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Abstract.

This paper presents a numerical approach for 3D simulation of welding processes. The
objective of this simulation is the determination of temperatures and stresses during and
the process. Temperature distribution define the heat affected zone where material prop
are affected. Stress calculation is necessary because high residual stresses may promote
fractures, fatigue, or stress corrosion in regions near the weld. The finite element methoc
been used to perform 1) a thermal analysis involving non-isothermal phase change and

mechanical elasto-plastic analysis. Comparisons between analytical and numerical resuli
a non-isothermal solidification test case are presented.
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1 INTRODUCTION

Welding is defined by the American Welding Society (AWS) as a localized coalescenc
metals or non-metals produced by either heating of the materials to a suitable temperatur:
or without the application of pressure, or by the application of pressure alone, with or wit
the use of filler metat.

There are various welding processes used in industry today, the main factors for their dit
tions being the source of the energy used for welding, and the means of protection or cle
of the welded material. In this paper we are concerned on welding methods that only inv
heating of metals.

Information about the shape, dimensions and residual stresses in a component after w
are of great interest in order to improve quality and to prevent failures during manufacturir
in service. Information about the residual stresses also gives input for lifetime prediction, w
is important in the industry. Process parameters and different fixture set-ups can be eva
without doing a large number of experiments by the use of a virtual model. This problem
many others directly associated with it, have been studied by several researchers.

Different physical phenomena occur during the welding process, involving the interac
of thermal, mechanical, electrical and metallurgical phenomeiiae temperature field is a
function of many welding parameters such as arc power, welding speed, welding sequenct
environmental conditions Formation of distortions and residual stresses in weldments depe
on many interrelated factors such as thermal field, material properties, structural boundary
ditions, types of welding operation and welding conditions.

From a mechanical viewpoint, distortions and residual stresses induced in structures
welding can be regarded as the resultant of incompatible strains consisting of plastic st
creep strains, and others. In this study, it is assumed that only plastic strains exist as the i
patible strains after welding, because creep would not be expected due to fast cooling, a
thermal strains are expected after completion of coadling.

Simulation of continuous welding seams can be done by means of nonlinear and non-ste
thermal, metallurgical and mechanical analysis. The transient behavior during welding i
possible to predict in a 2D model because it corresponds to infinite welding speed in the
mal analysis. Moreover, the use of three-dimensional thermal models, which have the a
to simulate the effect of arc movement, is recommended for both multi-layer and multi-bl
welding? Due to these reasons, the current work was focused on three-dimensional stu
thermal and mechanical processes during welding.

A multi-dimensional solidification problem in which solidification takes place over a te
perature range (typical in steel alloys) is implemented following a discontinuous integra
schemé along the discontinuities that involves this kind of problem.

We extend the previous work of Fachinotti ef &labout coupled thermo-mechanical model
applied to continuous casting simulations, developing a 3D transient thermo-mechanical n
using a Lagrangian formulation. The material model used in this paper is a rate indepel
isotropic plasticity modélthat does not account for microstructure variations and does
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include effects of transformation induced plasticity (TRIP). These effects will be includec
the future.

The paper is organized as follows. In Section 2 and 3, we describe the developed mod
the thermal and mechanical problems, their hypotheses and the equations involved and a
discretization procedure to obtain the set of equations in both fields. Section 4 describes k
the strategy used to solve the coupled thermo-mechanical problem.

2 THERMAL PROBLEM
2.1 Introduction

In this section a temperature-based model to simulate the unsteady conduction heat tr
problem in a 3D media undergoing mushy phase change is described.

It is a extension of the method previously formulated for solving 2D and axisymmetric tr
sient conductiot? and steady state conduction-advection phase-change protlems.

The analyzed domain is discretized using linear tetrahedral finite elements. Galerkin we
ing functions are used.

During phase change, a considerable amount of latent heat is released or absorbed, ca
strong non-linearity in the enthalpy function. In order to model correctly such phenomenon
distinguish the different one-phase subregions encountered when integrating over those
elements embedded into the solidification front.

