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Abstract. In this paper the vibration patterns of slender structures with curved axis are addressed. A
survey on the literature concerning dynamics of beams with non-homogeneous or functionally graded
properties shows that there is a lack of papers devoted to the vibration analysis of curved beams made
of graded materials. This problem was tackled by a few authors through two-dimensional approaches
where material properties can vary in the radial direction. In-plane bending motions were analyzed with
those approaches. However one dimensional models developed to study the out-of-plane motion of FGM
curved beams are practically absent in the technical literature. The scope of this article is twofold. The
first one is related to the introduction of a linear model of non-homogeneous curved beams containing
out-of-plane and in-plane motions. The second topic consists in studying the vibration patterns of dif-
ferent graded materials and geometrical parameters under the presence of initial stresses states. The
model is developed by adopting a consistent displacement field which incorporates second order rota-
tional terms. The model also incorporates the shear flexibility due to bending and warping due to twisting
effects. A finite element is developed to solve dynamic problems. The model contains several straight
beam theories as well as curved beam theories as particular cases. Some comparisons with the available
experimental data of the literature are performed in order to illustrate the predictive features of the model.
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1 INTRODUCTION

Non-homogeneous materials with properties that can vary gradually along a given direction
have emerged as an alluring option to solve the problem of high stress gradients (both normal
and tangential) induced in specimens constructed with layers of two or more different materials
(e.g. metals and ceramics). It was observed that some layered configurations may lead to stress
gradients in the material such that it can undergo into debonding or the presence of cracks or a
general failure. The concept of a material with graded properties was explored firstly in the early
seventies to design effective thermal barriers in turbine blades. Later, in the middle eighties, in
Japan, the name functionally graded materials has been established associated with a particular
manufacturing process. Thereafter there has been a remarkable interest in uses and applications
of these materials, especially in high technology military crafts, aerospace actuators, special
sensors and medical uses as well. In the last ten or twelve years, many researchers focused
their attention to study shells and solids constructed with FGM. In the woks ofReddy and Chin
(1998), Reddy(2000), Praveen et al.(1999), Kitipornchai et al.(2004), Hosseini Kordkheili
and Naghdabadi(2007) among others, one can see interesting studies about non homogeneous
shells, plates and solids with graded properties. Relevant and interesting researches about func-
tionally graded straight beams can be found in the recent works ofChakraborty et al.(2003),
Goupee and Vel(2006), Ding et al.(2007) andLü et al.(2008), among others. In these papers
different laws that characterize the gradation of the material properties in the cross-sections
have been employed. The gradation of properties can be represented in en exponential form
or with a power law or any other with "ad-hoc" purposes. In the aforementioned papers three
dimensional or a two dimensional models representing a beam were developed. On the other
hand there are quite a few papers devoted to study functionally graded curved beams.Dryden
(2007) carried out a study on a curved beam by means of an approximation to a two dimensional
description based in the hypothesis of plane stresses.Malekzadeh(2009) carried out studies for
in-plane vibrations of arches in the context of bi-dimensional formulations.Malekzadeh et al.
(2010) developed a model for out-of-plane vibrations of curved beams made of FGM consider-
ing thermal effects.Piovan et al.(2008) developed a one dimensional model of curved beams
appealing to the variational principle of Hellinger-Reissner.Filipich and Piovan(2010) deduced
a theory of thick arches employing a classical strength of material approach. However these last
two models were restricted to in-plane motions. ApparentlyShafiee et al.(2006) were the first
in developing a theory incorporating in-plane and out-of-plane motions in a curved beam made
of FGM; however this model was employed to calculate only buckling loads, moreover shear
flexibility was not incorporated and dynamic problems were not addressed.

The aim of the present paper is focused to develop a one dimensional model of curved beams
with general graded properties. The model is conceived to incorporate in unified fashion in-
plane and out-of-plane motions. In order to avoid misunderstandings, these concepts imply
the motion in the plane of the beam curvature (the case usually analyzed) and the motions
normal to that plane, that is, out-of-plane motions. The shear flexibility is taken into account.
The twisting and warping effects are considered as well. It has to be mentioned that very few
papers in the literature incorporate warping and twisting neither in the context of functionally
graded or non-homogeneous curved beams nor in straight beam. The model is developed by
adopting a displacement field which incorporated linear and second order terms. The linearized
principle of virtual works is employed in order to obtain the motion equations. The model
consists of a set of seven differential equations elastically coupled; however depending on the
type of elastic gradation and the features of the cross-section the full system can be decoupled
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into two subsystems, thus representing in-plane motions and out-of-plane motions. The model
is discretized with an isoparametric finite element. Problems of statics, free vibrations with
or without presence of initial stresses. Comparisons with the available experimental data are
performed as well.

2 MODEL DEVELOPMENT

In Fig. 1 a sketch of the curved beam is shown. The principal reference pointC is located at
the geometric center of the cross-section, where thex-axis is tangent to the circumferential axis
of the beam, whiley andz are the axes belonging to the cross-section, but not necessarily the
principal ones. The present curved beam theory is based on the following assumptions:

1 The cross-section contour is rigid in its own plane.
2 The warping function is defined with respect to pointC.
3 Material properties can vary with an arbitrary function within the cross-section.
4 The stress tensor, the volume forces and surface forces are composed by initial and incre-

mental terms.
5 The displacement field is described first and second order appealing to semi-tangential

rotations.
6 Inertial effects due to higher order displacements are neglected.
7 Structural damping is considered within the context of finite element method through a

Rayleigh model.

