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Abstract. Numerical rock physics offers an alternative approach to laboratory measurements, being
repeatable and essentially free from experimental errors. In this work,we present a set of oscillatory
numerical experiments to determine the coefficients of the stress-strain relations of a poroelastic medium
saturated by a single fluid. The experiments represent a set of low-frequency (quasi-static) compress-
ibility tests applied to a representative sample of bulk material, where the fluid hasenough time to reach
pressure equilibration. Each test is associated with a boundary-value problem formulated in the space-
frequency domain and solved with a finite-element procedure. The methodology is used to estimate the
poroelasticity coefficients of a homogeneous sample of isotropic Utsira sandstone saturated with either
brine or CO2, and the eight coefficients corresponding to a periodic sequence of thinisotropic layers
of brine-saturated mudstone and CO2-saturated sandstone. This medium is transversely isotropic in the
long-wavelength limit.
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1 INTRODUCTION

Routine measurements in the laboratory are time-consuming,expensive and relatively in-
formative, given the limited possibility to inspect the physical processes involved. Numerical
experiments are inexpensive and informative since the physical process of wave propagation can
be inspected during the experiment. Numerical rock physicsoffer in many cases an alternative
procedure to laboratory measurements, being repeatable and essentially free from experimen-
tal errors. In particular, it is useful when the rock properties are well established, e.g., from
dry-rock measurements or well logs.

The purpose of this paper is to present a collection of numerical experiments yielding the
coefficients of the stress-strain relations in a fluid-saturated porous and anisotropic medium. A
suitable model for fluid-saturated porous rocks is Biot’s theory (Biot, 1956a,b, 1962; Carcione,
2007), since Biot’s poroelasticity equations have shown to reproduce the main features of the
static and dynamic behaviour of rocks (Müller et al., 2010). The wet-rock bulk modulus, also
termed Gassmann modulus,Kc, can be written in terms of the dry-rock bulk modulus,Km,
effective-stress coefficient,α, and coupling modulus,B, as (Carcione, 2007)

Kc = Km + αB,

which depends on the properties of the single constituents of the porous medium.
The oscillatory experiments performed here are based on a finite-element (FE) numerical

code that solves Biot’s differential equation of motion at low frequencies. These experiments
are completely controlled and may be an alternative to or precede the most costly real-field or
laboratory experiments. Numerical experiments employingthe finite-element method have been
recently introduced to study the mesoscopic-loss mechanism in porous media (Santos et al.,
2009; Carcione et al., 2011) and to obtain the stiffnesses of effective transversely isotropic me-
dia (Picotti et al., 2010; Santos et al., 2011).

In this work, we perform the simulation of compressibility tests in the space-frequency do-
main to compute the poroelasticity coefficients of an isotropic homogeneous medium, and the
eight poroelasticity coefficients of a sequence of thin poroelastic layers (Gelinsky and Shapiro,
1997). These eight coefficients correspond to the quasi-static limit, where the fluid pressure is
equilibrated across layer boundaries due to the diffusion of the Biot slow wave.

2 REVIEW OF BIOT’S THEORY.

We consider a porous solid saturated by a single phase, compressible viscous fluid and as-
sume that the whole aggregate is isotropic. Letus = (us

i ) andũf = (ũf
i ), i = 1, · · · ,m denote

the averaged displacement vectors of the solid and fluid phases, respectively, wherem denotes
the Euclidean dimension. Also let

uf = φ(ũf − us)

be the average relative fluid displacement per unit volume ofbulk material, withφ denoting the
effective porosity. Setu = (us, uf ) and note that

ζ = −∇ · uf

represents the change in fluid content. Letεij(u
s) be the strain tensor of the solid and set

e = ∇ · us = εii.
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Also, letσij, i, j = 1, · · · ,m, andpf denote the stress tensor of the bulk material and the fluid
pressure, respectively.