Contributions from different phases are integrated separately in order to capture the :
variations of the material properties between phases. This so called discontinuous integ
avoids the regularization of the phenomenon, allowing the exact evaluation of the discrete
linear governing equation, which are solved using a full Newton-Raphson scheme, tog
with line-search.

We validate the performance of the thermal model by comparison with an exact séfutiol

2.2 Problem definition

Under the assumptions of incompressibility, negligible viscosity and dissipation, linear de
dence of the heat flux on temperature gradient (Fourier’s law), and no melt flow during
solidification process the energy balance for each subdofasgoverned by the equations

p% V- (kVT) =0 Y(x,t) € 2 1)

whereT" denotes the temperatur,the enthalpy (per unit volume) and= «(7") the material
thermal conductivity, assumed isotropic. Equation (1) is supplemented by the following in
condition

T:TO V%GQZ‘, t:to
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and external boundary conditions@®:

—kVT -n=q atof?, (3)
—kVT  -n :henv (T - Tenv) at an (4)

beingdf2r, 02, andd(2. non-overlapping portions a¥(2, with prescribed temperature, con-
ductive and convective heat flux, respectively. In the ab@vandg refer to imposed tempera-
ture and heat flux fields, arig,,, is the temperature of the environment, whose film coefficie
IS heny; m denotes the unit outward normal &s..

Further, the following boundary conditions must hold at the interfadess)

T="Tr )
(Hu(n) + VT -m) =0 (6)

whereT} is a constant value (equal to the melting temperature for isothermal solidificat
and either the solidus or liquidus temperature otherwise)denotes the jump of the quantity
(x) in crossing the interfac&', which is moving with speed in the direction given by the unit
vectorrn. Note that the second equation states the jump energy balance at the interface.
In order to retrievel” as the only primal variable, we define the enthalpy as

H(T) = / pedt + pLfi (7)

Tre f

beingpc andpL the unit volume heat capacity and latent heat, respectively/an@n arbitrary
reference temperaturg; is a characteristic function of temperature, called volumetric liqu
fraction, defined as

0 if T < T,
fl(T) = 0 < flm(T) < 1 if Tsol < T < ﬂiq (8)
1 if T > ﬂiq

whereTy, andT};, denote the solidus and liquidus temperatures, respectively, i.e., the lc
and upper bounds of the mushy temperature range.

2.3 Finite element formulation

First, we derive the weak or variational form of the balance equation (1), supplied by the bo
ary conditions (2-6), using the weighted residual method. The proper choice of weighting f
tions together with the application of Reynolds’ transport theorem allow to cancel the te
arising from the interface conditions (6). And using the definition in (7) then we have the w
temperature-based form of the governing equation:
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/Wpc—dV+—/Wp£fldV+//£VW VTaV + [ WqdS +
2

092,

+ Whepy (T — Topy) dS =0 9
892

wherelV is the weighting function.
In the finite element context, the unknown figldapproximates to a linear combination o
interpolation functionsV,(x, y, z), the so-called shape functions, as follows:

Ta,y,2 zN 50,2 (10)

beingT; the temperature at each nodeg = 1,2, --- , N) arising from the discretization of the
analyzed domair’.

After substitutingl” by its approximation (10) into equation (9), we have to define the weig
ing functionW. AdoptingWW = N, (Galerkin method), we get a non linear system/\of
ordinary differential equations, stated in matrix form as

oT 0L
U=C— +-—+KT-F=
Cort o+ 0 (11)

whereT is the vector of unknown nodal temperatur€sthe capacity matrixL the latent
heat vectorK the conductivity (stiffness) matrix ankl the force vector.
Each term of the residual vectdr are given (in components) by:

Czj:/pCNledV
9
i)

K= / KVN; - VN;dV + / hens NiN; dS.
02 002

On the other hand, the load vectbrtakes the form:

Fi - —/ QNZ dS —|—/ heanenvNi dS (13)
092, 092

2.4 Discontinuous integration in linear tetrahedral elements

As we are following the same integration scheme 4% %hwe describe now briefly the dis-
continuous integration of a linear tetrahedra. In a linear tetrahedral element the inter
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(isotherms) are planes inside each element. Therefore, the different one-phase subregic
countered in an element affected by phase change always show polyhedral geometries
fact allows to solve exactly the integrals (14) in a relatively easy manner.

