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Abstract. A geometrically exact thin-walled composite beam finite element for multibody 

applications is presented. In the proposed formulation the virtual work equations are written as a 

function of generalized strains, which are parametrized in terms of the director field and its 

derivatives. Finite rotations are parametrized with the total rotation vector. The derivatives of the 

director field are obtained via interpolation, thus simplifying the linearization of the virtual strains. 

The material constitutive relations are based on the mechanics of composite laminates. The 

formulation of typical joints is briefly presented. The finite element is implemented in a multibody 

algorithm that uses the generalized-alpha method to integrate in time the differential-algebraic system 

of equations. 
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1 INTRODUCTION 

Thin-walled composite beams are widely used in different areas of engineering. In the last 

years, most research efforts regarding beam formulation have been directed to the analysis of 

mechanism analysis. With the recent advances in the development of flexible multibody 

algorithms, several multibody beam finite element formulations have been proposed. Most of 

these beam formulations assume an isotropic constitutive law. Often, this constitutive law is 

not capable of accurately describing the real behavior of some slender structures such as 

helicopter rotor blades, aircraft wings and wind turbine blades, which are built of composite 

materials. This situation motivated the present work, where we present a composite thin 

walled beam formulation for flexible multibody applications.  

The analysis of flexible multibody beams generally involves a deep knowledge of 

tridimensional finite rotations. The non-vectorial nature of finite rotations introduces a great 

complexity to the finite element formulation; several approaches have been proposed in the 

literature to address this problem. The introduction of geometrically exact beam finite element 

formulations can be traced back to the works of Simo (Simo 1985) and Cardona (Cardona and 

Geradin 1988). After these pioneering works, several authors have addressed the problem of 

geometrically exact beams (Simo and Vu-Quoc 1988; Ibrahimbegovic 1995; Ibrahimbegović, 

Frey et al. 1995; Crisfield 1997; Ibrahimbegovic and Al Mikdad 1998; Jelenic and Crisfield 

1999; Armero and Romero 2001; Betsch and Steinmann 2002; Ritto-Corrêa and Camotim 

2002; Saravia, Machado et al. 2010).  

The development of finite element algorithms for flexible multibody applications started in 

the early nineties with the work of Cardona et. al. (Cardona, Geradin et al. 1991). New 

approaches were quickly developed (Ibrahimbegovic and Mamouri 2000; Ibrahimbegovic, 

Taylor et al. 2003) and the different successful implementations pushed the subject from the 

scientific to the technological level. A few geometrically exact composite thin-walled beam 

formulations for multibody applications have been reported in the literature. Most of these 

formulations are based on the VAM (Variational Asymptotic Method) approach and are due 

to the group of Prof. Hodges (Hodges 1990; Cesnik and Hodges 1997; Yu, Liao et al. 2005; 

Hodges 2006).  

We present in this work a geometrically exact finite element formulation for multibody 

applications. The present formulation is based on a composite thin-walled beam theory that 

includes transverse shear effects. In contrast to most geometrically exact beam finite 

elements, the virtual work equations are parametrized in terms of the director field and its 

derivatives. This greatly simplifies the expression of the Green-Lagrange strain tensor since 

no rotational variables appear in its expression. The total rotation vector is used to update the 

director field; the derivatives of the directors are obtained through interpolation. 

2 THIN WALLED BEAM THEORY 

2.1  Kinematics 

The kinematic description of the thin-walled beam relates two states of a beam, an 

undeformed reference state   , and a deformed state  . We associate to    a material frame 

   and to   a spatial (floating) frame   , both frames being orthonormal and coincident at 

time    . The absolute displacements that occur during finite deformation are measured by 

a vector             . The relation between the orthonormal frames is given by the linear 

transformation: 

                 (1) 
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where         is the total rotation tensor (a two-point tensor field       ; the special 

orthogonal Lie group) and   is the total Cartesian rotation vector.  

Using Eq. (1) we can write the position vectors of a point in the beam in the reference and 

current configuration respectively as: 

                     

 

   

                                    

 

   

     (2) 

In these equations the first term stands for the position a reference point and the second term 

stands for the position a point in the cross section relative to the reference point. In this work 

we set the centroid to be the reference point. We can also express the spatial position vector 

as: 

                                   (3) 

where      
 
      is the material position vector of a point with respect to the centroid. 