Following (Biot, 1962), the stress-strain relations of an isotropic medium can bewritten as

σij(u) = 2µ εij(u
s) + δij(λc e− B ζ), (1a)

pf (u) = −B e+Mζ. (1b)

The coefficientµ is equal to the shear modulus of the bulk material, considered to be equal to
the shear modulus of the dry matrix (Gassmann, 1951). Also

λc = Kc −
2

m
µ = Ec − 2µ, (2)

with Kc being the bulk modulus of the saturated material. The coefficients in (1) can be obtained
from the relations (Gassmann, 1951), (Carcione, 2007),

α = 1− Km

Ks

,

M =

(

α− φ

Ks

+
φ

Kf

)

−1

,

Kc = Km + α2M,

B = αM,

(3)

whereKs, Km andKf denote the bulk moduli of the grains composing the matrix, dry matrix
and saturant fluid, respectively. The coefficientα is known as the effective stress coefficient of
the bulk material.

Let η denote the fluid viscosity andκ the absolute permeability. Then, Biot’s equations in
the diffusive range, stated in the space-frequency domain,are (Biot, 1956a,b, 1962; Carcione,
2007)

∇ · σ(u) = 0, (4)
(η

κ

)

iωuf (x, ω) +∇pf (u) = 0,

whereω = 2πf is the angular frequency,i =
√
−1 and we have assumed no body forces.

3 OSCILLATORY TESTS. ISOTROPIC CASE

To determine the coefficients in the stress-strain relations, equation (4) is solved in the 2D
case on a reference squareΩ = (0, L)2 with boundaryΓ in the (x1, x3)-plane containing a
representative volume of homogeneous bulk material with boundary conditions representing
compressibility tests. Since the sample is homogeneous andthe fluid does not support shear
deformations, the shear modulusµ will be assumed to be known and equal to the shear modulus
of the dry sample. For samples with heterogeneities in the rock properties an specific numerical
experiment can be designed to obtainµ (Santos et al., 2009).

SetΓ = ΓL ∪ ΓB ∪ ΓR ∪ ΓT , where

ΓL = {(x1, x3) ∈ Γ : x1 = 0}, ΓR = {(x1, x3) ∈ Γ : x1 = L},
ΓB = {(x1, x3) ∈ Γ : x3 = 0}, ΓT = {(x1, x3) ∈ Γ : x3 = L}.
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Denote byν the unit outer normal onΓ and letχ be a unit tangent onΓ so that{ν, χ} is an
orthonormal system onΓ.

As a first step, we determine the complex plane-wave modulus for ζ = 0, i.e., the fluid is not
allowed to flow in or out of the sample (ζ = 0). This experiment is associated with the solution
of (4) with the following set of boundary conditions.

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT , (5)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (6)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR, (7)

us = 0, (x1, x3) ∈ ΓB, (8)

uf · ν = 0, (x1, x3) ∈ Γ. (9)

The solid is not allowed to move on the bottom boundaryΓB, the fluid is not allowed to flow in
or out of the sample, a uniform compression is applied on the boundaryΓT and no tangential
external forces are applied on the boundariesΓL ∪ ΓR ∪ ΓT . For a periodic sample obtained by
a mirror reflection with respect to thex1-axis of the domainΩ, this experiment mimics exactly
the one described by White et al. (White et al., 1975). It was shown in (Santos et al., 2009)
that uniqueness holds for the solution to (4) with the boundary conditions (5)-(9) for ω > 0
sufficiently small.

Denoting byV b the original volume of the sample, its (complex) oscillatory volume change,
∆V b(ω), we can define theequivalentcomplex plane-wave modulusEc(ω), by using the rela-
tion

∆V b(ω)

V b
= − ∆P

Ec(ω)
. (10)

The use of a low enough frequency, compared to the location ofthe Biot relaxation peak
(Carcione, 2007), impliesEc(ω) ≈ Ec(0) = λc + 2µ = Kc +

4
3
µ. After solving (4) with

the boundary conditions (5)-(9), the vertical displacementsus
3(x1, L, ω) onΓT allow us to ob-

tain an average vertical displacementus,T
3 (ω) suffered by the boundaryΓT . Then, for each

frequencyω, the volume change produced by the compressibility test canbe approximated by

