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Abstract. In previous works the GPR method (Galerkin Projected Residual Method) was introduced. 
The GPR formulation has been applied with success to Helmholtz problem and to diffusion-reaction 
singularly perturbed problem. Based on the initial ideas of the GPR method, we developed the 
Galerkin Symmetrical Projected Residual Method (GSPR) for convection dominated diffusion-
convection problems. The GSPR method is a linear finite element method with stabilization properties 
similar to SUPG method. However, for practical problems this method is not sufficiently stable and 
accurate. 

In this work, we developed the new non-linear stabilized finite element method, based on the ideas 
of the shock-capturing stabilization. The method introduces new ideas about the upwind function and 
the stabilizing parameter τ . We observed that the stabilizing parameter is dependent on the degree of 
the interpolation polynomial, on the geometry of the element, on the advective field β , on the 
boundary conditions prescribed for the problem on −Γ  and on the value of ( ( ))emeas −Γ ∩ Γ − Γ . A 
variety of upwind functions can be chosen to improve the spurious oscillations. The strategy to choose 
the stabilizing parameter is based on numerical experiment and on the requirements that overshooting 
and undershooting localized in narrow regions along sharp layers are not observed without leading to 
excessive smearing of the layers (CSCRS - Consistent Shock Capturing with Reduced Smearing 
Method). Some numerical tests for 2D problems are presented. 
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1 INTRODUCTION 

The advection-diffusion equation model several physical phenomena. The Galerkin finite 
element method (Galerkin FEM) is often used to obtain numerical solutions for this boundary 
value problem. In general, only for purely diffusive problem the Galerkin approximate 
solution is the optimal solution. It is well known that the Galerkin FEM is unstable and 
inaccurate for this equation with dominate advection (Brooks and Hughes, 1982; Johnson et 
al. 1984), unless the mesh is very fined. Its numerical solution presents spurious oscillations 
that not corresponding with the physical solution of the problem. The instability of the 
Galerkin FEM is due to the lack of control on the gradient of the solution. 

Stable and accurate numerical solution for this problem has been one of the largest 
challenge. A great variety of FEM have been developed to guarantee stability and accuracy, 
but it is impossible to list all works in this direction (Hughes et al. 1986; Hughes and Mallet, 
1986; Galeão and Carmo, 1988; Carmo and Galeão, 1991; Brezzi et al. 1992; Baiocchi et al. 
1993; Codina, 1993; Franca and Farhat, 1995; Agarwal and Pinsky, 1996; John et al. 1998; 
Shih and Elman, 1999; Ramage, 1999; John, 2000; Papastavrou and Verfürth, 2000; Farhat et 
al. 2001; Hauke and Olivares, 2001; Hauke, 2002; Carmo and Alvarez, 2003; Carmo and 
Alvarez, 2004; Knobloch, 2006; John and Schmeyer, 2008; Ramakkagari and Flaherty, 2008; 
Hsu et al. 2010; Hsieh and Yang, 2009; Chiu and Shue, 2009; Tobiska, 2009). Comparisons 
between different methods and a recent bibliographical review can be found in (Codina, 1998; 
John and Knobloch, 2007; John and Knobloch, 2008). Many of these attempts have used 
continuous finite element spaces (Hughes et al. 1989; Franca and carmo, 1989; Hughes, 1995; 
Oñate, 1998; Ilinca et al. 2000; Franca and Valentin, 2000; Knopp et al. 2002; Nesliturk and 
harari, 2003; Burman and Hansbo, 2004; Franca et al. 2005; Lube and Rapin, 2006) and 
discontinuous finite element spaces (Zienkiewicz et al. 2003; Hughes et al 2006; Hughes et al 
2006; Gómez et al. 2007) to development of new FEM. The main challenge is to find a 
consistent formulation in continuous or discontinuous finite element spaces, such that, its 
approximate solution is stable and accurate. In this paper we will deal only with continuous 
finite dimensional spaces. 

Methods as SUPG (Brooks and Hughes, 1982) and GLS (Hughes et al. 1989) possess 
control of the derivative in the streamline direction. However, these methods present spurious 
oscillations for problems with sharp layers. It is well known that other stabilization terms 
should be added to the SUPG or GLS methods to guarantee larger stability. One common 
strategy has been to add stabilization terms of the type capture operators. Unfortunately, the 
stabilized methods based on "capture operators" are non-linear methods even for linear 
diffusion-advection problem (Hughes and Mallet, 1986; Galeão and Carmo, 1988). In general, 
these non-linear methods are stable for problems with boundary layers, but they are 
inaccurate for smooth problem (undesirable crosswind diffusion effect). In (Carmo and 
Alvarez, 2003; Carmo and Alvarez, 2004) the authors developed the SAUPG and GLSAU 
methods solving in part the difficulty mentioned above. 

