13: The boundary conditions are

o(w)v-v=—AP, (r;,r3)c TFUTT, (54)
oluv-x=0, (x,23)€l, (55)
u v =0, (x,23)eclUl?, (56)
uw v =0, (x,13)€T. (57)

In this experimentsy; = ¢ = 0, and from eqs31) and @33) we get
T11 = P11€11 + P13€33, (58)
T33 = P13€11 + P33€33,

wheree;; andess are the strain components at the right lateral side and tgdithe sample,
respectively. Then from e&®8) and usingr; = 733 = —AP [c.f. eq 64)], we obtainp;3(w) as

— €
p13(w) _ P11€11 — P33 33. (59)
€11 — €33
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vi) B;-Bg: We solve 8) with the boundary conditions

o(w)y-v=—AP" (x;,13)€IT, (60)
o(wv-x =0, (r,23)ecl7, (61)
o(wyy-x =0, (r,r3) e Furf (62)
u v =0, (x,r3)elPurt, (63)
ut =0, (z1,23) €5, (64)
u' v =0, (2,23) €T\TT (65)
pr(u) = APT (z1,23) € TT. (66)

Then,s;; = e55 = 0, and the volume change of the sample is

AV?P

€ =E33 =
As in the isotropic case, we can obtain an average fluid diephantug’T(w) across the
boundaryI'”. Then, the change in fluid conteqtper unit bulk volume associated with this
compressibility test can be approximated by

AV LulT
gz_w ~— Vi”b. (68)

Hence, using the coefficiept;(w) already computed fron8(), (31), (60) and €6) we have

—AP = p3ze — B¢, (69)
AP/ = —Bre+ Bs (., (70)

whereB; and Bs can be determined.
vii) Bg: The boundary conditions are

o(u)y-v=—AP" (x,13) € I'f (71)
olwyy-x =0, (r,23)eMPUTPur?, (72)
ut v =0, (r,23) e TPUTT, (73)
' =0, (x,23) €, (74)
u' v =0, (r,23) €T \TF (75)
pr(u) = APY (21, 23) € TR (76)

In this experimentess(u®) = exn(u®) = 0. SinceBg has already be determined from the pre-
vious experiment, we use= ¢;; and comput& by measuring the average fluid displacement
u!"(w) across the boundaiy” as indicated in19). Then, from 87) and (75) we have

By — AP/
- .

5 A WEAK FORMULATION OF THE EQUATION OF MOTION

Let us analyze in detail the isotropic case. The transweiisetropic case can be treated
in a similar fashion. In order to state a variational forntiola for (4) and either %)-(9) or

Bg (77)
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(12)-(17), we need to introduce some notation. Forc R? with boundaryd X, let (-,-)x
and(, -), denote the complex?(X) andL?(0X) inner products for scalar, vector, or matrix
valued functions. Also, fos € R, || - || x and| - |5 x will denote the usual norm and seminorm
for the Sobolev spacH*(X) (Adams 1979. In addition, if X = Q or X =T, the subscripX’
may be omitted such thét,-) = (-,-)q or (-,-) = (-, -)p.. Let us introduce the spaces

Hop(Q)={ve[H'(Q)):v-v=0o0onT"UTl'" v =0 onT"},

H(div; Q) = {v € [L*(Q)]*: V-v e L*(Q),v-v=0 onT},

and
HO(div; Q) = {v € [L*(Q)]*: Vv e L*(Q),v-v=0 onT\ T},

Let
VO = [HE 5] x HS (div;Q), VO = [HL 5] x HY(div; Q).

Then multiply equation4) by v = (v*,v/) € V@, use integration by parts and apply the
boundary conditions5)-(6) to see that the solution® = (x>, 4/ ¢ V©) of (4) and
(5)-(9) satisfieghe weak form

A(U(C)’U) _ <AP, v - V>FT ’ Vo = (US’Uf) € V(C)7 (78)

where foru = (u®,u/),v = (v¥,vf) € [HY(Q)]? x H(div;Q), the bilinear formA(u,v) is
defined by

m

—iw (T ot
= iw (Lol 0 ) + (D &(u), &(v). (79)
In (79), the matrixD and the column vectaf((u)) are defined by
)\C -+ 2,u )\C B 0 611(U5>
. >\c )\c + 2/L B 0 ~ . 622(US>
D=1 5 B M o Wy
0 0 0 4u £12(u®)

The term(D é(u), é(v)) in (79) is associated with the strain energy of our system, so Heat t
matrix D must be positive definite, with entries satisfying the ctinds

w0, (80a)
K, —a®’M = K,, > 0, (80b)
M > 0. (80c)

Proceeding in a similar fashion, the solutiof?) = (u(>?) 4(/:9)) € V(©) of (4) and (1)-(17)
satisfieghe weak form

A(u(o)/u) = — (AP v - V)pr — <APf,vf . V>FT , (81)
Vv = (vs,vf) e Y©
Existence of the solution of the boundary value probldjnafd either %)-(9) or (11)-(17)
will be assumed.