∆V b(ω) ≈ Lus,T
3 (ω),

which enable us to computeEc(ω) by using equation (10).
To determine the coefficientsB andM , associated with the change in fluid contentζ, we

solve equation (4) with the boundary conditions

σ(u)ν · ν = −∆P b, (x1, x3) ∈ ΓT , (11)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓT , (12)

pf (u) = ∆P f (x1, x3) ∈ ΓT , (13)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓL ∪ ΓR, (14)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR, (15)

us = 0, (x1, x3) ∈ ΓB, (16)

uf · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR ∪ ΓB. (17)

For this experiment,ε11 = ε22 = 0, and the volume change of the sample is

e = ε33 =
∆V b

V b
. (18)
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Note that the applied fluid pressure on the boundaryΓT induces fluid flow across such boundary.
Then, measuring the average relative fluid displacementuf

3(x1, L, ω) onΓT allows us to obtain
an average fluid displacementuf,T

3 (ω) across that boundary. Then, for each frequencyω, the
change in fluid contentζ per unit bulk volume associated with this compressibility test, can be
approximated by

ζ = −∆V f

V b
≈ −Luf,T

3

V b
. (19)

Hence, using the coefficientEc(ω), already determined from the previous experiment, we get
from (1), (11), (12) and (13):

∆P b = Ec e−B ζ, (20)

∆P f = −B e+M ζ., (21)

and from (20)-(21):

B =
Ec e+∆P b

ζ
(22)

and

M =
∆P f + B e

ζ
. (23)

From these equations we have

α =
B

M
. (24)

These equations hold at a very low frequency, such that the imaginary parts of the field variables
and material coefficients are small enough to be neglected.

Other properties can be obtained by knowing these coefficients. For instance ifKs andKf

are known, the dry-rock modulus and the porosity can be obtained as

Km = (1− α)Ks (25)

and

φ =

(

1

M
− α

Ks

)(

1

Kf

− 1

Ks

)

−1

, (26)

respectively. SinceEc = Kc + 4µ/3, using (3), we may also obtain the shear modulus,

µ =
3

4
(Ec −Km − αB). (27)

4 OSCILLATORY TESTS. TRANSVERSELY ISOTROPIC CASE

Here, we consider the case in which the fluid-saturated poroelastic medium consists in an
alternating sequence of thin isotropic plane horizontal layers. The frequency-domain stress-
strain relations of a single layern in a sequence ofN layers, are:

σkl(u) = 2µ(n) εkl(u
s) + δkl

(

λ(n)
c ∇ · us + α(n)M (n)∇ · uf

)

, (28)

pf (u) = −α(n)M (n)∇ · us −M (n)∇ · uf , (29)

where for each layern the coefficientsµ(n), λ
(n)
c , α(n) andM (n) can be determined as indicated

in (2)-(3).
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As shown by Gelinsky & Shapiro (Gelinsky and Shapiro, 1997), a finely-layered medium
behaves as a transversely isotropic (TI) equivalent mediumat long wavelengths, with a vertical
axis of azimuthal symmetry (thex3-axis). They obtained the relaxed and unrelaxed limits, i.e.,
the low- and high-frequency limit real-valued stiffnesses, respectively. By high-frequency limit
we mean a high enough frequency where the attenuation lengthof the Biot slow compressional
wave is much larger than a mean characteristic, representedby the period of the stratification.
At this limit, there is no flow and the layers behave like isolated media, since the slow wave is
highly attenuated and the fluid pressure is no longer equilibrated. The transition frequency is
given by

ω0 =
κMEm

ηd2
, (30)

whereEm = Km + 4µ/3 andd is the period of the stratification.
The medium behaves as an equivalent (or effective) TI viscoelastic medium with complex

and frequency-dependent stiffnesses,pIJ , I, J = 1, . . . , 6. Denoting byσij the stress ten-
sor of the equivalent TI medium, the corresponding stress-strain relations, stated in the space-
frequency domain, are (Carcione, 2007)