Figure 1: Beam sketch

2.1 Variational formulation

The general expression of the Principle of Virtual Work for a body which presents initial
stresses can be written in the following form (Washizu, 1968):∫

V

σf
ijδeijdV −

∫
V

(
X̄f

i − ρ¨̄uf
i

)
δūf

i dV−
∫

S

T̄ f
i δū

f
i dS = 0, (1)
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whereūf
i is the displacement vector,eij is the Green-Lagrange strain tensor,σf

ij is the second

Piola-Kirchhof stress tensor,̄Xf
i is the vector of volume forces, and̄T f

i is the vector de surface
forces.σf

ij, X̄
f
i andT̄ f

i are defined by the sum of the corresponding incremental (σij, X̄i andT̄i)
and initial (σ0

ij, X̄
0
i andT̄ 0

i ) components. The dots over variable mean derivation with respect
to the temporal variable (i.e. one or two dots denote first or second derivative). The symbolρ
means the material density. The displacementūf

i is defined by the sum of̄uL
i andūNL

i , which
denote first and second order (i.e. linear and non-linear) terms of displacements, respectively.
V is the volume domain andS is the domain where surface forces are applied.

Now, considering the aforementioned background and employing assumptions 3) to 6) in
Eq. (1) it is possible to obtain the general linearized Principle of Virtual Work for a beam with
an arbitrary state of initial stresses in the following form:

WT =

∫
V

σijδε
L
ijdV +

∫
V

σ0
ijδε

NL
ij dV −

∫
S

T̄ 0
i δu

NL
i dS −

∫
V

X̄0
i δu

NL
i dV−

−
∫

V

(
X̄i

)
δuL

i dV −
∫

S

T̄iδu
L
i dS +

∫
V

(
ρüL

i

)
δuL

i dV = 0,
(2)

W0
T =

∫
V

σ0
ijδε

L
ijdV −

∫
V

X̄0
i δuidV−

∫
S

T̄ 0
i δuidS = 0, (3)

Eq. (2) is subjected to the constraint Eq. (3), which implies the condition of self-equilibrium
of initial stresses and initial volume and surface forces. The first term of Eq. (2) denotes
the virtual work due to internal forces, the second term gives the virtual work due to initial
stresses, the third and fourth terms are the virtual work of initial volume and surface forces due
to non linear components of displacement field, the fifth and sixth terms are the virtual work
of incremental volume and surface forces due to linear components of displacement field. The
seventh term of Eq. (2) is the virtual work of inertial forces, whereρ is the material density and
üL

i are the acceleration components of a point. Clearly dots over variables should be interpreted
as derivation with respect to the time.εL

ij are the typical linear strain components, whereasεNL
ij

are non linear strains components, given by the following expressions:

εL
ij =

1

2

(
∂uL

j

∂xi

+
∂uL

i

∂xj

)
, εNL

ij
∼=

1

2

(
∂uNL

j

∂xi

+
∂uNL

i

∂xj

)
+

1

2

(
∂uL

h

∂xi

∂uL
h

∂xj

)
. (4)

The higher-order strain components due to second-order displacements are neglected in the
Green-Lagrange strain tensor (Piovan and Cortínez, 2007; Kim et al., 2005).

2.2 Kinematic relationships

Taking into account assumptions 1), 2) and 5) it is possible to develop the general displace-
ment field, for an arbitrary point of a curved beam (including first-order and second-order terms
of rotation parameters), in the following form:

uL
x

uL
y

uL
z

 =


uxc − ωΦW

uyc

uzc

+

 0 −Φ3 Φ2

Φ3 0 −Φ1

−Φ2 Φ1 0


0
y
z

 , (5)


uNL

x

uNL
y

uNL
z

 =

 −Φ2
3 − Φ2

2 Φ1Φ2 Φ1Φ3

Φ1Φ2 −Φ2
1 − Φ2

3 Φ2Φ3

Φ1Φ3 Φ2Φ3 −Φ2
1 − Φ2

2


0
y
z

 , (6)
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where,ω is the warping function of a beam ,ΦW , Φ1, Φ2 and Φ3 are defined in terms of
rotational and warping parameters as follows:

Φ1 = φx, Φ2 = θy, Φ3 = θz −
uxc

R
, ΦW = θx +

θy

R
(7)

In the previous equations,uxc, uyc, uzc are the displacements of the reference center;φx is
the twisting angle;θy andθz are bending rotational parameters, and finallyθx is a measure of
the warping intensity.

The warping function of a beam with curved axis can be approximated (Yang and Kuo, 1987)
in the following form:

ω = ω̄F , with F =
R

R + y
, (8)

where,ω̄ is the warping function of the straight beam, which is case dependent of the material
gradation function (i.e. the variation of the shear modulus of elasticity) and can be calculated
solving the following differential equations (Lekhnitskii, 1981):

∂

∂z

(
1

Gxy

∂ψ

∂z

)
+

∂

∂y

(
1

Gxz

∂ψ

∂y

)
= −2Θ,

∂

∂z

(
Gxz

∂ω̄

∂z

)
+

∂

∂y

(
Gxy

∂ω̄

∂y

)
−Θ

(
z
∂Gxy

∂y
− y

∂Gxz

∂z

)
= 0,

(9)

where,Gxy andGxz are the shear moduli that can vary according to the given rule;Θ is a
prescribed twisting angle per unit length employed to normalize the warping function andψ is
the so called Prandtl stress function employed to define the shear stressesτxy andτxz in terms
of its spatial derivatives. These equations are subjected to the following boundary conditions:

ψ = 0, on Λ0,

∂ω̄

∂n
=

(
∂ψ

∂z
+ ΘGxyz,−

∂ψ

∂y
−ΘGxzy

)
× n̂u, on Λ0.

