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Abstract. In this paper the vibration patterns of slender structures with curved axis are addressed. A
survey on the literature concerning dynamics of beams with non-homogeneous or functionally graded
properties shows that there is a lack of papers devoted to the vibration analysis of curved beams made
of graded materials. This problem was tackled by a few authors through two-dimensional approaches
where material properties can vary in the radial direction. In-plane bending motions were analyzed with
those approaches. However one dimensional models developed to study the out-of-plane motion of FGM
curved beams are practically absent in the technical literature. The scope of this article is twofold. The
first one is related to the introduction of a linear model of non-homogeneous curved beams containing
out-of-plane and in-plane motions. The second topic consists in studying the vibration patterns of dif-
ferent graded materials and geometrical parameters under the presence of initial stresses states. The
model is developed by adopting a consistent displacement field which incorporates second order rota-
tional terms. The model also incorporates the shear flexibility due to bending and warping due to twisting
effects. A finite element is developed to solve dynamic problems. The model contains several straight
beam theories as well as curved beam theories as particular cases. Some comparisons with the available
experimental data of the literature are performed in order to illustrate the predictive features of the model.
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1 INTRODUCTION

Non-homogeneous materials with properties that can vary gradually along a given direction
have emerged as an alluring option to solve the problem of high stress gradients (both normal
and tangential) induced in specimens constructed with layers of two or more different materials
(e.g. metals and ceramics). It was observed that some layered configurations may lead to stress
gradients in the material such that it can undergo into debonding or the presence of cracks or a
general failure. The concept of a material with graded properties was explored firstly in the early
seventies to design effective thermal barriers in turbine blades. Later, in the middle eighties, in
Japan, the name functionally graded materials has been established associated with a particular
manufacturing process. Thereafter there has been a remarkable interest in uses and applications
of these materials, especially in high technology military crafts, aerospace actuators, special
sensors and medical uses as well. In the last ten or twelve years, many researchers focused
their attention to study shells and solids constructed with FGM. In the woRedfly and Chin
(1998, Reddy (2000, Praveen et al(1999, Kitipornchai et al.(2004), Hosseini Kordkheili
and NaghdabadP007 among others, one can see interesting studies about non homogeneous
shells, plates and solids with graded properties. Relevant and interesting researches about func-
tionally graded straight beams can be found in the recent workhakraborty et al(2003,

Goupee and Vg2006, Ding et al.(2007) andLu et al.(2008, among others. In these papers
different laws that characterize the gradation of the material properties in the cross-sections
have been employed. The gradation of properties can be represented in en exponential form
or with a power law or any other with "ad-hoc" purposes. In the aforementioned papers three
dimensional or a two dimensional models representing a beam were developed. On the other
hand there are quite a few papers devoted to study functionally graded curved Ibegden

(2007) carried out a study on a curved beam by means of an approximation to a two dimensional
description based in the hypothesis of plane streddakkzadel{2009 carried out studies for
in-plane vibrations of arches in the context of bi-dimensional formulatifeekzadeh et al.

(2010 developed a model for out-of-plane vibrations of curved beams made of FGM consider-
ing thermal effectsPiovan et al(2008 developed a one dimensional model of curved beams
appealing to the variational principle of Hellinger-Reissiéipich and Piovar(2010 deduced

a theory of thick arches employing a classical strength of material approach. However these last
two models were restricted to in-plane motions. Apparegtinfiee et al(2006 were the first

in developing a theory incorporating in-plane and out-of-plane motions in a curved beam made
of FGM; however this model was employed to calculate only buckling loads, moreover shear
flexibility was not incorporated and dynamic problems were not addressed.

The aim of the present paper is focused to develop a one dimensional model of curved beams
with general graded properties. The model is conceived to incorporate in unified fashion in-
plane and out-of-plane motions. In order to avoid misunderstandings, these concepts imply
the motion in the plane of the beam curvature (the case usually analyzed) and the motions
normal to that plane, that is, out-of-plane motions. The shear flexibility is taken into account.
The twisting and warping effects are considered as well. It has to be mentioned that very few
papers in the literature incorporate warping and twisting neither in the context of functionally
graded or non-homogeneous curved beams nor in straight beam. The model is developed by
adopting a displacement field which incorporated linear and second order terms. The linearized
principle of virtual works is employed in order to obtain the motion equations. The model
consists of a set of seven differential equations elastically coupled; however depending on the
type of elastic gradation and the features of the cross-section the full system can be decoupled
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into two subsystems, thus representing in-plane motions and out-of-plane motions. The model
is discretized with an isoparametric finite element. Problems of statics, free vibrations with
or without presence of initial stresses. Comparisons with the available experimental data are
performed as well.