σ11(u) = p11 ǫ11(u
s) + p12 ǫ22(u

s) + p13 ǫ33(u
s)−B6ζ, (31)

σ22(u) = p12 ǫ11(u
s) + p11 ǫ22(u

s) + p13 ǫ33(u
s)−B6ζ, (32)

σ33(u) = p13 ǫ11(u
s) + p13 ǫ22(u

s) + p33 ǫ33(u
s)−B7ζ, (33)

σ23(u) = 2 p55 ǫ23(u
s), (34)

σ13(u) = 2 p55 ǫ13(u
s), (35)

σ12(u) = 2 p66 ǫ12(u
s), (36)

pf (u) = −B6ǫ11(u
s)−B6ǫ22(u

s)− B7ǫ33(u
s) + B8ζ. (37)

In the following, we present a collection of experiments with ζ = 0 andζ 6= 0, performed
on a representative 2D sample of the layered medium to determine the relaxed stifnesses in
(31)-(37). We employ the same notation defined for the isotropic case.Thus, we solve Biot’s
equation (4) as follows.

i) p33: We solve eq (4) in Ω with the following boundary conditions

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓT , (38)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓT , (39)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓL ∪ ΓR, (40)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR, (41)

us = 0, (x1, x3) ∈ ΓB, (42)

uf · ν = 0, (x1, x3) ∈ Γ. (43)

In this experiment,ǫ11(us) = ǫ22(u
s) = ζ = 0 and from eq (33) we can determinep33 as

follows. Denoting byV the original volume of the sample and its (complex) oscillatory volume
change by∆V (ω), we have

∆V (ω)

V
= − ∆P

p33(ω)
. (44)

Computing the average vertical displacementus,T
3 (ω) at the boundaryΓT , the volume change

produced by the compressibility test can be approximated by∆V (ω) ≈ Lus,T
3 (ω), which enable

us to computep33(ω) by using the relation (44).
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ii) p11: The boundary conditions are:

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR, (45)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓR ∪ ΓB ∪ ΓT , (46)

us · ν = 0, (x1, x3) ∈ ΓB ∪ ΓT , (47)

us = 0, (x1, x3) ∈ ΓL, (48)

uf · ν = 0, (x1, x3) ∈ Γ. (49)

Now, ǫ33(us) = ǫ22(u
s) = ζ = 0 and from eq (31) we determinesp11 in the same way indicated

for p33.
iii) p55: The boundary conditions are:

−σ(u)ν = g, (x1, x3) ∈ ΓT ∪ ΓL ∪ ΓR, (50)

us = 0, (x1, x3) ∈ ΓB, (51)

uf · ν = 0, (x1, x3) ∈ Γ, (52)

where

g =











(0,∆G), (x1, x3) ∈ ΓL,

(0,−∆G), (x1, x3) ∈ ΓR,

(−∆G, 0), (x1, x3) ∈ ΓT .

The change in shape of the rock sample allow us to computep55(ω) by using the relation

tan[θ(ω)] =
∆G

p55(ω)
, (53)

whereθ(ω) is the angle between the original positions of the lateral boundaries and the location
after applying the shear stresses (Kolsky, 1963). The horizontal displacementsus

1(x1, L, ω) at
the top boundaryΓT are used to obtain, for each frequency, an average horizontal displacement
us,T
1 (ω) at the boundaryΓT . Sincetan[θ(ω)] ≈ us,T

1 (ω)/L, we obtainp55(ω) from eq (53).
iv) p66: Since this stiffness is associated with shear waves traveling in the(x1, x2)-plane, we

rotate the sample 90o and apply the shear test indicated forp55.
v) p13: The boundary conditions are

σ(u)ν · ν = −∆P, (x1, x3) ∈ ΓR ∪ ΓT , (54)

σ(u)ν · χ = 0, (x1, x3) ∈ Γ, (55)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓB, (56)

uf · ν = 0, (x1, x3) ∈ Γ. (57)