The use of linear elements produces an element-wise constant approximation to the te
ature gradienty N;T;.

The plain transient conduction problem in the absence of phase change has been \
discussed in the classic finite element literature (see e.g. Zienkiewicz and*¥ayldren ,we
shall focus on the latent heat effects, as given in general form by equation (12). Let us cor
the contribution of a typical linear tetrahedral elemeta L that involves phase change:

Li=pL | NEAV +pL | fINEAV (14)
QF Q,

the above integrals extend over the element liqifcand mushy?:, subdomains
We assume that the latent heat is uniformly released or absorbed during solidification
that f; comes out a linear function @f,

fi= 2t (15)

Looking at the simplicity of the above expressions, the advantage of choosing a linear 1
hedral finite element is noticeable. In fact, computation of the volliffi¢and its center) is
trivial when it is tetrahedral, i.e., for the fully-mushy element and cases: andmlll in Fig-
ure 1. Also, it can be expressed as the difference between tetrahedral volumes kmoases
mmml, sssl, slll andsmml. For pentahedral mushy volumes not embodied in the previc
classification, i.e. casesmm andmmll, we assumé?¢, split into three tetrahedra (see Figure
2). Finally, we can evaluate the remainder (hexahedral) mushy configuratkifissém/ and
smll) as differences between tetrahedra and pentahedra.

Remark: We can accurately approximate any non-linear liquid fractiomsing a piecewise

linear functionf/. Let f; be equal tof* at a series of abscissa = T, < 11 < --- <
T, = Ti,- Now we can think ofL as the summation of contributions arising frenpartial
mushy zones, each one defined by a temperature fdhgeT;| (i = 1,2, - - - ,n) within which

a portionpL; = pL[fi(T;) — fi(T;-1)] is uniformly released or absorbed.

2.5 Solution scheme

Time integration in transient problems is done with the unconditionally stable first-order b
ward Euler method . This implicit scheme is applied on equation (11), which leads to a s
non-linear equations to be solved for the values of the temperatures at finite element noc
the end of the time increment considered:
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SSsm ?i mill ii
smmm?’i mmml! sssl !
ssmm Zi mmll! ssll Z:: ssml ! smll

Figure 1: Different configurations of linear tetrahedral finite elements affected by mushy phase change

:] Solid region
:l Mushy region
- Liquid region

Tn+1 - Tn + Ln+1 — L
At At

The solution of the highly non-linear discrete balance equation (16) is achieved by m
of the well-known Newton-Raphson method. Because of its quadratic convergence ra
provides probably the fastest way to solve non-linear equationignever the initial solution
lays within the convergence or “attraction” zone.

At each new iteration, ¥ is approximated using a first order Taylor expansion,

!pn—l—l = Cn+1 = + Kn+1Tn+1 - Fn+1 =0 (16)

Py ~ gy + J ey ATY =0 (17)

beingJ = d¥/dT the Jacobian or tangent matrix, add@’® = T® — T~V the search
direction. Iterative correction of temperatures is defined by:

AT — _[J(T(i_l))]_1W(T(i—1)) (18)

All the terms of the tangent matrix for transient conduction heat transfer, may be foun
the classical texts, e.g. Zienkiewicz and Tayibhut the latent heat contributi(ﬁ# is detailed
below. This particular matrix is the assemblage of the elemental matrices:
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1*01*&

Figure 2: Split of a pentahedral mushy region into three tetrahedra.

dL* dcs pLTy  [AN(Zparm) dve

— Ce LTe . ) Ve N¢ -~ m
dTe L + dTe Tliq - Tsol [ dTe " + <$b ’ )dTe *

dNe(xbaT,l) e e d%e
+p£ lTVE + N (wbar,l>ﬁ (19)
where
pﬁ T
Ci = ——— NE¢N°¢ dV
L ,-rliq - Tsol ne,

(20)

beingV}®, V¢ the volumes of liquid and mushy zones an, ;, x;.., the barycenter of the
liquid and mushy subregions respectively.

