
 

A FIREFLY METAHEURISTIC ALGORITHM FOR STRUCTURAL 

SIZE AND SHAPE OPTIMIZATION WITH DYNAMIC CONSTRAINTS 

Herbert M. Gomes  

 Graduate Program in Mechanical Engineering, Federal University of Rio Grande do Sul, R. 

Sarmento Leite, 425, sala 202, 2º. Andar, 90050-170, Porto Alegre, RS, Brazil, 

herbert@mecanica.ufrgs.br, http://www.mecanica.ufrgs.br/promec/ 

 

Keywords: firefly algorithm, size and shape optimization, dynamic constraints, heuristic 

algorithms. 

Abstract. In this paper, a structural mass optimization on shape and size is performed taking into 

account dynamic constraints. Mass reduction especially conflicts with frequency constraints when 

they are lower bounded since vibration modes may easily switch due to shape modifications. Here it is 

investigated the use of a Firefly Methaheuristic Algorithm (FMA) as an optimization engine. One 

important feature of the algorithm is based on the fact that it is not gradient based, but just based on 

simple objective functions evaluations. This is of major importance when dealing of highly non-linear 

dynamic optimization problems with several constraints avoiding bad numerical behavior due to 

gradient evaluations. The algorithm is briefly revised, highlighting its most important features. Some 

new implementations are performed on the algorithm based on literature reports in order to improve 

the algorithm performance. It is presented several examples regarding the optimization on shape and 

sizing with frequency constraints of complex trusses that are widely reported in the literature as 

benchmark examples solved with several non-heuristic algorithms. The results show that the 

algorithm performed similar to other methaheuristic methods and better in other cases when compared 

with traditional gradient-based methods. 
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1 INTRODUCTION 

The optimization was always present in the day-life of the man since ancient times. In 

order to deal with restrictions on food and shelter, mankind had to develop solutions that cope 

with source limitations and knowledge lack of the problems. Many of these solutions initially 

were based on nature observations. Gradually, the knowledge was advancing based on these 

nature observations and past experience on mistakes and successes. All the solutions found to 

solve these problems are in fact being put the test by day life and eventually can be supplanted 

by better ones. 

In the last two centuries, the development of algorithms that aims at optimizing problems 

developed most based on the differential calculus. Methods like gradient descent, SIMPLEX, 

BFGS, Linear and Quadratic Sequential Programming are broadly used to solve a variety of 

engineering problems. The basic idea shared by these methods is that the gradient of the 

function to be optimized has important information to quickly find and optimum solution for a 

specific problem. However, when dealing with highly non-linear, non-convex, non-

differentiable, non-smooth problems (that are the opposite of the necessary conditions to the 

applicability of the methods), these methods had presented some difficulties on convergence 

sometimes getting stuck on local optima. Some of the challenging actual engineering 

problems in fact may present such behavior. 

Nowadays, a set of algorithms based on natural behavior of swarms, ants, bees, beetles and 

birds had emerged as alternative to overcome difficulties presented by traditional methods in 

some of those optimization problems. They all share the idea of using some social behavior 

presented by species to solve problems regarding survival in the nature and they are put in 

some way as mathematical codes to solve engineering problems using some heuristic rules. 

The advantage of such methods lies on the fact that they do not need information regarding 

gradients of the function to be optimized, and some of them may easily take advantage of 

parallel processing to solve hard problems quickly. 

So, in this paper, a structural mass optimization on shape and size is performed taking into 

account dynamic constraints. In this kind of problem, mass reduction especially conflicts with 

frequencies constraints when they are lower bounded since vibration modes may easily switch 

due to shape modifications. It is investigated the use of a Firefly Methaheuristic Algorithm 

(FMA) as an optimization engine. One important feature of the algorithm is based on the fact 

that it is non-gradient based, but just based on simple objective functions evaluations. This is 

of major importance when dealing of highly non-linear dynamic optimization problems with 

several constraints avoiding bad numerical behavior due to gradient evaluations. The 

algorithm is briefly revised, highlighting its most important features. Some new 

implementations are performed on the algorithm based on literature reports in order to 

improve the algorithm performance. It is presented several examples regarding the 

optimization on shape and sizing with frequency constraints of complex trusses that are 

widely reported in the literature as benchmark examples. The results show that the algorithm 

performed similar to other methaheuristic methods and better in other cases when compared 

with traditional gradient-based methods. 