(10)

In Eq. (10), Λ0 is the contour of the cross-section,n̂u is the unit vector normal to the cross-
sectional contour and∂ (•)/∂n is the normal derivative operator.

Normally if shear moduli are graded with a general expression,ω̄ has to be calculated with
numerical or computational approaches; however under certain particular conditions and type
of gradations,̄ω may be deduced with a closed form solution (Lekhnitskii, 1981).

The most representative strain components are given by:

εL
xx =

(
∂uL

x

∂x
+
uL

y

R

)
F , 2εL

xy =

(
∂uL

y

∂x
− uL

x

R

)
F +

∂uL
x

∂y
, 2εL

xz =
∂uL

z

∂x
F +

∂uL
x

∂z
, (11)

εNL
xx =

(
∂uNL

x

∂x
+
uNL

y

R

)
F +

1

2

(∂uL
x

∂x
+
uL

y

R

)2

+

(
∂uL

y

∂x
− uL

x

R

)2

+

(
∂uL

z

∂x

)2
F2, (12)
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2εNL
xy =

(
∂uNL

y

∂x
− uNL

x

R

)
F +

∂uNL
x

∂y

+

[
∂uL

x

∂y

(
∂uL

x

∂x
+
uL

y

R

)
+
∂uL

y

∂y

(
∂uL

y

∂x
− uL

x

R

)
+

(
∂uL

z

∂y

∂uL
z

∂x

)]
F ,

(13)

2εNL
xz =

(
∂uNL

z

∂x
F +

∂uNL
x

∂z

)
+

[
∂uL

x

∂z

(
∂uL

x

∂x
+
uL

y

R

)
+
∂uL

y

∂z

(
∂uL

y

∂x
− uL

x

R

)
+

(
∂uL

z

∂z

∂uL
z

∂x

)]
F ,

(14)

Now, substituting Eqs. (5)-(7) into Eqs (11)-(14) and neglecting the higher order terms, the
linear and non linear components of strain may be written in the following form:

εL
xx = [εD1 + zεD2 − yεD3 − ωεD4]F ,

2εL
xy =

[
εD5 +

∂ω̄

∂y
εD7 −

(
z +

∂ω̄

∂y

)
εD8

]
F ,

2εL
xz =

[
εD6 +

∂ω̄

∂z
εD7 +

(
y − ∂ω̄

∂z

)
εD8

]
F ,

(15)

εNL
xx =

F
2

[
y (Φ′

1Φ2 + Φ1Φ
′
2) + z (Φ′

1Φ3 + Φ1Φ
′
3)−

y (Φ2
1 + Φ2

3)

R
+
zΦ2Φ3

R

]
+

F2

2

[
(εD1 + zεD2 − yεD3 − ωεD4)

2 +

(
εD6 + yεD8 −

y +R

R
Φ2

)2
]

F2

2

[(
εD5 − zεD8 +

y +R

R
Φ3 +

ωΦW

R

)2
]
,

2εNL
xy = F

[
(−Φ′

2Φ3 + Φ2Φ
′
3)
z

2
− Φ1Φ2

2
+

Φ1Φ3z

2R
− Φ3εD1 + Φ3Φ

′
Wω

]
+

+F
[
Φ1εD6 − ΦW

∂ω

∂y
(εD1 + zεD2 − yεD3 − ωεD4)

]
,

2εNL
xz = F

[
(Φ′

2Φ3 − Φ2Φ
′
3)
y

2
− Φ1Φ3

2
− Φ1Φ3y

2R
+ Φ2 (εD1 − Φ′

Wω)

]
+

+F
[
−Φ1εD5 − ΦW

∂ω

∂z
(εD1 + zεD2 − yεD3 − ωεD4)− Φ1ΦW

ω

R

]
,

(16)

In Eqs. (15)-(16) the following definitions are introduced:

εD1 = u′xc +
uyc

R
, εD2 = θ′y −

φx

R
, εD3 = θ′z −

u′xc

R
, εD4 = θ′x +

θ′y
R
,

εD5 = u′yc − θz, εD6 = u′zc + θy, εD7 = φ′x − θx, εD8 = φ′x +
θy

R
,

(17)

The apostrophes in Eqs. (15)-(17) mean derivation with respect to thex-variable.
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2.3 Motion equations

In order to obtain the motion equations the principle of virtual works given in Eq. (2) is
shrunk into the following form:

δTU + δTG1 + δTG2 + δTK + δTEF = 0 (18)

where,δTU , δTG1, δTG2, δTK andδTEF are the virtual work of internal forces (due to strain),
the virtual work due to initial initial stresses, the virtual work due to initial forces, the virtual
work of inertial forces, and the virtual work done by external forces, respectively. These terms
may be written as follows:

δTU =

∫
L

[QxδεD1 +MyδεD2 +MzδεD3 +BδεD4] dx+∫
L

[QyδεD5 +QzδεD6 + TwδεD7 + TsvδεD8] dx,
(19)

δTG1 = δ

∫
L

[
M0

z

2

(
Φ2

1 + Φ2
3

R
− Φ′

1Φ2 − Φ1Φ
′
2

)]
dx+

δ

∫
L

[
M0

y

2

(
Φ2Φ3

R
+ Φ′

1Φ3 + Φ1Φ
′
3

)]
dx+

δ

∫
L

[
(d̄a)

T B0
ad̄a + (d̄b)

T B0
b d̄b + (d̄c)