As aforementioned, Newton-Raphson is efficient provided that the initial gli€édies
within the convergence radius of the solutidn If it is not the case, convergence can be force
using a line-search procedufeAssuming thatAT as defined by equation (18) is the correc
search direction, we predit at the iterationt as follows

TO = 70D 4 gAT® (21)

being the scalar parametémetermined under the condition of orthogonality between the ni
residual vector and the search direction, i.e.,

w(TW) . AT = 0. (22)
Line-search must be activated whenever
O(TY + ATO) . AT > @ (TD) . AT, (23)

For the application presented below, the fadtavas chosen to be unit. Refereffteontains a
detailed description of the currently implemented algorithm.
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2.6 Validation - A benchmark problem

Verification of the model has been performed comparing numerical and analytical results
transient non-linear heat transfer problem with exact solution. This is a benchmark problen
is concerned with the solidification of a material which is initially at a temperature just ab
its freezing point and subject to a line heat sink in a infinite medium with cylindrical symme
The substance have an extended freezing temperature range between the solidus and |
temperatures. This problem was solved exactlydzysik and Uzzel? The solid fraction is
assumed to vary linearly with the temperature. As the material has a high latent heat, s
numerical discontinuities are present at the liquid-solid boundary. The material propertie
summarized in table 1. Only a circular sector of the cylinder, forming a wedge, was discrei
because of the symmetry.

The cylinder surface at = L is maintained at a constant, uniform temperatiife The
dimensions of the wedge are: radius = 1 m, sector angle = 15 degrees, and thickness =0
The mesh is shown in figure 5.

Parameter Symbol | Value Unit
Density p 2723.2 kg /m?]
Specific Heat, (solid)] C, 1046.7 [J/kg°C]
Specific Heat, (liquid) 1256.0 [J/kg°C]
Latent Heat L 395403 [J/kg]
Conductivity (solid) Ks 197.3 [(W/meC]
Conductivity (liquid) K1 181.7 [(W/meC]|
Solidus temp. T 547.8 [°C]
Liquidus temp. T; 642.2 [°C]
Initial temp. T; 648.9 [°C]
Line heat sink Q 50000 (W/m]

Table 1:Material and problem data for the validation problem

The numerical results are in agreement with the corresponding analytical results as shc
figure 3.

The use of a concentrated heat sink leads to large thermal gradients s This singularity
explains the error increment in the vicinity of the axis (see fig.4).

As described it? a concentrated thermal load in an infinite half space has a singula
proportional to the inverse of the radial distance. Therefore concentration of elements
nodes around the (welding) source where gradients change rapidly is required. In figure
relative errors between the exact and 3D FEM solution is plotted.

Figure 5 offers a general view of the computed temperature distribution through the doi
1 hour after starting of tht process.
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Figure 3: Temperature comparison: FEM vs. analytical solution
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Figure 4: Relative error (%) between numeric and analytic solutions
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temperature
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Figure 5: FEM mesh and temperature distribution at t=1 hour

3 MECHANICAL PROBLEM
3.1 Introduction

During a thermal welding process, the weld site and immediate surrounding area exper
different rates of heating/cooling and thus expansion/contraction, that leads to conside
thermal strains. Due to the localized nature of the heat application, the expansion due to
strains is constrained by the cooler material away from the site of the applied heat. The phy
and chemical properties of the material also change at the weld site and heat affected
(HAZ), both during and after the welding process. These changes affect mechanical ma
properties, and must be taken into account in mechanical analysis.

Due to the intrinsic three-dimensional nature of loads, boundary conditions and geon
usually involved in welding processes, a 3D mechanical model was implemented. It sh
be noted that the weld pool itself is not modelled in mechanical analysis. This is only a
region serving as the means of the heat input to the thermomechanical model. In this ¢
the use of cut-off temperature or zero-strength temperati®d, was assumed. This is also
the temperature above which no further changes in material properties are accounted for
mechanical analysis.

The thermoelastic material behavior is for most cases based on a hypoelastic versi
Hooke’s law with inclusions of thermal strains. The Young’s modulus, and the thermal dil
tion coefficient, are the most important parameters. Poisson ratio, has a smaller irffloenc
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the residual stresses and deformations. The plastic material model for solidified metal we
rate-independent, incompressible Von Mises plasticity. An associative flow rule was usec
isotropic hardening have been assumed.