Note that,   is the running length coordinate and    and    are cross section coordinates. Also, 

the displacement field is: 

                                 (4) 

where   represents the displacement of the centroid. The nonlinear manifold of 3D rotation 

transformations      (belonging to the special orthogonal Lie Group SO(3)) is described 

mathematically via the exponential map  (Argyris 1982; Cardona and Geradin 1988).  The set 

of kinematic variables is defined by three displacements and three rotations as: 

                                                 
   (5) 

2.2  Strain Field 

In order to obtain the expression of the Green-Lagrange strains we first obtain the 

derivatives of the position vectors of the undeformed and deformed configurations as: 

 
      

      
      

                            

      
      

      
                           

(6) 

Injecting these vectors into the GL strain       

 
                  (Bonet 1997) we 

obtain three non-vanishing components, in vector notation:                       
 . Note 

that the existence of transverse shear strains implies         .  

We can write the GL strain as: 

          (7) 

Where we have introduced a generalized strain vector such that:  
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 (8) 

The generalized beam  strains belong to a material description and are expressed in a 

rectangular coordinate system.  

Now we introduce a curvilinear coordinate system         and transform the GL strains to 

this coordinate system. The cross-section shape will be defined in this coordinate system by 

functions        . The coordinate   is measured along the tangent to the middle line of the 

cross section, in clockwise direction and with origin conveniently chosen. Also, the thickness 

coordinate             is perpendicular to s and with origin in the middle line contour. 

To represent the GL strains in this curvilinear coordinate system we make use of a curvilinear 

transformation tensor   (Saravia, Machado et al. 2011). Hence, the GL strain vector in the 

curvilinear coordinate system is obtained by transforming the rectangular GL strains as: 

                        
               (9) 

The GL strain vector in curvilinear coordinates has a remarkably simple closed expression: 

       

            
 

 
   

 
 
 
 

 

 
   

 
 
 
        

   
  

 
    

  
 
       

       
    

    
  

 
    

  
 
       

       
    

   (10) 

where the prime symbol has been used to denote derivation with respect to the s coordinate. 

The location of a point anywhere in the cross-section can be expressed as: 

                 
    
  

                 
    
  

  (11) 

where    locates a point anywhere in the cross section and     locates the points lying in the 

middle-line contour.  

The strain state of the composite laminate (see (Barbero 2008)) will be described by a shell 

strain vector: 

                          (12) 

We now introduce Eq. (11) into Eq. (10) to express the GL strains as a function of the mid-

surface coordinates     and its derivatives, we find that a matrix   establish the relationship 

between the GL curvilinear strains and the generalized strains as: 

         (13) 

Substituting Eq. (11) into Eq. (10) and neglecting higher order terms in the thickness (terms in 

  ) we obtain:  
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  (14) 

It’s interesting to note that the matrix   plays the role of a double transformation matrix that 

directly maps the generalized strains   into the curvilinear GL strain    without the need of an 

intermediate transformation. 

2.3  Constitutive Relations 

As mentioned before, the present formulation can handle composite materials in a 

geometrically exact framework without modifying the classical thin-walled beam 

approach. We have chosen the GL strain as a measure of strain; this implies that we must 

use a material stress tensor, the second Piola-Kirchhoff stress tensor  , as work conjugate 

variable. For an orthotropic lamina, the relationship between   and the GL strain tensor, 

can be expressed in curvilinear coordinates as a matrix of stiffness coefficients     (Jones 

1999; Barbero 2008): 

 

 
 
 
 
 
 
   

   

   

   

   

    
 
 
 
 
 

 

 
 
 
 
 
 
              

              

              

          
          

               
 
 
 
 
 

 
 
 
 
 
 
   

   

   

   
   
    

 
 
 
 
 

  (15) 

In matrix form: 

         (16) 

In the above equation     are components of the transformed constitutive (or stiffness) 

matrix defined in terms of the elastic properties (elasticity moduli and Poisson coefficients) 

and fiber orientation of the ply (Barbero 2008).  

