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Abstract. Newton‟s Method, the most widely used and robust tool for the solution of systems of 

nonlinear algebraic equations, requires successive evaluations of the Jacobian matrix, whose 

columns can be seen as the directional derivatives of the system‟s residual vector, with respect to 

each of its degrees of freedom. By their turn, these directional derivatives can be conveniently 

approximated by finite-difference schemes. However, a naïve application of such idea to solve 

large order nonlinear algebraic equations would easily compromises its practical attractiveness, 

because the number of required algebraic operations grows with the square of the order of the 

system.  

In this paper, we consider problems where the residual vector is define by sub-domains (or 

„elements‟), allowing the definition of element Jacobian matrices (of much smaller order than the 

global one), whose columns are again approximated by central-differences. So proceeding, the 

residual vector becomes locally supported, the global Jacobian matrix becomes sparse-banded, 

and much less numerical operations are required, since the number of operations in this case 

grows only linearly with order of the system. 

Although the proposed finite-difference scheme implies in additional computational costs, if 

compared to the use of explicit formulas for the Jacobian matrices, its generality, simplicity and 

easy implementation encourages its use, whenever exact Jacobian matrices are not readily 

available. It can also be useful during the development of new families of finite elements, whose 

behavior can be quickly tested, before any consistent linearization of the residual vector is 

performed.  

We have tested the proposed finite-difference approximation in problems of geometrically 

non-linear equilibrium of cable, membrane and shell structures, of elastic behavior, whose 

residual vectors and exact Jacobian matrices were already available in two different academic 

finite element programs, allowing quick performance assessments. 

We have found out that the proposed approximate Jacobian matrices yield the same 

convergence rate and precision as the exact ones, with fairly acceptable extra computational 

costs. We defer a more comprehensive evaluation of relative computing costs to future papers, 

but we advance the notion that as the size of the problem is increased, the extra cost due to the 

proposed approximation becomes relatively smaller, whilst for small problems, the extra cost is 

relatively irrelevant. 
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1 INTRODUCTION 

A broad class of problems of practical interest requires the numerical solution of a 

system of nonlinear algebraic equations, in the form of finding a configuration vector 
*x such that  

  * g x 0 , (1) 

where  g x  is an “error” or residual vector.  

We assume that vector x  spans a given configuration space, or domain  , over 

which the residual vector  g x  is well defined. In solid mechanics, for instance, in a 

Lagrangean description, x  is a vector of spatial coordinates spanning a given body   

and  g x  is a vector of unbalanced forces defined all over the body. 

Equation (1) can be solved –within a vicinity of the solution *x , supposing its 

existence– iterating Newton‟s recurrence formula,  

      
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where we define the Jacobian matrix 
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For recurrence (2) to work, J must to be a non-singular square matrix, of order 

dofn , the number of degrees of freedom of the system. 

We can partition the Jacobian matrix into columns, according to  

 1 2 e
dofn

 
  

J j j j , (4) 

where jj  are the directional derivatives of gwith respect to each component (or 

“degree of freedom”) of x : 
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g x δ g xg
j , (5) 

where h  is a scalar parameter and jhδ are perturbations of the j
th

 degree of freedom 

of the system, such that  , 1, ,j i dofi n δ , with 1j   , when i j  , and 0i  , 

when i j .   

The dofn directional derivatives kj  can be approximated by finite difference 

schemes. Considering a central-difference scheme, we have 

    
1

, 1, ,
2

j j j dofh h j n
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j g x δ g x δ , (6) 
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where now h is a finite scalar parameter and jh δ are backward and forward 

perturbations the j
th

 degree of freedom of the system. 

Finally, inserting approximations jj  into (4), we obtain an approximate Jacobian 

matrix J , which can replace the exact Jacobian J  in Newton‟s recurrence formula (2).  

The numerical performance of such approximate Jacobian matrix J  can at best 

match the performance provided by the exact Jacobian J , and resents from 

convergence problems similar to those displayed by the “exact” Newton‟s Method. 

Furthermore, perturbations jh δ  resent from the lack of an obvious criterion for the 

magnitude of h  affecting different degrees of freedom.  