Uniqueness for the solutiom(®) of (78) was demonstrated irS@antos et a].2009; unique-
ness of the solution(©) of (81) follows with a similar argument.
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6 THE FINITE-ELEMENT PROCEDURE

Let Th((z_) be a non-overlapping partition 6t into rectangles?; of diameter bounded by
h such that) = szle. To approximate the solid displacement vector, we empleyfittite-
element (FE) space

&B:{U:U‘Qj €P1,1 XPlyl,U-V:OOHFLUFR,
v=0onT?}N[C°Q)?
where P, ; denotes the polynomials of degree not greater than 1 on eacible. The local
degreees of freedom (DOF) f &g are the values at the four corners(of.
To approximate the fluid displacement we employ the follgvahosed subspaces of the

vector part of the Raviart-Thomas-Nedelec space of zeror dRigviart and Thomasl975
Nedele¢1980. When( = 0, we used the space

Wh’C:{’U: 'U’Q].GPLQXPUJ,’U'VZO OnF},
while for ¢ 0
Wh7O:{’U: ’U‘Qj EPL()XPOJ,’U'I/:O OnF\FT}

The corresponding local DOF are the values of the normal corept of the fluid displacement
u/ at the four sides of the rectanglgs.
Let us introduce the FE spaces

V(h,C) _ N-SLB % Wh,C’ V(h,O) _ N—OhB x WhO.
Then the FE procedure to compute the approximate solutigi8fis defined as follows:
find u") = (unO) IO e PC such that
A(u(h’c), v) = (AP, v° - V)pr v = (vs, vf) e PO, (82)

Similarly, the FE procedure to compute the approximatetimiuof (8) is: find (") =
(u(sm0) (F10)) € PO) such that

M), 0) = — (AP )y — (AP T 1), ©
v = (vs,vf) e Yo,

Sinceu™¢) ¢ P© "0 ¢ PO uniqueness for the discrete problerg)(and @3) follows
with the same argument than for the continuous case proviteérequencyw is sufficiently
samll. Existence follows from finite dimensionality.

Assuming that the solution = (u*, u/) of our boundary value problems are such that
[H32(Q)]? anduf, € [HY(Q)]2,V - v/ € H'(Q), the argument given inSantos et al.2009
can be applied here to show that for sufficiently smatt 0 the error associated with the FE
procedures82) and @3) is of orderh. More specifically, it can be shown that the following
apriori error estimate holds

[|wlem) — gy sm)||) 4 | — g Fm) )| o4 || - (u(f,h,m) _ u(f,m)) llo (84)
< C(@)h ([u®™ |32 + W™y + |V -ul" ), m = C,0.

The solution of the eight boundary problems associated thétransversely isotropic case
were solved using the FE method employing the same spacedahthe isotropic case and
using the corresponding boundary conditions.
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7 NUMERICAL EXAMPLES

Let us consider a sample of homogeneous and isotropic ssredisom the North-Sea Utsira
formation. Carbon dioxide (C{) has been injected in this formation during the last 15 years
displacing brine from the pore spad@arcione et a).200§. Table 1 gives the properties of the
single constituents of the sandstone, corresponding tpth dé 850 m, a pore pressure of 10.7
MPa, a confining pressure of 18 MPa and°87

Table 1. Properties of the Utsira sandstone.

