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Abstract. The aim of this work is the comparison between two �nite element approaches for solving
multispecies contaminant transport problems together with sorption and biodegradation processes which
can take place inside a porous matrix aquifer characterizing a stage of subsurface contamination by
organic contaminants. Mathematically the problem is described by a nonlinear advection-diffusion-
reaction partial differential system coupled by reaction terms which are associated to the kinetics that
govern biodegradation processes.

Computational aspects obtained via numerical simulations of a standard fully coupled technique and
an operator splitting approach are analyzed. This second methodology deals with convective-diffusive
and reactive terms in a sequential way, producing an ef�cient and natural alternative to numerical solve
different types of biodegradation kinetics and sorption conditions. For both methodologies a predictor-
multi corrector algorithm with Newton-Raphson and stabilized �nite element methods are used in time
and spatial discretizations, respectively, to approximate the nonlinear transport equations.

Ef�ciency and accuracy to the proposal methodologies are analyzed via three typical contamination
scenarios where nonlinear biodegradation processes, equilibrium and non-equilibrium sorption condi-
tions are carried out. This study allow us to choose the most convenient approach for each case. The
operator splitting procedure is very attractive for parallel computation, large multidimensional problems
with multiple species, treating in a novel way different types of biodegradation kinetics and sorption
conditions. On the other hand, fully coupled techniques are mathematically considered more rigorous
procedures, and they have been generally employed to solve nonlinear reactive transport problems.
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1 INTRODUCTION
Groundwater contamination by organic compounds is a problem, that can be solved or re-

duced by remediation technologies. Among ef�cient and known strategies are those that utilizes
in situ biodegradation (biological) processes (Gallo and Manzini , 2001). Furthermore, another
important and usually regardless phenomenon, which occurs in the aquifer porous matrix, is
the contaminant sorption (van Genuchten and Wagenet , 1989) which can interfere in the con-
taminant plume propagation velocity. Therefore understanding the in�uence of these physical
and biological processes on the bioremediation effectiveness of contamination scenarios can be
very useful.

Contaminant transport problems under biodegradation kinetics and sorption in equilibrium
and non-equilibrium conditions had extensively been studied in the last years. Many or most of
these works have considered these processes separately (Hokr and Maryska , 2002; Kacur et al. ,
2005; Remesikova , 2004; Serrano , 2001; Toride et al. , 1993; van Kooten , 1996) or have taken
only into account nonlinear sorption conditions combined with linear biodegradation kinetics
(Frolkovic and Kacur , 2006; Kanney et al. , 2003a,b). However important environmental prob-
lems hence require a simultaneous analysis of the physical and biological processes, which
can interfere in the fate and transport of the pollutant. Thus we have being studied (Couto ,
2006; Couto and Malta , 2008) a mathematical model that governs a two species transport prob-
lem, with mass transfer between solid and aqueous phases, and nonlinear biodegradation and
sorption reactions, in a one-dimensional saturated porous medium. The system coupling is
done via the reaction terms. A fully coupled (FC) technique and an operator splitting (OS)
approach were proposed in order to numerically solve the mentioned contaminant problem.
These methodologies provided physically acceptable solutions, taking into account a rigor-
ous evaluation of the nonlinear terms and a special treatment of the predominately convective
character of the transport equation (biodegradation is a predominant convective phenomenon)
(Wheeler and Dawson , 1987). For both methodologies the SUPG (Streamline Upwind Petrov-
Galerkin) stabilized �nite element method (Brooks and Hughes , 1982) in space and a predictor-
multi corrector algorithm in time are used to approximate the predominant convective transport
equations. In addition, the nonlinearities associated with the sorption conditions, biodegrada-
tion processes and the system uncoupling (reaction terms) are performed via a Newton-type
method by the FC approach. Therefore, it can be viewed as a fully coupled numerical model in
the sense that the differential operators describing the governing equations are approximate as a
complete system. On the other hand, the OS methodology solves the ordinary differential equa-
tions, corresponding to biodegradation kinetics and sorption in non-equilibrium mode using a
fourth-order Runge-Kutta method (Odencrantz et al. , 1993).