The stabilized finite element methods based on capture operators possess besides the 
control of the derivative in the streamline direction an extra control of the derivative in 
another direction (generally, the direction of the approximate gradient). This extra control in 
another direction allows that methods based on capture operator possess larger stability than 
the linear methods, such as GLS or SUPG methods. On the other hand, these methods based 
on capture operators lead to excessive smearing of the layers. The reduction of the smearing 
at internal layers is extremely important and it is the main objective of this paper. Therefore, 
in this work we should consider advection-reaction problems only. The diffusion-advection 
problems with boundary layers will be analyzed in another work. 
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For advection-reaction problems, we developed in this paper the Consistent Shock 
Capturing with Reduced Smearing method (CSCRS), where the fundamental ideas of the 
shock capturing methods in (Galeão and Carmo, 1988; Codina, 1993; Carmo and Alvarez, 
2003; Carmo and Alvarez, 2004) are preserved. The goal of this method consists in 
suppressing the spurious oscillations without an excessive smearing of the layers (accuracy at 
layers). There are different ways of defining criteria to guarantee the goal mentioned above. 
We introduce new ideas to design the upwind function based on two criteria. The first of them 
consists of several numerical experiments to determine the relationship between the 
stabilization parameter and the data of the continuous and discrete problems. The second 
criterion is to reduce or to eliminate overshooting and undershooting localized in narrow 
regions along sharp layers, without producing excessive smearing of the layers (CSCRS -
Consistent Shock Capturing with Reduced Smearing Method). As outcome we obtain a non-
linear FEM with excellent stability and accuracy properties. For problems with sharp layers, 
the CSCRS method is more stable than the methods given in (Galeão and Carmo, 1988; 
Codina, 1993; Carmo and Alvarez, 2003; Carmo and Alvarez, 2004) and the sharp gradients 
at layers are preserved (no excessive crosswind smearing appears). Also, the CSCRS method 
is accurate like the SUPG or GLS methods for smooth problem. 

The paper is organized as follows. The model boundary-value problem and its variational 
formulation are briefly presented in Section 2. In Section 3, we introduce the stabilized FEM 
with shock capturing. We design the stabilizing parameter and the upwind function in Section 
4. Some numerical experiments to evaluate the performance of the new formulation are 
presented in Section 5. Finally, Section 6 contains some conclusions and final remarks. 

2 STATEMENT OF THE PROBLEM 

Let dIR⊂Ω  )1( ≥d  be a bounded domain with a Lipschitz continuous boundary Γ and 
consider the following advection-reaction problem 

 ( , , ) inL c u u cu f≡ ⋅∇ + = Ωβ β  (1) 

 on  with { ;  <0} and ( )u g meas− − −= Γ Γ = ∈Γ ⋅ Γ >x β n 0 , (2) 

where n  denotes the outward normal unit vector defined almost everywhere on Γ and 
( )meas o  denotes the Lebesgue measure. We assume the hypotheses that follow. 

    (H.1a) ( )dL∞∈ Ωβ , ( )L∞∇ ⋅ ∈ Ωβ ,   ( )c L∞∈ Ω ,   ( )f L∈ Ω2 , ( )g L −∈ Γ2 , 
    (H.1b) c c−∇ ⋅ + ≥ ≥β 02 0  a.e. in Ω, 

where c0  denotes a real constant and the spaces ( )L Ω2  and ( )L∞ Ω  are as defined in (Adams, 
 1975). The weak formulation of the problem defined by (1) and (2) consists of finding gu S∈  
satisfying 

 ( , ) [ ] ( )  G G gA w v w cw v d b v fvd v V
Ω Ω

≡ ⋅∇ + Ω = ≡ Ω ∀ ∈∫ ∫β , (3) 

where { }( ); ongS w H w g −= ∈ Ω = Γβ
1 , { }( ) ; ongV w H w −= ∈ Ω = Γβ

1 0  and 

{ }( ) ( ); ( )H w L w LΩ = ∈ Ω ⋅∇ ∈ Ωβ β1 2 2 . 

3 STABILIZED FEM WITH SHOCK CAPTURING 

Here we briefly present the theoretical background for the stabilized FEM with shock 
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capturing. With this goal, consider { , , }h
neΩ = Ω Ω1 K  as being a partition of Ω into non 

degenerated finite elements eΩ , such that eΩ  can be mapped in standard elements by 

isoparametric mappings satisfying  ≠   0/=Ω∩Ω /e  if/ e
ee  and U

ne

e
ee

1

)(
=

Γ∪Ω=Γ∪Ω , where 

eΓ  denotes the boundary of eΩ . Let 1≥k  be an integer and consider )( e
kP Ω  as being the 

space of polynomials of degree less than or equal to k in the local coordinates. Let 
, { ( ); ( )}h k k

e eH C Pη η= ∈ Ω ∪ Γ ∈ Ω0 , , ,{ ;  on  }h k h k h
gS H gη η= ∈ = Γ , 

, ,{ ;  on  }h k h k
gV Hη η= ∈ = Γ0  are the finite dimension spaces and hg  the usual interpolate of 

g , where ( )C Ω ∪ Γ0  is as given in (Adams, 1975). We assume that β , c  and f  are 
continuous in eΩ  and we defined the mesh parameters 

 

  if  is a quadrilateral or a hexahedron,

  if  is a triangle,

  if  is a tetrahedron,

e

e

e

d

e

d

e e

d

e

d

h d

d

Ω

Ω

Ω

⎧
⎡ ⎤⎪ Ω Ω⎢ ⎥⎪
⎢ ⎥⎣ ⎦⎪

⎪
⎪ ⎡ ⎤⎪= Ω Ω⎢ ⎥⎨

⎢ ⎥⎪ ⎣ ⎦
⎪
⎪ ⎡ ⎤
⎪ Ω Ω⎢ ⎥
⎪ ⎢ ⎥⎣ ⎦⎪⎩

∫

∫

∫

1

1

1

2

6

 (4) 

 ,*e
e

h −=
β

J β1
2  and ,*sup{ , }ee eh h h= , (5) 

where e
−J 1  is the inverse Jacobian matrix and "sup" denotes supremum.  