The shell stress resultants in a lamina result from the integration of stresses in the thickness, 

and are thus defined as: 

            
   

    

                       
   

    

     (17) 

Employing Eqs. (15) and (17) and neglecting the normal stress in the thickness (i.e.     = 

0) it is possible to obtain a constitutive relation between the shell forces and strains as:  
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  (18) 

where:    ,    , and     are axial, hoop and shear-membrane shell forces and     and     

are transverse shear shell forces. Also;    ,     and     are axial bending, hoop bending and 

twisting shell moments, respectively. The same nomenclature is extended to the shell strain 

resultants, thus:     and     are axial and hoop normal strains,    ,     and     are shear shell 

strains and     ,      and      are axial, hoop and twisting curvatures respectively. The 

coefficients    ,    
  ,     and     in the constitutive matrix are shell stiffness-coefficients that 

result from the integration of     in the thickness (Barbero 2008).  

Although the last relationships were derived for a single lamina, we can obtain the 

constitutive relations for a laminate by spanning the integrals in the thickness of the lamina 

over the different layers of the laminate (each layer being a single lamina). Therefore, using 

the hypotheses of plane stress in the laminate and rigid cross section (it can be seen that 

according to this hypothesis          , but in order to avoid overstiffening effects we set 

          (Barbero 2008), thus generating a mild inconsistency typical of thin-walled 

beam formulations), the relations (18) simplify to: 

 

 
 
 
 
 
   

   

   

   

    
 
 
 
 

 

 
 
 
 
 
 
  

    
           

  
    

           
    

  
   

                 

                  
 
 
 
 
 

 
 
 
 
 
   
   
   
   

    
 
 
 
 

  (19) 

where   
   are components of the laminate reduced in-plane stiffness matrix,      are 

components of the reduced bending-extension coupling matrix,      are components of the 

reduced bending stiffness matrix and   
  
  is the component of the reduced transverse shear 

stiffness matrix. 

We can express the above relation in matrix form as: 

          (20) 

where   is the composite shell constitutive matrix and    is the curvilinear shell strain vector 

defined in Eq. (13).  

2.4  Beam Forces 

In order to reduce the 2D formulation to a 1D formulation we need to express the shell 

forces as a function of the generalized strains. Replacing Eq. (13) into Eq. (20) we obtain; 

           (21) 

Now, we transform the shell forces in Eq. (21) back to the “generalized space” by using the 

double transformation matrix  . Hence, we obtain the transformed back shell strain as: 
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                (22) 

We see that   
  is a vector of generalized shell stresses defined in the global coordinate 

system. It is a function of the cross section mid-contour and thus integration over the contour 

gives the vector of generalized beam forces (work conjugate with the generalized strains) as: 

         
    

 

 

            
 

 

              (23) 

            
 

 

  (24) 

It’s interesting to note that   contains the functions     that define the cross section mid-

contour and also all the anisotropic material constants. Besides, it contains not only all 

geometrical couplings but also all material couplings.  

The beam constitutive matrix   is obtained in a closed form and thus it does not involve a 

2D finite element analysis of the cross section (as, for example, in the VABS approach 

(Cesnik and Hodges 1997)). Although the constitutive constants are not as accurate that the 

ones obtained with the latter method, the present approach is simpler, faster and it also opens 

the possibility of addressing optimization problems of large deformation of thin-walled 

composite beams. 

3 VARIATIONAL FORMULATION 

The weak form of equilibrium of a three dimensional body   is given by (Washizu 1968; 

Zienkiewicz 2000): 

                 
 

  

           
 

  

                
 

   

  (25) 

where  ,   and   are: body forces, prescribed external forces and prescribed external 

moments per unit length respectively.   is the GL strain tensor, work conjugate to the second 

Piola-Kirchhoff stress tensor  . Where   could be defined in either a rectangular or a 

curvilinear coordinate system (such a distinction is, at least here, unnecessary). 

3.1  Variations of the director field 

The admissible variation of the director field is required to obtain the variation of the 

generalized strains. From Eq. (1), we can write: 

                        (26) 

The admissible variation of the rotation tensor (Lie variation) is obtained by superposing 

an infinitesimal virtual rotation onto the existing finite rotation, see e.g. (Betsch 1998; Ritto-

Corrêa and Camotim 2002). This virtual rotation can belong to a material vector space or a 

spatial vector space, they will be called    and    respectively. It’s interesting to note that 

both virtual rotations are elements of the tangent space at  , i.e.        ,      
    and 

     
    

. Both virtual rotation vectors are often called spins. 