2 MODEL DEVELOPMENT

In Fig. 1 a sketch of the curved beam is shown. The principal reference @agkocated at
the geometric center of the cross-section, where:thgis is tangent to the circumferential axis
of the beam, whilg; andz are the axes belonging to the cross-section, but not necessarily the
principal ones. The present curved beam theory is based on the following assumptions:

1 The cross-section contour is rigid in its own plane.

2 The warping function is defined with respect to pdiht

3 Material properties can vary with an arbitrary function within the cross-section.

4 The stress tensor, the volume forces and surface forces are composed by initial and incre-
mental terms.

5 The displacement field is described first and second order appealing to semi-tangential
rotations.

6 Inertial effects due to higher order displacements are neglected.

7 Structural damping is considered within the context of finite element method through a
Rayleigh model.

Figure 1: Beam sketch

2.1 Variational formulation

The general expression of the Principle of Virtual Work for a body which presents initial
stresses can be written in the following forlivgshizy 1968:

/a{;éeijdV—/ (Xif—mjzf) 5ﬂde—/ﬂf5a{dS:0, (1)
\4 1% S
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Whereaf is the displacement vectar,, is the Green-Lagrange strain tensq@r,is the second

Piola-Kirchhof stress tensak is the vector of volume forces, afld is the vector de surface
forces.afj, X/ andT/ are defined by the sum of the corresponding incremenfalX; andT))
and initial ¢;, X? andT?) components. The dots over variable mean derivation with respect
to the temporal variable (i.e. one or two dots denote first or second derivative). The symbol
means the material density. The displacemgnis defined by the sum af* andaN*, which
denote first and second order (i.e. linear and non-linear) terms of displacements, respectively.
V' is the volume domain anfl is the domain where surface forces are applied.

Now, considering the aforementioned background and employing assumptions 3) to 6) in
Eq. () it is possible to obtain the general linearized Principle of Virtual Work for a beam with

an arbitrary state of initial stresses in the following form:

Wr = / oi0ehdV + / ogdentdV — / TP5ulNtdS — / X26uNEdV —
4 \%4 \4

s (2)
- / (X;) dufdv — / TisurdS + / (piif') dufdV =0,
\4 S \%4
Wy = / oy 0eldV — / X26u,dV — / TP6u;dS = 0, (3)
\% 14 S

Eq. () is subjected to the constraint E@),(which implies the condition of self-equilibrium
of initial stresses and initial volume and surface forces. The first term of Efddnotes
the virtual work due to internal forces, the second term gives the virtual work due to initial
stresses, the third and fourth terms are the virtual work of initial volume and surface forces due
to non linear components of displacement field, the fifth and sixth terms are the virtual work
of incremental volume and surface forces due to linear components of displacement field. The
seventh term of Eq.2) is the virtual work of inertial forces, whereis the material density and
il are the acceleration components of a point. Clearly dots over variables should be interpreted
as derivation with respect to the tin‘g; are the typical linear strain components, whem#{s
are non linear strains components, given by the following expressions:

ot Ou; + Ouy N L Ou” + Oui™ 41 Ouy; Duy : 4
K 2 6177, al'j T 2 (’hz 8Ij 2 8@ 8Ij
The higher-order strain components due to second-order displacements are neglected in the
Green-Lagrange strain tensétigvan and Corting2007 Kim et al,, 2005.

2.2 Kinematic relationships

Taking into account assumptions 1), 2) and 5) it is possible to develop the general displace-
ment field, for an arbitrary point of a curved beam (including first-order and second-order terms
of rotation parameters), in the following form:

uk u,, — why 0 —®3 D 0
uy b= Uy, + | @3 0 &, y oy, (5)
ul u,, —-®, @ 0 z

’LLiVL —q)g — CI)% (I)lq)g (I)lq)g 0

Ui,VL = ¢, P, —(I)% - @% Py P Y (s (6)
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where,w is the warping function of a beam®y,, ®,, ®, and ®; are defined in terms of
rotational and warping parameters as follows:

ul’c 0
Di=¢p D=6, By=0.- 2 Dy =0,+ 7)

In the previous equations,,., u,., u.. are the displacements of the reference centgiis
the twisting anglef, andé, are bending rotational parameters, and finéllys a measure of
the warping intensity.