Although such type of finite-difference procedures have been already devised in 

the context of nonlinear inelastic solid mechanics, to compute approximate 

consistent tangent moduli, relating stress and strain ratios according to σ Dε , for 

complicated material laws  σ σ ε  (Miehe, 1995), (Pérez-Foguet et al., 2000a/b, 

2001), (Fellin and Ostermann, 2002), the order of the involved matrices in such 

problems is rather small.  

For the overall equilibrium problem of large order systems,, a naïve application of 

such a scheme to Equation (1) easily compromises its practical attractiveness, because 

the number of required algebraic operations grows with the square of dofn . 

2 AN ELEMENT-WISE APPROXIMATION TO THE JACOBIAN MATRIX 

In this paper, we are interested in the still broad class of problems where the 

residual vector gcan be computed in sub-domains e , or finite elements, as a 

function of the element configuration vectors e e


   x x , where 1, , ee n , and en is 

the number elements, whilst 1, , e

nn  , and e

nn  is the number of nodes defining the 

e
th

 element. Defined onto every element, there exist an element residual vector 
e e


   g g , where  e e e

 g g x  is the contribution of the e
th

 element to the residual 

vector evaluated at its th node.   

We partition the global configuration vector according to 
1 2

T
T T T

n
   x x x x , 

and observe that the element configuration vectors ex  can be extracted from the 

global one according to  e ex A x , where eA  is a Boolean incidence matrix for that 

element.  

Likewise, the global residual vector and the global Jacobian matrix can be 

assembled according to  

 
1

en
eT e

e

g A g  (7) 

and 

 
1

ne
eT e e

e

J A J A , (8) 

where we define the element Jacobian matrix 
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and e

dofn denotes the number of degrees of freedom of the e
th

 element. Usually, 

e

dof dofn n . 

Of course, it is not convenient to perform the matrix multiplications implied in 

expressions (7) and (8), being quite more economical to add the element 

contributions directly to the global residual vector and Jacobian matrix, as explained 

in standard finite element textbooks.  

 

Once again we partition the element Jacobian matrices according to 

   1 2 e
dof

e e e e e e

n

 
  

J J u j j j , (10) 

where we define the directional derivatives of eg with respect to each element degree 

of freedom: 
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Likewise, we approximate these e

dofn directional derivatives e

jj , by central-

differences, according to 

    
1

, 1, ,
2

e e e e e e e e e

j j j dofe
h h j n

h
     
 

j g x δ g x δ , (12) 

where eh  is a finite scalar parameter and e e

jh δ are backward and forward 

perturbations of the k
th

 element degree of freedom, such that  , 1, ,e e

j i dofi n δ , 

with 1j  , when i j , and 0i  , when i j .   

Finally, inserting approximations e

jj  into (10), we obtain approximate element 

Jacobian matrices eJ , 1, , ee n , which are then assembled into a global 

approximate Jacobian matrix J , according to (8). 

 An element-wise approximation naturally adapts eh  to the assumed mesh 

refinement, presumably well adjusted to the problem. The global residual vector 

becomes locally supported, since for every node, only the elements connected to the 

node need to be spanned. Likewise, the global stiffness matrix becomes sparse-

banded, and much less numerical operations are required by element-wise 

perturbations since, as dofn  grows, the constant number of operations required by 

element-wise perturbations becomes relatively smaller than the number of operation 

of global perturbations. Besides, the overall number of operations grows only linearly 

with the number of elements.   However, we defer a more precise evaluation on the 

numerical cost of these schemes to a future paper. 

R. PAULETTI, E. ALMEIDA NETO2460

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



This element-wise scheme can provide surprisingly good approximations for the 

element Jacobian matrices eJ , as long as eh  is limited to a fraction of the smaller 

element size, i.e.,  

 e eh d  (13) 

 where ed is the diameter of the inscribed circle (or another convenient measure of 

the smallest size of the element)  and where the magnitude of   depends on how 

sensible is eg , to perturbations affecting ex . In solid mechanics, for instance,   would 

relate to the strains imposed to the element, by relative displacements among its 

nodes.  