Considering the latter we can construct a perturbed rotation tensor by using either the 

spatial or the material form of compound rotation as: 

                              (27) 
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where      indicates the skew symmetric matrix of a vector   such that         . Now, by 

making use of the cartesian rotation vector, we can propose: 

                   (28) 

and try to find an incremental rotation tensor     such that it belongs to the same tangent 

space as the rotation tensor   , i.e.         . Recalling Eq. (27) for the material virtual 

rotation tensor and recalling that           we have: 

                                   (29) 

By taking derivatives with respect to the parameter   at     we can obtain (see e.g. 

(Ibrahimbegović, Frey et al. 1995; Mäkinen 2007)): 

                      (30) 

where        is a linear mapping between the tangent spaces   
            

           
(Cardona and Geradin 1988). Note that, unlike  ,   changes the base point   into  .  

Now, recalling Eq. (27) we obtain the kinematically admissible variation of the rotation 

tensor as: 

    
 

  
                                (31) 

From the last equation it’s straightforward to verify that             . Therefore, we can 

recall Eq.  (26) to write: 

                      (32) 

Now, recalling Eq. (30), we can write the last equation as a function of the total rotation 

vector like: 

                 (33) 

Noting that              we can find the variation of the director’s derivative as: 

    
                                           (34) 

The set of kinematically admissible variations can now be defined as: 

                                        (35) 

where   describes de boundaries with prescribed displacements and rotations. 

3.2  Virtual Generalized Strains 

The variations of the directors and its derivatives are now used to obtain the virtual 

generalized strains. Considering that       and that    
   , and performing the variation 

to Eq. (8) we obtain: 
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  (36) 

To maintain the compactness of the formulation, it will be useful to write the last 

expression as a function of a new set of kinematic variables    as: 

          (37) 

Where: 

   

 
 
 
 
 
 
 
 
 
 
 
 
   

  
     

  
  

      
  

  
  

     
  

 

  
    

  
   

  
     

  
  

     
  

  
  

      
  

 

       
  

      
  

  
  

 
 
 
 
 
 
 
 
 
 
 
 
 

            

 
 
 
 
 
 
 
   

  
   

   

   
 

   
  
 
 
 
 
 
 

  (38) 

3.3  Internal Virtual Work 

Recalling Eq. (25), the first term can be written in its shell form as: 

                 
        

 

 

  
 

 

  (39) 

 The reduction to a one dimensional formulation is now aided by the deduction of 1D beam 

forces presented in Eq. (23). Transforming the virtual curvilinear shell strains into virtual 

generalized strains we can rewrite the last expression as: 

                           
 

 

   
 

 

 (40) 

In which the term in parentheses is the generalized beam forces vector      (see Eq. (23)). 

Lastly, we write the one dimensional version of the virtual work principle in terms of the 

generalized strains and the generalized beam forces:  
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  (41) 

3.4  External Virtual Work 

The virtual work of external forces can be written as: 

                           
 

 

  (42) 

where   is the external forces vector and   the external moments vector. These vectors are 

defined according to: 

 

        
 

 

  
 

 

      
 

 

  

          
 

 

  
 

 

        
 

 

  

(43) 

where   is the distributed body force vector and   is external stress vector. 

 

3.5  Virtual work of the inertia forces 

In the derivation of the virtual work of the inertia forces we use a material approach in 

order to avoid the Lie derivative in the linearization process. The inertial virtual work is: 

                   
       

 

  

 (44) 

Using a material description we have:  

 
                        

                                     
(45) 

The virtual work can now be expressed as: 

                             
 
                           

 

  

 (46) 

Integrating over the cross section we obtain: 

                   
                         

 

 

  (47) 

where we have assumed that pole (reference point) of the cross section is coincident with the 

center of mass, then      
 

 
  . Also, the cross sectional mass and constant inertia tensors 

are given by: 

         
 

 

                   
      

 

 

 (48) 

where   is the material density. It’s interesting to note that the constant inertia tensor is 

characteristic of material descriptions. 
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4 LINEARIZED EQUILIBRIUM EQUATIONS 

