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Abstract. There are some applications of extremely short time duration or at very low temperature for 
which the parabolic Pennes bioheat equation, which assumes an infinite thermal speed of propagation 
according to Fourier’s law, is not adequate and the mathematical model may be more accurately 
described by the hyperbolic bioheat equation. Hence, the purpose of the present paper is to describe 
the numerical solution of both parabolic and hyperbolic bioheat equations in a unified manner by a 
hybrid time/Laplace domain method. Starting from the hyperbolic bioheat equation, which includes 
the parabolic one as a special case, the Explicit Green’s Approach method that adopts numerical 
Green’s function matrices in its formulation is employed to compute the solution on time. The Green’s 
function equation is firstly discretized in the Laplace domain by the finite element method and then 
Green’s function matrices are computed in the time domain through standard Laplace inversion 
algorithms. Finally, a numerical example is analyzed in order to illustrate the accuracy and 
potentialities of the proposed unified method. 
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1 INTRODUCTION 

 
Numerical methods have been widely used as a powerful tool for the solution of many 

problems in the thermo-biology field. There are several different mathematical models that 
can be used to describe the bioheat transfer process in living tissue (Khanafer and Vafai, 
2009). Among these, the Pennes’ bioheat equation is frequently adopted in applications such 
as cancer hyperthermia therapies, cryosurgery, laser surgery, thermal diagnostics, skin burns 
and thermal comfort analysis. However, in some applications of extremely short time duration 
or at very low temperature (e.g., cryogenic surgery, laser-induced thermal damage, etc.) the 
mathematical model may be more accurately described by the hyperbolic bioheat equation, 
than the parabolic Pennes bioheat equation, which assumes an infinite thermal speed of 
propagation according to Fourier’s law (Liu et al., 1999).  

Green’s functions are an important tool in solving partial differential equations since the 
solution of a problem subjected to any kind of initial conditions, boundary conditions and 
internal heat generation can be obtained through integral equations once the Green’s function 
is known. Recently, a new methodology called Explicit Green’s Approach (ExGA) was 
proposed by Loureiro (2007); Loureiro and Mansur (2010) to solve hyperbolic equations, e.g. 
the scalar wave equation; and later on the methodology was extended to solve parabolic 
equations (Mansur et al., 2009; Loureiro et al., 2009a); the authors applied the technique to 
the diffusion equation. The Explicit Green’s Approach employs time-domain Green’s 
function matrices to carry out the solution on time with its basic integral equation having 
some similarities with that of the time domain boundary element method. The key feature of 
the ExGA procedure stems from the fact that numerical Green’s functions for bounded 
domains are used rather than analytical free-space Green’s functions as in the standard time-
domain boundary element methods. Thus, the ExGA can be easily applied to any kind of 
media, e.g., non-homogeneous, poroelastic, viscoelastic, anisotropic, etc. 

The aim of this paper is to present a general time-domain formulation for the parabolic and 
hyperbolic bioheat equations by adopting a hybrid time-Laplace domain method developed by 
Loureiro and Mansur (2009b). In the proposed method, the Laplace transform in conjunction 
with the FEM is applied to the Green’s function equation; subsequently, the Zakian Laplace 
inversion algorithm (Zakian and Edwards, 1978) is employed to compute the Green’s 
function in the time domain with the final solution being obtained by means of a step-by-step 
time procedure. At the end of the paper, numerical results are presented to show the accuracy 
and potentialities of the proposed hybrid method. 

 
 
 
 
 
 
 
 
 
 
 
 
 

F. LOUREIRO, P. OYARZUN, J. SANTOS, W. MANSUR, C. VASCONCELLOS5600

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



2 BIOHEAT EQUATION 

 
Let d  be an open bounded domain with Lipschitz boundary    , where d  is the 

number of space dimensions, and let 0, fI t    be the time domain with 0ft  , the 

governing equation concerning hyperbolic bioheat transfer problems reads (Liu et al., 1999): 
 

 
       

       
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where           , , , , ,m r r m rb t Q t Q t Q t Q t   x x x x x  . 