Although the number of the required perturbation operations will probably imply 

in additional computational costs, if compared to the use of explicit formulas for eJ , 

the generality of the proposed approximation encourages its use whenever the 

Jacobian matrices are not readily available, for instance in cases where the residual 

vector is not fully analytically defined (such as in contact problems, for instance), or in 

cases where its consistent linearization is deemed too complicated to be sought. 

Besides, its simplicity and easy implementation can be useful during the development 

of new families of finite elements, whose behavior can be quickly tested, before any 

consistent linearization of the residual vector is performed.  

The proposed approximation is also useful in the context of dynamic analyses, 

where it can provide the basis for a quick estimative of the critical time-step for 

explicit time-integration schemes (as will be described in a forthcoming paper 

(Pauletti and Guirardi, 2011)). Furthermore, the vector nature of approximations e

jj  

can be explored, when parallel processing is used, to alleviate their extra 

computational cost.     

3 AN APPLICATION TO A CABLE-MEMBRANE STRUCTURE 

In order to study the performance of the proposed approximation to the Jacobian 

matrices, we initially introduce the problem of geometrically non-linear equilibrium of 

cable-membrane structures. A straightforward way to derive algebraic equilibrium for 

cable assemblies consists in assimilating the cables to a sequence of straight 

segments working under axial stress only. Likewise, membrane surfaces can be 

approximated by a collection of plane triangular facets, under a plane stress state. So 

discretized, cables and membranes can be treated as systems of central forces, as 

depicted in Figure 1, where we consider that the nodal coordinates of such a system 

are stored in vectors  , 1, ,x n
 

 x , by their turn collected into the global 

position vector 
1 2

T
T T T

n
   x x x x .  
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Figure 1: A system of n  central forces 

 

Each node has only displacement degrees-of-freedom  u
 
u , which are stored 

in a global displacement vector 
1 2

T
T T T

n
   u u u u . Similarly, The external loads 

acting on these nodes, F
 
   f , are stored in a global external load vector 

1 2

T
T T T

n
   f f ff , and the nodal force interactions 

1

n

P
  
  
 p  are stored in a 

global internal load vector 
1 2

T
T T T

n
   p p pp . The position vector can be written as 

0
 x x u , where 0

x  is a constant vector which describes an initial configuration.   

With the above definitions, the solution of the problem of equilibrium of a system 

of central forces consists in finding a displacement vector *u such that  

      * * *  g u p u f u 0 . (14) 

3.1 A straight cable element 

We consider that cables are approximated by an assemblage of tension-only 

straight  elements. Figure 2 depicts a generic, e
th

 element in a current configuration, 

with nodes indexed as  and  , in the global structural system, and as 1 and 2, in the 

element numeration system. 

 
Figure 2: A truss element, with local and global nodal indexes 

 

Keeping implicit the element index e, for basic quantities, we define the vector 

2 1 l x x , and the current element length is given by  l , whilst /v l  is the unit 

vector directed form node 1 to node 2. The element is described in an initial 

configuration, already under a normal force 0N . Thus the reference, zero-stress 

element length, is given by  0 0
/

r
EA EA N   and the normal force acting on the 
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element, at each instant, is given by   /
r r

N EA  , if r , or 0N  , when r , 

since a cable cannot withstand compression.  

The internal forces vector for a truss element is given by 

 e N N
 

  
 

v
p C

v
, (15) 

where 
T

T T   C v v is a geometric operator.  

The contribution of a generic element defined by nodes  ,   to the global 

internal load vector is given by Equation (7), with 1 2 3

e e

  A A I  and 1 2

e e

m m A A O , 

   1, 2, \ ,m n   , where 0  and 3I  are, respectively, the null and identity matrices 

of order three, and nn  is the number of nodes of the whole structure.  

Proceeding along some straightforward derivations, the Jacobian, or tangent 

stiffness matrix of the straight cable is obtained (dropping the index of the element to 

alleviate notation): 

 
   

   

3 3

3 3

T T

e T

t e gr T T

EA N    
      

    
 

I vv I vvp
J k CC k k

u I vv I vv
, (16) 

where we have assumed that there is no contribution of the external force vector f to 

the tangent stiffness. The components ek and gk stand for a linear-elastic and a 

geometric stiffness matrix, respectively. When r , we take e p 0  and t k 0. Once 

again, the contribution of every element to the global stiffness is given by Equation 

(8). 