Let ,e GLSτ  be the stabilization parameter of the GLS method and reacP  another parameter 
defined as 

 , ,    e GLS e e
reac

h h cPτ = =
β β2 2

. (6) 

In this paper, we assume 1<<reacP , i.e., advection-reaction problems with dominated 
advection. To define the stabilization parameter we consider ( , )e wτ β  as being a 
dimensionless real function that depend continuously on IR∈w  for each β  fixed, such that 
∀β  we have ( , )e wτ< ≤β0 1  if w≤ ≤0 1 . We need the spaces 

{ }, ( , , ), ( ); ( , , ) ( )L c e
e eH w H L c L∞ ∞= ∈ Ω ∈ Ωβ

β β1o o  and { }, ( , , ) , ( , , ),( );L c L c e
eH w H w H∞ ∞= ∈ Ω ∈β β

β
1o o . 

We consider ,*eF  and eF  as being two functions from , ( , , ),L c eH ∞ β o  into IR and given as follow 

 ,*

( , , )
  if ,

( )
  if ,

e

L c w f
w

wF w
w

⎧ −
∇ ≠⎪ ∇= ⎨

⎪ ∇ =⎩

β
β

β

β

0

0 0

 (7) 
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,* ,*

,*

( )   if ( ) ,
( )

  if ( ) .

e e
e

e

F w F w
F w

F w

⎧ ≤⎪= ⎨
>⎪⎩

1

1 1
 (8) 

Let , ,e kγ β  be a positive real constant independent of eh  and possibly dependent of the data 
of the continuous problem (such as the advection field β  and the boundary conditions on −Γ ) 
and of the discrete problem (such as the geometry of the element, the degree of the 
interpolating polynomial and the usual aspect ratio). It can be verified that the function 
" , , ,( ( , ))e k e e e GLSF wγ τ τββ β2 " satisfies the condition (H.4)∗ given in (Knopp et al. 2002) 

, ( , , ),L c ew H ∞∀ ∈ β o  and e∀Ω . This condition demands that the capture term is non-negative and 
has an upper bound. 

    By following the reference (Codina, 1993) we defines the following d×d matrix 

 e ×
= −

β βD I
β

, (9) 

where "I" denotes the identity matrix and "×" denotes the tensorial product between vectors 
of dIR . 

Finally, a general class of stabilized FEM with shock capture can be obtained through the 
variational formulation that follows. Find ,h h ku S∈  satisfying the variational equation 

 ,( , ) ( ; , ) ( ) h h h h h h h h k
GLS SC GLSA u v A u u v b v v V+ = ∀ ∈ , (10) 

 ,( , ) ( , ) ( , , ) ( , , )
e

ne
e GLS

GLS G e e
e

A w v A w v L c w L c v dτ
= Ω

≡ + Ω∑ ∫ β β
1

, (11) 

 , , ,( ; , ) ( ( , )) [ ]
e

ne
e k e e e GLS e

SC e e e
e

A w v F w D v dη γ τ τ η
= Ω

≡ ∇ ⋅∇ ⋅ Ω∑ ∫ ββ β2

1

, (12) 

 ,( ) ( ) ( , , )
e

ne
e GLS

GLS G e
e

b v b v fL c v dτ
= Ω

≡ + Ω∑ ∫ β
1

, (13) 

where , ( , , )( , , ) ( )L cw v Hη ∞∈ β 3o  and ew , ev  and eη  are the respective restrictions of w, v and η 
to eΩ . This method satisfies all the conditions of the theorem 3.5 given in (Knopp et al. 
2002). 

An important point of this stabilized method is the optimal choice of the stabilization 
parameter. It is well known that the stability and accuracy of this method depends on this 
choice. Until the present moment, no theoretical support exists to determine the stabilization 
parameter that can be optimum in some sense. A great amount of papers has been devoted to 
the choice of the stabilization parameter. Some works in this direction can be found in (Brezzi 
et al. 1992; John and Knobloch, 2007; John and Knobloch, 2008; Hughes, 1995; Christie and 
Mitchell, 1978; Mizukami, 1985; Stynes and Tobiska, 1995; Roos et al. 1996; Ramage, 1999; 
Fischer et al. 1999; Harari et al. 2001; Elman and Ramage, 2002; Principe and Codina, 2010; 
Carmo et al. 2008; Carmo et al. 2008) for finite elements of first order and in (Carmo and 
Alvarez, 2004; Heinrich, 1980; Codina et al. 1992; Almeida and Silva, 1997; Tezduyar and 
Osawa, 2000; Akin et al. 2003; Galeão et al. 2004; Akin and Tezduyar, 2004) for finite 
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elements of higher order. Many of these works are based on analysis done for the one-
dimensional case. Other attempts are based on heuristic, intuitive and experimental criteria. A 
recent and good bibliographical review about the stabilization parameter for several finite 
element methods can be found in (John and Knobloch, 2007). 