From the mathematical point of view FC numerical methodologies are considered rigor-
ous procedures, and they have been generally employed to solve nonlinear reactive trans-
port problems (Farthing et al. , 2006; Gallo and Manzini , 2001; Herzer and Kinzelbach , 1989;
Kanney et al. , 2003b; Karapanagioti et al. , 2001). In fact, for each time step, the temporal FC
approximation is applied to a semi-discrete stabilized �nite element (SUPG) equation which
comes from the original problem and has solid mathematical bases. In this way, connections
among the operator in each equation are maintained and both nonlinearities and species cou-
pled problems are solved via an iterative algorithm associated to the usual Newton method. On
contrary, the OS methodology decouples the differential equations of the original model in two
parts, namely: one related to the transport and the other to the reaction. Therefore, each part
is approximated by the most suitable numerical technique associated with its operator. The OS
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applicability mainly depends on two factors: the reduction of possible errors caused by the de-
composition of the coupled set of equations and the convergence to the exact solution due to
time step size reduction.

The objective of the present paper is to study numerical aspects related to FC and OS numer-
ical schemes performance (robustness, accuracy and CPU time execution, for example) when
applied to three typical contaminant scenarios. For doing this, the paper is organized as follows:
we start with a general two species nonlinear reactive transport model considering biodegrada-
tion reactions and equilibrium and non-equilibrium sorption conditions; next, we de�ne the
fully coupled numerical methodology and the operator splitting procedure that will be analyzed
under some computation points of view. Finally the paper ends with a summary of the main
conclusions.

2 THE NONLINEAR CONTAMINANT TRANSPORT MODEL
The complete nonlinear coupled mathematical model describing a two species transport

problem, with mass transfer between solid and aqueous phases, and biodegradation reactions,
in a one-dimensional saturated porous medium, is given by

∂F (C1)

∂t
+ V

∂C1

∂x
−D

∂2C1

∂x2
+

∂S1

∂t
+ R1(C1, C2, b1) = 0, (1)

∂S1

∂t
= K(Ψ(C1)− S1), (2)

∂C2

∂t
+ V

∂C2

∂x
−D

∂2C2

∂x2
+ R2(C1, C2, b1) = 0, (3)

∂b1

∂t
= R3(C1, C2, b1). (4)

for all x ∈ (0, L) and t > 0, where C1 and S1 are the electron donor (contaminant) aqueous and
solid phase concentrations, C2 is the electron acceptor (oxygen) aqueous concentration, and b1

is the bacterial biomass concentration. Function

F (C1) = C1 + Φ(C1) (5)

with Φ(·) and Ψ(·) de�ning the equilibrium and non-equilibrium sorption isotherms, respec-
tively, commonly represented using either Freundlich or Langmuir isotherms (Farthing et al. ,
2006; Frolkovic and Kacur , 2006; Kanney et al. , 2003a,b; Remesikova , 2004). Following
Odencrantz et al. (1993) we assumed that sorption occurs only to the electron donor (the con-
taminant) and the sorption conditions are modeled by Freundlich isotherms, that is, Φ(·) and
Ψ(·) are given by

Ψ(C1) and/or Φ(C1) = K0(C1)
p, (6)

where K0 > 0 is the sorption capacity coef�cient and p > 0 the measure of the sorption inten-
sity. In equations (1) and (3) the velocity (V ) and the diffusion coef�cient (D) are positive con-
stants. In order to avoid the diffusion coef�cient in�uence on the reactive interaction analysis we
take the same diffusion coef�cient for both equations (Farthing et al. , 2006; Kacur et al. , 2005;
Kanney et al. , 2003a; Odencrantz et al. , 1993). However, different values may be considered
Merz (2005).Finally, Rj(·, ·, ·), j = 1, 2, 3 are biodegradation kinetic expressions (minimum-
rate Monod, as de�ned in subsection 5.2) and K is a �rst-order mass transfer coef�cient for
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mass transfer between the aqueous phase and the slowly sorbing solid phase (Kanney et al. ,
2003a).