In this experiment,ǫ22 = ζ = 0, and from eqs (31) and (33) we get

τ11 = p11ǫ11 + p13ǫ33, (58)

τ33 = p13ǫ11 + p33ǫ33,

whereǫ11 andǫ33 are the strain components at the right lateral side and top side of the sample,
respectively. Then from eq (58) and usingτ11 = τ33 = −∆P [c.f. eq (54)], we obtainp13(ω) as

p13(ω) =
p11ǫ11 − p33ǫ33

ǫ11 − ǫ33
. (59)
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vi) B7-B8: We solve (4) with the boundary conditions

σ(u)ν · ν = −∆P b, (x1, x3) ∈ ΓT , (60)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓT , (61)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓL ∪ ΓR, (62)

us · ν = 0, (x1, x3) ∈ ΓL ∪ ΓR, (63)

us = 0, (x1, x3) ∈ ΓB, (64)

uf · ν = 0, (x1, x3) ∈ Γ \ ΓT (65)

pf (u) = ∆P f (x1, x3) ∈ ΓT . (66)

Then,ε11 = ε22 = 0, and the volume change of the sample is

e = ε33 =
∆V b

V b
. (67)

As in the isotropic case, we can obtain an average fluid displacementuf,T
3 (ω) across the

boundaryΓT . Then, the change in fluid contentζ per unit bulk volume associated with this
compressibility test can be approximated by

ζ = −∆V f

V b
≈ −Luf,T

3

V b
. (68)

Hence, using the coefficientp33(ω) already computed from (31), (31), (60) and (66) we have

−∆P b = p33 e− B7 ζ, (69)

∆P f = −B7 e+ B8 ζ., (70)

whereB7 andB8 can be determined.
vii) B6: The boundary conditions are

σ(u)ν · ν = −∆P b, (x1, x3) ∈ ΓR, (71)

σ(u)ν · χ = 0, (x1, x3) ∈ ΓR ∪ ΓB ∪ ΓT , (72)

us · ν = 0, (x1, x3) ∈ ΓB ∪ ΓT , (73)

us = 0, (x1, x3) ∈ ΓL, (74)

uf · ν = 0, (x1, x3) ∈ Γ \ ΓR, (75)

pf (u) = ∆P f (x1, x3) ∈ ΓR. (76)

In this experiment,ǫ33(us) = ǫ22(u
s) = 0. SinceB8 has already be determined from the pre-

vious experiment, we usee = ε11 and computeζ by measuring the average fluid displacement
uf,R
1 (ω) across the boundaryΓR as indicated in (19). Then, from (37) and (75) we have

B6 =
B8ζ −∆P f

e
. (77)

5 A WEAK FORMULATION OF THE EQUATION OF MOTION

Let us analyze in detail the isotropic case. The transversely isotropic case can be treated
in a similar fashion. In order to state a variational formulation for (4) and either (5)-(9) or
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(11)-(17), we need to introduce some notation. ForX ⊂ R
d with boundary∂X, let (·, ·)X

and〈·, ·〉∂X denote the complexL2(X) andL2(∂X) inner products for scalar, vector, or matrix
valued functions. Also, fors ∈ R, ‖ · ‖s,X and| · |s,X will denote the usual norm and seminorm
for the Sobolev spaceHs(X) (Adams, 1975). In addition, ifX = Ω orX = Γ, the subscriptX
may be omitted such that(·, ·) = (·, ·)Ω or 〈·, ·〉 = 〈·, ·〉Γ. Let us introduce the spaces

H1
0,B(Ω) = {v ∈ [H1(Ω)]2 : v · ν = 0 on ΓL ∪ ΓR, v = 0 on ΓB},

HC(div; Ω) = {v ∈ [L2(Ω)]2 : ∇ · v ∈ L2(Ω), v · ν = 0 on Γ},
and

HO(div; Ω) = {v ∈ [L2(Ω)]2 : ∇ · v ∈ L2(Ω), v · ν = 0 on Γ \ ΓT},
Let

V (C) =
[

H1
0,B(Ω)

]2 ×HC
0 (div; Ω), V (O) =

[

H1
0,B(Ω)

]2 ×HO
0 (div; Ω).