T B0
c d̄c

]
dx+

δ

∫
L

[
M0

x

2

(
Φ′

2Φ3 − Φ2Φ
′
3 −

Φ1Φ3

R

)]
dx+

δ

∫
L

[
Q0

y

(
Φ1εD6 − Φ3εD1 −

Φ1Φ2

2

)]
dx+

δ

∫
L

[
Q0

z

(
Φ2εD1 − Φ1εD5 −

Φ1Φ3

2

)]
dx+

δ

∫
L

[
Q0

zω

(
Φ2Φ

′
W +

Φ1ΦW

R

)
−Q0

yω (Φ3Φ
′
W )

]
dx+

δ

∫
L

[
T 0

wΦW εD1 + T 0
wzΦW εD2 + T 0

wyΦW εD3 + T 0
wωΦW εD4

]
dx,

(20)

δTG2 = −
∫
L

[
X̄0

1δuxc + X̄0
3δθz + X̄0

5δθy + X̄0
6δφx

]
dx (21)

δTK =

∫
L

[M1δuxc +M2δuyc +M3δθz +M4δuzc +M5δθy +M6δφx +M7δθx] dx (22)

δTEF = −
∫
L

[P1δuxc + P2δuyc + P3δθz + P4δuzc + P5δθy + P6δφx + P7δθx] dx (23)
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In Eq. (19) the internal forcesQx, My, Mz, andB are axial force, bending moment iny-
direction, bending moment inz-direction, and bi-moment, respectively; whereas the internal
forcesQy, Qz, Tw, andTsv are shear force iny-direction, shear force inz-direction, twisting
moment due to warping and twisting moment due to pure torsion, respectively. These internal
forces are defined as stress-resultant in the following form:

{Qx,My,Mz, B} =

∫
A

σxx {1, z,−y,−ω} dydz,

{Qy, Qz} =

∫
A

{σxy, σxz} dydz,

Tw =

∫
A

(
σxy

∂ω̄

∂y
+ σxz

∂ω̄

∂z

)
dydz,

Tsv =

∫
A

[
−σxy

(
z +

∂ω̄

∂y

)
+ σxz

(
y − ∂ω̄

∂z

)]
dydz.

(24)

In Eq. (20), Q0
x, M0

y , M0
z , B0, Q0

y, Qz, T 0
w, T 0

sv andM0
x (=T 0

sv + T 0
w) are the initial forces

and moments defined in the same form of Eq. (24) but respect to the initial stress state, i.e.
substitutingσij by σ0

ij. On the other handQ0
yω,Q0

zω, T 0
wy, T 0

wz, T
0
wω are generalized initial shear

stress resultants defined according to the following expressions:

{
T 0

w, T
0
wz, T

0
wy, T

0
wω

}∫
A

(
σ0

xy

∂ω̄

∂y
+ σ0

xz

∂ω̄

∂z

)
{1, z,−y,−ω} dydz{

Q0
yω, Q

0
zω

}∫
A

ω
{
σ0

xy, σ
0
xz

}
dydz

(25)

On the other handB0
a, B0

b andB0
c are matrices containing generalized initial normal stress

resultants. These matrices and the vectorsd̄a, d̄b, andd̄c are defined as follows:

B0
a =

∫
A

σ0
xxF(ḡa)T ḡadydz, ḡa = {1, z,−y,−ω} (26)

B0
b =

∫
A

σ0
xxF(ḡb)T ḡbdydz, ḡb =

{
1, y,−R + y

R

}
(27)

B0
c =

∫
A

σ0
xxF(ḡc)T ḡcdydz, ḡc =

{
1,−z, R + y

R
,
ω

R

}
(28)

d̄a = {εD1, εD2, εD3, εD4}T , d̄b = {εD5, εD8,Φ2}T , d̄c = {εD6, εD8,Φ3,ΦW}T (29)

In Eq. (21) the functionsX̄0
j , j = 1, 3, 5, 6 associated with the initial volume forces are

calculated with the following expressions:

X̄0
1 = −N

0
1

R2
uxc +

N0
1

R
θz +

N0
3 +N0

4

2R
θy −

N0
6

2R
φx

X̄0
3 =

N0
1

R
uxc −N0

1 θz −
N0

3 +N0
4

2
θy +

N0
6

2
φx

X̄0
5 =

N0
3 +N0

4

2R
uxc −

N0
3 +N0

4

2
θz −N0

2 θy −
N0

5

2
φx

X̄0
6 = −N

0
6

2R
uxc +

N0
6

2
θz −

N0
5

2
θy −

(
N0

1 +N0
2

)
φx

(30)

M. PIOVAN, S. DOMINI1542

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



where {
N0

1 , N
0
2 , N

0
3

}
=

∫
A

{
yX̄0

y , zX̄
0
z , yX̄

0
z

} dydz
F{

N0
4 , N

0
5 , N

0
6

}
=

∫
A

{
zX̄0

y , yX̄
0
x, zX̄

0
x

} dydz
F

(31)

The inertia forcesMj, j = 1, ..., 7, introduced in Eq. (22) are defined in terms of the accel-
erations in the following form:

M1

M2

M3

M4

M5

M6

M7


=



I11 0 I13 0 I15 0 I17
I22 0 0 0 I26 0

I33 0 I35 0 I37
I44 0 I46 0

I55 0 I57
sym I66 0

I77





üxc

üyc

θ̈z

üzc

θ̈y

φ̈x

θ̈x


(32)

where:

I11 = Jρ
11 −

2Jρ
13

R
+
Jρ

33

R2
, I13 = Jρ

13 −
Jρ

33

R
, I15 = Jρ

12 +
Jρ

14

R
− Jρ

23

R
− Jρ

34

R2
,

I17 = Jρ
14 −

Jρ
34

R
, I22 = I44 = Jρ

11, I26 = −Jρ
12, I33 = Jρ

33,

I35 = Jρ
23 +

Jρ
34

R
, I37 = Jρ

34, I46 = −Jρ
13, I55 = Jρ

22 +
2Jρ

24

R
+
Jρ

44

R2
,

I57 = Jρ
24 +

Jρ
44

R
, I66 = Jρ

22 + Jρ
33, I77 = Jρ

44.