In Eq. (1),   denotes the gradient operator,   ,bT tx  is the blood temperature and  ,T tx  

is the tissue temperature, with over dots indicating derivatives with respect to time. Moreover, 
k ,   and c  stand for thermal conductivity, density and specific heat of tissue; bc  and bw  are 

the specific heat and perfusion rate of blood, respectively. The volumetric heat  ,b tx  

contains the metabolic and spatial heating terms  ,mQ tx  and  ,rQ tx , as well as their time 

derivatives; r  is the thermal relaxation time of the biological system. The boundary   

consists of a part 1  with prescribed temperature and a part 2  with prescribed heat flux, 

with its unit outward normal vector represented by n , such that 1 2     and 1 2   , 

i.e.: 
 
    , ,T t T tx x  on 1 I   (2) 

    , ,k T t q t  x n x  on 2 I   (3) 
 

In addition to the prescribed boundary values, initial conditions must be also specified as 
given below (the initial condition regarding the derivative of the temperature is normally set 
as null to correlate analyzes with the parabolic equation): 
 

    0,0T Tx x  in   (4) 

    0,0T Tx x   in   (5) 
 

It is important to highlight that the heat flux obeys the modified Fourier’s law according to 
the expression      , , / ,rt t t k T t     q x q x x (Liu et al., 1999), which differs from the 

classical Fourier conduction law by an additional term including the time rate of change of the 
heat flux multiplied by r . Furthermore, the well-known Pennes bioheat equation, which is of 

parabolic type, is readily obtained by assuming 0r   in Eq. (1).  

In this paper the solution for the bioheat equation is carried out by means of the Explicit 
Green’s Approach developed by Loureiro (2007) and Loureiro and Mansur (2010) as 
discussed in the following section. 
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3 EXPLICIT GREEN’S FUNCTION APPROACH (EXGA) FORMULATION 

 
This section is concerned with the application of the ExGA method to the bioheat equation in 

unified manner, where both parabolic and hyperbolic bioheat equations are solved from the same 
methodology by just setting the value of r  without any additional numerical consideration to 

accomplish each model. 

3.1 Integral expression for the tissue temperature 

 
In the ExGA formulation, the prescribed boundary condition on 1  is firstly assumed to be 

satisfied exactly by splitting the temperature in the form      ˆ, , ,T t T t T t x x x , where 

 ˆ ,T tx  is a given function such that the condition    ˆ , ,T t T tx x  on 1  always holds. 

Afterwards, the weighted residual method is applied to Eq. (1) over the space-time domain, 
leading to the following integral identity: 
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where             2

2
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 
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y y
y y y . 

In the present paper the Green’s function  , ,G t x y  adopted as the weighting function 

in Eq. (6) satisfies the homogeneous boundary conditions of the original physical problem, 
with its governing equations being written as: 

 

 
        
     

, , , ,

, , , ,
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cG t c w c G t
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  , , 0G t  x y  on 1 , t   (8) 

  , , 0k G t    x y n  on 2 , t   (9) 

 
where   x y  and  t   denote Dirac delta functions acting at the source point y  and at 

time  , respectively. Notice that due to the causality principle one has  , , 0G t  x y  and 

 , , 0G t  x y  for t  . 

After making use of the Gauss divergence theorem and integration by parts, the basic 
ExGA integral expression for the temperature  ,T tx  reads (the reader is refereed to Loureiro 

et al. (2009a) and Loureiro and Mansur (2010) for further details): 
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in which          2
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3.2 Spatial discretization and step-by-step time procedure  

 
The main idea behind the ExGA method consists of the application of a discretezation 

methodology for the temperature field as well as for the Green’s function in Eq.(10). Here, 
finite element discretization concepts are employed and both the temperature and the Green’s 
function are approximated by piecewise polynomial basis functions iN  as: 

 
      

1

,h
l l

l

T N T
 

 
 
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      
1

ˆ ,h
l l
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T N T


 

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      
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, ,h
j kj

j

G t N G t
 

 
 

  x y y  (13) 

 
where   is the set of all nodes in   and 

1
    the subset corresponding to those nodes 

located on 1 . 

After substituting approximations (11)-(13) into Eq. (10), the temperature integral 
expression for the discrete nodal values of   ,T tx  in the time domain can be represented in 

matrix form as: 
 

                  
0

0 0

t

r r rt t t t t d          T G M C G M T G MT G F    (14) 
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where  tG  and  tG  represent the Green’s function and its time derivative written in 

matrix form for the discrete system. The matrix and vector entries appearing in Eq.  (14) are 

defined as: 

 

    jl j lM N cN d


  yy y  (15) 
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One should observe that the semi-discretization procedure carried out in Eq. (10) for which 

the spatial domain is discretized first and hence decoupled from the time domain gives rise to 
a simpler convolution integral dependent only in time. In this way, it is possible to replace the 
time dependent convolution integral by a particular solution related to the external heat load 
(Loureiro and Mansur, 2009b). Thus, Eq. (14) can be rewritten in terms of the particular 
solution as: 

