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Abstract. The unsteady creeping flow around a rigid three dimensional body at rest in an incompress-
ible and viscous fluid of Newtonian type is considered. The flow problem is modeled using an indirect
boundary integral equation (IBIE), and is numerically solved by using collocation and Galerkin weight-
ing procedures. An IBIE was presented in a previous work for the steady creeping flow case (D’Elı́a
et al., Mecánica Computacional, vol. XXVIII:1453-1462, 2009), whereas in the present work the at-
tention is focused to the oscillatory creeping flow with an harmonic time dependence. The formulation
is specialized to low frequencies and boundary meshes with flat simplex triangles. The double surface
integrals in the Galerkin approach that account the pairwise interaction among all boundary elements are
computed on using a variation of the scheme proposed by Taylor (D. J. Taylor, IEEE Trans. on Anten-
nas and Propagation, 51(7): 1630-1637, 2003). Numerical examples include the unsteady creeping flow
with an harmonic time dependence around the sphere of unit radius and around the cube of unit edge
length, both at rest, covering issues on the convergence under mesh refinement and, in the first test case,
a comparison against the analytical values as a function of the imposed vibrating frequency.
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1 INTRODUCTION

As it is known, the Stokes equation for a creeping flow provides a description of the fluid
dynamics of a viscous fluid as long as the flow regime is laminar and attached, and the viscous
forces dominate over the inertial ones. The last condition is typically satisfied when the bound-
ing surfaces of the flow domain are relatively large compared to the bounded volume, as in
microhydrodynamics, such as colloidal flows and flows around micro-electro-mechanical sys-
tems (MEMS), e.g. see Wang (2002); Méndez et al. (2008); Berli and Cardona (2009). Some
devices in MEMS have intricate three dimensional (3D) bounded contours with a bounded vol-
ume of fluid.

In this work, an indirect boundary integral equation (IBIE) proposed in a previous work
(D’Elı́a et al., 2009b) is employed for simulating the unsteady creeping flow around a rigid
three dimensional isolated body at rest where the fluid performs a time-harmonic vibration at
low frequencies ω and small oscillation amplitudes. The method consist of solving the unsteady
creeping flow around an isolated body by applying a boundary element method (BEM) per-
formed with collocation and Galerkin weighting procedures. The last procedure is also known
as a Galerkin boundary element method (GBEM, Bonnet et al., 1998; Sutradhar et al., 2008).

2 MATHEMATICAL FORMULATION

2.1 Time-dependent Stokes equations system

The fluid velocity vi = vi(x, t) and pressure p = p(x, t) fields of an unsteady and creeping
flow of a viscous and incompressible fluid of Newtonian type satisfy the time-dependent Stokes
equations system (Kim and Karrila, 1991)

ρ
∂vi
∂t

=
∂p

∂xi
+ µ

∂2vi
∂xj∂xj

,

∂vi
∂xi

= 0 ,

(1)

for time t ∈ [0, T ], with i = 1, 2, 3, for all field points x = (x1, x2, x3) in the exterior flow
domain Ωe to a closed surface A of arbitrary shape, see Fig. 1, where ρ is the fluid density
and µ is the dynamic fluid viscosity. The boundary conditions include the non-slip boundary
condition on the surface A given by

vi(x, t) + ui(x, t) = 0 for all x ∈ A and for all t, (2)

where ui = ui(x, t) is the prescribed velocity on the surface A, and the radiation conditions at
infinity are

vi(x, t) = O(1/x) ,

p(x, t) = O(1/x2) ,
(3)

as x→∞, where x = ‖x‖2 is the Euclidean distance from the origin O(x1, x2, x3). It is known
that, while the corresponding unsteady Navier-Stokes equation is Galilei invariant, the time-
dependent Stokes Eq. (1) is not (Bührle, 2007). However, the difference between the solutions
of Eq. (1) obtained in two Galilei reference frames may be negligible in many practical com-
putations and, then, it does not matter in which of them the time-dependent Stokes equations
system is solved, e.g. in the laboratory or in the body coordinate systems, as long as both are
nearly truly inertial reference frames. Moreover, the (time-dependent) Stokes equations system
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(3) is valid for small oscillation amplitudes of angular frequency ω, such that the body position
is always inside the range of the viscous length Lν = (ν/ω)1/2, which is roughly the distance
up to which the flow spreads over one oscillation period, where ν = µ/ρ is the kinematic fluid
viscosity.