3.2 Argyris’ Natural Membrane Finite Element 

The Argyris‟ natural triangular membrane finite element allows also membranes to 

be treated as systems of central forces (Argyris, 1974), (Pauletti et al., 2005), (Pauletti, 

2008). Argyris element is defined in an initial configuration 0 , in which it is already 

under a given stress field. A reference configuration r usually refers to stress-free 

conditions. The element‟s current configuration is denoted by c .   

Element nodes and edges are numbered anticlockwise, with edges facing nodes of 

same number. Nodal coordinates are referred to a global Cartesian system, and a 

local coordinate system, indicated by an upper hat, is adapted to every element 

configuration, such that the x̂  axis is always aligned with edge 3, oriented from node 

1 to node 2, whilst the ẑ  axis is normal to the element plane. 
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Figure 3: (a) A triangular element 

e  in three different configurations; (b) position 
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Figure 4: (a) Unit vectors , 1, 2,3  v , along the element edges; (b) internal nodal forces p , 

decomposed into natural forces N v ; (c) determination of natural force 3N  

 

Current global coordinates of the element nodes, are given by 
0

1, 2, 3,     x x u , where iu  are the nodal displacements. The lengths of element 

edges are given by      l x x , with indexes , , 1, 2, 3    in cyclic 

permutation. Unit vectors parallel to the element edges are denoted by   v l l .  

With these definitions, the vector of internal nodal forces can be decomposed into 

forces parallel to the element edges, according to 

 

1 2 2 3 3 2 3 1

2 3 3 1 1 1 3 2

3 1 1 2 2 1 2 3

e

N N N

N N N

N N N

        
       

     
       
               

p v v 0 v v

p p v v v 0 v CN

p v v v v 0

 ,  (17) 

where C is a geometric operator, which collects the unit vectors parallel to the 

element edges and  1 2 3

T
N N NN is the vector of natural forces.  

In order to avoid unnecessary complication, for the aim of this paper, we assume 

the behavior of the element is linear-elastic, and we avoid introducing any 

consideration of membrane wrinkling or slackening. Under such simplified 

assumptions, there exists a linear relationship 

 nN k a , (18) 

where  1 2 3

T
   a , is the vector of natural displacements (with 

1, 2, 3,r

       ) and the element  natural stiffness is a constant matrix given by  
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 -1 1 -1ˆT

n r r r r rV  k T TL LD , (19) 

where rV  is the element volume,  diag r

r L , D̂ collects the coefficients of Hooke‟s 

law for plane stresses, such that ˆˆ ˆζ ε= D  and, finally, rT  is a transformation matrix, 

relating the linear Green strains ε̂  to the natural strains 1

rn


 aε L , i.e., ˆ

rn
 T εε .  

The vector of internal forces at each configuration is then given by 

 e

np Ck a . (20) 

It is interesting to define also an external wind load vector is also defined, 

according to 

  3 3 3
3

Te

w

pA
 f I I I n , (21) 

where p  is a normal wind pressure acting on the element, A  is its area and n its 

normal unit vector, in the current configuration. The contributions of ep  and e

wf  to 

the global load vector are again given by (7), now with 1 2 3 3

e e e

    A A A I  and 

1 2 3

e e e

m m m  A A A O ,    1, 2, , \ , ,m n    . 

Proceeding with derivations, the Jacobian, or tangent stiffness matrix of the 

membrane element is obtained (once again, dropping the index of the element to 

alleviate notation): 

 

 

 

 

3 32 2

2 3 3 2

3 31 1

3 3

2 1 1 2

2 2

2 3 3 2
1 2 3

3 1 3 1 1 2 31 1

1 2 3
2 1 1 21 1

6

e

t

N NN N

N NN Nr T

n

N N N N

e g ext

p


 



   
  
       
  
        

  

g
J k

u

M M M M
Λ Λ Λ

Ck C M M M M Λ Λ Λ

Λ Λ Λ
M M M M

k k k

  (22) 

where 1 3 1 1 2 3 2 2 3 3 3 3; ;T T T     M I v v M I v v M I v v  and where skew( )
 
Λ l , 1, 2, 3i  , 

are skew-symmetric matrices, whose axial vectors are given by   l v , and where 

each component define, respectively, the elastic, the geometric and the external 

components of the tangent stiffness matrix.  