In addition, it is necessary to equip the coupled nonlinear diffusive-convective-reactive trans-
port system (1)-(4) with appropriate boundary and initial conditions. Thus, we impose usual
Dirichlet and Neumann boundary conditions for C1 and C2, that is:

C1(0, t) = C̄1,
∂C1(L, t)

∂x
= 0, (7)

C2(0, t) = C̄2,
∂C2(L, t)

∂x
= 0. (8)

The initial conditions are:

C1(x, 0) = C0
1 , S1(x, 0) = Ψ(C0

1), (9)
C2(x, 0) = C0

2 , b1(x, 0) = b0
1. (10)

All constant values in Eqs. (7)-(10) will be taken from the literature (Celia et al. , 1989; Kacur et al. ,
2005; Odencrantz et al. , 1993; Remesikova , 2004, 2007) and use in the numerical simulations
discussed here.

3 THE FULLY COUPLED NUMERICAL METHODOLOGY
The FC numerical methodology numerically handles with system (1)-(4) in the sense that

the differential operators describing the governing equations are approximate as a complete
system. Therefore, let 0 = t0 < t1 < t2 < ... < tN = T be a uniform temporal discretiza-
tion of the interval I = (0, T ), T > 0 the �nal time, In ≡ (tn, tn+1), n = 0, . . . , N − 1 and
the time step ∆t = tn+1 − tn with N = T/∆t, considering the Crank-Nicolson second or-
der �nite-difference method approximating the time derivatives in Eqs.(1) and (3). Therefore,
the complete (spatial and time) approximation is obtained applying the SUPG �nite element
method (Brooks and Hughes , 1982; Coutinho et al. , 2004; Johnson et al. , 1984) in the spatial
discretization of variables C1 and C2. In this case, the domain Ω is partitioning in Ne elements
with h = ∆x = L/Ne size. Each element Ωe is such that Ω̄ =

⋃Ne

e=1 Ω̄e with
⋂Ne

e=1 Ωe = ∅.
Therefore, the fully discrete equations are written by:
(i) Given Cn−1,h

1 , Cn,h
2 , Sn,h

1 and bn,h
1 , �nd, ∀n = 1, ..., N , Cn,h

1 ∈ V h
1 such that

∫

Ω

R1(C
n,h
1 )whdx +

Ne∑
e=1

∫

Ωe

R1(C
n,h
1 )τV

∂wh

∂x
dx = 0 ∀wh ∈ W h, (11)

(ii) Given Cn−1,h
2 , Cn,h

1 and bn,h
1 , �nd, ∀n = 1, ..., N , Cn,h

2 ∈ V h
2 such that

∫

Ω

R2(C
n,h
2 )whdx +

Ne∑
e=1

∫

Ωe

R2(C
n,h
2 )τV

∂wh

∂x
dx = 0 ∀wh ∈ W h. (12)

Expressions Rj(C
n,h
j ), j = 1, 2 are the time semi-discrete residual terms of the transport equa-

tions obtained after applying the Crank-Nicolson method. The upwind parameter τ is de�ned
by τ = hξ(Pe)/2|V | (Brooks and Hughes , 1982), where ξ(Pe) = coth(Pe) − (1/Pe) with
Pe = |V |h/2D the grid Péclet number (dimensionless), which evaluates the relationship be-
tween the convective and dispersive terms. V h

i and W h are the �nite counterparts of spaces Vi =
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{ci(x) ∈ H1(Ω); ci(0) = C̄i}, i = 1, 2 and W = {w(x) ∈ H1(Ω); w(0) = 0}. According to the

�nite element method, the approximate function Cn,h
i is de�ned as: Cn,h

i (x) =
nnode∑

l=1

Cn
i,lϕl(x),

∀x ∈ Ω, where nnode is the number of nodes, Cn
i,l the nodal value of Cn,h

i , with ϕl(x) the shape
functions. Hereafter, to simplify the notation, the subscript h, associated with the �nite element
discretization, is left behind and we also replace Cn,h

i by cn
i , Sn,h

1 by sn
1 and bn,h

1 by bn
1 .

