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Abstract. Several interesting problems in neuroscience are of multiscale type, i.e. possesses different
tempora and spatial scales that cannot be disregarded. Such characteristics impose severe burden to
numerical simulations since the need to resolve small scale features push the computational costs to un-
reasonable levels. Classical numerical methods that do not resolve the small scales suffer from spurious
oscillations and lack of precision. This paper presents a finite element method of multiscale type that
is easy to paralelize and that ameliorates these maladies. We show the validity of our scheme under
different physiological regimes.
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1 INTRODUCTION

Among the fields of research that computer models can hopelied significant contri-
butions, neuroscience is one of the most demanding andihgatmong the main aspects
that makes neuroscience so challenging from the modelidgamputational point of view are
the multiple temporal and spatial scales present in mosoiagical events. Some instances of
what is steadly being considered in present research arapt$ to increase the size of networks
of spiking neurons, as well as incorporation of spatial agigtogeneous aspects of the neuron
physiology. Although the ever increasing capabilities@ihputers facilitate such endeavors, a
big chunk of the advances are certainly due to better maglalvd computational techniques.

We focus here on the task of deriving an efficient numericahie for problems of multi-
scale type. The problem we consider involves modeling degsdwith an uneven distribution
of synapses. A recent important papiieinier and Lamotte d'Incamp2008 considered var-
ious instances of heterogeneous dendrites modeled byhtsaacable equations, and inquired
when the process ohathematical homogenizatiavas valid. The trouble is, the homogeniza-
tion process is valid onhas the number of heterogeneities approach infinityat is not the
whole story, since the heterogeneity must have some sopaifern”, being periodic or ran-
dom for instance. Such assumptions are often questionable.

Motivated by such concerns, we investigate the same cahlatieg problem considered
in (Meunier and Lamotte d’Incamp2008, this time from a numerical point of view. Let the
voltageV be the solution of the cable equation

I 7 927 o . -
Cm%_‘t/ N %d%@z +o"V 6NV = V) 46V = V) =0 in(0,L) x (0,+00).

V(0,t) =V(L,t)=0 forte (0,400), 1)

V(z,0) = Vo(x) forxz € (0,L).

Above,V} is the initial condition denotes the dendrite diameter in centimeters (em)s the
specific membrane capacitance in Farad per square cenfifieer], o' denotes the longitudi-
nal dendrite specific conductance in siemens per centirf@tem),c™ denotes the membrane
specific conductance in siemens per square centimeter {5/antds® ands™ are the excita-
tory and inhibitory synapse specific conductance, alseimens per square centimeter (S7gm
We assume that the specific conductangeand ™ are constant. The potentials 1 and
Vi are in millivolt (mV), and both reversal potentidl& and V'™ are constant. FinallyL is
the dendrite length in centimeter (cm). The synapses areleddy

N* Ne€

~in i ~ex e

g = E 91556;, o = E 9y 0z
=1 =1

Whereéﬁg are Dirac deltas (or delta “functions”) located at the syseepsites? with strenghts
g, forl =1,..., N'. Similar notation holds for the excitatory synapses, thee,deltas),. are
located the synapse sitéswith strenghtgyy, forl = 1,..., N¢. The definition of a Dirac delta
)+ located at a point* € (0, L) is that

L
| (@) di = g(2) @
0
for any continuous function.
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For equations likeX), several different numerically demanding instances tshglow up, as
big differences in the strenghts of the synapses, large puofisynapses at uneven locations,
and even a high ratio between the diameter of the dendritétsufehght. Under these circun-
stances, the computational costs involved in solving suoblpms can be unacceptable if a
raw numerical method is to be considered, in particular wéersidering a large tree of den-
drites where each branch is modeled by, (The computational costs grow sinaey method
employed has to account for the microscale aspects of trgritephysiology.

In the computational neuroscience literature, discrétimeof spatial features of partial dif-
ferential equations traditionally employs compartmentaldels and difference schemes. On
the other hand, finite elements are seldom employed. Thisf@tunate since methods based
on finite elements are flexible, simple to implement, comianally efficient, and easier to
analyse. For “nice” problems, when the solution has a smbettaviour and there is no nu-
merical complications, finite elements and finite differengield comparable resuls. However,
because of its attributes, when standard schemes do notwslrkmodern variants of finite
elements come as an viable option of discretization.