It is seen that gk , for a natural membrane element, is analogous to the geometric 

stiffness of a closed assemblage of three geometrically exact truss elements, under 

normal loads N . It is also seen that ext





f
k

u
 is an asymmetric matrix, reflecting the 

fact that wind loads are generally non-conservative. However, inspection of extk  

shows that non-symmetric terms cancel out for adjacent elements, and thus, for any 

assemblage of elements under a constant pressure and borders fully constrained, the 

global 
t

K is symmetric, and the system is conservative. 
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3.3 A first numerical application 

The elements describe above were already implemented in the SATS program, 

developed in the MATLAB programming environment (Pauletti et al., 2005), (Pauletti, 

2008).  We have used this program to implement approximate Jacobian matrices eJ  

for both cable and membrane elements, and applied it to the analysis of a rough 

model of a saddle membrane bordered by cables and fixed vertices. 

  

 

 

Figure 5: The membrane roof of the “Memorial dos Povos de Belém do Pará” 

 

The model shown in Figure 5(a) corresponds to a simplified version of the models 

used to design an actual structure, the “Memorial dos Povos de Belém do Pará” 

(shown in Figure 5(b)), which has been used in several occasions as a benchmark to 

test different analysis methods and computer programs, with excellent agreement of 

independent results (Pauletti and Brasil, 2005), (Pauletti et al., 2009), (Pauletti and 

Martins, 2009). Figure 6(a) shows a top view of the mesh, which can be inscribe in a 

rectangle 28.64m long by 22.59m wide. The mesh has 120 nodes, with 196 membrane 

elements and 42 cable elements. We considered a membrane with elastic modulus 

1 GPaE   and thickness 1 mmt  , under a uniform and isotropic initial stress field 

0 5 MPa  , whilst border cables had an axial stiffness modulus 0.1 GPaEA , under 

initial normal loads 0 100 kNN  .  

 

Figure 6: (a) a top view of the finite element mesh; (b) field of displacement norms (in meters);  

(c) 1
st
 principal stresses 1  (in N/m

2
) 

 

Figure 6(b) shows the field of displacement norms under a uniform upward wind 

load 2286 N/mq  , acting over the whole membrane surface. Figure 6(c) shows the 

field of the 1
st
 principal stresses over the membrane. Precisely the same numerical 
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results were obtained both with the exact Jacobian J  or the approximate Jacobian J  

matrices (up to the chosen precision), but the number of iterations required for 

convergence depended on the magnitude of perturbation e eh d , where ed was 

considered equal to the minimum element height. 
 

  
(a) 0.1  , 58k  , 30.686T   (b) 0.05  , 20k  , 10.609T   

  
(c) 0.01  , 7k  , 3.874T   (d) 0.005  , 7k  , 3.874T   

  
(e) 0.001  , 7k  , 3.874T   (f) “Exact Newton”, 5k  , 1.365T   

Figure 7: Variation of the residual norm   g  for different  values 

( k , T ) : (number of iterations and computation time required to achieve convergence, in seconds)  

 

Figures 7(a) to 7(e) show the variation of the residual norm   g , for solution 

using the approximate Jacobian matrix J , considering different values for the scalar 

parameter  . We have assumed 3

lim 10 N   as the criterion for convergence. Figure 

7(f) shows the variation of the residual norm, for solution using the exact Jacobian 

matrix J . Also given in Figures 7(a) to 7(f) are the different number of iterations k and 
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times T required to achieve convergence.  

It is seen that the number of iterations required for convergence is reduced as   is 

diminished. It is also seen that the average iteration time using the approximate 

Jacobian matrix J  (0.54 seconds), is equal to twice the average time using the exact 

Jacobian matrix J  (0.27 seconds), and is independent from the magnitude of  . 

These results suggest that, although the use of exact Jacobian matrices J  is 

computationally more efficient, solution can also be achieved using the proposed 

approximate matrices J , yielding the same precision with an acceptable extra 

computational cost, provided that  is kept small enough.  