2 THE FIREFLY METAHEURISTIC ALGORITHM 

The algorithm was firstly proposed by Yang (2007) at Cambridge University on his PhD 

Thesis (Yang, 2010b). It is based in the observation of the flashing light of fireflies. 

According to Day (2010) there are about to thousand firefly species and most of them 

produces short and rhythmic flashes. It should be emphasized that the fireflies are beetles of 
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the family of lampyridae and beetle coleoptera.  They are capable of producing a cold light 

thanks to special photogenic organs situated very close to the body surface behind a window 

of translucent cuticle. This phenomenon is called bioluminescence. The larval phase of the 

fireflies (glowworms) presents the bioluminescence phenomenon too. The majority of fireflies 

and glow-worms have lanterns in at least or both sexes. As cited by Day (2010) a generalized 

definition of bioluminescence often cited is the production and emission of light by a living 

organism. But this is an over simplification and there are many terms, such as fluorescence, 

phosphorescence, luminescence, chemiluminescence and most recently biofluorescence which 

have added to the confusion. To avoid confusion he has expanded upon the general 

description to define bioluminescence as: “the direct production of light from a chemical 

reaction occuring within a living organism”. This excludes the group of living organisms 

which produce and emit light using a fluorescent protein such as the jellyfish Aequorea 

victoria. According to Wikepedia (2010), these proteins exhibit bright green fluorescence 

when exposed to blue light and are therefore not a component of an enzyme catalysed 

luminescent reaction. Day (2010) stated that in the case of bioluminescense, the enzyme 

luciferase acts on the luciferin, in the presence of magnesium ions, ATP, and oxygen to 

produce light. 

 Lukasik and Zak (2008) stated that bioluminescent signals are known to serve as elements 

of courtship rituals, methods of prey attraction, social orientation or as a warning signal to 

predators (in case of immature firefly forms commonly referred to as glowworms). The 

phenomenon of firefly glowing is an area of continuous research considering both its 

biochemical and social aspects. Firefly Methaheuristic Algorithm developed recently by Yang 

(2007) at Cambridge University follows this approach. The rhythmic flash, the rate of flashing 

and the amount of time it remains on, form part of the system that brings both sex together. 

Females respond to male’s unique pattern of flashing in the same species. Some tropic 

fireflies can even synchronize their flashes, thus forming emerging biological self-organized 

behavior.  

 Since the light intensity decays with the square of the distance, the fireflies are limited 

visible to other fireflies. This plays an important role in the communication of the fireflies and 

the attractiveness, which may be impaired by the distance. The flashing light can be 

formulated in such a way that it is associated with the objective function to be optimized, 

which makes it possible to formulate new optimization algorithms. 

 In the development of the algorithm, some simplifications are assumed in order to develop 

the firefly-inspired algorithms. Such simplifications can be summarized as: a) it is assumed 

that all fireflies are unisex so they will be attracted to each other regardless of their sex; b) the 

attractiveness is proportional do their brightness and they both decrease as the distance 

increases and c) in the case of no existence of no brighter firefly on then, the fireflies will 

move randomly. The brightness of a firefly is affected by their fitness (landscape of the 

objective function). In a maximization problem, the brightness is proportional to the objective 

function. Figure 1 shows the pseudo-code of the firefly algorithm in its simplest form. 