4 A NEW SCHEME FOR THE CONSTRUCTION OF THE PARAMETRIC 
FUNCTION " , , ( ( , ))e k e eF wγ τβ β " 

The main objective of this section consists of determining the relationship between the 
stabilization parameter and the data of the problem. Several numerical experiments suggest 
that the stabilization parameter depends on the data of the continuous problem (such as the 
advection field β  and the boundary conditions on −Γ ) and on the discrete problem (such as 
the degree of the interpolating polynomial, the geometry of the element and the aspect ratio of 
the element). The construction of a suitable parameter function will be based on the reduction 
of spurious oscillations and on the reduction of the smearing at internal layers as described in 
(John and Knobloch, 2007; John and Knobloch, 2008). Since spurious oscillations are far 
more undesirable than moderately smeared layers, spurious oscillations will be weighted 
higher. Another requirement is to maintain the order of approach of the GLS method for 
smooth problems. We note that for each , ( , , )L cw H ∞∈ β o  a variety of functions can be chosen to 
represent ( ( , ))e e

eF wτ β  satisfying the requirements mentioned above. The class of functions 

of the type 
, ( , ), ( ( )

eP we eQ F w
τ

τ⎡ ⎤⎣ ⎦
β

 where , ( , )eP wτ >β 0  and , ( ( ))e eQ F wτ  is a polynomial in 

( )eF w , is one of the possible functions that can satisfy the demands above, since the 
necessary information for this, can be inserted in the definition of the parameters through an 
appropriate numerical experimentation. Inspired in the VCAU method given in (Carmo and 
Galeão, 1991), SAUPG method given in (Carmo and Alvarez, 2003) and in the method given 
in (Codina, 1993) we propose the following function 

 
, ( , ),( ( , )) ( ( ))

eP we e e eF w Q F w
τ

ττ ⎡ ⎤= ⎣ ⎦
β

β , (14) 

 , , ,( ( )) [ ] ( ( )) ( )e e e e eQ F w Q F w F wτ τλ λ= − +01 , (15) 

 [ ][ ], , ,( ( )) ( ) [ ( )]
N

ie e e e i e i

i
Q F w F w C F w

τ
τ −

=

= + −∑ 10

2

1 , (16) 

where , ( , , )L cw H ∞∈ β o , 0≤λ≤1 is a parameter to be determined, Nτ ≥ 2 , ,e iC = 0  or ,e iC =1  and 
, ( , )eP wτ >β 0  , ( , , )L cw H ∞∀ ∈ β o  and ∀β . In general, these parameters and , ,e kγ β  depend on the 

data of the continuous problem and on the discrete problem as was already commented 
previously. From conditions 0≤λ≤1, Nτ ≥ 2 , ,e iC = 0  or ,e iC =1  and from the definition of 

, ( ( ))e eQ F wτ  follows that , ( ( ))e eQ F wτ ≤1  , ( , , )L cw H ∞∀ ∈ β o . 
In order to incorporate in ( ( ), )e eFτ o o  the information of the regularity of the solution we 

defined ( )ew L∀ ∈ Ω1  the function 
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w d

W w
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Ω

Ω

Ω

=
Ω

∫

∫
, (17) 

and , ( , , )L cw H ∞∀ ∈ β o  with μ≥0 we define the set 

 { }( , ) ; ( ( ))
eh h e

ew W F wμ μΠ = Ω ∈Ω > . (18) 

For each , ( , , )L cw H ∞∈ β o  and for i=0 we still needed to define the following parametric 
functions 

 ( )  number of elements of ( , )hN w w= Π0 0 , (19) 

 ( )
( , )

( ( )) if  ( ) ,
( )

 if  ( ) ,

h
e

e e
N w

w

W F w N w
M w

N wε
Ω ∈Π

⎧ ≥⎪= ⎨
⎪ =⎩
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01

0
00

0

1

0

 (20) 
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( ( ))  if  ( ) ,
( )

 if  ( ) ,

h
e

e e
N w

w

M w

W F w N w
M w

N w

−
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⎧ ⎡ ⎤ ≥⎪ ⎢ ⎥⎣ ⎦= ⎨
⎪ =⎩
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0
0

1
01

0
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1
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1
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 (21) 

 ( )
( , )

( ( )) ( )  if  ( ) ,
( ) ( )

 if  ( ) ,

h
e

e e
N w

w

W F w M w N w
w w

N w
σ Ω ∈Π

⎧ ⎡ ⎤− ≥⎪ ⎢ ⎥⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪ =⎩

∑0

2
0 01

2 00
0

0

1

0 0

 (22) 

 

( ) ( )

( ) ( )
( )  if  ( ) ( ) ,

( )
 if  ( ) ( ) ,

M w w

M w w
M w M w w

w
M w w

σ

σ
σ

μ
ε σ

−

+

⎧ + >⎪= ⎨
⎪ + =⎩

0 0
0

0 0
0

0 0 0
0 00

0 0
0

0

0
, (23) 

 ( ) inf ( ),
( )

M w M w
M w

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
0 0
2 1 0

0

4 , (24) 

 { }( ) inf ( ), ( )w M w wσℵ =0 0 0
0 , (25) 

 ,
( )( ) ( )
( )
wE w M w

M w
μ

ℵ =
0

0 0
0 2 0

0

, (26) 

 
( )

, ,
( )( ) ( )
( )

w
wE w E w

M w
μ

ℵ

ℵ ℵ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

0
0

0 0
1 0 0

0

, (27) 

 { }, ,( ) sup , ( ) smoothE w E w Eℵ ℵ= −0 0
2 10 , (28) 
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and for other integers i≥1 we define the next parametric functions 

 ( )  number of elements of ( , ( ))i h iN w w wμ −= Π 1 , (31) 
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wE w M w
M w
μ

ℵ =0 2
0

, (38) 

 
( )

