
A PARALLEL GREEDY RANDOMIZED ADAPTIVE SEARCH
PROCEDURE METAHEURISTIC FOR THE

RESOURCE-CONSTRAINED TASK SCHEDULING
PROBLEM

Edelberto F. Silva, Bruno J. Dembogurski, Gustavo S. Semaan

Universidade Federal Fluminense, Rua Passo da Pátria 156 - Bloco E - 3o. andar São
Domingos Niterói - RJ, {esilva, bdembogurski, gsemaan}@ic.uff.br, http:// www.ic.uff.br

Keywords: Task Scheduling Problem, Multi-core, Metaheuristics, Parallel.

Abstract. The Task Scheduling Problem (TSP) consists, basically, of a group of tasks that
should be executed respecting precedence constraints and minimizing the execution time of all
tasks. For every task, processing units must be chosen to execute a particular task and at
what moment that will happen. This work presents a parallel implementation, through multi-
core architectures, to solve Resource-Constrained TSP, based on a known model called dynamic
resource constrained task scheduling problem (DRCTSP) and using a Greedy Randomized Adap-
tive Search Procedure (GRASP) metaheuristic. In this approach, the moment a task is activated
until the last considered time period, an amount of resources (called profit), associated with each
activated task, is provided for each period. Thus, the amount of resources available in a given
period will depend on what tasks have been activated by then and when this occurred. Based
on the OpenMP standard, this work shows the benefits of using parallel methods to speed-up
the overall time spent to find a feasible solution without compromising the its quality. Also,
a comparative analysis is done based on the empirical probability distributions of the random
variable time to target solutions.

Mecánica Computacional Vol XXIX, págs. 9563-9571 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

http://www.ic.uff.br

1 INTRODUCTION

The Task Scheduling Problem (TSP) belongs to the NP-Complete class of combina-
torial optimization problems, meaning that finding a solution using exhaustive methods
can be inefficient. Metaheuristics, on the other hand, presents an interesting problem-
resolution paradigm that is more suitable to this kind of problem. So, in this work
the approach used was a Greedy Randomized Adaptive Search Procedure (GRASP), is
a multi-start metaheuristic composed basically by two phases: Construction and Local
Search Resende and Ribeiro (2003). The construction phase aiming to build a feasi-
ble solution, while the local search going to investigate the neighborhood, searching a
way to increasing the solutions quality, and keeping the Best solution as the result. The
Algorithm 1 shows the GRASP implementation.

This work is based on the Dynamic Resource-Constrained Task Scheduling Problem
(DRCTSP) presented in Renato et al. (2006) which consists of a DAG (directed acyclic
graph) G = (V, A), where V is the set of vertexes (tasks) and A is the set of arcs (prece-
dence among the tasks). Associated to each task ti there is a cost ci and a profit li
(positive integer values). There is too a planning process (time interval composed by H
time units). The objective of the DRCTSP is maximizing the available resources at the
end of the planning process. This model has potential application on manufacture expan-
sion projects, where the tasks are expansion steps that can be made separately Renato
et al. (2006). Further detailment can be found in Renato et al. (2006) and the necessary
mathematical basis will be presented in the following sections.

Nowadays, with the increasing number of cores available in modern processors, is nat-
ural the interest on researching and developing parallel algorithms that take advantage
of these resources. With this objective in mind, this work implements the RCTS prob-
lem Freitas (2002) using the OpenMP standard in a multi-core approach. The section
regarding this work approach will show a really straight forward parallel GRASP imple-
mentation, which showed good results considering its simplicity.

A traditional GRASP pseudo-code can be seen in Algorithm 1. Basically, the con-
struction phase will generate an initial guess, a seed, to the algorithm. After, it will
proceed into a local search to improve the actual solution. That might be limited by a
maximum number of iterations or a time limit, or maybe both, depending of the problem
being solved.