2.1 Attractiveness and Light Intensity  

Accordingly to Yang (2010b), in the firefly algorithm, there are two important issues: a) 

the variation of light intensity and b) formulation of the attractiveness. For simplicity, one can 

always assume that the attractiveness of a firefly is determined by its brightness which in turn 

is associated with the encoded objective function ( )if x . In the simplest case for maximum 
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optimization problems, the brightness I of a firefly i at a particular position 1 2( , ,..., )i T
dx x x=x  

can be chosen as ( ) ( )i iI f∝x x . However, the attractiveness β  is relative; it should be seen in 

the eyes of the beholder or judged by the other fireflies. Thus, it will vary with the distance rij 

between firefly i and firefly j. In addition, light intensity decreases with the distance from its 

source, and light is also absorbed by the media, so we should allow the attractiveness to vary 

with the degree of absorption ( γ ). In the simplest form, the light intensity I(rij) varies 

according to the inverse square law (Eq.(1)): 

 

 2( ) /ij s ijI r I r=  (1) 

 

where Is is the intensity at the source. For a given medium with a fixed light absorption 

coefficient γ , the light intensity I varies with the distance rij in the following form (Eq.(2)): 

 

 2
0( ) exp( )ij ijI r I rγ= −  (2) 

where I0 is the original light intensity. 

 

Objective Function 1 1( ), ( , ,..., ) .T
df with x x x d no of design variables= =x x  

Generate initial population of fireflies randomly   , 1,2,..., .i i n n no of fireflies= =x  

Light intensity I at ix is determined by ( )if x  

Define light absorption coefficient γ  

While t < maximum number of generations or convergence criteria are met 

  For i=1 to n 

       For j=1 to n 

     If (Ii < Ij), move i towards j 

           Calculate the distance rij=|| i j
−x x || 

     Calculate 0 exp( )ijrβ β γ= −  

           Generate random number vector ( min( , ), max( , ))i i j i jrandom α α=u x x x x  

     Update design variables 2
0 exp( )( )i i i j j

ijrβ γ= + − − +x x x x u  

       End For j 

   End For i 

   Rank fireflies and find the current global best 

End While 

Postprocess results 

Figure 1: Pseudo-Code for Firefly Methaheuristic Algoritm. (Adapted from Lukasik and Zak (2009), and Yang 

(2010b)) 

As the firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies, 

one can define the attractiveness β of a firefly by (Eq.(3)): 

 

 2
0( ) exp( )ij ijr rβ β γ= −  (3) 
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where 0β  is the attractiveness at rij=0. Equation (3) defines a characteristic distance Γ=l/ γ  

over which the attractiveness changes significantly from 0β  to 0β exp(-1). In the actual 

implementation, the attractiveness function ( )ijrβ  can be any monotonically decreasing 

functions such as 0( ) exp( )mij ijr rβ β γ= − . For a fixed γ , the characteristic length becomes 

1 1 when mγ−Γ = → → ∞ . Conversely, for a given characteristic length scale Γ  in an 

optimization problem, the parameter γ  is  used as a typical initial value 1/ mγ = Γ . 

The movement of a firefly i is attracted to another more attractive (brighter) firefly j is 

determined by (Eq.(4)): 

 

 2
0 exp( )( )i i i j j

ijrβ γ= + − − +x x x x u  (4) 

 

where the second term is due to the attraction. The third term ju  is randomization vector of 

random numbers drawn from a uniform distribution and obtained from an augmented interval 

( 1α > ) from maximum and minimum design variables values for fireflies i and j. For most of 

implementations, one can take 0β =1 and ( min( , ), max( , ))i i j i jrandom α α=u x x x x . It is worth 

pointing out that equation (4) is a random walk biased towards the brighter fireflies. If 0β =0, 

it becomes a simple random walk. The parameter γ   now characterizes the variation of the 

attractiveness, and its value is crucially important in determining the speed of the convergence 

and how the FMA algorithm behaves. γ ∈ [0, ∞) but for most application, due to Γ values of 

the system to be optimized, it typically varies from 0.1 to 10. 

 

3 BRIEF BIBLIOGRAPHICAL REVIEW 

 

The use of Fireflies as an optimization tool has initially proposed by Yang (2007) when he 

conceived the algorithm. New researchers had used the basic algorithm and since some 

improvements had been proposed in order to compare the method with other methaheuristic 

algorithms. There are few books that deal with this theme, such as Yang (2008) and Yang 

(2010b). 