4.1  Weak Form of 1D Equilibrium 

The variational equilibrium statement can now be presented in terms of generalized 

components of 1D forces and strains. Recalling Eqs. (41) and (42) the virtual work of a 

composite beam is written in its one dimensional form as: 

                 
 

 

                
 

 

  (49) 

Using Eq. (37) it’s possible to re-write the last expression as: 

                      
 

 

                
 

 

  (50) 

4.2  Linearization of the internal virtual work 

The linearization of the variational equilibrium equations is obtained through the 

directional derivative and, assuming conservative loading, its application gives two tangent 

terms; the material and the geometric stiffness matrices. Applying the directional derivative in 

the direction    to the internal virtual work and recalling Eqs. (41) and (36), we obtain the 

tangent stiffness as: 

                                    
 

 

  (51) 

where   is the length of the undeformed beam.  

Using Eq. (37) the first term of the right hand side of the above equation gives de material 

stiffness terms as: 

                                
 

 

  (52) 

On the other hand, from the second term, the general expression of the geometric stiffness 

operator gives: 

                           
 

 

  (53) 

The linearization of the virtual generalized strains gives: 

     

 
 
 
 
 
 
 
 
 
 
 

       

       
     

        
      

 

       
     

        
      

 

                  
      

                  
      

   
             

          
    

      

    
      

     
     

  

    
      

     
     

  

   
     

     
     

    
      

    
      

  
 
 
 
 
 
 
 
 
 
 

  (54) 
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To complete de development of the geometric stiffness matrix, we need to find the 

linearization of the virtual generalized strains, i.e.     , for what we first need to obtain the 

linearized virtual directors. Using Eq. (33), the linearization of the virtual directors can be 

obtained as: 

                                        (55) 

4.3  Linearization of the work of the inertia forces 

Now we need to linearize the virtual work of the inertia forces. Using Eq. (30) we can obtain 

the angular velocity and angular acceleration spin vectors as: 

                               (56) 

Replacing the above expression into the expression (47) we obtain: 

                   
                                                 

 

 

  (57) 

The last expression is already in linear form with respect to the acceleration field   , so its 

linearization involves only the linearization with respect to a change in configuration and 

velocities: 

                          

                                      
 

 

 (58) 

In the above equation, the mass matrix is: 

   
  
      

   (59) 

where      , being   is the 3×3 identity matrix.  

The linearization of the virtual work of the inertia forces in the directions    and     give 

raise to centrifugal and gyroscopic inertia matrices. The centrifugal and gyroscopic inertia 

effects are, for most applications, negligible (Geradin and Cardona 2001); because it is costly 

to evaluate the complex matrices that evolve from the treatment of these effects, they will be 

disregarded. Thus, the linearized version of the virtual work of the inertia forces reduces to: 

                                     
 

 

 (60) 

5 FINITE ELEMENT FORMULATION 

The implementation of the proposed finite element is based on linear interpolation and one 

point reduced integration (thus avoiding shear locking). A relevant procedure of the finite 

element implementation is the use of interpolation to obtain the derivatives of the director 

field, this greatly simplifies the expression of the tangent stiffness matrix.  

5.1  Interpolations and Directors Update 

We interpolate the position vectors in the undeformed and deformed configuration as: 
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           (61) 

where     indicates a nodal value,   is the node index and    is the number of nodes per 

element. Also, we define: 

      

    

    

    

   (62) 

The same interpolation is also applied to the configuration and its variation, so: 

 

      

  

   

            
     

     

  

   

             

  

   

              
 

    
      

  

   

   

(63) 

Using Eq. (1) the director at the iteration     is found as:    
        

     , where   is 

the total rotation tensor.  

A simple way to obtain the derivatives of the director field is to use interpolation. So, being 

   linear Lagrangian shape function coefficients, it will be assumed that: 

   
     

 

  

   

   
 
 (64) 

Where    
 
 stands for the director   at the node   and    is the number of nodes per element, 

which in the present case is 2. 

5.2  Discrete Virtual Directors 

Assuming holonomic constraints we may interchange variations and derivatives, i.e. 