The argument for using rate-independent plasticity at high temperatures is based on tl
volved time scale$’ The material has a high temperature during a relatively short time of
weld thermal cycle, and therefore the accumulated rate-dependent plasticity is neglected.

Inertial effects are ignored in momentum balance equations, according to the assumpti
null velocity field within the solid.

3.2 Lagrangian formulation of the constitutive equations

According to the local state theolythe thermodynamic state at any particeof a material
medium at a given instaritis completely defined by the values of a certain number of st:
variables at this particle, at this instant. Computations on inelastic materials take advante
strain-driven formulations, in which state variables are the total straimd a set of phenomeno-
logical internal strain-type variables describing material history, together with the tempere
field T', here assumed to be known a priori.

No kinematic nonlinearities are taken into account, or equivalently small strains and
placements are assum&dEven when small strain approximations are often used in this ty
of problems, one must be aware that even moderate rotations will create spurious $tresse

Then, the total strain can be additively decomposed as follows:

e=¢c+¢, (24)

e° being the thermoelastic (reversible) strain andhe inelastic (irreversible) strain. Either
term may play the role of an internal variable, btts typically chosen (option we followed in
this work).

We also adopt a scalar internal variablewhich characterizes isotropic hardening from th
phenomenological point of view. The hypothesis of isotropic hardening is widely accepte
welding applicationg!:21:22

Furthermore, the most popular choice for the hardening parameédies on the equivalent

inelastic strain:
t 2 y
o= / \@ léi(r)]] dr, (25)
0

whereé’ is the inelastic strain rate anid’|| = | /¢},!; its Ly-norm.

Although driving variables lie in strain space, response functions (i.e. the yield criterion
the evolution laws) are usually written in terms of their conjugated thermodynamic forces:
stress tensar (dual ofe®) and the isotropic hardening variable in stress sp&ce, R(«).

The stress tensar depends oe ande’ through the decomposition (24). For linearly-elasti
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isotropic materials, the stress is defined by the state law:

o = k[tr(e®) — 3er]l + 2udev(e®), (26)
D s

wherex = x(T) andu = p(T) are thermo-dependent material properties known as bulk &

shear moduli, respectivelyy is the thermal strair, the second-order unit tensat; (e¢) = £,

and dev(e®) = e° — tr(e®)l/3 are the trace and the deviator of the second-order tesfsor

p = tr(o)/3 is the mean stress arid = dev(o) is the stress deviator. Here, the therme

expansion is defined by the thermal linear expansion (TLE) function:

T
er = TLE(T) = / ar(t)dr, (27)
Tref
with o as the linear thermal expansion coefficient dihg an arbitrary reference temperature
The von Mises criterion, for the time being the most widely used yield criterion for met:
is defined:

= lall— /2 lov + RG@), @9)

with oy denoting the initial yield stress.
Associated to this yield criterion, the following flow rule is considered:

€ = n, (29)

beingn = s/||s|| the normalized stress deviator defining the normal to the Von Mises vyi
surfacef = 0 in the deviatoric-stress space, and> 0 the consistency parameter. For plasti
materials;y is determined by means of the consistency condition

vf =0. (30)

Finally, having chosen the equivalent inelastic strain as hardening variable, the flow rule
completely defines the hardening law:

Q= \/gﬂéi” = \/g’% (31)

3.3 Integration of the evolution equations

Following Simo and Taylof? we discretize the evolution laws (29) and (31) using the implic
Euler-backward finite-difference scheme. Then, given the total strain increfizeat the par-
ticle X during the time intervalt,,, 1], t,.1 = t, + At, the material state aX is updated
from the previous instari, to the current one, . ; by a standard return-mapping algorithm.