Most of the papers that use the algorithm perform validation and comparisons against other 

methaheuristic such as particle swarm optimization (PSO). Most of problems are benchmark 

De Jung´s test suite functions used to validate optimization algorithms. 

Krishnanand and Ghose (2009b) applied the Glowworm Swarm Optimization algorithm (a 

variant of the firefly optimization algorithm) for optimizing multi-modal functions. In this 

paper, wellknown “Ji” functions are used to compare the performance of the Glowworm 

algorithm with a nich-particle swarm algorithm for optimization. The implementation of the 

algorithms envisions the use on robotic implementation. The paper concludes that the GSO 

could find multiple optima of multimodal functions and performers similar to Particle Swarm. 

In the same way the paper of Yang, (2009 and 2010a) concludes that the FMA could carry out 

a nonlinear design optimization using stochastic test functions with singularities and 

stochastic components and that it can be potentially more powerful than other existing 

algorithms such as PSO. He warns that the convergence analysis still requires theoretical 

framework.  

 More recently Chai-ead et al (2011) applied bee colony algorithm and Firefly algorithm to 
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noisy non-linear optimization problems. They conducted numerical experimental tests that 

were analyzed in terms of best solutions found so far, mean and standard deviation on both the 

actual yields and execution time to converge to the optimum. The Firefly algorithm seems to 

perform better when the noise levels increase. The Bees algorithm provided the better levels 

of computation time and the speed of convergence. They concluded that the Firefly algorithm 

was more suitable to exploit a search space by improving individuals’ experience and 

simultaneously obtaining a population of local optimal solutions. 

Sayadia et al (2010) successfully applied the FMA for minimization in permutation flow 

shop scheduling problems. Since the permutation flow shop is formulated as a mixed integer 

programming and it is classified as NP-Hard problem. Therefore, a direct solution is not 

available and Methaheuristic approaches need to be used to find the near-optimal solutions. 

The results of implementation of the proposed method were compared with other existing ant 

colony optimization technique. The results indicated that the new proposed method performed 

better than the ant colony for some well known benchmark problems. 

Apostolopoulos and Vlachos (2011) applied the firefly algorithm for solving the Economic 

emissions load dispatch problem. In their paper, the algorithm is used to minimize both fuel 

cost and emission of generating units. A general formulation of this algorithm is presented 

together with an analytical mathematical modeling to solve this problem by a single 

equivalent objective function. The results are compared with those obtained by alternative 

techniques and it is shown that it is capable of yielding good optimal solutions with proper 

selection of control parameters. 

In fact, Krishnanand and Ghose (2008a, 2008b 2009a, 2009b, 2009c, 2009d) presented a 

series of use of the firefly algorithm to a sort of problems like high dimensional spaces 

optimization, multimodal functions, hazard sensing in ubiquitous environments, etc, showing 

that the algorithm and variants can be successfully applied to several types of problems. 

Finally a claimed superior variant of the algorithm was proposed by Yang (2010c), called 

Lévy-flight Firefly Algorithm. In the paper it is claimed that the Lévy-flight firefly algorithm 

converges more quickly and deals with global optimization more naturally. In this paper it is 

demonstrated that the Particle Swarm Algorithm is a special class of FMA. However in 

another paper, Lukasik and Zak (2009) had performed numerical studies using benchmark 

constrained optimization problems and concluded that PSO had performed better for 11 

benchmark instances out of 14 being used against FMA (standard deviation of the best 

solution was used since same population size and iterations were fixed for both methods), so 

there are still some controversies regarding the performance of the algorithm.  

 

4 STRUCTURAL SIZE AND SHAPE OPTIMIZATION WITH DYNAMIC 

CONSTRAINTS 

So, in terms of truss optimization, the problem can be mathematically stated as: 
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  (5) 

 

In this paper the constraints violations will be treated with the penalty function technique 

so the objective function to be minimized is modified to: 

 

1

( )(1 )
n

i i i

i

Mass L A PF for all barsρ
=

= +∑    (6) 

 

where the Penalization Factor (PF)  is defined as the sum of all active constraints violations as 

indicated (not only to frequency constraints but to stress and displacements constraints when 

appropriate). 