 

                      0 0 0 0r r p r p pt t t t t        T G M C G M T T G M T T T       (18) 

 
where  p tT  is the particular solution vector corresponding to the external heat load vector 

 tF  [xx] (the reasons for the adoption of the particular solution rather than the convolution 

integral are commented later).  
 Instead of applying Eq. (18) at each time level, a step-by-step time procedure is 
adopted to compute the solution. In the step-by-step time procedure the solution at the current 
time, say 1kt  , is computed from the previous known solution at time kt . To do so, the first 

step is to obtain the expression for the derivative of the temperature vector by differentiating 

Eq. (18) with respect to time. Afterwards, the total time interval 0, ft    is split into N equal 

time intervals, i.e.,  
1

1
0

0, ,
N

f k k
k

t t t





      with 0 10 N ft t t t     , 1 /k k ft t t t N    ,  

kt k t   and  1 1kt k t    . Finally, the below step-by-step expression arises after taking 

into account all the aforementioned procedures: 
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 (19) 

 

where    jl j lK N k N d



     yy y . Notice that for the Pennes equation (i.e., assuming 

0r   in Eq. (19)) only the temperature expression is required to carried out the time 

marching process since the temperature time derivative vector does not appear in its 
expression. 

Because the time step t  is usually small compared to the total time of analysis, it is 
straightforwardly and acceptable in a great number of cases to assume a linear variation for 

the external heat load vector, i.e.,     /t t t tt t   F F F F ( kt t    being the increase in 

time from the beginning of every time step kt k t   with 0 t   ). Thus, according to this 

variation the particular solution reads   1 0p t  T φ φ , where the vectors 1φ  and  0φ  are 

computed as (Loureiro and Mansur, 2009b):   
 

 
 

   
0

1 0

t t t

t
r

t



 
 


   

F F
K C φ

K C φ F M C φ

 (20) 

 
Advantages of the particular solution over the convolution integral can be highlighted as 

follows: (i) the Green’s matrix needs to be computed only once at time t t   since the 
particular solution is not dependent of the Green’s matrix; (ii) the external heat load vector is 
performed analytically as long as the heat load shape function is correctly represented, and 
(iii) an adaptive strategy where the particular solution changes at each time step can be 
efficiently developed. In fact, the main drawback of the convolution integral lies in the fact 
that a numerical quadrature rule must be employed, leading to a certain level of numerical 
error dependent of the qradrature rule. Moreover, Green’s matrices at time instants less than 

t  are likely to be computed, increasing the overall cost. 
 

3.3 Computation of the Green’s function 

 
Applying the Laplace transform to Eqs. (7)-(9) and taking into account the causality 

principle, which states that the Green’s function is zero for t  , the following set of 
equations in the transformed domain arises when an applied impulse is released at time 0  : 

 

          2, , , ,r r b b b bk G s cs c w c s w c G s            x y x y x y  in   (21) 

  , , 0G s x y  on 1  (22) 

  , , 0k G s  x y n  on 2  (23) 
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The classical Galerkin finite element method (Hughes, 1987) when applied to Eqs. (21)-
(23) gives the following expression: 
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where    

1

h
i i

i

W N W
  

 x x  stands for the weighting function. Equation (24) can be 

written in an equivalent matrix form as:  
 

     
1

2 ,r r j js s s j         M M C C K g 1  (25) 

 
where j1  denotes a unit base vector and  j sg  the Green’s vector such that the full Green’s 

matrix in the Laplace domain is constructed as         1 2, , , ,js s s sG g g g  .  

The nodal values of the time-dependent Green’s function can be obtained from their values 
in the transformed domain, Eq. (25), by means of an inverse Laplace transform. In the present 
paper, the Zakian inversion algorithm is employed to find a solution in the time domain. 
Thus, the inversion of the Green’s vector at time t t  , adopting the Zakian algorithm can be 
written as (recall that the Green’s vectors must be computed only once): 

 

  
/ 2

1

2
Re

N

i
j i j

i

t k
t t





         g g  (26) 

 
where the constants ik  and i  appear in complex conjugate pairs. It is shown in the numerical 

example that 2N   is sufficient to yield accurate results. For 2N   the constants are given 
by 1 1 3.53553390593274k i    and 1 2 1.41421356237309505i   (Zakian and Edwards, 

1978). 
 After presenting the way in which the Green’s function is computed and bearing in 
mind the step-by-step time procedure, the hybrid methodology that arises is called ExGA-
Zakian. 
 