The finite-difference approximation of the Jacobian matrices proposed in this 

paper can also provide the basis for a quick estimative of the critical time step of 

conditionally-stable time integration schemes, in the context of explicit dynamic 

analysis, based on the maximum eigenvalues of the elements‟ stiffness matrices. 

Figure 8 shows the values of the larger eigenvalues of membrane and cable elements 

of the models studied above, considering matrices eJ  and eJ . Membrane elements 

are numbered from 1 to 196, and cable elements range from 197 to 238. There are 

slight asymmetries in the tangent stiffness matrices of membrane elements, due to 

the influence of pressure loads. We considered only the real part of their eigenvalues. 

It is seen that estimatives for the maximum element eigenvalues, considering either 
eJ  or eJ   are practically superimposed, even if quite rough values for the scalar 

parameter   are taken. 

 

 

Figure 8: Variation of the maximum egenvalues of membrane and cable elements:  

(a) linear scaling; (b) the same, in logarithmic scaling 

 

4 AN APPLICATION TO A SHELL FINITE ELEMENT 

As a second example, still in the field of structural mechanics, we have applied the 

proposed eJ  approximation to the triangular shell element originally developed by 

Campello et al. (2003). Shell elements provide interesting benchmarks to our 

procedure, because they involve different types of degrees of freedom.  Moreover, 

since both the unbalanced force vector and the consistent tangent stiffness matrix (or 

the residual vector and the exact Jacobian matrix, in the terminology of our paper) 

are available for this element, once again a direct confrontation of results obtained 
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through the proposed approximations eJ or the exact Jacobian matrices eJ  is 

possible. 

The chosen element is a displacement-based triangular shell with 6 nodes, derived 

from a fully nonlinear six parameter (3 displacements and 3 rotations) shell model for 

finite deformations, where finite rotations are treated by the Euler-Rodrigues formula. 

The element has a nonconforming linear rotation field but compatible quadratic 

interpolation for the displacements. Figure 9 shows the basic kinematical description 

used in the model, as well as the element in reference and deformed configurations. 

 

 

Figure 9: Kinematical description and the element in reference and deformed configurations. 

Adapted from Campello et al. (2003) 

 

After a lengthy derivation, Campello et al. arrived at the vector of residual nodal 

forces,  

 

       (23) 

where N is the matrix of element shape functions, q is a generalized external force 

vector, given by  

 

, 

 

, 

 

(24) 

and , n m are the applied external forces and moments, both per unit area of the 

middle surface in the reference configuration, whilst t  is the surface traction and b is 

the body forces, both per unit reference volume, and upper indexes t and b refer to 

the shell top and bottom surfaces.   

Also,   is a vector of generalized cross-sectional internal forces, given by 

 
 

, 

 

, 

 

,     (25) 

and , r r

 n m are back-rotated cross-sectional forces and moments, both per unit 

length, and t

 is a back-rotated stress vectors acting on the cross-sections of the 

element reference configuration. 

Finally Ψ  is a matrix operator fully described by Campello et al., which also 
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presents the consistent tangent stiffness matrix for this shell, given by 

 

 (26) 

which involves several other matrix operators, also defined in the paper. 

Once again, contributions of every element to the global residual vector and to the 

global Jacobian matrix are assembled considering Equations (7) and (8), with 

conveniently defined Boolean operators eA .  

4.1 A second numerical application 

The above summarized shell element is implemented in the program PEFSYS, an 

academic finite element code first presented in Pimenta et al. (1998). We have used 

PEFSYS to implement approximate Jacobian matrices eJ  for this element, and applied 

it to Example 2 of Campello et al. (2003). 

As in the case of cables and membranes, in order to obtain a central finite-

difference approximation eJ , we introduce perturbations jh δ  into the vector of 

residual nodal forces, Equation (23). For perturbation of the displacements degrees of 

freedom, we once again assume that e

uh d , where ed  is equal to the minimum 

height of the triangular element, and   can be interpreted as a strain value. On the 

other hand, for the rotational perturbations, obtained by dividing a transversal 

perturbation by ed , we have simply h  , where now   can be seen as a small 

rotation.  