(33)

The coefficientsJρ
ik, i, k = 1, ..., 7 are defined according to:

Jρ
ik =

∫
A

ρḡa
i ḡa

k

dydz

F
, ḡa = {1, z,−y,−ω} . (34)

The external distributed forcesPj, j = 1, ..., 7 introduced in Eq (23) can be written, in terms
of general volume forces (i.e.̄Xx, X̄y andX̄z), in the following form:

{P1,P3,P5,P7} =

∫
A

X̄x

{
y +R

R
, z − ω

R
,−y,−ω

}
dydz

F
,

{P2,P4,P6} =

∫
A

{
X̄y, X̄z, X̄zy − X̄yz

} dydz
F

.
(35)

Now performing the conventional steps of variational calculus in Eq. (18), it is possible to
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arrive to the following differential system of seven equations:

− ∂

∂x

[
Qx −

Mz

R
+ G0

11

]
+ G0

10 − X̄0
1 +M1 − P1 = 0,

− ∂

∂x

[
Qy + G0

21

]
+
Qx

R
+ G0

20 +M2 − P2 = 0,

− ∂

∂x

[
Mz + G0

31

]
−Qy + G0

30 − X̄0
3 +M3 − P3 = 0,

− ∂

∂x

[
Qz + G0

41

]
+ G(0)

40 +M4 − P4 = 0,

− ∂

∂x

[
My + G0

51 +
B

R

]
+Qz +

Tsv

R
+ G0

50 − X̄0
5 +M5 − P5 = 0,

− ∂

∂x

[
Tsv + Tw + G0

61

]
− My

R
+ G0

60 − X̄0
6 +M6 − P6 = 0,

− ∂

∂x

[
B + G0

71

]
− Tw + G0

70 +M7 − P7 = 0,

(36)

subjected to the following boundary equations:

−
(
Q̄x −

M̄z

R

)
+

(
Qx −

Mz

R

)
+ G0

11 − S̄0
1 = 0, or δuxc = 0,

−Q̄y +Qy + G0
21 = 0, or δuyc = 0,

−M̄z +Mz + G(0)
31 − S̄0

3 = 0, or δθz = 0,

−Q̄z +Qz + G(0)
41 = 0, or δuzc = 0,

−
(
M̄y −

B̄

R

)
+

(
My −

B

R

)
+ G(0)

51 − S̄0
5 = 0, or δθy = 0,

−M̄x +Mx + G(0)
61 − S̄0

6 = 0, or δφx = 0,

−B̄ +B + G(0)
71 = 0, or δθx = 0

(37)

where: Q̄x, Q̄y, Q̄z, M̄z, M̄y, M̄x andB̄ are prescribed forces acting on the boundaries.S̄0
j ,

j = 1, 3, 5, 6, are initial surface forces.G0
j1 andG0

j0, j = 1, ..., 7 are forces that collect all
the initial stress resultants associated with the corresponding variational variable. Due to space
reasons the expressions ofG0

j1 andG0
j0 are not provided.

2.4 Constitutive equations in terms of strain components

The stress-strain relations are connected with the distribution of the material constituents in
the graded configuration of the cross section. Generally for functionally graded materials, the
constitutive stress-strain relations can be represented in the following form (Malekzadeh et al.,
2010):

σxx = Exx (y, z) εL
xx, σxy = Gxy (y, z) 2εL

xy, σxz = Gxz (y, z) 2εL
xz, (38)

where,Exx (y, z) is the longitudinal elasticity modulus, whereasGxy (y, z) andGxz (y, z) are
the transversal elasticity moduli. It should be mentioned that,Gxy (y, z) andGxz (y, z) may
be affected by given coefficients (κxy, κxz) in order to enhance the characterization of shear
stresses, as it is done in the classic Timoshenko beam theory or in other first order shear the-
ories (Malekzadeh et al., 2010). In recent articles (Filipich and Piovan, 2010; Piovan et al.,
2008) some approaches to calculate the aforementioned coefficients are introduced for in-plane
problems.
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Now substituting Eq. (15) into Eq. (38) and then into Eq. (24), the internal forces can be
represented in terms of generalized strains as follows:

Q̄ = J.D̄ (39)

where:

Q̄ = {Qx,My,Mz, B,Qy, Qz, Tw, Tsv}T ,

D̄ = {εD1, εD2, εD3, εD4, εD5, εD6, εD7, εD8}T ,
(40)

J̄ =



J11 J12 J13 J14 0 0 0 0
J12 J22 J23 J24 0 0 0 0
J13 J23 J33 J34 0 0 0 0
J14 J24 J34 J44 0 0 0 0
0 0 0 0 J55 J56 J57 J58

0 0 0 0 J56 J66 J67 J67

0 0 0 0 J57 J67 J77 J78

0 0 0 0 J58 J68 J78 J88


(41)

Jik =

∫
A

Exxḡa
i ḡa

kFdydz, i, k = 1, 2, 3, 4

Jhl =

∫
A

[
Gxyḡb

hḡb
l +Gxzḡc

hḡc
l

]
Fdydz, h, l = 5, 6, 7, 8

(42)

ḡa = {1, z,−y,−ω} ,

ḡb =

{
1, 0,

∂ω̄

∂y
,−z − ∂ω̄

∂y

}
,

ḡc =

{
0, 1,

∂ω̄

∂z
, y − ∂ω̄

∂z

}
.