Also the consistent tangent matrix was implemented. The correct evaluation of this m
is essential to achieve good numerical response in the determination of equilibrium cond
In our procedure we have neglected derivatives of stresses with respect to temperature ci
without affecting seriously the convergence rate.
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3.4 Finite element implementation

Momentum balance equation ignoring inertial effects
Veo+pb=0 VX € (), (32)
subjected to the following boundary conditions

u=u VX €0f, (33)
o-n=t VX €00y, (34)

leads to the standard quasi-static boundary value problem in solid mecfaviish con-
sists in finding the displacement fieddthat satisfy the integral equations

/ o : ViwdV = / pb - wdV +/ t-wdsS, (35)
s 2

082 ¢

throughout the domairy,, for all the admissible displacement weighting functians

Equation (35) is the weak form of the momentum balance equations (32), whésehe
body-force (per unit volume) arids the traction prescribed over the porti@f?; ; of the bound-
ary (displacement boundary conditions over the complementary parfipp are assumed to
hold a priori).

Even when linear hexahedral elements are superior to linear tetrahedral eléntéaisl
they are also better than quadratic tetrahedron elements when plastic deformatiorfoweurs
choose tetrahedron elements for the spatial discretization. This is due to the good availe
of procedures for generating arbitrary meshes using tetrahedral elements.

Appropriate mixed finite elements could be employed in order to deal with the numet
difficulties eventually caused by the inelastically-incompressible behavior of m&tdlsAl-
though, we have implemented a standard formulation, based in our previous experience ir
tinuous casting simulation.

The displacement trial functions are defined as follows:

i=1

being/V; the displacement shape function associated to the displacementsaade, . . ., n,,
U, the nodal displacement

After replacingu in (35) by its respective finite element approximation (36), and by adopti
the corresponding shape functions as weight functions (Galerkin formulation), it yields

R = Ent - Femt = 0: (37)
(38)

2314



A. Anca, A. Cardona, J. Risso

where
Fu—= [ Blo@av (39)
25
F., = / NTpbdV + / NTtds (40)
s 082 ¢

B is the typical finite element matrix defining the strain-displacement kinematics relatio
e = BU. (41)

The nonlinear system of equations (37) is solved iteratively, approximating this system
i-th iteration using a linear Taylor expansion

R(U@)) ~ R(U(iq)) + J(U(iq))AU(i) =0 (42)

whereJ = dR/dU is the Jacobian or tangent matrix, ad@’ ) = U® — U~V is the search
direction. Iterative correction of variables is defined by:

AU(Z) - —[J(U(ifl))]ilR(U(ifl)) (43)

As described for the thermal problem, this Newton-Raphson scheme is complementec
line-search procedures to accelerate the convergence.

4 THERMO-MECHANICAL COUPLED ANALYSIS

Dependency of the thermal problem on mechanical variables is negligible. Considering thi:
every time step the thermal problem is solved first, and then the mechanical problem is s
using as inputs the results of the thermal problem.

Algorithm 1 shows the global calculation scheme. At the time being, a fixed time ste
specified. However, more sophisticated schemes, with ability to increment and to reduc
time step will be implemented in the future.
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Algorithm 1 Coupled Thermo-Mechanical Analysis
while t < t.,,4 dO
t=t+ At
THERMALNEWTON
while || &z || > Toliyer dO
C&'CU'&tGAT(i) = _[J(T(ifl))]_llp(T(ifl))
Compute? 1)
end while
MECHANICAL. NEWTON
while ||R(U(i)) > Tolecn, dO
CalculateAU ") = —[J i1y Ry,
ComputeR )
end while
end while

5 CONCLUSIONS

We have presented a finite element model to simulate the 3D transient conduction problen
phase-change. The use of linear tetrahedral elements facilitates the exact analytical intec
of the finite element arrays, and therefore the exact evaluation of the discrete balance eqt
Further, the discontinuous integration procedure let us evaluate correctly the discontinuot
ture of phase-change phenomena.

The highly non-linear equation governing the problem is solved using the Newton-Rap!
method, with an exact, analytically computed tangent matrix. Such an iterative method pro
probably the fastest way to solve this equation. Convergence starting from initial solutions |
out of the “attraction” zone was enforced using a line-search procedure. Therefore, it yielc
improvement of the robustness of Newton-Raphson method.

Thermal results were correctly validated against an analytical solution for a non-isothe
phase change problem.

Future work will include more sophisticated time step control and improvements in the
chanical analysis to take into account the incidences of metallurgical transformations ol
thermomechanical properties of materials.
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