2.2 Green function for the time-dependent Stokes equations system

As all variables are assumed as sinusoidal functions of the (imposed) oscillation frequency ω,
when an oscillating point force b = δ(x− y)eIωt is located at the source point y = (y1, y2, y3),
then, the velocity and pressure are assumed to be v(x)eIωt and p(x)eIωt, respectively, where,
x = (x1, x2, x3) is the field point, b = (b1, b2, b3) is the unit body force along the unit direction
b0, while δ(x− y) is the Dirac function, and I is the imaginary unit. Then, the time-dependent
Stokes equations system (3) is rewritten in the frequency domain as (e.g. Wang, 2002, Sec. 4.3,
p. 57)

ρ(Iω)vj = −∇jp+ µ∇2vj + bjδ(x− y) ,

∇jvj = 0 .
(4)

Solving Eq. (4) leads
vi(x,y) = αgij(x,y)bj velocity;
p(x,y) = αqj(x,y)bj pressure;
ti(x,y) = Tijk(x,y)nkbj traction;

(5)

with α = −1/(8π) and Tijk the stress tensor. The Green functions are given by (e.g. Pozrikidis,
1996, Sec. 6.14, p. 301)

gij(x,y) = A(ξ)
δij
r

+ C(ξ)
rirj
r3

,

qj(x,y) = 2
rj
r3
,

(6)

where δij is the Kronecker delta, which is 1 if i = j and 0 otherwise, and the (complex)
coefficients are

A(ξ) = 2e−ξ
(

1 +
1

ξ
+

1

ξ2

)
− 2

ξ2
,

C(ξ) = −2e−ξ
(

1 +
3

ξ
+

3

ξ2

)
− 6

ξ2
,

(7)

and
ξ = χr ,

χ = (−Iω/ν)1/2 ,

r = ‖r‖2 ,
r = x− y ,

I : imaginary unit.

(8)

The Green functions given by Eq. (6) are very similar to those of the steady flow, although with
frequency dependent kernels. As it is known, A(0) = C(0) = 1, which suggests that at small
frequencies or close to the point force, the Green functions for the oscillating creeping flow
reduces to the ones of the steady creeping flow (Kim and Karrila, 1991; Pozrikidis, 1997). The
stress tensor Tijk associated with Eq. (5) is found using (e.g. Ladyzhenskaya, 1969, Sec. 3.2, p.
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Figure 1: Sketch of a closed and piecewise smooth surface A with an exterior flow domain Ωe: the field point
x, the source point y, the relative position r = x − y, the unit normals n(x),n(y), and the differential areas
dAx, dAy.

53)

Tijk(qj, gij) = δikqj + µ

(
∂gij
∂xk

+
∂gkj
∂xi

)
. (9)

Introducing Eq. (6) into Eq. (9) and replacing in Eq. (5), after some algebra results,

tij = − α
r2

(aij + bij + cij) , (10)

being
aij = c1hδij ,

bij = c1r
0
i n

0
j + c2n

0
i r

0
j ,

cij = c3hr
0
i r

0
j ,

(11)

where r0 = r/‖r‖2 is the unit vector along the relative distance r, n0
k is the unit normal at the

source point y, while h = r0
kn

0
k, and

c1 = C − A+ Ã ,

c2 = 2(C − 1) ,

c3 = 2C̃ − 6C ,

(12)

with Ã and C̃ given in Eq. (7), while

Ã(ξ) = −2e−ξ
(

1 + ξ +
2

ξ
+

2

ξ2

)
+

4

ξ2
,

C̃(ξ) = 2e−ξ
(

3 + ξ +
6

ξ
+

6

ξ2

)
− 12

ξ2
.

(13)

Equations (10-13) look a little different from the standard ones found in literature (Pozrikidis,
1997). Nevertheless, it was verified that they are equivalent through a numerical computation.