Grain bulk modulusi, (GPa) 40
Frame bulk modulusk’,, (GPa) 1.37
shear moduluyy,,, (GPa) 0.82

porosity,¢ 0.36
permeabilityx (D) 1.6

Brine viscosity,, (Pas) 0.0012
bulk modulus K, (GPa) 2.6

CQ, viscosity,n, (Pas) 0.00015

bulk modulus K, (MPa) 25

We show results of the numerical experiments at frequerfcies0* Hz andf = 10~° Hz on
a square sample of side length 50 cm using a mesh size D Identical results are obtained
with finer meshes. Experiments with= 0 useAP = 1, otherwiseAP® = AP/ = 1 and for
this experiment we also run tests by setting® = 1, AP/ = 0 andAP* = 0,AP/ =1
with identical estimates for the coefficients. Table 2 shdwesreal part (the corresponding
imaginary parts are negligible) of the computed doublesigien numerical results for brine
and CQ saturating the Utsira sandstone, compared to the actue¢|asticity values.
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Table 2. Poroelasticity coefficients. Homogeneous isotrapcase

Brine Exact Numerical (10* Hz)  Numerical (10° Hz)

E. (GPa) 8.53521452857964 8.53521452857994 8.535214588579

B (GPa) 6.28721842634875 6.28721842634815 6.2872184206348
o 0.96575000000000 0.96574999994000 0.96574999999999

M (GPa) 6.51019252016376 6.51019252032828 6.510192520164

Carbon dioxide

E. (GPa) 2.52803425332936 2.52803425332967 2.5280342838329
B (GPa) 0.0669955164338892 0.0669955164338744 0.066693388

! 0.965750000000 0.965749994174 0.96574999999954
M (GPa) 0.0693714899651972 0.0693714899651819 0.069996889

Now, we consider a periodic sequence of thin layers of-S&iurated Utsira sandstone and
brine-saturated mudstone. The mudstone Kias 20 GPa,p, = 2600 K,/m*, K,, = 7 GPa,
1n=6 GPaand: = 0.01 D. The numerical experiments were applied on a sqaengle con-
taining ten periods of the sandstone-mudstone sequenug aisnesh size of 68 60. The fre-
quency isf = 10~® Hz. The comparison to the coefficients predicted@elinsky and Shapiro
1997 (see appendix) are shown in Table 3.

Table 3. Stiffnesses coefficients (GPa). Tl case

Exact Numerical (10° Hz)

pss  8.38837046932193  8.38837046932529
pin 12.9764285908037  12.9407760304821
pis  2.04418544762456  2.03235989198574
pss  2.92277227722772  2.9227722772189
pes  9.13666666666667  5.19651777935068
B 0.290783756251698 0.290809523149004
B; 0.330886200120806 0.330886200449567
Bs 0.401861752837481 0.401861752835741

There are several advantages of the presented procedugenén advantage is that allows
for the first time to determine the four coefficients in Bi@&onstitutive relations that so far
were determined using the so cgikdankerclosed, jacketed and unjacketed compressibility
experiments Gassmannl957; Biot and Willis, 1957 on homogeneous samples. Another ad-
vantage is that this numerical experiments can be applidéigtdy heterogeneous poroelastic
materials, in which case and considering only the closed-prperiments we would get coeffi-
cients associated with an homogeneous isotropic or traselyasotropic medium equivalent to
the original fluid-saturated materigb#@ntos et al.2009. Besides, from these constants, other
properties of the medium, such as the porosity and the butkuhos of the rock matrix, can be
obtained.
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8 CONCLUSIONS

We have defined a set of numerical experiments representiagi-gtatic compressibility
tests to determine the coefficients of poroelastic mediarstgd by a single-phase fluid. The
experiments are based on a finite-element solution of Bigtis&on in the diffusive range, with
suitable boundary conditions. The technique has beenepf@ihomogeneous isotropic media
and a sequence of thin poroelastic layers, which is destiiyean equivalent transversely
isotropic medium at long wavelengths. The poroelastictagfficients were determined with
high accuracy for the North-Sea Utsira sandstone satuwitbdeither brine and CQ and a
periodic sequence of brine-saturated mudstone ang<a@rated sandstone thin layers. The
methodology can be extended to more general situationk, asianisotropic and/or fractured
Biot media, that will be the subject of forthcoming research.
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10 APPENDIX

According to Gelinsky and Shapirdl997)[their eq. (14)], the quasi-static (relaxed) effec-
tive constants of a stack of thin poroelastic layers are

Pes = B1 = <M>7

Am b A\ / 1\
— 2pes = =By =2(—— )+ (= —
P11 Pe6 = P12 2 < E. > <Em> <Em>

2

1 a\?>/ Es \' (85)
m)(5) Gre) |

where

2 4
A = K, — g,u, E, =K, + gu, Eq=E,, +a*M (86)

and(-) denotes the spatial weighted average.
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