(43)

The Eq. (39) allows to calculate forces in terms of generalized strains. Moreover, it is pos-
sible to employ Eq. (39) to calculate the forces associated to initial stresses, if vectorD̄ of
generalized incremental deformations, is substituted byD̄0

, i.e. the vector of generalized initial
deformations.

2.5 An analytical solution

Under certain conditions it is possible to obtain a simple analytical solution of Eq. (36) for
a free vibration problem. Thus in absence of a state of initial stresses and for the following
boundary conditions at the ends:

uyc = uzc = φx = Qx = My = Mz = B = 0 (44)

the displacements given in Eq. (5) can be represented by means of the following expression:

uxc = C1 cos[Ωt] cos [knx] ,
uyc = C2 cos[Ωt] sin [knx] ,
θz = C3 cos[Ωt] cos [knx] ,
uzc = C4 cos[Ωt] sin [knx] ,
θy = C5 cos[Ωt] cos [knx] ,
φx = C6 cos[Ωt] sin [knx] ,
θx = C7 cos[Ωt] cos [knx] ,

(45)
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whereΩ is the circular frequency measured in rad/seg,Ci, i = 1, ..., 7 are amplitude coefficient
and

kn =
nπ

L
, n = 1, 2, 3, ... (46)

Then, substituting Eq. (45) in Eq. (36) and manipulating algebraically it is possible to arrive
to the following frequency equation:∣∣k2

nM 1JMT
1 − kn

(
M 1JMT

2 −M 2JMT
1

)
M 0 + M 2JMT

2 − Ω2Mm

∣∣ = 0 (47)

where,M 1, M 2 andM 0 are defined as follows:

M 1 =



1 0 −1/R 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 1/R 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0


(48)

M 2 =



0 0 0 0 0 0 0 0
1/R 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1/R
0 −1/R 0 0 0 0 0 0
0 0 0 0 0 0 −1 0


(49)

M 0 = Diag [−1, 1,−1, 1,−1, 1,−1] (50)

On the other hand matricesMm andJ are the ones defined in Eq. (32) in Eq. (41), respec-
tively.

3 FINITE ELEMENT FORMULATION

In order to solve problems of static, dynamic and buckling with several boundary conditions,
off-axis loading and arbitrary material gradation; iso-parametric finite elements with five nodes
are employed. It is clear that five-nodes elements imply approximation of quadric order. The
vector of nodal displacements̄Ue can be arranged in the following form:

Ūe =
{

Ū(1)
e , ..., Ū(5)

e

}
(51)

where:

Ū(j)
e =

{
uxcj

, uycj
, θzj

, uzcj
, θyj

, φxj
, θxj

}
, j = 1, ..., 5 (52)

Then, the variablesuxc, uyc, θz, uzc, θy, φx andθx can be interpolated along the element in
the following compact form as:

Ui =
5∑

j=1

f
(5)
j Ū(j)

ei , j = 1, ..., 5, i = 1, ..., 7 (53)
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Wheref (5)
j is the shape function of thejth-node of the element, whereasŪ(j)

ei is the correspond-

ing nodal displacement in thejth-node. The iso-parametric shape functionsf
(5)
j , j = 1, ..., 5,

can be found in every finite element textbook (Bathe, 1982). From the previous equations, it is
clear thatU1 = uxc, U2 = uyc, U3 = θz, U4 = uzc, U5 = θy, U6 = φx andU7 = θx.

Now, substituting Eq. (51) into Eq. (18) and applying the conventional steps of finite element
procedures, it is possible to arrive to the following general finite element equation:

(K + KG) W̄ + M ¨̄U = P̄ (54)

whereK , KG and M are global matrices of elastic stiffness, geometric stiffness, and mass,
respectively; whereas̄W , ¨̄U andP̄ are the global vectors of nodal displacements, nodal accel-
erations and nodal forces. In order to obtain the initial stresses, equation Eq. (55) has to be
employed before any other calculation. This equation corresponds to the finite element form
of the self-equilibrium condition of initial stresses, initial volume and surface forces given in
Eq. (3):

KW̄0
= P̄0

, (55)

In the previous Eq. (55), W̄0
andP̄0

are the global vector of initial nodal displacements and
the global vector of initial volume and surface forces, respectively.

Eq. (54) can be modified in order to account for "a posteriori" structural proportional Rayleigh
damping given by:

CRD = αM + ηK . (56)

The coefficientsα andη in Eq. (23) can be computed from two experimental modal damping
coefficients (namely,ξ1 andξ2) for the first and second frequencies according to the common
methodology presented in the bibliography related to finite element procedures (Bathe, 1982)
and vibration analysis (Meirovith, 1997). Remember thatM is the global mass matrix andK is
the global elastic stiffness matrix.

For the case of free vibration analysis, the general Eq. (54) can be reduced to the following
eigenvalue equation when damping effects are neglected and harmonic motion is prescribed.(

K + λKG − Ω2M
)

W̄∗
= Ō (57)

whereΩ = 2πf, f is the natural frequency measured in hertz andλ is a parameter appropri-
ately defined, in terms of beam-stress-resultants, for the characterization of initial stresses. It
is possible to see that Eq. (54) allows the computation of natural frequencies (Ω or f) of beams
subjected or not (this impliesλ = 1 orλ = 0) to arbitrary initial stresses. On the other hand, the
same equation can be utilized to calculate buckling loads when the conditionf = 0 is imposed.

4 COMPUTATIONAL STUDIES

In the present section a numerical testing of the procedure as well as parametric studies are
performed in order to check the validity and usefulness of the beam model and its finite element
approach.