3 NUMERICAL FORMULATION

3.1 Indirect boundary integral equation of Fredholm type and second kind

A modified version of the so-called “completed double-layer boundary integral equation
method”, e.g. see Power and Wrobel (1995), Sec. 6.2, p. 196, or Kim and Karrila (1991), was
proposed in a previous work (D’Elı́a et al., 2009b). In the remaing paragraphs of this section
the modified version is summarized.
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The velocity field vi(x) is thought as a linear superposition of the velocity field produced by
a double-layer potential wDL

i (x;ψ) plus a single-layer (SL) one wSL
i (x;φ), i.e.

vi(x) ≡ vi(x;ψ;φ) = wDL
i (x;ψ) + wSL

i (x;φ) for all x ∈ Ωe. (14)

The perturbation velocity from the exterior side of the surface A, see Fig. 1, is given by

vi(x) = wDL
i (x;ψ)(e) + wSL

i (x;ψ)(e) for all x ∈ A. (15)

On one hand, the velocity potential due to a double-layer surface density ψ(y) is defined as

wDL
i (x;ψ) =

∫
A

dAy Kij(x,y)ψj(y) ,

with Kij(x,y) = − 3

4π

rirjrk
r5

nk(y) .

(16)

If the density ψj(y) is smooth enough, it is known that the double-layer velocity wDL
i (x;ψ)

verifies the jump property (e.g. Ladyzhenskaya, 1969, Sec. 3.2, Eq. 22, p. 57),

wDL(x;ψ)(i) −wDL(x;ψ)(e) = ψ(x) , (17)

across the single closed surface A when x ∈ A, where subscripts (i) and (e) denote the limiting
values of wDL(x;ψ) on the surface A, in case this surface is approached from inside or outside,
respectively, and given by

wDL
i (x;ψ)(i) = +

1

2
ψi(x) + wDL

i (x;ψ) ,

wDL
i (x;ψ)(e) = −1

2
ψi(x) + wDL

i (x;ψ) ,
(18)

where wDL
i (x;ψ) denotes the direct value of wDL

i (x;ψ) on the surface A.
On the other hand, the velocity potential of a single-layer surface density φ(y) is defined as

wSL
i (x;φ) =

∫
A

dAy S̃ij(x,y)φj(y) ,

where S̃ij(x,y) = − 1

8πµ

[
δij
r

+
rirj
r3

]
.

(19)

In order to exclude the rigid body motions, the (arbitrary) linear dependence

φi(y) = c δijψj(y) with c = ρ1U1, (20)

is chosen (Hebeker, 1986; Pozrikidis, 1997), where ρ1 and U1 and are the unit fluid density and
unit speed, respectively. The conversion factor c is introduced since both layer densities φ and
ψ have different physical dimensions, that is, φ constitutes a force surface density (or pressure),
e.g. N/m2, while ψ is a perturbation velocity, e.g. ms−1. Then,

φj(y) = c ψj(y) , (21)

and the perturbation velocity due to a single-layer potential is rewritten as

wSL
i (x;ψ) =

∫
A

dAy Sij(x,y)ψj(y) , (22)
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where now

Sij(x,y) = − U1

8πν1

[
δij
r

+
rirj
r3

]
, (23)

is the “kinematic” Stokeslet kernel, and ν1 = µ1/ρ1 is the unit kinematic fluid viscosity. The
perturbation velocity from the exterior side of the surface A is given by Eq. (14) and, taking
into account the first boundary condition in Eq. (2),

wDL
i (x;ψ)(e) + wSL

i (x;ψ)(e) = −ui(x) for all x ∈ A. (24)

Using the exterior limit case of Eq. (18) and replacing by Eq. (23), Eq. (24) gives

−1

2
ψi(x)−

∫
A

dAy [Kij(x,y)− Sij(x,y)]ψj(y) = −ui(x) for all x ∈ A. (25)

After some algebra, the modified version is written as the boundary integral equation∫
A

dAy {[Sij(x,y)−Kij(x,y)]ψj(y) +Kij(x,y)ψj(x)} = −ui(x) for all x ∈ A, (26)

for the double-layer surface density ψ, with i, j = 1, 2, 3, where dAy = dA(y) is the differen-
tial area. As it is known in the Green function theory, as well as in solid and fluid mechanics,
the j column of the tensor Kij(x,y) physically represents the perturbation velocity induced by
a double surface layer density of unit value on the j-component only. Using matrix notation,
Eq. (26) is rewritten as

g(x) + u(x) = 0 for all x ∈ A, (27)

which is a boundary integral equation of Fredholm type and second kind, with source term
−u(x), where u(x) is the unperturbed flow velocity field, whereas

g(x) ≡
∫
A

dAy [H(x,y)ψ(y) + K(x,y)ψ(x)] for all x ∈ A, (28)

is a boundary integral operator with kernels H(x,y) and K(x,y), with H(x,y) = S(x,y) −
K(x,y). These kernels couple the double-layer surface density ψ at the integration point y and
at the field point x.