We studied a cantilever beam of squared cross-section subjected to a large point 

load at the center of its free end. An elastic modulus 710 PaE   and a Poisson 

coefficient 0.3   are assumed, with a length 1.0 mL   and a square cross-section 

0.1m 0.1m . Two different situations were enforced: (i) in-plane bending, with a load 

1000NP  at the free end and on  the same plane of the beam and (ii) out-of-plane 

bending with the same load applied to the free end, but in the out-of-plane direction.  

Figure 10 shows the deformed shape obtained for both situations, using either the 

exact Jacobian matrices eJ , given by Equation (26), or the approximate Jacobian 

matrices eJ  (Equations (10) and (12)), with 0.0001  . Results for the tip deflection, 

for either procedures and for both situations (i) and (ii), are in strict adherence to 

those presented by Campello et al. (2003), which by their turn adhere to other 

independent investigations on the same problem (Simo et al., 1991),  (Wriggers and 

Gruttmann, 1993). 
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(i) in-plane bending (ii) out-of-plane bending 
Figure 10: Deformed shapes for the second example 

 

Table 1 compares the axial (u ) and in-plane transversal ( w ) components of the 

free end displacement (node 62 of the model) for the in-plane bending model, 

obtained using either the exact Jacobian matrix J  or the approximate Jacobian 

matrices J , for increasing values of vertical load at this same node. Total adherence 

between results is observed, up to the displayed precision. 
 

 

Node62 Solution using J  Solution using J  

Load u  w u  w 
100 -0.75525E-01 -0.34863E+00 -0.75525E-01 -0.34863E+00 

200 -0.19835E+00 -0.54491E+00 -0.19835E+00 -0.54491E+00 

300 -0.29837E+00 -0.64843E+00 -0.29837E+00 -0.64843E+00 

400 -0.37358E+00 -0.70923E+00 -0.37358E+00 -0.70923E+00 

500 -0.43095E+00 -0.74884E+00 -0.43095E+00 -0.74884E+00 

600 -0.47598E+00 -0.77683E+00 -0.47598E+00 -0.77683E+00 

700 -0.51227E+00 -0.79785E+00 -0.51227E+00 -0.79785E+00 

800 -0.54220E+00 -0.81441E+00 -0.54220E+00 -0.81441E+00 

900 -0.56738E+00 -0.82792E+00 -0.56738E+00 -0.82792E+00 

1000 -0.58891E+00 -0.83928E+00 -0.58891E+00 -0.83928E+00 

Table 1:  axial ( u ) and in-plane transversal ( w ) components of the free end displacement,  

for the in-plane bending model 

 

Similarly, Table 2 compares the axial (u ) and out-of-plane transversal ( w ) 

components of the free end displacements, for the out-plane bending model. Once 

again, total adherence is observed between results obtained using either the exact 

Jacobian matrix  J  or the approximate Jacobian matrix J .  
 

Node62 Solution using J  Solution using J  

Load u  w u  w 
100 -0.76532E-01 -0.35105E+00 -0.76532E-01 -0.35105E+00 

200 -0.20049E+00 -0.54794E+00 -0.20049E+00 -0.54794E+00 

300 -0.30111E+00 -0.65155E+00 -0.30111E+00 -0.65155E+00 

400 -0.37662E+00 -0.71237E+00 -0.37662E+00 -0.71237E+00 

500 -0.43418E+00 -0.75203E+00 -0.43418E+00 -0.75203E+00 

600 -0.47931E+00 -0.78007E+00 -0.47931E+00 -0.78007E+00 

700 -0.51568E+00 -0.80115E+00 -0.51568E+00 -0.80115E+00 

800 -0.54568E+00 -0.81777E+00 -0.54568E+00 -0.81777E+00 

900 -0.57091E+00 -0.83134E+00 -0.57091E+00 -0.83134E+00 

1000 -0.59248E+00 -0.84277E+00 -0.59248E+00 -0.84277E+00 

Table 2:  axial ( u ) and out-of-plane transversal ( w ) components of the free end displacement, 

for the out-of-plane bending model 
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Finally, Table 3 compares the global residual norms (   g ) for both the in-plane 

and out-of-plane bending situation. For every load increment, values obtained after 

the first Newton iteration and after convergence are presented, using either the exact 

Jacobian matrix J  or approximate Jacobian matrix  J .  