 

*
1

nc
i

i=1 i

PF for all active constraints
ω

ω
= −∑    (7) 

 

This formulation allows, for solutions with violated constraints, objective function always 

greater than the non-violated one. 

 

4.1 Ten bar Truss 

 

This example was first solved by Grandhi and Venkayya (1988) using the optimality 

algorithm. Sedeghati at al. (2002) used a Sequential Quadratic Programming (SQP) with 

conjunction with finite element force method to solve the problem. Wang et al. (2004) used an 

evolutionary node shift method and Lingyum et al. (2005) used Niche Hybrid Genetic 

Algorithm. Gomes (2009, 2011) used a PSO algorithm to solve the same problem. This paper 

addresses this problem using the Firefly Methaheuristic Algorithm previously described. It is a 

simple 10-bar truss with fixed shape and variable continuous bar sizes. At each free node it is 

attached a non-structural mass of 454.0 kg as depicted by Figure 2. The material properties as 

design variable ranges are listed in Table 1. So this is a truss optimization on size with three 

frequency constraints and ten design variables.  

Table 2 shows the design variables results and the final mass for the optimized truss. It 

should be highlighted the good results obtained with the FMA algorithm and with PSO. The 

truss mass obtained by the PSO was a little worse than Sedaghati et al. (2002) results and the 

FMA algorithm performed better just than Grandhi (1993). 
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Figure 2: 10-bar truss structure with added masses. 

 
Property Value Unit 

E (Young Modulus) 6.98x1010 N/m2 

ρ  (Material density) 2770.0 kg/m3 

Added Mass 454.0 kg 

Design Variable Lower Bound 0.645x10-4 m2 

Main bar’s Dimension 9.144 m 

Constraints on first 3 frequencies 
1 7ω ≥ ,

2 15ω ≥ , 
3

20ω ≥  Hz 

 

Table 1: Material properties and frequency constraints for 10-bar truss structure. 

 

 

Element  

No. 

Wang 

(2004) 

Grandhi 

(1993) 

Sedaghati 

(2002) 

Lingyum 

(2005) 

Gomes 

(2009) 

Present 

Work 

1 32.456 36.584 38.245 42.234 37.712 34.00 

2 16.577 24.658 9.916 18.555 9.959 16.00 

3 32.456 36.584 38.619 38.851 40.265 50.00 

4 16.577 24.658 18.232 11.222 16.788 22.00 

5 2.115 4.167 4.419 4.783 11.576 6.00 

6 4.467 2.070 4.419 4.451 3.955 6.00 

7 22.810 27.032 20.097 21.049 25.308 30.00 

8 22.810 27.032 24.097 20.949 21.613 14.00 

9 17.490 10.346 13.890 10.257 11.576 7.00 

10 17.490 10.346 11.452 14.342 11.186 16.00 

Weight(kg) 553.8 594.0 537.01 542.75 537.98 579.40 

 

Table 2: Optimal design cross sections (cm
2
) for several methods (Weight does not consider added masses). 

 

 Table 3 shows the dynamic constraints on frequency obtained by each of the methods 

showing that any o f them are violated. 
 

Frequency  

No. 

Wang  

(2004) 

Grandhi 

 (1993) 

Sedaghati  

(2002) 

Lingyum 

(2005) 

Gomes 

(2009) 

Present 

Work 

1 7.011 7.059 6.992 7.008 7.000 7.030 

2 17.302 15.895 17.599 18.148 17.786 18.717 

3 20.001 20.425 19.973 20.000 20.000 20.959 

4 20.100 21.528 19.977 20.508 20.063 23.026 

5 30.869 28.978 28. 173 27.797 27.776 28.416 

6 32.666 30.189 31.029 31.281 30.939 32.894 

7 48.282 54.286 47.628 48.304 47.297 48.710 

 

Table 3: Optimized frequencies (Hz) with several methods for the 10-bar truss structure. 
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Table 4 shows the results for 5 independent runs using the FMA method and the 

parameters used in the simulations. It can be noticed that there are some deviation of the 

optimum value obtained for different runs. 