Equation (26) was already used in steady flows in (D’Elı́a et al., 2009b), and solved using
both a collocation technique and a GBEM. In the last case, details about a systematic strategy
for a numerical quadrature computing the related double surface integrals can be found in Taylor
(2003); D’Elı́a et al. (2009a).

z 1 2 3 4 5 6 7 8 9
N 26 98 218 386 602 866 1178 1538 2402
E 48 192 432 768 1200 1728 2352 3072 4800

Table 1: Number of nodes N and elements E. Meshes 2-9 are structured on the unit sphere and on the unit cube.
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Figure 2: Absolute value of the relative error |er| of the force coefficient Ki as function of the number of
degrees of freedom M and the frequency ω on the unit sphere with the Q22 quadrature rule at frequencies
ω = [ 0.4, 0.7, 1.0, 1.3] rad/s (curves A − D): uniform flow K1 (left) and shear flow K̃3 (right). Colloca-
tion (top) and GBEM (bottom).

4 NUMERICAL EXAMPLES

Two unsteady flow cases are considered: a sphere of unit radius and a cube of unit edge
length, at rest in their body inertial frames and whose centers are placed at the origin of the
Cartesian coordinate system in R3. Both bodies are immersed in a viscous and incompressible
fluid of Newtonian type that extends indefinitely. In the numerical simulations, the following
values are adopted: fluid density ρ = 1 kg/m3 and kinematic viscosity ν = 1 m2/s.

The number z of BEM meshes and the corresponding number of nodesN and number of ele-
ments E are shown in Table 1, where meshes 2-9 are structured (smooth). The Gauss-Legendre
formula is employed in the modified Taylor “black box” integrator, with n1d quadrature points
along each direction which, in turn, implies a total of n4

1d points by interaction pair. A Q22

rule is used for the number of quadrature points among the panel layers, meaning that there are
2 Gauss-Legendre points on the self-integral and the first layer of neighbouring panels and 2
points for the remaining layers.

The drag coefficients are obtained from the force D = (D1, D2, D3) and torque T =
(T1, T2, T3) as Ki = Di/(µU∞L) and K̃i = Ci/(µU∞L

2), where U∞ is the (unperturbed)
incoming speed, and L is a typical length. The subindex i = 1, 2, 3 in the drag coefficients in-
dicates the corresponding xi Cartesian component. The absolute value of the relative error |er|
for the force coefficient Ki is computed as |er| = |Ki,num/Ki,(semi)analytical − 1|, and it is
plotted as a function of the number M of the degrees of freedom, being M = 3E and M = 3N
in collocation and Galerkin, respectively.

Mecánica Computacional Vol XXIX, págs. 2243-2253 (2010) 2249

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



A

D

A

D

|e_r|

|e_r|

M

M

collocation collocation

0.0001

0.001

0.01

0.1

10 100 1000 10000

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

GBEM

GBEM

A

|e_r|
|e_r|

A

D

D

M

M
1e−05

0.0001

0.001

0.01

0.1

10 100 1000 10000 1e−05

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

Figure 3: Absolute value of the relative error |er| of the force coefficient Ki as function of the number of
degrees of freedom M and the frequency ω on the unit cube with the Q22 quadrature rule at frequencies
ω = [ 0.4, 0.7, 1.0, 1.3] rad/s (curves A − D): uniform flow K1 (left) and shear flow K̃3 (right). Colloca-
tion (top) and GBEM (bottom).

The numerical examples cover issues on the convergence of the numerical solution under
mesh refinement and, in the first test case, a comparison against the analytical values as a func-
tion of the imposed vibrating frequency. Flat simplex triangles are used in all cases.

4.1 Sphere

Tests with spheres are extensively used in experimental oscillating flows (Klotsa, 2009). The
sphere test case is chosen since there are analytical solutions for some flow conditions. For
instance, the following analytical relations are known (Padmavathi, 2010; Venkatalaxmi et al.,
2004; Kim and Karrila, 1989; Pozrikidis, 1989):

1. When the sphere performs translational oscillations with perturbation velocity ÛeIωt in
the fluid at rest, the drag is given by

D = 6πµa
(
1 + λ+ λ2/9

)
Û . (29)
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2. When the sphere performs a rotational oscillation with spin perturbation Ω̂eIωt in the fluid
at rest, the torque is given by

T = 8πµa3 1 + λ+ λ2/3

1 + λ
Ω̂ . (30)

3. When the fluid perform an oscillation with velocity Û∞(x)eIωt around the sphere at rest,
where Û∞(x) is an unperturbed velocity field such that [∇2Û∞(x)]0 = 0, the drag and
torque are given by

D = 6πµa
(
1 + λ+ λ2/3

) [
Û∞(x)

]
0
,

T = 4πµa3 eλ

1 + λ

[
∇× Û∞(x)

]
0
.