Therefore, an iterative algorithm based on Newton and Picard methods are exhibited to treat
the nonlinearities and the coupling inserted by sorption and biodegradation expressions. The
nonlinear functions F (·), Ψ(·) and Rj(·, ·, ·), j = 1, 2, 3, in the iteration step k, are approxi-
mated by tangent curves at the cn,k−1

i , i = 1, 2 points, namely:

F (cn,k
i ) ≈ F (cn,k−1

i ) +
dF (cn,k−1

i )

dCi

(cn,k
i − cn,k−1

i ), (13)

Ψ(cn,k
i ) ≈ Ψ(cn,k−1

i ) +
dΨ(cn,k−1

i )

dCi

(cn,k
i − cn,k−1

i ), (14)

Rj(c
n,k
1 , cn,k

2 , bn,k
1 , ) ≈ Rj(c

n,k−1
1 , cn,k−1

2 , bn,k−1
1 )

+
dRj(c

n,k−1
1 , cn,k−1

2 , bn,k−1
1 )

dCj

(cn,k
1 − cn,k−1

1 ), (15)

Substituting the above expressions, Eqs. (13)-(15), into the residual terms Rj(·), j = 1, 2, we
arrive at linearized fully discrete transport problems. Finally, a Newton-type iterative scheme is
employed to solve the complete discretized system taking into account solid phase and bacterial
growth approximations. Hence, the solution in each time tn+1 is found when the solutions into
two consecutive iterations are suf�ciently near, that is, ||xk−xk−1|| = máxnnode

p=1 ||xk
p−xk−1

p || <
tol, where tol is a previously established tolerance.

The introduced FC methodology numerical performance was veri�ed on some computa-
tional simulations exhibited in Couto (2006). The effects of sorption and biodegradation pro-
cesses under the plume contaminant transport were examined, reinforcing that nonlinear sorp-
tion should be coupled with convective transport models to accurately predict bioremediation
alternatives, such as natural attenuation.

4 THE OPERATOR SPLITTING PROCEDURE
Comparing with other schemes in the literature (Frolkovic and Kacur , 2006; Kacur et al. ,

2005; Kanney et al. , 2003a; Karapanagioti et al. , 2001; Odencrantz et al. , 1993), the main
contribution of the following OS technique focuses on the introduction of both nonlinear equi-
librium and non-equilibrium sorption combined with biodegradation kinetics. A brief descrip-
tion is explained below, more details can be found in Couto and Malta (2008). For n �xed,
n = 0, . . . , N − 1, we �rstly solve the following nonlinear uncoupled transport subsystem at
tn+1

∂F (C1)

∂t
+ V

∂C1

∂x
−D

∂2C1

∂x2
= 0, (16)

∂C2

∂t
+ V

∂C2

∂x
−D

∂2C2

∂x2
= 0, (17)
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where the electron donor equation (Eq. (16)) is associated with nonlinear sorption in equilib-
rium mode via the F (·) function (see Eq. (5)). Next, in the same time level, we locally calculate
the nonlinear reaction equations, that is

∂C1

∂t
+

∂F (C1)
−1

∂C1

(
∂S1

∂t
+ R1(C1, C2, b1)

)
= 0, (18)

∂S1

∂t
= K(Ψ(C1)− S1), (19)

∂C2

∂t
+ R2(C1, C2, b1) = 0, (20)

∂b1

∂t
= R3(C1, C2, b1), (21)

considering the solution of system (16)-(17) as the initial conditions to the variables C1 and C2.
Then, the evaluation of Eqs. (18)-(21) is the approximate solution for the mathematical model
(1)-(4) at time tn+1 ∈ I . This cycle is repeated N time steps until the �nal time of interest
is reached. The nonlinearities in Eqs. (18)-(21) are related to sorption in both conditions as
well as the biodegradation processes. To numerically solve the diffusive-convective transport
problem (16)-(17) (�rst stage) we use a semi-discrete stabilized �nite element approach (the
SUPG method), following the same strategy employed by the FC approach de�ned in the last
section.