One variant is the multiscale finite element methblby, 2003, which we explore here.
The idea behind multiscale methods to solve heterogengmisnss is that one has to first
solve somdocal problemsand extract sommicroscale informationSuch information is then
upscaledinto a homogenizednacroscale problem. Microscale problems depend on refined
information of the model, but has to be solvedsimall domainsand parallelization is trivial.
Due to this local feature, they are not so expensive to solaecontrast, the homogenized
macroscale problem is global and has to be solved in the wduieain. But the microscale
data show up averaged, i.egmogenizedand the cost of solving the homogenized macroscale
problem is independent of the microscales. As a bonus, ferdimensional domains, the
multiscale finite element method yieldsnadally exact solutioni.e., the numerical solution
matches the exact solution at each nodal point.

As an example, consider a thin dendrite with synapses biig&d along its extension. The
voltage will jump at the sysnapses locations, and sincetiwadl methods must use a huge
number of grid points to capture such small scale behawiey tuickly become impractical.
On the other hand, the multiscale finite element method ¢jmodlem uses a fixed number of
grid points, independent of the number of synapses and itkn#ss of the dendrite. Between
each two consectutive grid points, a subgrid is created araller local problems are solved,
possibly in parallel, and microscale information are ugkxto the global problem that is
solved afterwards. We emphasize that the costs associ#teslolving the final global problem
is independent of all physiological parameters.

We now describe briefly the contents of the present papenelnéxt section, we present the
basics of the multiscale finite element method appliedJoNext, in Sectior8 we analyse the
behaviour of the model under different limit situationsgahsplay some numerical results. We
present our conclusions in Sectién
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2 THE MULTISCALE FINITE ELEMENT METHOD (MSFEM)

To facilitate the dissection of the main properties of thebpem under consideration, it is
convenient first to define new coordinates- /L, and rewrite {) as

ov 821/ :
Tm o T €2 +V+GV=f in(0,1)x (0,400),

V(0,t) =V (1,t)=0 forte (0,+00), 3)
V(z,0) = Vo(z) forz e (0,L).

whereV (z,t) = V(Lzx,t),

Cm O'Id O_in 4 aex O_inVin + O_exvex
Tm_ﬁ’ €= AL2gM’ - gm f= om '
We also have .
Ni Ne
n ) ex
o= g, o™= gits, 4)
=1 =1

where the Dirac deltas are now located at the sifes /L, andz{ = &7/ L.
Thevariational formulation is given by

1 1
/ Tm@_Vw dx + / ea—va—w +Vw+GVw | de = / fwdzx. (5)
0 ot Ox Ox 0

for all w € H}(0,1). Using @), and the definition of Dirac deltag); it follows that

/ Gde:c—Zglv zp)w(z}) Zgzvxz (z7)

0 =1

1
i gfw(f’fﬁ) ex glew<xle)
dz V" E =4V E =t
/0 fw ’ =1 o ’ =1 om

2.1 The definition of the multiscale method

We first decompose the domaif, 1) in the elements(zg, 1), (z1,22),...,(xn_1,ZN),
(xn,zN41), definined by the nodes

OISL’Q<JJ1<.T2<.T3<"'<£L’N<£L’N+1:1. (6)

We approximaté’ by themultiscale functiorV,™ defined by

) => V™) A(x). )

The unknownd/™s(t), ..., ViiS(t) depend ort only. The new basis functioqs\y, ..., Ay} are
continuous, but instead of being linear within each elentbely satisfy the local, elementwise
problems

Me(z) =0 ifx & (vp_1,Tps1),

+ >\k -+ G/\k =0 1in (l‘k_l,l‘k) and(:pk,xk+1), (8)
)\k(ﬂfk) = 1,

O\
¢ or?
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Figure 1: Typical multiscale basis functions

forke{l,...,N}.

In a few particular cases it is possible to compMtexplicitely, but in general it is necessary
to approximate it numerically. In Figurewe depict typical basis functions. The domain is
assembled joining two consecutive elements, and it cositavn inhibitory sysnapses at08
and0.15, and a excitatory syspse @R. The function in the left was obtained for largeand
the one in the right for smadl

It is worth pointing out that these basis functions adapt @aqture the local physiological
heterogeneities effects of the dendrites. If there aressas the functions have jumps in their
derivatives, as the exact solution of the original probleres] Ife is small, the functions have a
exponential profile, just like the solution of the originabplem. That is how the upscaling pro-
cess occur. Note that in classical elements, the functianddibe piecewise linear, regardless
of the parameters.