Tab.1 shows the properties of different metallic (Steel SUS302 and aluminium) and ceramic
(AluminaAl2O3 and Silicon carbideSiC) materials to be employed in the next sections. The
hypothesis of proportionality between longitudinal modulus and transversal modulus is em-
ployed in some cases to calculate the remaining elastic properties, according to recent works
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Properties Steel Alumina Aluminium Silicon Carbide

Longitudinal Modulus of elasticity (GPa) 214 390 67 302
Transversal Modulus of elasticity (GPa) 80.0 137 — —
Poisson’s coefficient — — 0.33 0.17
Density (Kg/m3) 7800 3200 2700 3200

Table 1: Material properties for metallic and ceramic components.

in the technical literature (Chakraborty et al., 2003; Filipich and Piovan, 2010; Kapuria et al.,
2008).

4.1 Convergence check

The first example corresponds to a convergence test of the finite element developed. The
curved beam properties are such thatR = 1.0 m, L = 1.0 m, with a rectangular cross section
of b = 0.05 m, h = 0.01 m. The material properties are varying from a metallic surface
(SUS302 atz = −h/2) to a ceramic surface (Alumina atz = h/2) according to the following
exponential law:

Exx = Ece
[−Λ1( 1

2
− z

h)], Gxy = Gxyce
[−Λ2( 1

2
− z

h)], Gxz = Gxzce
[−Λ3( 1

2
− z

h)], (58)

where:

Λ1 = Ln

[
Ec

Em

]
, Λ2 = Ln

[
Gxyc

Gxym

]
, Λ3 = Ln

[
Gxzc

Gxzm

]
. (59)

In the previous equations,Ec andEm are the longitudinal modulus of elasticity of the ceramic
and the metallic materials, whereasGxyc andGxzc are the shear transverse modulus of elasticity
of the ceramic material andGxym andGxzm are the shear transverse modulus of elasticity of the
metallic material.

R/L Approach Number of f1 f2 f3 f4

Elements

0.5 Analytical 18.695 118.727 286.438 520.956
FEM 2 18.695 118.771 289.763 529.443

5 18.695 118.726 286.434 520.866
10 18.695 118.726 286.43 520.812

1.0 Analytical 29.735 130.674 298.776 533.684
FEM 2 29.742 130.714 301.352 570.91

5 29.742 130.673 298.749 533.705
10 29.742 130.673 298.746 533.659

1.5 Analytical 31.919 132.929 301.083 536.057
FEM 2 31.938 132.968 303.476 571.626

5 31.938 132.928 301.02 536.077
10 31.938 132.928 301.017 536.034

Table 2: Convergence test of the first four frequencies [Hz] of a simply supported curved beam.

In Tab.2 the convergence of the first four frequencies is presented. Thus, at least with five
element one can guarantee differences lower than 1.00% in the first four frequencies, when they
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are compared with the test values. In this case the test values were the frequencies calculated
with the analytical solution of the subsection 2.5.

4.2 Comparisons with experimental data:the case of a straight beam

The curved beam model developed in Section 2 can be reduced to the case of a straight
beam if the conditionR → ∞ is imposed. Then as a first example the values of free vibration
frequencies obtained experimentally byKapuria et al.(2008) are compared with the frequen-
cies calculated with the present model reduced to the straight beam case. Thus, Fig.2 shows a
cantilever beam with five layers composed by different mixtures of aluminium and silicon car-
bide (see Tab.2 for properties). The thickness of each layer is 2 mm whereas the depth of the
cross section is 15 mm. The constitutive law to calculate the longitudinal modulus of elasticity
is given in Eq. (60), which is a variety of the two-constituents rule of mixtures (Finot et al.,
1996), whereas the variation of the density and Poisson’s coefficient can be characterized with
the classic linear rule of mixtures given by Eq. (61).

Exx =
[VmEm (qσ + Ec) + (1− Vm) (qσ + Em)Ec]

[Vm (qσ + Ec) + (1− Vm) (qσ + Em)]
(60)

p = Vmpm + Vcpc (61)

whereVm andVc are the volumetric proportions of metallic and ceramic constituents, respec-
tively. Em andEc are the longitudinal modulus of elasticity of metallic and ceramic con-
stituents, respectively.p, pm andpc identify, in a generic sense, the property of a FGM, the
property of metallic constituent and the property of the ceramic constituent, respectively. Fi-
nally, qσ is the ratio of stress to strain transfer between the metallic and ceramic phases:

qσ = −σc − σm

εc − εm

(62)

If qσ = ∞, which means equal strain transfer, Eq. (60) can be reduced to Eq. (61). The value
of qσ for the materialAl/SiC has been experimentally determined to be 91.6 GPa (Kapuria
et al., 2008).

Figure 2: Experimental sample of the layered Al/SiC beam.

Tab. 3 shows the comparison of the first four natural frequencies obtained experimentally
by Kapuria et al.(2008) and the finite element approach introduced in the present paper. The
experimental data of three samples and their media are contrasted with a numerical model of
4 finite element of 5 nodes. It is possible to see a quite good correlation of the finite element
approach with the experimental data.
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Freq Sample 1 Sample 2 Sample 3 Experiments Present FE
Media Approach

1 1433 1365 1441 1413 1424
2 8422 8075 8462 8320 8339
3 18388 18142 18411 18314 17737
4 21589 20970 21882 21480 21369

Table 3: Natural frequencies [Hz] of a Al/SiC straight layered beam. Comparison of experimental values (Kapuria
et al., 2008) and the present approach.