, ,
( )( ) ( )
( )

i wi
i i

i

wE w E w
M w
μ

ℵ

ℵ ℵ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
1 0

0

, (39) 

 { }, ,( ) sup , ( )i i
smoothE w E w Eℵ ℵ= −2 10 , (40) 
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 , ,( ) ( ) ( )i i iE w E w M wℵ ℵ=3 2 2 , (41) 

 

[ ]

,

,

,

,
, ,

,

,

  if   and ( ) ,

( )   if   and ( ) ,
( )

( )   if   and ( ) ,

10   if   and ( ) ,

i

i

i i

i i i

e i
Ei i i

E i i

E M w

M w E M w
P w

M w E M w

E M w

τ

ε

ℵ

ℵ

−
ℵ

ℵ

ℵ

ℵ

⎧ > >
⎪
⎪⎡ ⎤ > ≤⎣ ⎦⎪= ⎨

⎡ ⎤ ≤ ≤⎪⎣ ⎦⎪
⎪ ≤ >⎩

3

3

1
3 2

200

2 3 2

2 3 2

3 2

200 10

200 10

200 10

200 10

 (42) 

where ε  represents a prescribed infinitesimal ( 1410−=ε  for a PC). The symbol smoothE  
represents a positive real constant such that if , ( )i

smoothE w Eℵ >1 , then the solution is  
considered smooth. Numerical experiments suggest i=1, smoothE =1  for mesh with 
quadrilateral or hexahedron elements and .smoothE = 0 5  for mesh with triangle or tetrahedron 
elements. Therefore, for each , ( , , )L cw H ∞∈ β o  we propose 

 , , ,( , ) ( ) ( )e e eP w F P wτ τ=β β 1
0 , (43) 

where ( )eF ≥β0 1  is a factor that is independent of w and dependent of the data of the 
continuous problem and of the discrete problem. 

We note that in every eΩ  should have , ,( ( ))e e h GLS
eQ F uτ< <0 1  and 1),( ,, <<βGLSh

e
e uP τ  for 

smooth problems, where ,h GLS
eu  denotes the solution of the GLS method. Therefore, in 

general, 1)),(( , <<βGLSh
e

ee uFτ  e∀Ω  in smooth problems and the solution hu  is very similar to 
,h GLSu  since the capture operator is very small. For problems with internal layers (no smooth 

solution) we should have , ( )i
smoothE w Eℵ ≤1 , and therefore, , ( , ) ( )e h eP u Fτ =β β0  e∀Ω . In this 

case, hu  is different of ,h GLSu  since the capture operator is not disabled. Therefore, the 
function , ( , )eP τ βo  defined above, allows that the function ( ( ), )e eFτ βo  possesses information 
of the regularity of the problem through the function , , ( )eP τ 1 o . 

In order to incorporate in , ( , )eP wτ β  information from the advection field β  and from the 
geometry of the element, e∀Ω  we defined 

 ,

e

e d
−

−

Γ

ϒ = Γ∫ ,     ,

e

e d
+

+

Γ

ϒ = Γ∫ , (44) 

 { },max
,sup ( ); , ,e e

e i facemeas i Nϒ = Γ =1K , (45) 

 { ;  <0} e e
−Γ = ∈Γ ⋅x β x ,   e e e

+ −Γ = Γ − Γ , (46) 

 
,

,

( ) if is a triangle or tetrahedron,

( ) if 

 
( )

 i a quadrilateral or hexahedr ,s on

e T
e

e Q
e

e F

F
F

Ω

Ω

⎧⎪= ⎨
⎪⎩

β
β

β
1

1

1  (47) 
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,

,

, ,

,
,

,

,
,

 if ,

( )
if ,

e

e

e e

e
e

e e
e

QF
−

+

− +

ϒ
− ϒ

− +

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦

+

⎡ ⎤
⎢ ⎥

⎧ ϒ ≥ ϒ
⎪⎪= ⎨ ϒ⎪ ϒ < ϒ

⎦ϒ⎪⎩⎣

β 1
1

1

 (48) 

 
,

,
, ,

,max , ,max , , ,

,
,,

,

 and ) or 

,
othe

if ( ,

rwise,
( ) ( )

 

e

e

e e e e e e

e T e T
D

e T
e

e

F F D
−

+

− + − +

ϒ
− ϒ

+

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦

⎧ ϒ ≠ ϒ ϒ ≠ ϒ ϒ ≥ ϒ
⎪⎪= ⎨ ϒ⎪

ϒ
⎡ ⎤
⎢ ⎥
⎣ ⎦⎪⎩

β β 1
1 1

1

 (49) 

 ,

 if  is a triangle,

if is  tetrahedr ,ona

e

e

e

e

e

T

e

e

d

h

D
h

d

−

−

Γ

Γ

⎡ ⎤+⎣ ⎦ Ω

⎡ ⎤ ⎡ ⎤+ ⎣ ⎦⎣ ⎦ Ω

⎧
⎪
⎪ Γ
⎪⎪= ⎨
⎪
⎪

Γ⎪
⎪⎩

∫

∫

2

2 2

2

3 3
 (50) 

 , ,inf
,( ) ( ) ( )e e e k e

stdF F F α=β β0 1 1 , (51) 

 { },
,

,inf , ; ,  , ,inf e
e i

e e
e a

i
f cei Nα α −Γ ⊂ Γ= =0 1K , (52) 

 , { ;  0} e e
−Γ = ∈Γ ⋅ ≤x β x0 , (53) 