 

4 RESULTS AND DISCUSSION 

 
With the objective of showing the applicability and generality of the ExGA-Zakian method 

to deal with any kind of medium (e.g., homogeneous, heterogeneous, etc.), a triple layer skin 
model is discussed. The solution is written in terms of the elevated temperature 
   , ,s bT t T t T x x  with 037bT C . The mathematical model is performed considering null 

initial elevated temperature   0
0 0.0sT Cx  subjected to a sudden temperature rise at the skin 
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surface, with the rest of the boundary considered as adiabatic. A sketch of the model and the 
finite element mesh constructed with 5179 four-node quadrilateral elements are depicted in 
Figure 1. It is assumed that, far from skin surface, the tissue is not affected by the prescribed 
temperature; therefore, a coarse mesh is constructed near the core body. The thermal 
properties of the skin tissue and the thickness of each layer are given in Table 1. Numerical 
results obtained by the proposed hybrid time-Laplace technique (i.e., the ExGA-Zakian 
method) are compared to those of standard FEM formulations employing HHT-  and Crank-
Nicolson time-marching schemes (Hughes, 1987). 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Layer Li (mm) c (J.g-1.0C-1) k(W.mm-1.0C-1) r (g.mm-3) cb (J.g-1.0C-1) wb (g.mm-3.s-1) 
Epidermis 8.0x10-2 3.6 2.6x10-4 1.2x10-3 4.2 0.0 
Dermis 2.0 3.4 5.2x10-4 1.2x10-3 4.2 5.0x10-7 
Subcutaneous 10.0 3.06 2.1x10-4 1.0x10-3 4.2 5.0x10-7 

Table 1. Thickness and thermal properties for the triple layer skin model. 
 

 

Figure 1. Heterogeneous biological tissue body: (a) geometry and boundary conditions; (b) 

domain discretization. 
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Figure 2. Comparison of the tissue temperature time-history for 0r s   and 

20r s   considering the Crank-Nicolson, HHT-  with 1/ 3    and ExGA-

Zakian schemes using a time step size 0.4t s  : (a) point  1.08,1A ; (b) point 

 2.08,1B . 
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Time-history results at points  1.08,1A  (dermis layer) and  2.08,1B  (interface between 

dermis and subcutaneous layers) considering 0r s   and 20r s   are shown in Figure 2. It 

can be seen that the non-homogeneous medium significantly affects the response for 
20r s  , where a more complex response is obtained when compared to the parabolic 

equation, i.e., 0r s  . This is due to superposition effects originated from the reflected 

thermal waves at the interface between layers. Because of the wave fronts, numerical 
oscillations near the jumps arise in the hyperbolic model for the HHT and ExGA-Zakian 
methods, indicating that a more robust methodology should be sought to control these 
spurious oscillations. Nonetheless, despite the difference of each model, both of them reach 
the same steady-state solution. The temperature distribution at different time instants, for the 
parabolic and hyperbolic models, is displayed in Figures 3-4, respectively. It is clearly seen 
that the temperature distribution for the parabolic model (infinite wave speed) reaches the 
deeper tissue faster than that of the hyperbolic one (finite wave speed). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 3. Tissue temperature field at different time instants for 0r s  considering the 

ExGA-Zakian scheme: (a) 4.4t s ; (b) 32.4t s ; (c) 100.4t s . 

 

(a) 

(b) 

(c) 

Mecánica Computacional Vol XXIX, págs. 5599-5611 (2010) 5609

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 CONCLUSIONS 

 
In this paper, a hybrid time-Laplace domain technique based on numerical Green’s 

functions has been proposed for the solution of parabolic and hyperbolic bioheat transfer 
models in a unified manner. This terminology comes from the fact that the Green’s function is 
computed taking into account the Laplace domain and then time-domain expressions for the 
tissue temperature written in a step-by-step way are used to carry out the solution. As a result, 
the Green function in the time domain needs to be computed only once at the first time step 
by the Zakian Laplace inversion algorithm. The numerical bioheat model presented here has 
been shown that accurate and reliable results are furnished by the proposed hybrid method the 
so called ExGA-Zakian. Furthermore, the difference between the parabolic and hyperbolic 
equations into bioheat models has been clearly observed. Because of the complex nature of 
the hyperbolic equation, further studies need to be performed to deal better with oscillations 
that may arise in some bioheat hyperbolic model due to the presence of wave fronts. 

 

 

 

 

Figure 4. Tissue temperature field at different time instants for 20r s   considering the 

ExGA-Zakian scheme: (a) 4.4t s ; (b) 32.4t s ; (c) 100.4t s . 
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(c) 
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