Procedure GRASP (Max Iterations, Seed);
for k = 1 to Max Iterations do

Solution = Greedy Randomized Construction(Seed);
Solution = Local Search(Solution);
Update Solution(Solution, Best Solution);

end
return Best Solution;
End GRASP();

Algorithm 1: Pseudo-code of a GRASP procedure.

The GRASP implementation in this work is based in Freitas (2002); Festa and Resende
(2002); Holland (1992); Renato et al. (2006). As a greed randomized construction it

E. SILVA, B. DEMBOGURSKI, G. SEMAAN9564

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

utilizes a randomized ADD heuristic. Its local searches are presented in three different
forms: The first one will remove jobs that don’t return any profit at all. The second one
will remove sub-branches of jobs that don’t return profit. The third local search, does not
remove any jobs from the solution, in Freitas (2002) different local searches are presented.
Actually, this last approach tries to guess their initial time. For instance, if a job i is (with
associated profit of 3) can be activated in some instant before its actual activation time, it
will return a liquid profit higher (in this case it will be 3 plus each time unit anticipated).

2 INTERGER MATHEMATICAL FORMULATION

Given a directed graph G = (V, A), each vertex i of V represents a task to be scheduled
and is associated with a positive cost ci and a profit li. The edges (i, j) indicate that the
vertices i are the predecessors of task j, and may be represented by P (j). The time
interval in which the tasks must be scheduled is represented in T units of time. The
goal is to maximize the amount of resources available through the scheduling of tasks.
For each scheduled task i, it is necessary to pay a cost ci associated with it. To achieve
this, the task cost is removed from the amount of resources currently available. With the
activation of task i, the available resources are increased by li units at each subsequent
time unit.

In the formulation presented below, the binary variable x receives the value 1 if a task
i is activated at time t, otherwise it will recieve zero. The variables Qt and Lt respectively
indicate the amount of resources available at the beginning instant of time t and the profit
that will be added to the resources in the next time instant (t + 1).

Maximize
QT+1

Subject to
|P (i)|xi1 = 0∀i = 1, .., n

|P (i)|xi1 ≤
∑

j∈P (i)

t−1∑
t=1

xjt∀i = 1, .., n∀t = 2, .., T

n∑
i=1

cixit ≤ Qt∀t = 1, .., T

QT+1 = QT −
n∑

i=1

cixit + Lt∀t = 1, .., T

Lt = Lt−1 +
n∑

i=1

lixit∀t = 1, .., T

T∑
t=1

xit ≤ 1∀i = 1, .., n

xit ∈ {0, 1}∀i = 1, .., n∀t = 1, .., T
Qt, Lt ∈ ∀t = 1, .., T + 1

3 OPENMP STANDARD

OpenMP (Open Multi-Processing) is an application programming interface (API)(Chandra
et al. (2001); Quinn (2003); Rabbani et al. (2007); Remy (2004))that is a valuable tool to
create and design parallel applications. With easy and simple preprocessor directives it
is possible to spread the workload among the processors. The standard is an implemen-
tation of multithreading, where the main thread divides the work among slave threads.

Mecánica Computacional Vol XXIX, págs. 9563-9571 (2010) 9565

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

All threads run concurrently and the runtime environment allocates them to each proces-
sor. The main reasons to use this standard are: portability and simple implementations.
It supports multiplatform shared memory multiprocessing in C, C++ and Fortran, on
many architectures. To create a parallel program, the section of the code that is meant
to run in parallel is marked with a directive that will ensure the threads creation before
that section is actually executed. Each thread executes the parallelized section of code
independently. Work sharing is also possible, by using appropriate directives. This way,
both task parallelism and data parallelism can be achieved using OpenMP.

4 PARALLEL APPROACH

Our approach is entirely based on the OpenMP standard. It is also possible to extend
or combine it with different methods and/or standards, but that will be presented in the
conclusion section.