For either procedure, numerical results were precisely the same (up to the 

displayed precision), therefore not repeated in the table. Also the number of 

iterations required to achieve convergence at every load step was exactly the same, 

showing that, at least in this particular case, the use of the approximate Jacobian 

matrix J  does not degrade the convergence of Newton‟s Method.  

We defer a more comprehensive evaluation of relative computing costs to future 

papers. However, we have observed that due to a larger number of algebraic 

operations required to assemble the approximate Jacobian matrix J , the total 

processing time to solve our second example using them was about 10 times the 

total time required by exact Jacobian matrix J . However, generally speaking, the ratio 

of the assembling time to the total solution time usually decreases, as the number of 

degrees of freedom grows, thus becoming less determinant of total computing cost. 

We have solved our second example also with 1000 elements (still a small problem 

size), and the ratio of total processing time, required by J  or J , dropped to 3:1. Thus, 

it seems that in most practical application, the extra cost implied in assembling J  

instead of J  should be acceptable, either because the problem size is small (thus 

extra costs are irrelevant) or because the problem size is large enough to the 

assembling time become relatively small, compared to the total solution time.  
        

Load Iter   g  for J  ε = g  for J  

100 
1 230.542546244211 230.543656770391 

7 1.304558361945308E-011 3.799264612338969E-011 

200 
1 66.1596496678850 66.1503188394626 

9 2.650522980730921E-005 2.675853163502189E-005 

300 
1 16.1395386834461 16.1403326155677 

6 2.044304568923653E-009 1.931809180526349E-009 

400 
1 4.78913832449426 4.78982206802382 

5 5.742312024310899E-009 6.013474615731024E-009 

500 
1 1.75602666611174 1.75628799118380 

4 1.369119066987591E-007 1.374524109032094E-007 

600 
1 0.762420833867086 0.762522899787127 

4 8.606667109289488E-009 8.438045594823579E-009 

700 
1 0.378542580585105 0.378587203503452 

4 4.252131491947199E-010 4.092036061435904E-010 

800 
1 0.209630281403916 0.209652198777477 

4 2.547937528631010E-011 2.569215096310905E-011 

900 
1 0.127006854344617 0.127018739005226 

4 2.575370602543687E-012 3.374867274764152E-012 

1000 
1 8.282253489881622E-002 8.282953298553968E-002 

3 6.894725385753278E-009 6.325943712886397E-009 

Table 3: Residual Norms, for either in-plane and out-of-plane bending 

models 
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5 CONCLUSIONS 

In this paper, we consider geometrically nonlinear problems problems where the 

residual vector is define by sub-domains (or „elements‟), allowing the definition of 

element Jacobian matrices, in such a way that the residual vector becomes locally 

supported, the global Jacobian matrix becomes sparse-banded, and much less 

numerical operations are required, since the number of operations in this case grows 

only linearly with order of the system. 

Although the proposed finite-difference scheme implies in additional 

computational costs, if compared to the use of explicit formulas for the Jacobian 

matrices, its generality, simplicity and easy implementation encourages its use, 

whenever exact Jacobian matrices are not readily available. It can also be useful 

during the development of new families of finite elements, whose behavior can be 

quickly tested, before any consistent linearization of the residual vector is performed.  

We have tested the proposed finite-difference approximation in problems of 

geometrically non-linear equilibrium of cable, membrane and shell structures, of 

elastic behavior, whose residual vectors and exact Jacobian matrices were already 

available in two different academic finite element programs, allowing quick 

performance assessments. 

We have found out that the proposed approximate Jacobian matrices yield the 

same convergence rate and precision as the exact ones, with fairly acceptable extra 

computational costs. We defer a more comprehensive evaluation of relative 

computing costs to future papers, but we advance the notion that as the size of the 

problem is increased, the extra cost due to the proposed approximation becomes 

relatively smaller, whilst for small problems, the extra cost is relatively irrelevant. 
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