As long as the multiscale basis functiohsare computed, the unknowmg™, ... V' are
defined by:

S [ o e [ D @ 04 O )| o

:/1f)\j(az)d:c forj=1,...,N. (9)
0

With such choice of basis functions, it is now possible toehan accurate method with the size
of the system9) independent of and the number of synapseBhe task of incorporating the
microstructure, where the synapses play a direct role aedthie costs, is concentrated in the
computation of the basis functions. That is the subject et subsection.

As we already remarked, a striking property of multiscaleéhds is that, for steady state
one-dimensional domains, the numerical solution yieldsetkact solution atvery nodeSuch
property follows from the very definition of the method, ifeem (8) and Q).

3 DIFFERENT REGIMES AND THEIR SOLUTIONS

As pointed out previously, varying the different parameter (1) lead to different various
neurological regimes in the solution. In many instances taiuses spurious oscillatory be-
haviour in numerical computations. To understand the diffebehaviour that show up, it is
useful to perform an analysis using) (We consider here only the non-transient problem.
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As an example, consider the case whas much smaller than one & 1). This happens
for instance when the dendrite is too thin or too lodg< L?), when the longitudinal con-
ductance is too bigo( > ¢™), or when a combination of the above features occur. In such
cases numerical difficulties appear, as we shall see. Andtfierent situation is when there is
a huge number of synapses, or when the membrane conducsagitieer too large or too low.
In what follows, we present separate formal studies of thegmptotic limitend show how the
classical and mustiscale finite elements perform. To elRaleffects of each separate situation,
we isolate each one of them using paramenters that are neg¢seedy biologically plausible.

3.1 Long or thin dendrites, or small longitudinal conductarce

One situation where numerical difficulties occur is when plaeametek is too small. In
terms of physiology of the dendrites there are many insmdgen this can happen, as de-
scribed above. However, regardless of the origins, the noal®utcomes are the same.

To find out how the solutioi¥ depends on the parametemwe use the method of matching
asymptotics, postulating that

V(z) ~ Vo(x) + eVi(z) + EVa(z) + .. ., (20)

where the function¥; are to be determined. Formally replaciri@)in (3), we gather that

2

2V, 0V, .
Vo—i—GVg+e(— 0+V1—|-GV1)+62(— 1+V2+GV2)+-~-:f in (0,1).

or? 0x?

Collecting thee = 0 limit terms, it follows thatV, + GV, = f, i.e.,

N? N¢ Ni N¢
oMt (st + oo Vo= YoV + Dafo v
=1 =1 =1 =1

After a multiplication by an arbitrary and smooth functign and an integration, the above
equation becomes

1 N? Ne N? Ne
/ o™Vopda + Y giVolai)dla) + Y giValaf)o(af) = V" Y gio(a)) + VY gio(ar).
0 =1 =1 =1 =1
By considering special functions(actually, a sequence of them), it is possible to prove that

0 if o ¢ {af, ... 2., 25, . .. 2%},
Vo(z) = VN ifxe {ai, ... 2.},
Ve ifx e {af, ... a5}

Thus, as — 0, the exact solutiofr” approaches the discontinuous functign SinceV itself
is continuous, there is an onset of internal layers at thatpaf discontinuity. These layers
cause severe numerical trouble.

Such behaviour of the exact solution does not come as a sergndeed the neurological
meaning of ¢ small” is that there is relatively little diffusion of ionas occur when the dendrite
is thin, or the longitudinal conductance is small. In sugtance, the electric “jJumps” that take
place at the synapses concentrates in a narrow neighbodfdloel synaptic loci.
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Figure 2: Exact Solution

As a numerical test, depicted in Figizewe pick an example where five inhibitory (location
marked with anx) and three excitatory (location marked with an synapses are disposed
along the dendritel™ = —10, V® = 65, ande = 2.5 x 107°. In this example, and all that
follow, an “exact solution” (displayed in solid black lins)numerically computed by “overkill”,
using a numerical method with a sufficiently refined mesh. Weesthe same problem using
classical (computed nodal values marked by asterisks) antspale finite element methods
(computed nodal values marked by red dots), with nine nodiatpin both cases.