The main idea is to create many instances of the code using OpenMP in order to
have a bigger pool of solutions. Since every execution starts with a different seed, the
more instances, the higher is the chance to find a good solution. In other words, the
whole metaheuristic implementation is based in the possibility of splitting the main loop
iterations throughout the available cores and collecting all the results after the processing.

To create a parallel version of the GRASP algorithm, this work focused in a simple
approach that does not deal with data dependency. In order to achieve faster and better
results, four instances of the algorithm are executed in parallel, one in each available core.
Also, it is possible to extend this approach to any number of cores and also apply some
other parallelization methods (such as MPI).

A pseudo-code of the GRASP approach is presented in the Algorithm 2, also the
OpenMP directives necessary to create each thread.

Procedure GRASP (Max Iterations, Seed);
//generate threads
#pragma omp parallel
.
//initializations
.
//splitting the for
#pragma omp for
for k = 1 to Max Iterations do

Solution = Greedy Randomized Construction(Seed);
Solution = Local Search(Solution);
Update Solution(Solution, Best Solution);

end
return Best Solution;
End GRASP();

Algorithm 2: pseudo-code of an OpenMP version of a GRASP procedure.

Algorithm 2 shows how simple and straightforward is an OpenMP implementation.
The directive ”#pragma omp for” defines that the next ”for” command will be split into
different threads, one for each loop iteration. If necessary, it is possible with simple

E. SILVA, B. DEMBOGURSKI, G. SEMAAN9566

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

directives, to force an order, in which, the loop is being executed and/or verify in what
thread each iteration is being executed.

In this algorithm each thread will run an instance of the code which means that each
thread will run one greedy construction, one local search and will update the solution.
The idea is to obtain a variety results from a single execution, with more instances of the
same code but each with its own seed. This will increase the chance to find a feasible
solution.

5 TESTS AND RESULTS

All tests were executed on an AMD Phenon 9850 x4 with 4GB RAM memory; also
each and every execution had an upper bound for its fitness function and/or execution
time limit to find a possible solution.

The first test, represented in Figure 1, shows that the parallel implementation has little
impact in the fitness result, meaning that, the gap between the parallel and sequential
implementations is acceptable and does not compromise the final result.

Figure 1: Fitness comparison: OpenMP and Sequential versions

Mecánica Computacional Vol XXIX, págs. 9563-9571 (2010) 9567

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 2: Time comparison: OpenMP and Sequential versions

In Figure 2 it is possible see the importance of a parallel approach to the TSP problem.
The computational time required to process instances, especially those with a higher
dependency between tasks (600a, 800a and 1000a), is, in some cases, proportional to
the number of cores available. In this particular figure, an example would be the 1000a
instance, which represents around 90% of dependency between tasks; the processing time
is reduced to one fourth of the sequential implementation.

In order to obtain more detailed results about the use of the several cores quantities, the
algorithms were submitted to a new experiment, the empirical probability distributions
of the random variable time to target solutions Aiex et al. (2006). In this way, the best
fitness solutions values were used as targets and each algorithm was run one hundred
times over the selected instances for each core quantity. This experiment presents results
obtained executing three instances and considering four colors.

As we can see in Figures 3, 4 and 5, parallel algorithms have a higher probability to
achieve a desirable fitness target. That is explained by the fact that each core has its own
instance of the implementation, with a different initial seed, which can be proven really
efficient to this scenario. To make it more clear once a core finds a desirable fitness value
(or an optimal value) all execution is halted.

This paper presents the results of experiments using the instances 600, 800 and 1000,
that have a higher number of tasks and dependency between them. Figures 3, 4 and
5 shows that the use of a multi-core approach lowers the processing time to achieve
the targets. For the instance 600, for example, the probability of versions using one,
two, three and four cores reach the target at the 200 seconds were 28%, 46%, 68% and
98%, respectively. This way, observing the results, the use of idle cores through parallel
metaheuristics can be an interesting way to solve this and other optimizations problems
without both use other computers or compromising the final result.