4.3 Comparisons with other approaches

This section describes the comparison of the present model with other curved beam model
(Malekzadeh, 2009; Tufekci and Yasar Dogruer, 2006). The beam is isotropic with equal height
and depth (b = h), such that the Poisson’s coefficient isµ = 0.3, the shear stiffness is affected
by a shear correction coefficientks = 0.85 and the geometrical features of the beam are such
thatSr = R/h

√
12 = 100 (Tufekci and Yasar Dogruer, 2006). In the solved examples, the

following non-dimensional frequency parameter is used,

Ω̄i = Ω1R
2

√
I44
J22

, i = 1, 2, 3. (63)

Angle Approach Ω̄1 Ω̄2 Ω̄3

Malekzadek (2010) 19.398 54.014 105.611
60 Tufekci (2006) 19.402 54.031 105.651

present 19.442 54.093 105.707
Malekzadek (2010) 4.452 12.825 25.984

120 Tufekci (2006) 4.451 12.826 25.989
present 4.471 12.885 26.064

Malekzadek (2010) 1.805 5.198 10.918
180 Tufekci (2006) 1.804 5.198 10.918

present 1.817 5.239 10.984

Table 4: Comparison of the first three non-dimensional natural frequency parameter.

Tab.4shows the non-dimensional natural frequency parameters of a clamped-clamped curved
beam. It is possible to see a quite good agreement of the three approaches; in fact differences
in percentage not higher than 0.6% have been observed.

The second example corresponds to the comparison of the present model with a full 3D
approach in curved beam with graded properties varying from an inner metallic core (steel) to
a ceramic (alumina) phase at both external surfaces (i.e.z = ±z/2). The curved beam is such
thatR = 1 m andh = 2b = 0.02 m. The variation of properties has the following form:

p = pm + (pc − pm)

∣∣∣∣2zh
∣∣∣∣n (64)

where as in the previous section,p, pm andpc identify, in a generic sense, the property of a FGM,
the property of metallic constituent and the property of the ceramic constituent, respectively.
The term generic property, means indistinctly the longitudinal modulus of elasticityExx or the
densityρ or the Poisson’s coefficientµ, etc;n is the power index of the variation law.
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n h/L Approach f1 f2 f3 f4

1 0.025 1D FEM 20.37 117.27 341.79 674.63
3D FEM 20.42 118.15 343.46 680.43

0.1 1D FEM 320.19 1969.96 5402.62 10334.6
3D FEM 322.31 1980.57 5469.64 10401.7

10 0.05 1D FEM 59.8 366.66 1026.53 2000.33
3D FEM 59.37 362.97 1020.52 2012.39

0.1 1D FEM 237.25 1461.48 4015.65 7669.83
3D FEM 237.74 1462.73 4046.95 7713.62

Table 5: Comparison between 3D and curved beam approaches of the first four out-of-plane natural frequencies

Tab.5 shows the comparison of the full 3D approach and the present curved beam model.
The full 3D calculation is performed with a flexible 3D general solver (called FlexPDE) of
partial differential equations with in the context of the finite element method. In this solver one
can easily cope with the complex material laws to be included in the structural model as well as
the model it self (see http://www.pdesolutions.com andRamirez and Piovan(2009) for further
explanations). The agreement is good and the differences in percentage no higher than 2% have
been observed.

4.4 Dynamics of curved beams constructed with FGM

In this section parametric studies of the dynamics of curved beams constructed with FGM
are carried out. All the numerical computations are performed with a curved beam having
b = 5h = 0.05m, L = 1m and with graded properties varying in the exponential form given in
Eq. (58), from a metallic phase (steel, atz = −h/2) to a ceramic phase (alumina, atz = h/2).

Figure 3: Variation of the first and second frequencies with the ratioR/L

In Fig. 3 and Fig.4 one can see the variation of the first to the fourth frequencies of curved
beams with doubly simply supported, doubly clamped and clamped-free boundaries, with re-
spect to the ratioR/L. This implies a variation from a very curved beam to a straight beam as
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Figure 4: Variation of the third and fourth frequencies with the ratioR/L

R/L → ∞. In Fig. 4 one can see a different behavior in the variation of the4th mode, this is
due to the cross-over phenomenon that occurs in curved beams due to a different geometry (i.e.
stiffness,R andL), changing the mode shape to another.

Figure 5: Variation of the1st and2nd frequencies with the ratioR/L

Fig. 5 shows the variation of the1st and2nd frequencies with respect to the ratioR/L of a
simply supported curved beam. A comparison of the three laws of functionally graded materials
given in Eq. (58), Eq. (64) and Eq. (65) is performed.

p = pm + (pc − pm)

(
1

2
+
z

h

)n

(65)
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As in the previous sections,p, pm andpc identify, in a generic sense, the property of a FGM,
the property of metallic constituent and the property of the ceramic constituent, respectively.

5 CONCLUSIONS

A general model for curved beams constructed with functionally graded materials was de-
rived. The model has been deduced applying the linearized Principle of Virtual Work based on a
displacement field with first- and second-order terms. The displacement has been conceived to
take into account shear flexibility in a full form. In the Principle of Virtual Work, arbitrary states
of initial stresses and initial volume and surface forces, general initial off-axis forces have been
considered. The present model can be employed for dealing with general dynamic and stability
problems as well as general static problems of functionally graded curved beams. The model
can be decoupled if appropriate restrictions in the geometry and the gradation of material prop-
erties are settled. Also the curved beam model can be reduced to a straight beam model. The
model is quite efficient and predicts very well experimental results as well as results of full
3D finite element approaches. This point is very important if time cost is crucial, especially in
active control and structural optimization which is the topic of the next development.
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