The warping function of a beam with curved axis can be approximataayand Kug1987)
in the following form:

where,w is the warping function of the straight beam, which is case dependent of the material
gradation function (i.e. the variation of the shear modulus of elasticity) and can be calculated

solving the following differential equationgékhnitskii, 1981):
0 1 oy 0 1 oy
— =)+ = — ) =-2
9= <ny az) T oy (Gm ay) ©,

o (., 0w\ 0 (. 0o 0Gry  0G.\
2 (62) + oy (G ) ~0 (55 —v52) =0

where,G,, and G, are the shear moduli that can vary according to the given flés a
prescribed twisting angle per unit length employed to normalize the warping function esnd
the so called Prandtl stress function employed to define the shear strgsasedr,. in terms

of its spatial derivatives. These equations are subjected to the following boundary conditions:

9)

w = O, on Ao,
i o o . (10)
% = (E + @G:cyza _a_y - @zey) X My, on AO'

In Eq. (10), A, is the contour of the cross-section, is the unit vector normal to the cross-
sectional contour and (e) /On is the normal derivative operator.

Normally if shear moduli are graded with a general expressidmas to be calculated with
numerical or computational approaches; however under certain particular conditions and type
of gradationsw may be deduced with a closed form solutibeKhnitskii, 19817).

The most representative strain components are given by:

oul  ul our our
L — et Y 2 L — Yy Tz x 2) L — 7z x 11
Cac <8x +R>j:’ Coy <8x R>f+ dy ' Caz 8x]:+ 0z’ (11)

2 2
ouNL  ulk 1 oul  ul oul ol Oul\?
NL _ z v Z T 4 Y B T 7z 2
y _<8x+R F+2 or TR) "\ R +(8x) 7, (12)
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(13)

oul [ out ué 8u5 6u5 uk oul oul F
Yo\l "r) T\ ®) T oy )|

oul [out ul duy [oul  uk oul out p (14)
oo\ "R) T e TR) T\ )|
Now, substituting Eqs.5)-(7) into Egs (1)-(14) and neglecting the higher order terms, the
linear and non linear components of strain may be written in the following form:

L
e = [ep1 + 2€p2 — yep3 — wepy] F,

0w ow
L _ ow _ et
2e,, = {6,35 + By €p7 (z + Gy) ED8:| F, (15)
Ow ow
26962 = |:5D6 + &{:“D? + (y - g) 5D8:| ./T,
NL F / / , , y (07 4 @3)  20yP3
€oo = 5 |Y(P1 P2+ P1Dy) + 2 (P1 D5 + D1 Py) — +
2 R R
7| +R_\’
> (ep1 + 2€p2 — YeD3 — W€D4)2 + (SDG + Yeps — Y R ‘1)2)
F? y+ R wby\°
> €ps — 2Epg Tt R Q3 + R )
b, b,
2:NL — [(—cbgcbg + Dy DY) g - 12 2 4 ;R?’Z — Dyepy + <I>3<I>’Ww} + (16)
Ow
+F {(1)15136 - (I)Wﬁ_y (ep1 + zep2 — yeps — W5D4):| ;
[OM ) o,
2Nl = F [(cbgcbg — 0y®) S - — 4 B (e - %w)} +
Oow w
+F | —Pieps — Pw— (ep1 + zeép2 — yep3 — wepy) — P1 Py — |,
0z R
In Egs. (L5)-(16) the following definitions are introduced:
/ uyc / ¢$ / ugvc / GZ/J
ED1 = Uy T R 2 =0y T pheps =0 e m—i‘eR; (17)
€ps = U;,c —0.,eps = U;c + 0y75D7 = ¢; —0y,eps = ¢; + %,

The apostrophes in Eqsl9)-(17) mean derivation with respect to thevariable.
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2.3 Motion equations

In order to obtain the motion equations the principle of virtual works given in Eqis(
shrunk into the following form:

0Ty +0Tch + 0T + 0T + 0T = 0 (18)

where, 07y, 0761, 67a0, 0T andd Ty are the virtual work of internal forces (due to strain),
the virtual work due to initial initial stresses, the virtual work due to initial forces, the virtual
work of inertial forces, and the virtual work done by external forces, respectively. These terms
may be written as follows:

5TU — / [Qx(sng —|— My5€D2 + M25€D3 + Bd€D4] dx+

L (19)
/ [Qyoeps + Q-0eps + Twdepr + Toydeps| d,
L

MY (D2 + &2
T = 5/{ ( s 3—(1)’1<I>Q—<I>1<I>’2)1dx+

2 R

M) (D,
{Ty ( ;3 + O\ Dy + @@5” da+

>

>

[(do)"B2d, + (dy)"Byd, + (d.)"BYd,] dz+
q)f?’)} dz+
Q2 ((IDIED(S — ®3ep1 — (I)lfz)} dz+

o
= (@’2@3 — By, —

>

(20)

>

[ (OX )
QY (@25[)1 — ®ieps — 12 3)] dx+

DDy,

o2

b\h\h\hih\b\h\ t

>

[To®wepr + T, Pweps + Ty, Pweps + T, Pwepa] da,

5T = _/ [)‘(ﬁ’éuxc + X366, + X266, + Xgéqu] da (21)

L

57[{ = / [./\/lléuxc + MQ(S’LLyC + Mgdez + ./\/14(5uzc + M559y + M65¢x + M7(59x] dx (22)

L

(STEF = — / [Pléuxc + PQ(SUyC + P359z + 7745ch + P5(59y + PG(SQSQ; + P7(59x] dx (23)

L
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In Eq. 19) the internal forces),, M,, M., andB are axial force, bending moment in
direction, bending moment in-direction, and bi-moment, respectively; whereas the internal
forces@,, Q., T.,, andTy, are shear force ig-direction, shear force in-direction, twisting
moment due to warping and twisting moment due to pure torsion, respectively. These internal
forces are defined as stress-resultant in the following form:

{Qm,My,MZ,B}:/Um{l,z, —y, —w}dydz,
A

{an@z}:/A{ny7sz}dde7

0w 0w
T, = /A (axya —i—ama >dydz

o 0
To= | |- 7 _ _
v [ o (s 55) oo (v 5) e

In Eq. 20), Q%, M), M2, B°, @), Q., Ty, Ty, and M) (=T, + T,) are the initial forces
and moments deflned in the same form of E214) (but respect to the initial stress state, i.e.
substitutings;; by o;. On the other han@)) ,, Q2,,, T»),. Ty., Ty, are generalized initial shear
stress resultants deflned according to the following expressions:

(24)

(I) ow

{TO, wzr wy7 w}/( a $28_> {1,2’,—y7—u)}dydz
{Qy“” 2w }/Aw{gﬂﬁy’ a:z}dydz

On the other han®?, B andB’ are matrices containing generalized initial normal stress
resultants. These matrices and the veatiQrsl,, andd, are defined as follows:

(25)

Bg = / ng}"(ga)Tgadde, 0" ={1,z,—y,—w} (26)
A
B~ [ obr@rdan ¢ = {1 -7 7
A R
0 0 (x\Tre ¢ R+y w
BC = O_xxf(g ) g dde, g = 17 ) ) D (28)
A R 'R
d, = {eo1, €02, €p3, €pa}’ Oy = {€ps, cg, P2}, de = {eps, cn8, P3, P} (29)

In Eq. 21) the functionsf(?, j = 1,3,5,6 associated with the initial volume forces are
calculated with the following expressions:

)—(0 NO +N09 NO‘FNZ(B 6¢

1 — %2 Uge [ﬁ T

_ N0+N0

xg_— N°9 s LAY 6%

30)

_ NO 4+ NO NO 4+ NO NO (
Xg: 32—’_R 4uxc_ 3;— 49 Noe 9 ¢oc

0 Ne? NO NE? 0 0

X5 = — e + 9 0—(N + NY) ¢,
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where

dydz

R RO B B G

(31)
(VNN = [ (XD R X0 i
A

The inertia forces\;, j = 1, ..., 7, introduced in Eq.42) are defined in terms of the accel-
erations in the following form:

( Ml ) [ 111 0 Ilg O 115 O .[17 | ( umc )

MQ ]22 0 O 0 IQG 0 uyc

M3 I3 0 I35 0 I3 0
M4 — I44 0 I46 0 a"zc (32)