The nonlinear Eq. (16) was taken as a model problem to illustrate the adopted OS scheme.
However, Eq. (17) can be analogously solved. According to the introduced notation the spatial
discretization of Eq. (16) leads to an ordinary differential system, which is written in the matrix
form:

M(C1)Ċ1 + KC1 = 0 (22)
where for all i, j = 1, ..., nnode we have

[M(C1)]ij =

∫

Ω

∂F
(∑nnode

j=1 c1,j(t)ϕj(x)
)

∂C1

ϕj(x)

(
ϕi(x) + τV

∂ϕi(x)

∂x

)
dx, (23)

[Ċ1]j =
∂c1,j(t)

∂t
, (24)

[K]ij =

∫

Ω

V
∂ϕj(x)

∂x

(
ϕi(x) + τV

∂ϕi(x)

∂x

)
dx+

∫

Ω

D
∂ϕj(x)

∂x

∂ϕi(x)

∂x
dx−

Ne∑
e=1

(∫

Ωe

D
∂2ϕj(x)

∂x2
τV

∂ϕi(x)

∂x
dx

)
,

(25)

[C1]j = c1,j(t). (26)
Hence, the fully discrete system associated to Eq. (16) reads

M(C̃1,n+1 + 0.5∆tĊ1,n+1)Ċ1,n+1 + KC̃1,n+1 + 0.5∆tKĊ1,n+1 = 0, (27)
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where C̃1,n+1 = C1,n +0.5∆tĊ1,n. To solve the nonlinear problem (27) we apply the Newton-
Raphson method for each time step as explained in the Algorithm 1 below, where we denote:

F(Ċ1,n+1) = (f1(Ċ1,n+1), f2(Ċ1,n+1), ..., fnnode(Ċ1,n+1)), (28)
with

fi(Ċn+1) =
∑

j

[M(C̃n+1 + ∆tαĊn+1)]ij(Ċn+1)j + [K]ij(C̃n+1)j + ∆tα[K]ij(Ċn+1)j, (29)

and

F′(Ċk
1,n+1) =

[
∂fi(Ċ

k
1,n+1)

∂(Ċ1,n+1)j

]
, (30)

for all i, j = 1, ..., nnode. The linearization (delay) is included in the iterative part of Algorithm
1, that is, in the calculation of the residue Rk and the Jacobian Jk.

Algorithm 1
Require: Ċ0

1,n+1 = 0, C0
1,n+1 = C̃1,n+1 = C1,n + 0.5∆tĊ1,n, tol, kmax, F and F′,

Ensure: Ċ1,n+1 and C1,n+1

1: for k = 0, 1, ..., kmax do
2: Rk = −F(Ċk

1,n+1)

3: Jk = F′(Ċk
1,n+1)

4: solve Jk∆Ċ
k+1

1,n+1 = Rk and �nd ∆Ċ
k+1

1,n+1

5: Ċk+1
1,n+1 = Ċk

1,n+1 + ∆Ċ
k+1

1,n+1

6: Ck+1
1,n+1 = C0

1,n+1 + α∆tĊk+1
1,n+1

7: if
(
||∆Ċ

k+1

1,n+1|| ≤ tol
)

then
8: exit
9: end if

10: end for
11: Ċ1,n+1 = Ċk+1

1,n+1

12: C1,n+1 = Ck+1
1,n+1

Finally, we calculate the coupled nonlinear system (18)-(21) (second stage) solutions at tn+1,
taking into account C1 and C2 given by the �rst stage, and using the fourth-order Runge-Kutta
integration scheme. It is well-known that this methodology is very precise to solve nonlinear
ordinary differential system and it was successfully used by Odencrantz et al. (1993) to handle
Monod biodegradation reaction in an operator splitting scheme. As mentioned before here
the Runge-Kutta scheme also involves the evaluation of biodegradation processes as well as
the sorption in equilibrium and non-equilibrium conditions, both considered nonlinear. Let
nRK be the Runge-Kutta number of iterations; then, the reactive time step ∆tR is calculated as
∆tR = ∆t/nRK . Consequently, the reactive time steps are considered much smaller than those
used for the transport process . In the following numerical simulations we keep nRK = 50 and
vary the ∆t values.