 ,

,

,

,

( )

 with , ,e i

e i

e i

e i e
face

d

i N
d

χ

α Γ

Γ

Ω

= =
Ω

∫

∫

β

1K , (54) 

 ,
if ,

( )
 if ,

e
e iχ

⎧ ⋅
>⎪

= ⎨
⎪ =⎩

β n
β

ββ
β

0

0 0

, (55) 

where e
faceN  denotes the number of faces of eΩ , ,e iΓ  denotes the face of number "i", en  

denotes the outward normal unit vector defined almost everywhere on eΓ . The function 
,

, ( )e k
stdF 1 o  is based on a standard isoparametric element, where k denotes the degree of the 

interpolating polynomial. This function should be obtained through appropriate numerical 
experiments. ,

, ( ),e T
DF 1 o o  is a function that carry out the information of the distortion of the 

element in relation to the corresponding standard element. It is known that higher accuracy 
can be obtained with triangular mesh when the advection field is aligned with one face of the 
triangle (Iliescu, 1999; Skalický and Roos, 1999). Therefore, it is desirable to have some 
indicator of alignment of the advection field β  with the face of larger measure for triangle or 
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tetrahedron. We remark that " ,max , ,max , and e e e e− +ϒ ≠ ϒ ϒ ≠ ϒ " can be used as an indicator of 
this alignment. 

There are different ways of defining numerical experiments to determine the function 
,

, ( )e k
stdF 1 o . We considered that good choices are the numerical experiments based on the 

following advection problem  

 ( , , ) in ( , ) ( , )test testL u u= ⋅∇ = Ω = ×β β0 0 0 1 0 1 , (56) 

 on  with { ;  <0} test test test test test testu g − −= Γ Γ = ∈Γ ⋅x β n , (57) 

 
1  if    and ,
1  if  .   and ,
0  if  .   and ,

test

x y
g y x

y x

≤ ≤ =⎧
⎪= ≤ < =⎨
⎪ ≤ < =⎩

0 1 1

0 65 1 0

0 0 65 0

 (58) 

 (cos( ),-sin( )) with [0, ]test test test test
πθ θ θ= ∈β 2 , (59) 

where testΓ  denotes the boundary of testΩ  and testn  denotes the outward normal unit vector 
defined almost everywhere on testΓ . 

The numerical tests are accomplished for a uniform partition test testN N×  of testΩ  in square 
elements, where testN = 40  was the adopted value. Therefore, the standard isoparametric 
element used to determine the function ,

, ( )e k
stdF 1 o  is the square element. 

Chosen the criterion to determine ,
, ( )e k

stdF 1 o , the next step consists of specifying the functions 
, ( ( ))e eQ Fτ o  and ,

, ( ),e T
DF 1 o o  as also the parameter , ,e kγ β . Inspired in the VCAU method given in 

(Carmo and Galeão, 1991) and in the SAUPG method given in (Carmo and Alvarez, 2003), 
we specified Nτ = 2  and ,eC =2 1  and have the function , , ( ( ))e eQ Fτ 0 o  defined , ( , , )L cw H ∞∈ β o  
as follows 

 , , ( ( )) ( ) [ ( )]e e e e
e e eQ F w F w F wτ = −0 2 . (60) 

With the objective that the parameter , ,e kγ β  possesses in himself the information of the 
geometry of the element and of the smoothness of the boundary conditions on test

−Γ , we 
propose the parameter , ,e kγ β  given below 

 , , , , , ,inf( , )
ee k geom e e k eγ γ γ α ω=β β

1 , (61) 

 , , ,inf

, , , ,inf

  if ,
( , )

( )  if ,

e
ee k e

ee k e

ω
γ α ω

γ α ω−

⎧ =⎪= ⎨
⎪ =⎩

β

β
1

1 0

1
 (62) 

 
0 if =  or data on  are specified as smooth,

1 if  or data on  are specified as non-smooth,
e e e

e e

ω
− −

− −

⎧ Γ ∩ Γ ∅ Γ ∩ Γ⎪= ⎨
Γ ∩ Γ ≠ ∅ Γ ∩ Γ⎪⎩

 (63) 

where ,infeα  is another parameters to be determined. 
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The function , , , ,inf( )e k eγ α− β  is determined through numerical experiments for the advection 

problem above, where 
e

ω =1  is specified in every element such that the point ( , . ) e∈Γ0 0 65  

and 
e

ω = 0  in the other elements. The parameter ,geom eγ  possesses in himself the information 
of the geometry of the element. 

The dependence of ,
, ( ),e T

DF 1 o o  on the field β  was observed as significant for some meshes 
where a strong distortion of the elements and strong degree of nonalignment with the field β  
were present. Already the dependence of the distortion ,e TD  was observed for all meshes with 
distorted elements. Several functions were experimented and the better performance was 
observed for 

 , ,
,

,

,

, ,

.  if ,
( )  if 0.85

.
,

.  i

,

 .f

e T e T

e T

e T
D

e T

e T

F D
D

D D

D

⎧ <
⎪

≤⎨
⎪

−

⎩

= +

>

≤β 52
1 3 3

0 85

1

1

1 1

1 0

 (64) 

From definitions above follows that 

 
,inf ,inf ,i, nf

,inf
,in

,
,,

, , , f ,inf ,i f
,

n

 if ,(

 

)
( )