E. SILVA, B. DEMBOGURSKI, G. SEMAAN9568

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 3: TTTPlot: instance 600

Figure 4: TTTPlot: instance 800

Mecánica Computacional Vol XXIX, págs. 9563-9571 (2010) 9569

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 5: TTTPlot: instance 1000

6 CONCLUSIONS AND FUTURE STEPS

Computational results showed that the proposed parallel algorithm is an efficient way
to solve the Resource-Constrained TSP as showed in the Results section. Also, it shows
that with simple parallelization methods it is possible to achieve a considerable speed up
regarding the time to find a good solution.

The empirical probability distributions of the random variable time to target solutions
proved to be a powerful analysis in this work. It is easier to see that a parallel approach
has a higher chance to achieve target fitness values and validate such implementations.

The main inspiration to this work is the crescent number of cores in recent processors.
This tendency will only grow. To take good advantage of such architectures is becoming
a must in this kind of problem and the graphs presented in the results section indicate
that the use of available cores, that usually stay idle during the processing, can increase
the algorithm efficiency in finding good solutions in less time.

Based on the experiments and searches, this paper proposes as future work new ways
that can help to solve the problem, such as:

• The use of different parallel approaches can be really useful, like MPI protocol. With
this in mind, it is possible to expand this approach to a higher level, using multiple
machines with multiple cores, each executing instances of the same application.

• To parallelize different parts of the metaheuristic, creating a speed-up of a different
kind, this time making the metaheuristic to actually run faster. The main issue is
to avoid classic problems, such as: data dependency and bottlenecks.

• To use Integer programming Formulation aiming to analyze and compare the results.

• To developer and analyze the use of other metaheuristics, such as Iterated Local
Search (ILS), Variable Neighborhood Search (VNS) or a hybrid heuristic version
Resende and Ribeiro (2003).

E. SILVA, B. DEMBOGURSKI, G. SEMAAN9570

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

REFERENCES

Aiex R.M., Resende M.G.C., Celso, and Ribeiro C. Tttplots: A perl program to create
time-to-target plots. Optimization Letters, 1:10–1007, 2006.

Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., and Menon R. Parallel
programming in OpenMP. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2001. ISBN 1-55860-671-8.

Festa P. and Resende M. GRASP: An annotated bibliography. In C. Ribeiro and
P. Hansen, editors, Essays and surveys in metaheuristics, pages 325–367. Kluwer Aca-
demic Publishers, 2002.

Freitas A.A. Evolutionary computation. In In Handbook of Data Mining and Knowledge
Discovery. University Press, 2002.

Holland J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge, MA,
USA, 1992. ISBN 0262082136.

Quinn M.J. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education
Group, 2003. ISBN 0071232656.

Rabbani M., Fatemi Ghomi S., Jolai F., and Lahiji N. A new heuristic for resource-
constrained project scheduling in stochastic networks using critical chain concept. Eu-
ropean Journal of Operational Research, 176(2):794–808, 2007.

Remy J. Resource constrained scheduling on multiple machines. Inf. Process. Lett.,
91(4):177–182, 2004. ISSN 0020-0190. doi:http://dx.doi.org/10.1016/j.ipl.2004.04.009.

Renato A., Silva V., and Ochi L.S. A dynamic resource constrained task scheduling
problem. In CLAIO:Congreso Latino-Iberoamericano de Investigación Operativa. 2006.

Resende M. and Ribeiro C. Greedy randomized adaptive search procedures. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer Aca-
demic Publishers, 2003.

Mecánica Computacional Vol XXIX, págs. 9563-9571 (2010) 9571

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

	INTRODUCTION
	INTERGER MATHEMATICAL FORMULATION
	OPENMP STANDARD
	PARALLEL APPROACH
	TESTS AND RESULTS
	CONCLUSIONS AND FUTURE STEPS