Then multiply equation (4) by v =
(

vs, vf
)

∈ V (C), use integration by parts and apply the
boundary conditions (5)-(6) to see that the solutionu(C) = (u(s,C), u(f,C)) ∈ V (C) of (4) and
(5)-(9) satisfiesthe weak form:

Λ(u(C), v) = −〈∆P, vs · ν〉ΓT , ∀v =
(

vs, vf
)

∈ V (C), (78)

where foru = (us, uf ), v = (vs, vf ) ∈ [H1(Ω)]2 × H(div; Ω), the bilinear formΛ(u, v) is
defined by

Λ(u, v) = iω
(η

κ
uf , vf

)

+
∑

l,m

(τlm(u), εlm(v
s))−

(

pf (u),∇ · vf )
)

= iω
(η

κ
uf , vf

)

+ (D ǫ̃(u), ǫ̃(v)) . (79)

In (79), the matrixD and the column vector̃ε((u)) are defined by

D =









λc + 2µ λc B 0
λc λc + 2µ B 0
B B M 0
0 0 0 4µ









, ε̃(u) =









ε11(u
s)

ε22(u
s)

∇ · uf

ε12(u
s)









.

The term(D ǫ̃(u), ǫ̃(v)) in (79) is associated with the strain energy of our system, so that the
matrixD must be positive definite, with entries satisfying the conditions

µ > 0, (80a)

Kc − α2M = Km > 0, (80b)

M > 0. (80c)

Proceeding in a similar fashion, the solutionu(O) = (u(s,O), u(f,O)) ∈ V (O) of (4) and (11)-(17)
satisfiesthe weak form:

Λ(u(O), v) = −〈∆P s, vs · ν〉ΓT −
〈

∆P f , vf · ν
〉

ΓT , (81)

∀v =
(

vs, vf
)

∈ V (O).

Existence of the solution of the boundary value problem (4) and either (5)-(9) or (11)-(17)
will be assumed.

Uniqueness for the solutionu(C) of (78) was demonstrated in (Santos et al., 2009); unique-
ness of the solutionu(O) of (81) follows with a similar argument.
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6 THE FINITE-ELEMENT PROCEDURE

Let T h(Ω) be a non-overlapping partition ofΩ into rectanglesΩj of diameter bounded by
h such thatΩ = ∪J

j=1Ωj. To approximate the solid displacement vector, we employ the finite-
element (FE) space

N h
0,B = {v : v|Ωj

∈ P1,1 × P1,1, v · ν = 0 on ΓL ∪ ΓR,

v = 0 on ΓB} ∩ [C0(Ω)]2,

whereP1,1 denotes the polynomials of degree not greater than 1 on each variable. The local
degreees of freedom (DOF) forN h,P

0,B are the values at the four corners ofΩj.
To approximate the fluid displacement we employ the following closed subspaces of the

vector part of the Raviart-Thomas-Nedelec space of zero order (Raviart and Thomas, 1975;
Nedelec, 1980). Whenζ = 0, we used the space

Wh,C = {v : v|Ωj
∈ P1,0 × P0,1, v · ν = 0 on Γ},

while for ζ 6= 0

Wh,O = {v : v|Ωj
∈ P1,0 × P0,1, v · ν = 0 on Γ \ ΓT}.

The corresponding local DOF are the values of the normal component of the fluid displacement
uf at the four sides of the rectanglesΩj.

Let us introduce the FE spaces

V (h,C) = N h
0,B ×Wh,C , V (h,O) = N h

0,B ×Wh,O.