           . Using this property, we can use Eq. (64) to obtain the variation of the directors 

and its derivatives as: 

        

  

   

    
 
    

     
 

  

   

    
 
  (65) 

The obtention of the linearization of the directors and its derivatives is more involved and 

requires the linearization of the tangential transformation. Observing the linearization of the 

variation of the directors appears in the virtual strains (and also in its linearization) always pre 

multiplied by some constant vector  , for simplicity in the arranging of terms, it’s preferable 

to obtain the expression for this product and not only for the second variation. Thus, recalling 

Eq. (55) we find that: 

                                             (66) 

Switching to matrix notation, using spinors in place of cross products and reordering some 

terms we can re-write the above equation as: 
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                                 ,  (67) 

where     
 
 is the spinor of the director   at node   and: 

                          (68) 

The linearization of the term         can be found in (Ritto-Corrêa and Camotim 2002; 

Saravia, Machado et al. 2011). Now, recalling Eq. (30) it’s possible to rewrite the discrete 

form of Eq. (67) as:  

                          
 
           

 
   

  

   

      (69) 

Where: 

        
 
                 (70) 

In the same form, the expression for the second variation of the director’s derivatives can 

be found in its discrete form by making use of Eq. (65) :  

       
           

          
 
           

 
   

  

   

      (71) 

5.3  Discrete Virtual Strains  

Having derived the expressions for the discrete virtual directors, its derivatives and its 

corresponding linearization, it’s now possible to find a discrete expression for the discrete 

virtual generalized strain and its linearization.  

We can relate the two kinematic vectors    and    by means of a matrix   as: 

            

  

   

  (72) 

Where: 

    

 
 
 
 
 
 
 
 
 
  

  

     
 

      
  

  
 

      
  

  
 

   
    

  
  

 

   
    

  
  

 
 
 
 
 
 
 
 
 
 

              
    

    
      (73)  

Where      indicates the skew symmetric matrix of a vector and       indicates a nodal variable. 

Thus    
  is a skew director in the direction   of the node   and   

  is the transpose of the 

tangential transformation at the node  .  Henceforth summation over index   will be implicitly 

defined, so we will omit the summation symbol and the node index  .  
Finally, recalling Eq. (37) we can write the virtual generalized strains as: 
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             (74) 

The discrete form of the incremental virtual strains, i.e.    , is more difficult to obtain. Using 

the structure of the geometric stiffness operator of Eq. (53) we can obtain a matrix   as to 

satisfy the equality              , a lengthy manipulation gives: 

   

 
 
 
 
 
 
 
                

      
      
        

              
          

 
 
 
 
 
 

     (75)  

where: 

 

         
             

     
 
       

      
 
   

 

   

      
             

     
 
       

      
 
   

     
           

 
            

 
            

     
 
       

      
 
    

     
       

     
 
       

      
 
        

       
     

 
       

      
 
   

       
       

     
 
       

      
 
      

       
     

 
       

      
 
       

(76) 

It’s interesting to note that   result to be symmetric and as a consequence   is also 

symmetric. Although it’s strictly not a necessary condition, the fact that the matrix   is 

symmetric, guarantees the symmetry of the tangent stiffness matrix. 

5.4  Tangent Stiffness Matrix 

Introducing Eq. (72) into Eq. (52) we can obtain the discrete form of the material virtual 

work as:  

                            
 
                 

 

 

  (77) 

Then, the element material stiffness matrix is: 

                 
 

 

  (78) 

Proceeding in a similar way, we use Eqs. (75) and (53) to obtain the discrete geometric 

stiffness terms as: 

                           
 
            

 

 

  (79) 

Therefore, the element geometric stiffness matrix becomes: 

             
 

 

  (80) 
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Following the standard steps of the finite element method, the element and global tangent 

stiffness matrices are: 

 

                    
 

 

  

     

   

   

  

(81) 

where the summation operator is used to represent the finite element assembly process. 

5.5  Tangent Mass Matrix 

Using linear interpolation for the acceleration field, i.e.       
  