 
 

Mean Mass of 

Fireflies (kg) 
µ  

Standard 

Deviation 

σ  

No. of 

Fireflies 

n  

Alpha 

Coefficient 

α  

Absorption 

Coefficient 
γ  

Minimum 

Attractiveness 

0β  

Mean No.  

of Iterations 

Tolerance for  

Convergence 

580 2.37 50 0.3 0.1 0.5 63 10
-3 

 

Table 4: Statistical results for the 5 independent runs of FMA in 10-bar truss structure problem. 

 

4.2 Simple Supported 37-bar truss 

 

This example has been investigated by Wang et al (2004) using the evolutionary node shift 

method, by Lingyum et al (2005) using the NHGA algorithm and by Gomes (2009, 2011) 

using a PSO algorithm. It is a simple supported Pratt Type 37-bar truss as indicated by Figure 

3. There are non-structural masses of m=10 kg attached to each of the bottom nodes of the 

lower chord, which are modeled as bar elements with rectangular cross sectional areas of 

4x10
-3

 m
2
. The other bars are modeled as simple bar elements with initial sectional areas of 

1x10
-4

 m
2
. The material property for the bar elements are set as E=2.1x10

11
 N/m

2
 and 

ρ =7800 kg/m
3
. Used parameters for the FMA algorithm are listed on Table 7. This is 

considered a truss optimization on size and shape since all nodes of the upper chord are 

allowed to vary in the y-axis in a symmetrical way and all the diagonal and upper chord bars 

are allowed to vary its cross sectional are starting from A=1x10
-4

 m
2
. There are three 

constraints in the first three natural frequencies so that 1 20ω ≥  Hz, 2 40ω ≥  Hz, 3 60ω ≥ Hz. 

So, it is considered a truss optimization problem with three frequency constraints and nineteen 

design variables (five shape variables plus fourteen sizing variables). Figure 3 shows a sketch 

of the 37-bar truss with dimensions. 
 

3 

2 4 6 8 
10 

12 13 16 18 

x 
1 

5 7 9 

11 

13 15 17 19 

1m 

10m 

1 

2 
3 

4 

5 6 

7 10 13 16 19 22 25 

27 
26 

24 

23 
21 20 18 

17 
15 

14 
12 11 

9 
8 

y 

Aditional masses 
 

Figure 3: 37-bar truss structure with added masses. 

 

Table 5 shows a comparison among the optimal design cross sections of several methods 

including the present work (FMA). It can be noticed that in this case, the FMA method did not 

perform as well as the PSO method indicated by Gomes (2009). There is a difference in mass 

about 1kg related to Gomes (2009) results. 

Table 6 shows the optimized frequencies for several methods and the present work. It can 

be noticed that all the constraints are not violated. 
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Variable 

 No. 

Initial 

Design 

Wang 

(2004) 

Lingyum 

(2005) 

Gomes 

(2009) 