Then the FE procedure to compute the approximate solution of(78) is defined as follows:
find u(h,C) =

(

u(s,h,C), u(f,h,C)
)

∈ Vh,C such that

Λ(u(h,C), v) = 〈∆P, vs · ν〉ΓT , v =
(

vs, vf
)

∈ V (h,C). (82)

Similarly, the FE procedure to compute the approximate solution of (81) is: find u(h,O) =
(

u(s,h,O), u(f,h,O)
)

∈ V (h,O) such that

Λ(u(h,O), v) = −
〈

∆P b, vs · ν
〉

ΓT −
〈

∆P f , vf · ν
〉

ΓT , (83)

v =
(

vs, vf
)

∈ V (h,O).

Sinceu(h,C) ∈ V (C), u(h,O) ∈ V (O), uniqueness for the discrete problems (82) and (83) follows
with the same argument than for the continuous case providedthe frequencyω is sufficiently
samll. Existence follows from finite dimensionality.

Assuming that the solutionu = (us, uf ) of our boundary value problems are such thatus ∈
[H3/2(Ω)]2 anduf ,∈ [H1(Ω)]2,∇ · uf ∈ H1(Ω), the argument given in (Santos et al., 2009)
can be applied here to show that for sufficiently smallh > 0 the error associated with the FE
procedures (82) and (83) is of orderh. More specifically, it can be shown that the following
apriori error estimate holds

‖u(s,h,m) − u(s,m)‖1 + ‖u(f,h,m) − u(f,m)‖0 + ‖∇ ·
(

u(f,h,m) − u(f,m)
)

‖0 (84)

≤ C(ω)h
(

‖u(s,m)‖3/2 + ‖u(f,m)‖1 + ‖∇ · u(f,j)‖1
)

, m = C,O.

The solution of the eight boundary problems associated withthe transversely isotropic case
were solved using the FE method employing the same spaces than for the isotropic case and
using the corresponding boundary conditions.
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7 NUMERICAL EXAMPLES

Let us consider a sample of homogeneous and isotropic sandstone from the North-Sea Utsira
formation. Carbon dioxide (CO2) has been injected in this formation during the last 15 years,
displacing brine from the pore space (Carcione et al., 2006). Table 1 gives the properties of the
single constituents of the sandstone, corresponding to a depth of 850 m, a pore pressure of 10.7
MPa, a confining pressure of 18 MPa and 37oC.

Table 1. Properties of the Utsira sandstone.

Grain bulk modulus,Ks (GPa) 40
Frame bulk modulus,Km (GPa) 1.37

shear modulus,µm (GPa) 0.82
porosity,φ 0.36
permeability,κ (D) 1.6

Brine viscosity,ηw (Pa s) 0.0012
bulk modulus,Kw (GPa) 2.6

CO2 viscosity,ηg (Pa s) 0.00015
bulk modulus,Kg (MPa) 25

We show results of the numerical experiments at frequenciesf = 10−4 Hz andf = 10−6 Hz on
a square sample of side length 50 cm using a mesh size of 50× 50. Identical results are obtained
with finer meshes. Experiments withζ = 0 use∆P = 1, otherwise∆P b = ∆P f = 1 and for
this experiment we also run tests by setting∆P b = 1,∆P f = 0 and∆P b = 0,∆P f = 1
with identical estimates for the coefficients. Table 2 showsthe real part (the corresponding
imaginary parts are negligible) of the computed double-precision numerical results for brine
and CO2 saturating the Utsira sandstone, compared to the actual poroelasticity values.
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Table 2. Poroelasticity coefficients. Homogeneous isotropic case

Brine Exact Numerical (10−4 Hz) Numerical (10−6 Hz)

Ec (GPa) 8.53521452857964 8.53521452857994 8.53521452857968
B (GPa) 6.28721842634875 6.28721842634815 6.28721842634840

α 0.96575000000000 0.96574999994000 0.96574999999999
M (GPa) 6.51019252016376 6.51019252032828 6.51019252016439

Carbon dioxide

Ec (GPa) 2.52803425332936 2.52803425332967 2.52803425332936
B (GPa) 0.0669955164338892 0.0669955164338744 0.06699551643388

α 0.965750000000 0.965749994174 0.96574999999954
M (GPa) 0.0693714899651972 0.0693714899651819 0.06937148996519