Mecánica Computacional Vol XXIX, págs. 3613-3627 (2010) 3619

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



5 NUMERICAL SIMULATIONS
In this section some computational aspects related to the performance of the FC and OS

numerical schemes will be carried out. In order to choose the most appropriated approach
to handle with some particular nonlinear contaminant transport problems we shall study three
scenarios, namely:

• scenario 1: a linear convective-diffusive single species transport problem undergoing �rst-
order biodegradation kinetic and sorption in equilibrium mode (retardation);

• scenario 2: a nonlinear convective-diffusive two species (the acceptor and the electron
donors) transport problem undergoing biodegradation given by the minimum-rate Monod
kinetic;

• scenario 3: a nonlinear convective-diffusive single species transport problem undergoing
non-equilibrium sorption mode given by the Freundlich isotherm.

To allow more precise comparisons both methodologies are solved via the Crank-Nicolson
method applied to the temporal approximation. Besides, in the FC iterative scheme, the approx-
imate solution of each variable in the iteration k will be evaluated using the update solutions of
the variable already resolved in the same iteration.

5.1 Scenario 1
In this �rst scenario it will be veri�ed the in�uence on the approximate solution due to the

order of resolution of the OS stages, the introduction of decomposition errors and its decreasing
associated to time step size reductions. For doing this, the following simpli�ed linear diffusive-
convective-reactive transport problem (scenario 1) will be considered, that is:

∂F (C1)

∂t
+ V

∂C1

∂x
−D

∂2C1

∂x2
+ R1(C1) = 0, (31)

R1(C1) = k1
1C1, (32)

where Φ(C1) = KdC1 in F (C1) = C1 + Φ(C1) (Eq. (5)). In addition to the OS approach
de�ned in last section (here denominated as "transport+reaction"), two new OS schemes will
be introduced to show the in�uence on the approximate solution associated with the OS stages
resolution order. Firstly, we solve the reaction part and then it is used as the initial condition to
evaluate the transport problems (de�ned as "reaction+transport"); secondly, we interchange the
problem resolution order in each time step (de�ned as "alternate"), that is, in the odd time steps
the "transport+reaction" approach is solved and in the even time steps the "reaction+transport"
method is employed. These three methodologies will be compared with a reference solu-
tion of system (31)-(32) (Valocchi and Malmstead , 1992; Morshed and Kaluarachchi , 1995;
Kaluarachchi and Morshed , 1995) (de�ned as "refer").

Tables 1 and 2 show the data (Celia et al. , 1989; Kacur et al. , 2005; Odencrantz et al. ,
1993; Remesikova , 2004, 2007) to the numerical results plotted in Figures 1 and 2.

L C1(0, t) C1(x, 0) ∂C1(L,0)
∂x

Kd

15.0 m 1.0 mg L−1 0.0 mg L−1 0.0 mg L−1 m−1 1
Table 1: Model parameters for problem (31)-(32).
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Remembering that Pe and Co are the grid Péclet and Courant numbers, de�ned as Pe =
|V |∆x/2D and Co = |V |∆t/2∆x, respectively. Thus, setting ∆t = 0.025, 0.0125 and 0.001
days and considering the discretization and physical parameters given in Table 2 we have Co =
0.5, 0.25, 0.02, and Pe = 0.25, 2.5.

Figures ∆x D V

Fig. 1 0.5 m 20.0 m2day−1 20.0 mday−1

Fig. 2 0.5 m 0.2 m2day−1 2.0 mday−1

Table 2: Discretization and physical parameters for problem (31)-(32).
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Figure 1: Contaminant concentration curves to Pe = 0.25 at t = 0.5 day corresponding to k1
1 = 14, 4, 1.4 and

0.14 day−1 (from left to right). Comparison among the reference solution and three OS procedures: ∆t = 0.025
(top left), ∆t = 0.0125 (top right) and ∆t = 0.001 (bottom).

Contaminant concentration curves for a diffusive problem (Pe = 0.25) and a predominant
convective one (Pe = 2.5) are plotted in Figs. 1 and 2, respectively, to three different time steps
(∆t = 0.025, 0.0125 and 0.001 days) and four �rst-order biodegradation constants (k1

1 = 14,
4, 1.4 and 0.14 day−1). For both situations the OS "alternate" scheme converges faster to the
reference solution. Although, it is possible to note an error due to the operator decompositions
that is associated with the k1

1 values: the higher the value of constant k1
1 , the higher is the error.
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Figure 2: Contaminant concentration curves to Pe = 2.5 at t = 20 days corresponding to k1
1 = 14, 4, 1.4 and

0.14 day−1 (from left to right). Comparison among the reference solution and three OS procedures: ∆t = 0.025
(top left), ∆t = 0.0125 (top right) and ∆t = 0.001 (bottom).