Present 

 Work 

Y3 , Y19(m) 1.0 1.2086 1.1998 0.9541 0.9311 

Y5 , Y17(m) 1.0 1.5788 1.6553 1.3362 1.2978 

Y7 , Y15(m) 1.0 1.6719 1.9652 1.4806 1.4694 

Y9 , Y13(m) 1.0 1.7703 2.0737 1.6195 1.5948 

Y11(m) 1.0 1.8502 2.3050 1.6785 1.7069 

A1 , A27(cm
2
) 1.0 3.2508 2.8932 2.9680 2.6783 

A2 , A26(cm
2
) 1.0 1.2364 1.1201 1.0775 0.8199 

A3 , A24(cm
2
) 1.0 1.0000 1.0000 0.5000 1.1091 

A4 , A25(cm
2
) 1.0 2.5386 1.8655 2.7440 2.5139 

A5 , A23(cm
2
) 1.0 1.3714 1.5962 1.2833 1.5218 

A6 , A21(cm
2
) 1.0 1.3681 1.2642 1.6393 1.4284 

A7 , A22(cm
2
) 1.0 2.4290 1.8254 2.5819 3.0302 

A8 , A20(cm
2
) 1.0 1.6522 2.0009 1.2201 1.6517 

A9 , A18(cm
2
) 1.0 1.8257 1.9526 1.3047 1.3091 

A10 , A19(cm
2
) 1.0 2.3022 1.9705 2.8291 3.4008 

A11 , A17(cm
2
) 1.0 1.3103 1.8294 1.6442 1.2592 

A12 , A15(cm
2
) 1.0 1.4067 1.2358 1.4356 1.3585 

A13 , A16(cm
2
) 1.0 2.1896 1.4049 3.5753 2.2984 

A14(cm
2
) 1.0 1.0000 1.0000 0.5193 2.0156 

Weight(kg) 336.3 366.50 368.84 362.27 363.14 

 
Table 5:  Optimal cross section designs for several methods for the 37-bar truss structure (Weight does not 

consider added masses). 

 

Frequency  

No. 

Initial 

 Design 

Wang 

(2004) 

Lingyum 

(2005) 

Gomes 

(2009) 

Present 

 Work 

1 8.89 20.0850 20.0013 20.0335 20.0005 

2 28.82 42.0743 40.0305 41.0167 40.0168 

3 46.92 62.9383 60.0000 60.0224 60.0561 

4 63.62 74.4539 73.0444 73.9039 76.6520 

5 76.87 90.0576 89.8244 85.0975 92.4318 

 

Table 6: Optimized frequencies (Hz) with several methods for the 37-bar truss. 

 

Table 7 shows the statistical results regarding 5 independent runs of the FMA algorithm in 

the 37-bar truss problem and the used FMA heuristic parameters. 

 
Mean Mass of 

Fireflies (kg) 
µ  

Standard 

Deviation 

σ  

No. of 

Fireflies 

n  

Alpha 

Coefficient 

α  

Absorption 

Coefficient 
γ  

Minimum 

Attractiveness 

0β  

Mean No.  

of Iterations 

Tolerance for  

Convergence 

367.1 4.26 40 0.3 0.1 0.5 40 10
-3 

 

Table 7: Statistical results for 5 independent runs of FMA in the 37-bar truss problem. 
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Figure 4: Iterations for mass optimization in 37-bar truss. 

 

 

 

Figure 5: Final configuration for the 37-bar truss using FMA. 

4.3 120-bar truss 

In this example a hemispherical space truss (like a dome) is optimized on shape and size 

with constraints in the first two natural frequencies. The space truss has 52 bars and non-

structural masses of m=50kg are added to the free nodes. The cross-sectional areas are 

permitted to vary between 0.0001 m
2
 and 0.001 m

2
. The shape optimization is performed 

taking into account that the symmetry should be kept in the design process. Each movable 

node is allowed to vary ± 2 m. For the frequency constraint it is set that 1 15.916ω ≤ Hz and   

2 28.649ω ≥ Hz. A sketch of the initial design is shown in Figure 6 and 7. This example is 

considered to be a truss optimization problem with two natural frequency constraints and 

thirteen design variables (five shape variables plus eight size variables). 
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Figure 6: Initial design of the 52-bar dome truss structure. 

 

 

 
 

Figure 7: Initial design of the 52-bar dome truss structure (lateral view). 
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Table 8 shows the initial and final optimized coordinates and cross sectional areas and final 

mass, as well. FMA optimum mass is about 8 kg heavier than Gomes (2009) optimum using 

PSO. It can be noticed that the PSO perform better than the other methods. FMA performed 

better than Lin(1982) and  Lingyum(2005). 

 
Variable  

No. 