Now, we consider a periodic sequence of thin layers of CO2-saturated Utsira sandstone and
brine-saturated mudstone. The mudstone hasKs = 20 GPa,ρs = 2600 Kg/m3, Km = 7 GPa,
µm= 6 GPa andκ = 0.01 D. The numerical experiments were applied on a square sample con-
taining ten periods of the sandstone-mudstone sequence using a mesh size of 60× 60. The fre-
quency isf = 10−8 Hz. The comparison to the coefficients predicted in (Gelinsky and Shapiro,
1997) (see appendix) are shown in Table 3.

Table 3. Stiffnesses coefficients (GPa). TI case

Exact Numerical (10−8 Hz)

p33 8.38837046932193 8.38837046932529
p11 12.9764285908037 12.9407760304821
p13 2.04418544762456 2.03235989198574
p55 2.92277227722772 2.9227722772189
p66 5.13666666666667 5.19651777935068
B6 0.290783756251698 0.290809523149004
B7 0.330886200120806 0.330886200449567
B8 0.401861752837481 0.401861752835741

There are several advantages of the presented procedure. One main advantage is that allows
for the first time to determine the four coefficients in BiotÅŻ constitutive relations that so far
were determined using the so callgedankenclosed, jacketed and unjacketed compressibility
experiments (Gassmann, 1951; Biot and Willis, 1957) on homogeneous samples. Another ad-
vantage is that this numerical experiments can be applied tohighly heterogeneous poroelastic
materials, in which case and considering only the closed-pore experiments we would get coeffi-
cients associated with an homogeneous isotropic or transversely isotropic medium equivalent to
the original fluid-saturated material (Santos et al., 2009). Besides, from these constants, other
properties of the medium, such as the porosity and the bulk modulus of the rock matrix, can be
obtained.
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8 CONCLUSIONS

We have defined a set of numerical experiments representing quasi-static compressibility
tests to determine the coefficients of poroelastic media saturated by a single-phase fluid. The
experiments are based on a finite-element solution of Biot’s equation in the diffusive range, with
suitable boundary conditions. The technique has been applied to homogeneous isotropic media
and a sequence of thin poroelastic layers, which is described by an equivalent transversely
isotropic medium at long wavelengths. The poroelasticity coefficients were determined with
high accuracy for the North-Sea Utsira sandstone saturatedwith either brine and CO2, and a
periodic sequence of brine-saturated mudstone and CO2-saturated sandstone thin layers. The
methodology can be extended to more general situations, such as anisotropic and/or fractured
Biot media, that will be the subject of forthcoming research.
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10 APPENDIX

According to (Gelinsky and Shapiro, 1997)[their eq. (14)], the quasi-static (relaxed) effec-
tive constants of a stack of thin poroelastic layers are

p66 = B1 = 〈µ〉,

p11 − 2p66 = p12 = B2 = 2

〈

λmµ

Em

〉

+

〈

λm

Em

〉2〈
1

Em

〉

−1

+
B6

2

B8

,

p13 = B3 =

〈

λm

Em

〉〈

1

Em

〉

−1

+
B6B7

B8

,

p33 = B4 =

〈

1

Em

〉

−1

+
B7

2

B8

=

[

〈

1

Em

〉

−
〈

α

Em

〉2〈
EG

MEm

〉

−1
]

−1

,

p55 = B5 = 〈µ−1〉−1,

B6 = −B8

(

2

〈

αµ

Em

〉

+

〈

α

Em

〉〈

λm

Em

〉〈

1

Em

〉

−1
)

,

B7 = −B8

〈

α

Em

〉〈

1

Em

〉

−1

,

B8 =

[

〈

1

M

〉

+

〈

α2

Em

〉

−
〈

α

Em

〉2〈
1

Em

〉

−1
]

−1

,

(85)

where

λm = Km − 2

3
µ, Em = Km +

4

3
µ, EG = Em + α2M (86)

and〈·〉 denotes the spatial weighted average.
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