( ) if 0 ,

e k
stde k

std e k
std

e e e
e

e e e

F
F

F

α α α
α

α α α

⎧ ≤ ≤⎪= ⎨
≤ <⎪⎩

0

0 0

0
1

1 0
1

1
 (65) 

 , , , ,, n
,

i f( (, ) ) )( )(e e k
std

e e eP w P w F Fτ τ α=β β1 1
1  (66) 

and consequently , ( , , )L cw H ∞∈ β o  and ∀β  we have 

 
, ( , ), , , , , ,inf ,( ( , )) ( , ) ( ( ))

e
eP wee k e e geom e e k e e e

e eF w Q F w
τ

τγ τ γ γ α ω ⎡ ⎤= ⎣ ⎦
ββ ββ 1 . (67) 

All numerical experiments were accomplished for k=1 and hence the results that proceed 
are valid for linear, bilinear and trilinear elements only. For each { ; [ , ]; }i

N i N N
λ λ λλ ∈ ∈ =0 8  

and , { . ,  . ,  . ,  ,  . ,  . ,  . ,  . }geom eγ ∈ 0 25 0 5 0 75 1 1 25 1 5 1 75 2 0  fixed, the scheme to determine 
, , ( ( , ))e k e e

eF wγ τβ β  consists of the following steps: 
    0) We consider a partition of ( , ) ( , )testΩ = ×0 1 0 1  in 40 square elements. 

    1) We make 
e

ω = 0  e∀Ω  and hence , , ,inf( , )
ee k eγ α ω =β

1 1 e∀Ω . 

    2) For an integer Nθ > 4  we define test Nθ

πθΔ =
4

 and we solved the advection problem 

above by using the stabilized FEM with shock capturing and by considering the advection 
field {(cos( ), sin( )), (sin( ), cos( ));  with , , }i i i i i

test test test test test testi i Nθθ θ θ θ θ θ∈ − − = Δ =β 1K . We 
determine , , , n

,
i f( )e k

st
e

dF α0
1  in way to have a best reduction of the spurious oscillations and 

smearing at internal layers. The experiments suggest , , , ,
, ,

,inf sin(0.16514( ) rd)( 9 )e k e k
st

e
d stdF Fα =0 0
1 1  

as appropriate for ,inf sin(0.165149 rd)eα ≤ , where "rd" denotes radians. The comment above 
suggests ,inf sin(0.165149 rd)eα =  as a good choice for this parameter. 

    3) The function , , , n
,

i f( )e k
st

e
dF α0
1  is approximate by the usual interpolate of the FEM in one-

dimension. The table 1 presents the values obtained for , , , n
,

i f( )e k
st

e
dF α0
1  and ,infeα  with 
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numerical simulation described from steps (0) to (2). 
  

Nodal Point ,infeα  , , , n
,

i f( )e k
st

e
dF α0
1  

1 0.00000000000000 1.75000 
2 0.164398987305357 1.75000 
3 0.242535625036333 1.80000 
4 0.316227766016838 1.85000 
5 0.447213595499958 1.85000 
6 0.707106781186548 1.90000 
7 1.00000000000000 1.90000 

Table 1- Coordinates of the nodal points and the value of , , , n
,

i f( )e k
st

e
dF α0
1  

 
    4) With the parameters and the functions determined through the steps (1) to (3), we 

make new numerical experiments to determine , , ,inf( , )
ee k eγ α ω =β

1 1 for 
e

ω =1  in every 
element such that ( , . ) e∈Γ0 0 65 . The most appropriate value for all direction of the advection 
field and for all geometry of the element is , , , ,inf( ) .e k eγ α− =β 1 5  ,infeα∀ . Finally, the numerical 
experiments suggest that the best value for λ is λ=0.75 and for ,geom eγ  is 

 ,   for quadrilateral element or hexahedron element,
  for triangle element or tetrahedron element. 

geom eγ
⎧

= ⎨
⎩

1
2

3
2

 (68) 

We observed that the scheme presented above, is a first attempt to determine a parametric 
function that brings in himself the information of the continuous problem and of the discrete 
problem. 

5 NUMERICAL RESULTS 

We selected some numerical examples to compare the solution of the CSCRS method with 
other shock capturing methods presented in (Galeão and Carmo, 1988; Codina, 1993; Carmo 
and Alvarez, 2003) and the GLS method. Results in representative sections are presented to 
show a better visualization of the spurious oscillations and the smearing effect at internal 
layers. The same problem is solved for several meshes, in order to confirm that the stabilizing 
parameter depends on the geometry of the element and on the distortion of the element for 
general meshes, and that for triangular meshes depends also on the alignment of the advection 
field β  with the face of the larger measure. The method presented in (Codina, 1993) will be 
denoted by DCCD (Discontinuity Capturing Crosswind Dissipation). In all numerical 
examples with internal layers the SAUPG' solution (Carmo and Alvarez, 2003) is very similar 
to the CAU' solution (Galeão and Carmo, 1988). By the comment above we present the 
results for the CAU method only. The GLS, DCCD and CAU methods were implemented as 
in original papers. 