In addition, we observe the convergence of all approximate solutions to the reference solution
when ∆t goes to zero.

k1
1 day−1 transp.+reac. reac.+transp. alternate

0.14 2.4375 2.675 2.9375
1.4 2.1625 2.5878 2.9625
14 2.4 2.4875 2.925

Table 3: Execution times (sec) for the three OS approaches plotted in Fig. 2 (down) with ∆t = 0.001 day at
t = 20 days.

Finally, Table 3 presents comparisons among CPU execution times (sec) for the three OS
approaches plotted in Fig. 2 (bottom). The data were obtained after executing the complete
code run, calculating at t = 20 days. The proposed OS approach (�rst-column) gives the
smallest CPU time comparing with the two other schemes.

5.2 Scenario 2
In this scenario we simulate a nonlinear convective-diffusive two species (the acceptor and

the electron donors) transport problem undergoing biodegradation given by the minimum-rate
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Monod kinetics. The mathematical model (1)-(4) is now given by

∂C1

∂t
+ V

∂C1

∂x
−D

∂2C1

∂x2
+ R1(C1, C2, b1) = 0, (33)

∂C2

∂t
+ V

∂C2

∂x
−D

∂2C2

∂x2
+ R2(C1, C2, b1) = 0. (34)

Here the functions Ri(·, ·, ·), i = 1, 2, 3, describing minimum-rate Monod kinetics are de�ned
by

R1(C1, C2, b1) = (1− γ)K1(C1) + γ
YC2

YC1

K2(C2), (35)

R2(C1, C2, b1) = γK2(C2) + (1− γ)
YC1

YC2

K1(C1), (36)

R3(C1, C2, b1) = (1− γ)YC1K1(C1) + γYC2K2(C2)−mb1, (37)

Kj(Cj) =
V 1

m(Cj)b1Cj

(K1
h(Cj) + Cj)

, j = 1, 2. (38)

where

γ = γ(C1, C2) =

{
0 if C1 < C2

1 if C2 ≤ C1,
(39)

with V 1
m(Cj), K1

h(Cj), YCj
and m, respectively, the speci�c maximal degradation rate, the half-

saturation concentration and the biomass yield coef�cient, the biomass decrease coef�cient.
Finally, function γ(·, ·) determines who is the limiting species according to expression (39).

Considering very re�ned spatial and temporal grids (∆x = 0.1 m and ∆t = 0.001 day) the
FC approximate solution is used as a �exact" in the following numerical simulations where it
is checked against the three OS schemes de�ned before. All numerical simulations of prob-
lem (33)-(34) were obtained with the following boundary and initial conditions: C1(0, t) =
10 mgL−1, C2(0, t) = 3 mgL−1, C1(x, 0) = 0 mgL−1, C2(x, 0) = 3 mgL−1 and a constant
value b1 = 0.2 mgL−1 to the bacterial biomass. The physical and discretization parameters are
showed in Tables 4 and 5, respectively.

V 1
m(C1) V 1

m(C2) K1
h(C1) K1

h(C2) YC1 YC2

1.0 day−1 1.0 day−1 0.1 mgL−1 0.1 mgL−1 0.125 0.25

Table 4: Model parameters for problem (33)-(34).

L ∆x ∆t V D Pe Co Ne nnode

100.0 m 0.5 m 0.5 day 1.0 mday−1 0.2 m2day−1 1.25 0.5 200.0 201.0

Table 5: Discretization parameters for problem (33)-(34).

Figures 3 and 4 exhibit the electron and acceptor donors concentration curves behaviors,
respectively, at t = 17 days (left) and t = 68 days (right) obtained to all three OS methods and
the FC methodology.
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Figure 3: Electron donor concentration curves at t = 17 days (left) and t = 68 days (right). Comparison among
the fully coupled method (FC) and the three operator splitting (OS) approaches.