Initial  

Design 

Lin 

(1982) 

Lingyum 

(2005) 

Gomes 

(2009) 

Present 

Work 

ZA (m) 6.000 4.3201 5.8851 4.000 4.1700 

XB(m) 2.000 1.3153 1.7623 2.8538 2.7575 

ZB (m) 5.700 4.1740 4.4091 3.7000 3.8028 

XF (m) 2.828 2.9169 3.4406 4.3517 4.2988 

ZF(m) 4.500 3.2676 3.1874 2.5000 2.6011 

A1(cm
2
) 2.0 1.00 1.0000 1.0000 1.0000 

A2(cm
2
) 2.0 1.33 2.1417 1.6690 1.6905 

A3(cm
2
) 2.0 1.58 1.4858 1.2434 1.4776 

A4(cm
2
) 2.0 1.00 1.4018 1.3478 1.2130 

A5(cm
2
) 2.0 1.71 1.911 1.0186 1.3697 

A6(cm
2
) 2.0 1.54 1.0109 1.0000 1.007 

A7(cm
2
) 2.0 2.65 1.4693 1.0000 1.3383 

A8(cm
2
) 2.0 2.87 2.1411 2.0703 1.6682 

Weight(kg) 338.69 298.0 236.046 193.942 202.842 

 
Table 8: Optimal design cross section for several methods in the 52-bar space truss problem (weights does not 

consider added masses). 

 

Table 9 shows the final optimized frequencies (Hz) for the methods. It is noticed that any 

of the frequency constraints were violated.  

 
Frequency 

 No. 

Initial  

Design 

Lin 

(1982) 

Lingyum 

(2005) 

Gomes 

(2009) 

Present  

work 

1 22.69 15.22 12.81 10.255 13.242 

2 25.17 29.28 28.65 28.649 28.671 

3 25.17 29.28 28.65 28.649 28.671 

4 31.52 31.68 29.54 28.809 29.245 

5 33.80 33.15 30.24 28.749 29.342 

 

Table 9: Optimized frequencies (Hz) for several methods for the 52-bar space truss. 

 

Table 10 shows the statistics of 5 independent runs for the 52-bars truss example and the 

parameters used for the FMA algorithm. 
 

Mean Mass of 

Fireflies (kg) 
µ  

Standard 

Deviation 

σ  

No. of 

Fireflies 

n  

Alpha 

Coefficient 

α  

Absorptio

n 

Coefficient 
γ  

Minimum 

Attractiveness 

0β  

Mean No.  

of Iterations 

Tolerance for  

Convergence 

213.2 4.29 50 0.3 0.1 0.5 200 10
-3 

 

Table 10: Statistical results for 5 independent runs of  FMA in the 52-bar space truss problem. 

 

In the following Figures 8 and 9 the shape of initial design and the optimized solutions 

proposed by the literature are compared with that obtained in the present work. Again, it is 

noticed the similar shapes of the final truss of the present work and that presented by Gomes 

(2009, 2011). 
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Figure 8: Initial Design of a 52-bar dome structure. 

 

 

 
Figure 9: Optimized design of a 52-bar dome structure by Gomes (2009) (PSO). 

 

 

 
 

Figure 10: Optimized design of a 52-bar dome structure by present work (FMA). 
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5 CONCLUSIONS 

In this paper the problem of truss design optimization with frequency constraints was 

addressed. The constraints were treated as usual with penalty functions. It is well-known that 

this kind of optimization problem has high-nonlinear behavior regarding the frequency 

constraints especially for shape optimization, since eigenvalues are very sensitive to shape 

modifications. In the literature it was reported several methods that try to bypass this problem. 

In this paper a methodology is proposed based on a Firefly Methaheuristic Algorithm (FMA). 

The FMA is referred in the literature as a global optimizer with advantages in relation to other 

heuristic algorithms like PSO, since it is claimed that PSO is a subset of a general FMA. 

Some capabilities that make this heuristic algorithm attractive are its less parameter necessary 

to set and its floating point treatment. Another common feature to heuristic algorithms is that 

it requires just objective functions evaluations (it is not required gradients), which allows the 

method to treat this kind of problem (symmetrical trusses with equal eigenvalues) without any 

modifications. Another important feature is the fact that the algorithm works with a 

population and random parameters which allows exploration/exploitation capabilities and 

escape from local minima in the search process. 

It was present three examples of increasing difficulty which were compared with results in 

the literature. In an engineering point of view, the method performed well in the three cases, 

showing to be promising. Besides, the method presented results worst than that reported in the 

literature for PSO. 
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