5.1 Problem with internal layer in a square domain 

In this experiment (0,1)×(0,1)Ω = , {( , ), ( , ), ( , )}∈ − − −β 2 1 1 1 1 2 , f = 0 , c = 0  and g  is 
given as 
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.  in ( , ), 
1  if  and ,
1  if  and . ,
0  if  and . .

x y
g

x y
x y

⎧
⎪ ≤ < =⎪= ⎨ = < <⎪
⎪ = < <⎩

0 5 1 1

0 1 1

0 0 75 1

0 0 0 75

 (69) 

This problem was solved for three meshes and the three advection fields above in each 
mesh. The first mesh is a 40×40 uniform mesh with square elements. For this mesh can be 
observed from figure 1 to 2 that the CSCRS method reduces the spurious oscillations and the 
smearing effect at internal layer in relation to other methods. The second mesh is show in 
figure 3 (top) and has 3200 triangular elements aligned with the advection field β . Numerical 
results for this mesh are presented in figure 4. In this case we did not present results for 

( , )= −β 1 1  because all methods have the same solution, which is nodally exact. Again, in 
figure 4 we can see that the CSCRS method reduce the spurious oscillations and the smearing 
effect at internal layer in relation to other methods. The third mesh is shown in figure 3 
(bottom) and has 1600 triangular elements no aligned with the advection field β . Numerical 
results for this mesh are presented in figure 5. We observed spurious oscillations for the CAU 
and DCCD methods. However, the spurious oscillations are more pronounced for the CAU 
method. Practically, the CSCRS method eliminates these spurious oscillations. On the other 
hand, a little larger smearing for ( , )= −β 1 1  and ( , )= −β 1 2  is observed in the CSCRS method. 
This suggests that the stabilization parameter also depends on other variables not considered 
here when the mesh is constituted of triangular elements no aligned with the field β . 

 

5.2 Problem with smooth solution in a square domain 

In this experiment (0,1)×(0,1)Ω = , ( . , . )y x= − + −β 0 5 0 5 , f = 0 , c = 0  and g  is given as 
follows 

 
0  if  or  or  or ,
sin( ) if .  and . .

x x y y
g

y x yπ
= = = =⎧

= ⎨ = < <⎩

0 1 0 1

2 0 5 0 0 5
 (70) 

This problem was solved for two meshes. The first mesh is a uniform mesh with 40×40 
square elements. The second mesh is shown in figure 2 and has 3200 triangular elements no 
aligned with the advection field β . Figure 7 present 2D plots comparing the solutions of the 
GLS, CAU, DCCD and CSCRS methods for both meshes in section .y = 0 5 . In this case the 
exact solution is smooth. Therefore, the solutions of the GLS and CSCRS methods are very 
similar because for problems with smooth solution the parameter 1)),(( , <<βGLSh

e
ee uFτ  e∀Ω  

and the capture operator is approximately disabled. The solutions of the CAU and DCCD 
methods show evident loss accuracy. 
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Figure 1: Solutions for ( , )= −β 1 2  in section .x = 0 5  along the y direction (top) and in section .y = 0 5  

along the x  direction (bottom). 
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Figure 2: Solutions for ( , )= −β 1 1  (top) and ( , )= −β 1 2  (bottom) in section .y = 0 5  along the x  direction. 
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Figure 3: Two triangular meshes of linear element: β is aligned (top) and nonaligned (bottom) to the mesh. 
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Figure 4: Solutions for ( , )= −β 2 1   (top) and ( , )= −β 1 2  (bottom) in section .y = 0 5  along the x  direction. 
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Figure 5: Solutions for ( , )= −β 2 1 (top), ( , )= −β 1 1  and ( , )= −β 1 2  (bottom)  in section .y = 0 5  along the 

x  direction. 
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Figure 6: Nonaligned triangular mesh with the ( . , . )y x= − + −β 0 5 0 5 . 

6 CONCLUSIONS 

We developed a new stabilized finite element method based on the ideas of shock-
capturing stabilization. The CSCRS method introduces new ideas about the upwind function 
and the stabilization parameter. The strategy to choose the stabilization parameter is based on 
numerical experiments. The numerical experiments suggest that the stabilization parameter 
depends on the degree of the interpolating polynomial, the geometry of the element, the 
advection field β  and on the data prescribed for the problem on −Γ . Although we lack a 
theoretical error estimate, the simplicity of the new scheme, as well as the stabilization 
parameter must be considered for practical purposes. 

In short, the CSCRS method presents the following properties: 
    • it is a nonlinear stabilized accurate method, 
    • its computational algorithm can be easily implemented, 
    • its stability at internal layers is superior to the CAU, SAUPG, GLSAU and DCCD 

methods, 
    • its solution preserve the sharp gradient at internal layers, i.e., no excessive crosswind 

smearing appears, 
    • its accuracy is very similar to the SUPG or GLS methods for smooth problem. 
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Figure 7: Solutions of GLS, CAU, DCCD and CSCRS methods in section .y = 0 5  along the x  direction for 

triangular mesh (top) and quadrilateral mesh (bottom). 

 

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

S
O

LU
T

IO
N

 VALUE OF X

’No Aligned Triangular Mesh’ and ’Advective-Field = (-y+0.5,x-0.5)’

GLS
DCCD

CAU
CSCRS

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

S
O

LU
TI

O
N

 VALUE OF X

’40x40 Uniform Mesh’ and ’Advective-Field = (-y+0.5,x-0.5)’

GLS
DCCD

CAU
CSCRS

Mecánica Computacional Vol XXIX, págs. 4661-4685 (2010) 4681

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

The strategy presented here are our first insight to obtain better stabilization near of the 
internal layers. This strategy deserves further numerical studies and serves as starting point to 
identify other construction of a suitable parametric function. We highlighted that the 
relationship between the stabilization parameter and the advection field not is entirely 
established. 
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