The OS schemes present numerical approximations with the same accuracy as showed by
those obtained via the FC methodology that are considered the most precise. We have still
observer that biodegradation terms are not dominant in the reactive �ow transport in porous
media. In general, the biodegradation Monod kinetic parameters are small and they can favor
the operator splitting convergence (Morshed and Kaluarachchi , 1995).
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Figure 4: Electron acceptor concentration curves at t = 17 days (left) and t = 68 days (right). Comparison among
the fully coupled method (FC) and three operator splitting (OS) approaches.

5.3 Scenario 3
In this last scenario we analyze a nonlinear convective-diffusive single species transport

problem, which involves the aqueous and solid concentrations C1 and S1, respectively. To
this end, the transport model system (1)-(4) becomes:

∂C1

∂t
+ V

∂C1

∂x
−D

∂2C1

∂x2
+

∂S1

∂t
= 0, (40)

∂S1

∂t
= K(Ψ(C1)− S1). (41)
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Next, we compare approximate solutions obtained via FC and OS approaches when applied
to the transport problem (40)-(41) considering nonlinear Freundlich isotherm Ψ(C1) = C0.75

1

(Eq. 6) with non-equilibrium reaction constant values K = 1, 10, 100 and 1000, as plotted in
Fig. 5 with ∆x = 0.01 and ∆t = 0.001. It is well known that the non-equilibrium sorption
condition (see Eq. (41)) tends to a quasi-equilibrium sorption mode when K is suf�ciently large
(K 7→ ∞) (Kacur et al. , 2005; Kanney et al. , 2003a,b; Remesikova , 2004, 2007) leading to
the equilibrium sorption behavior studied in subsection 5.1 (scenario 1). As K varies from 1 to
100 both methodologies approximate the equilibrium and non-equilibrium modes. Although,
for K = 1000, the expected physical behavior is better represented by the OS numerical result,
as depicted at the right hand side of Fig. 5.

Finally, still in the quasi-equilibrium mode case (K = 1000), we note the numerical results
convergence (see Fig. 6) when we compare the FC approach calculated with a �ne grid (∆x =
0.002) and the OS method with a coarse grid (∆x = 0.01). Hence, the OS methodology
produces accurate approximate solutions with no need of a re�ned spatial discretization.
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Figure 5: Contaminant concentration curves at 2, 8 and 15 days (from left to right). Comparison among sorption
in equilibrium (seq) and non-equilibrium mode (sne) with K = 1, 10, 100 and 1000, obtained via FC (left) and
OS (right) approaches.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

Distance (m)

FC
OS

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10

C
o
n
c
e
n
tr

a
ti
o
n
 (

m
g
/L

)

Distance (m)

FC
OS

Figure 6: Contaminant concentration curves at 2, 8 and 15 days (from left to right). Comparison between sorption
in non-equilibrium mode (K = 1000) obtained via FC and OS with ∆x = 0.01 (left) and FC with ∆x = 0.002
and OS with ∆x = 0.01 (right).
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6 CONCLUSIONS
In this paper two �nite element approaches for solving multi-species contaminant trans-

port problems undergoing the presence of sorption and biodegradation processes in a subsur-
face environment, which characterizes a stage of subsurface contamination by organic con-
taminants were studied. A fully coupled (FC) technique and an operator splitting (OS) ap-
proach were proposed in order to numerically solve three typical contaminant scenarios given
by transport problems, with mass transfer between solid and aqueous phases, and nonlinear
biodegradation and sorption reactions, in a one-dimensional saturated porous medium. For
both methodologies the SUPG (Streamline Upwind Petrov-Galerkin) stabilized �nite element
method (Brooks and Hughes , 1982) in space and a predictor-multi corrector algorithm in time
are used to approximate the predominant convective transport equations.

Some numerical comparisons were developed in order to analyze the ef�ciency and accuracy
for both proposal methodologies. In fact, the OS approach implementation is the most simple
with respect to the treatment of different reaction terms. Hence, its application is very attractive
for parallel computation, large multidimensional problems with multiple species, treating in a
novel way different types of biodegradation kinetics and sorption conditions as we have seen
through the numerical results showed by scenarios 2 and 3.
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