       , we can obtain the 

discrete version of the mass matrix in expression (59). First, the discrete version of the 

linearized virtual work of the acceleration forces is written as: 

                                          
 

 

  (82) 

where      indicates nodal values and we have defined      
  
    and 

          
 

  

   

               
   

   
   (83) 

Implicitly assuming summation over index   we can write the discrete form for the tangent 

mass matrix (59) as: 

    
       

       

     
       

   (84) 

6 MULTIBODY DYNAMICS 

6.1  Equation of motion of the constrained system 

The formulation of the dynamic behavior of multibody systems gives a set of differential-

algebraic system of equations if Lagrange multipliers are used to impose the constraints. In 

the present work, the numerical solution of the constrained algebraic problem is found 

through the augmented Lagrangian method.  

The equations of motion of the multibody system are (Geradin and Cardona 2001): 

 
                       

         
  (85) 

where    is the constraints gradient matrix,   is the constraints vector,   is the Lagrange 

multipliers vector and   is the apparent forces vector (sum of internal, external and 

complementary inertia forces). Also,   and   are the penalty and scaling factors. 

The linearized discrete equations of motion are obtained using Eqs. (81) and (84) as: 

 
  
  

    
  

  
            

   
    

 

  
   

 
  

  (86) 
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where   is the vector of residual forces:  

                            (87) 

It’s interesting note that we have neglected dependence of inertia forces with the 

configuration, which is consistent with the presented derivation of the inertial virtual work. 

Also, since the penalty factor was chosen to be sufficiently large, we assumed that the effect 

of the geometric stiffness associated to the Lagrange multipliers is negligible compared to the 

effect of the penalty term, i.e.            
   . 

6.2  Formulation of Joints 

The formulation of joints is generally based on kinematic relations between the 

configuration variables of two nodes. Often, the treatment of rotation kinematic constraints is 

aided by the definition of nodal triads that are not part of the beam finite element formulation. 

In the present formulation, the treatment of rotational constraints is greatly simplified by that 

fact that nodal triads are part of the finite element model, and thus no additional triad 

definitions are needed. 

Following the idea of Cardona et. al. (1991), each joint will be formulated as an element. 

Hence, an element stiffness matrix and an element internal force vector is provided by the 

joint formulation and assembled into the global system in a conventional manner and the 

Lagrange multipliers associated with the imposed constraints are treated as additional degrees 

of freedom. 

For the sake of shortness we only present the formulation of a hinge joint, other typical 

joint can be formulated similarly. The hinge imposes three vectorial constraints between two 

nodes, a displacement vector constraint and two director constraints.We express them as: 

   

     

  
    

 

  
    

 
    . (88) 

The variation of the constraints give: 

    

       

   
    

    
     

 

   
    

    
     

 

   

       

       
     

    
         

  

       
     

    
         

  

    (89) 

Reordering some terms and invoking Eq. (30) we can re-write the last expression as: 

        ,       where         

     
     

    
      

      
    

      
 

     
    

      
      

    
      

 
   (90) 

In the above expression,   is the 5×12 constraints gradient matrix. As it can be seen, the 

expression of the constraints gradient matrix is very simple and does not contain the rotation 

tensor. 

Now, the discrete equation of motion for a rigid and massless hinge element can be written as: 

   
     

   
     

  
             

  
   (91) 

Both the pseudo stiffness matrix and the pseudo internal forces vector are assembled into the 

global system in a conventional fashion. 
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7 AN EXAMPLE  

The present finite element is under development, because of that we present only one 

study case. We analyze an EGlass-Epoxy bi-pendulum that falls under the effect of gravity. 

The pendulum has a square cross section with b=1, h=1, e=0.1, laminated in a {45,-45,-45,45} 

configuration, see Figure 1.  

 

Figure 1 – Bi-pendulum 

We compare the proposed pendulum against an Abaqus 3D shell model, the Figure 2 

presents the evolution of displacements with time. 

 
 

Figure 2 – Tip displacements of the composite bi-pendulum. 

8 CONCLUSIONS 

A geometrically exact composite thin-walled beam element for multibody applications has 

been presented. In the proposed formulation the virtual work equations was written as a 

function of generalized strains, which are parametrized in terms of the director field and its 

derivatives. Also, the material constitutive relation was based on the mechanics of composite 

laminates. The formulation of typical joints was briefly presented.  

Although the present formulation is still under development, the finite element is showing 

good agreement with shell 3D elements.  
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