We first comment on the exact solution. Observe that it isectoszero except in a small
neighborhood of the synapses. Over the synapses the vathe efkact solution is close to
eitherV" = —10 or V® = 65. This confirms our theoretical prediction that, whenevés
small,V should be close td;. Regarding the numerical aspects, the classical methddsyae
solution that is essentially wrong, where the multiscaletsan matches the exact solution at
every node, as predicted by the theory. Sure enough, if mrffipoints are used in the classical
scheme, we would eventually obtain a reasonable approximator instance, for the present
example, 129 points are necessary to bring the relativesewithin a range of 10% at every
node.

3.2 Large number of synapses

Suppose thafVi = N¢, and thate = 1/(2N%). Assume further that the synapses are
disposed periodically, i.e., the Dirac deltas are locateédesites:; = (21 — 1)a andz{ = 2la.
In the present case, the interest is when the synapses apavlygpacked, i.ea < 1, and this
situation is tricky to analyse.

The idea is to rewrite the solution dd)(as the minimizer of the energy

J(V) +a I (V), (11)
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Figure 3: Exact Solution

where

1 /! 2
JV)= 5 /0 ea” (g—‘;) + o™V2dz,
Ni Ne Ni Ne
LV) =S5 giV2@) + 55 giV(af) — aV™ Y giViai) — aV Y gV (af)
a B 1 l B I l g l 9 1)
=1 =1 =1 =1

Under reasonable conditions ghand ¢gf, asa — 0 the term/, concentrates most of the
total energy. Thusim, .oV = V; in a reasonable mathematical sense, whgreninimizes
lim,_.o I,, and it turns out that o
‘/O _ Vlnglz' + Vexgle
9 +9
does the job.
As a numerical test, we consider the cas@@f0 inhibitory and excitatory synapseg, =
4 x 1072, g¢ = 1072, V" = —10, andV® = 65. In this case}, = 5, and that is exactly
the number around which the solution oscillates. Numdyica¢ consider ten nodal points for
both methods. Note that the classical method (blue asgriscillates close to the boundaries,
but delivers a reasonable approximation in the interiohefdomain. The multiscale method
(red dots) is nodally exact, as it should be.

3.3 Large or low membrane conductance
The situation gets much simpler if
|

m Ud 7 7 e e
0" > max @7917"'79Ni7917"'7gN€7

or |

m : Ud 7 7 e e
o < min @7g17"'7gNi7g17"'7gN€7 .
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Figure 4: Branched solution.

The former case occur when the membrane is too “diffusiié&weng the transmembrane free
flow of ions. Thus, thé” = 0 limit comes as no surprise. In the latter situationgds— 0, V/
satisfies

el S (O_in +0_eX)V — O_inVin +O_exvex in (0’1)’
V(0) =V(1) =0,
reflecting the fact that the cross membrane flow of ions ocolyr through the synapses.

(12)

3.4 branched dendrite

We test here two situations not considered before. We firssider the steady state version
of (1) in a Y-shapped domain. At the branching point, we imposdioaity of voltage and
current. The model is no longer provably nodally exact, bstill yields an excellent approxi-
mation for the exact solution.

In the figure4 below, V™" = —10, V& =65, L = 0.2,d = 0.01, ¢' = 1073 ande™ = 1072
for all the branches, and there two excitatory and two inbigisyspses in each of the banches.
We used seven nodal points for both the classical and maikisoethod. There is one nodal
value for the classical method missing: the classical sehgeided a value below 20.

It is notable that few points give excellent accuracy, arad #filows for great efficiency when
several branches are coupled.
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4 CONCLUSIONS

Several models in neuroscience are of multiscale type, Esdical numerical methods do
not deal with them in a natural way, but rather requires bfatee, also known as refined
discretization, to capture physiological details. We présiere a viable numerical alternative.

The problem we consider here depend in a nontrivial way ieisg¢yparameters. In our case
by case analysis, we show how the solutions depend on themrabtice, such extreme and
isolated situations are unlikely. Biologically plausilebeamples exhibit actually @mbination
of these effects, in an attenuated fashion, but when usassical numerical approximations
that might lead a disastrous net effect.

Homogenization techniques can help in some regimes, bytré#i@ble only under very
specific circunstances. On the other hand, our method isyalvedoust, accurate, it is actually
nodally exactand parallelizable.
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