(31)

In Eqs. (29-31), the non-dimensional coefficient is λ = χa, and χ is defined in Eq. (8),
while [...]0 is the evaluation at the centre of the sphere. The sphere radius is a = 1 m and
the unperturbed flow conditions are: uniform Û∞(x) = (U∞, 0, 0), and shear Û∞(x) =
U∞(x2,−x1, 0)/a. In Fig. 2 the absolute value of the relative error |er| of the force coefficient
Ki on the unit sphere, using the Q22 quadrature rule is plotted for the translational oscillation at
frequencies at frequencies ω = [ 0.4, 0.7, 1.0, 1.3] rad/s (curves A −D) for uniform flow K1

(left) and shear flow K̃3 (right), collocation (top) and GBEM (bottom).

4.2 Cube

As an example of a sharp body, a cube of unit edge length L = 1 m, whose center is placed
at the origin in R3, is considered. The cube test case is selected as a crude simplification of
the phenomena appearing with MEMS geometries (Fachinotti et al., 2007; Méndez et al., 2008;
Berli and Cardona, 2009). Since there is no analytical solution for the unit cube, the relative
errors are computed taking as reference the results from the more refined mesh, in this case
mesh 9, see Table 1. In Fig. 3 the absolute value of the relative error |er| of the force coefficient
Ki on the unit cube, using the Q22 quadrature rule is plotted for the translational oscillation at
frequencies ω = [ 0.4, 0.7, 1.0, 1.3] rad/s (curves A−D) for uniform flow K1 (left) and shear
flow K̃3 (right), collocation (top) and GBEM (bottom).

5 CONCLUSIONS

An indirect boundary integral equation of Fredholm type and second kind has been employed
for unsteady creeping flow exterior to a three-dimensional rigid body at rest in an incompress-
ible and viscous fluid of Newtonian type, and it was numerically solved using collocation and
Galerkin procedures. The boundary integral equation has been chosen as a combination of
double- and single- layer potentials for time-harmonic creeping flows with densities defined
over the closed surface. It is an extension of a previous work (D’Elı́a et al., 2009b), where
a modification of the so-called “completed double-layer boundary integral equation method”
(Power and Wrobel, 1995; Kim and Karrila, 1991) was proposed. It was checked that when
the frequency tends to zero, the drag coefficient of the oscillating creeping flow reduces to the
steady one. AQ22 rule was employed in the numerical examples, with n1d = 2 Gauss-Legendre
points on the self-integral and first layer of neighbouring panels, those that have a common
edge or vertex, and n1d = 2 for the remaining layers on each integration coordinate, which,
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in turn, imply a total of n4
1d points by pair interaction. The numerical examples included the

translational and rotational oscillations of the fluid with an harmonic time dependence around
the sphere of unit radius and around the cube of unit edge length, both at rest, at frequencies
ω = [ 0.4, 0.7, 1.0, 1.3] rad/s (curves A −D in Figs. 2-3), for the force coefficients K1 (uni-
form flow) and K̃3 (shear flow). In the sphere case, it was noted that at the present time there
is divergence under mesh refinement for frequencies ω greater to the unity, and it worst with a
collocation technique than with a Galerkin one. In the cube case, the convergence under mesh
refinement was verified although the relative errors were computed taking as reference the re-
sults from the more refined mesh (mesh 9), since there is no analytical solution. The failure at
high frequencies is mainly due to the following. It is known that the first term in an asymptotic
series for high frequencies of the transient Stokeslet is the steady potential dipole (Pozrikidis,
1997). This fact suggests that a transient Stokeslet at high frequencies produces an irrotational
flow field. Then, in order to fix the divergence in the solution for higher frequencies, the present
BEM should be extended to model the velocity field of the steady potential dipole (inviscid
flow), whose order of singularity is two units greater than the steady Stokeslet. Future work
could be focused in this issue.
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