Ms Iss 0 Is; 0,

Mg sym Iss O o

\ M7 7 L ]77 . \ 9:13

where:
QJﬁ J% J% Jia J% Ji
Iy =Jf — R +ﬁ’ 113:J{)3_E7 -715*J1p2+§—§—ﬁ,
2 ‘L% P p P
Il? = J14 - f; ]22 = ]44 = Jn, ]26 = _J12, 133 = ‘]337
(33)
P J?,;Dél 7 P P 2J§4 ‘]54
I35 - J23 + f) ]37 = ‘]347 146 = _J13a ]55 = JQQ R + = Rza
14 Jf4 14 14 P
Is7 = Joy + R’ log = Joo + Jy3,  I77 = Jyy
The coefficients/!,, i, k = 1, ..., 7 are defined according to:
JAdydz
J'Lp]g = / pgz gk f- ) g = {17 zZ, Y, —(.U} . (34)
A

The external distributed forcg?;, j = 1, ..., 7 introduced in EqZ3) can be written, in terms
of general volume forces (i.€X,, X, and.X.,), in the following form:

+ R dyd
{Pl,Pg,P5,P7} / {y—wz_%v_ya _wj ‘yFZ7

{P27P477)6}:/{ Y Z7X
A

(35)

Now performing the conventional steps of variational calculus in E§), (t is possible to
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arrive to the following differential system of seven equations:

M _
— Qx_ +g111+glo X(1)+M1_7D1:0a

% [Qy+ G5 + )

0
_% [Mz+g§1] _Qy+ggg_X3+M3—P3:O,
9]

—5 [Q- + 0] + gff” + My — Py =0, (36)
)

B _
——LM y+ 0o+ }—FQZ GO = XS4+ My —Ps =0,

x+ggo+M2_P2—0

ox

M, _

Ty + Ty + GO —7+980—x2+M6—P6=07
0

—% [B+Q$1] —Tw+Q$0+M7—P7:O,

subjected to the following boundary equations:

5 |

~ Mz Mz =0

_(Qz_ R)+(Qx_ R)—i—g?l—S‘:O, or 5“10207
_Qy+Qy+g31:0, or 5UyC:O,
M.+ M, +G6% -8 =0, or 86,=0

__Qz + Qz + gi(l)) = 07 or (5uzc - O, (37)

B B _
_(My—§>+<My—E)+g§?—ngo, or 60, =0,
M+ M, + G - =0, or 6¢,=0,
—B+B+g§?):0, or d0,=0

where: Q.., Q,, Q., M., M,, M, and B are prescribed forces acting on the boundarfé?s.

j = 1,3,5,6, are initial surface forcesg:, and 30, = 1,...,7 are forces that collect all

the initial stress resultants associated Wrth the corresponding variational variable. Due to space
reasons the expressrons@:ﬁ andgj, are not provided.

2.4 Constitutive equations in terms of strain components

The stress-strain relations are connected with the distribution of the material constituents in
the graded configuration of the cross section. Generally for functionally graded materials, the
constitutive stress-strain relations can be represented in the following kbateKzadeh et al.

2010:

= Eacx (ya ) S Ogy = ny (ya )2€xy7 Ogz = Gzz (y7 )263;,27 (38)

where, E,., (y, z) is the longitudinal elasticity modulus, whereds, (v, z) andG,. (y, z) are

the transversal elasticity moduli. It should be mentioned t&af,(y, z) and G, (y, z) may

be affected by given coefficients,(, ~,.) in order to enhance the characterization of shear
stresses, as it is done in the classic Timoshenko beam theory or in other first order shear the-
ories (Malekzadeh et al.2010. In recent articlesKilipich and Piovan201Q Piovan et al.

2008 some approaches to calculate the aforementioned coefficients are introduced for in-plane
problems.
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Now substituting Eq.X5) into Eq. 38) and then into Eq.44), the internal forces can be
represented in terms of generalized strains as follows:

Q=JD (39)
where:

Q {Qwﬂ MZvB Qy7szTw7Tsv}

(40)
{5D175D275D375D4a5D575D675D7a5D8}
[ Ju Ji2 iz Jiu 00 0 0]
Jig Jag Joz Jy 0O 0 0 O
Jig Joz Jzz Jy O 0 0 0
= | Jia Ju Jza Juu 00 0 O
= 0 0 0 0 Js5 Js6 Js7 Jss (41)
0 0 0 0 Jsg Josg Jor Jor
0 0 0 0 Jsz Jor Jrr Jrs
| 0 0 0 0 Jsg Jes Jrs Jss |
T = / B g Fdydz, i k=1,2,34
A (42)
In = / (Goy@07 + Go:050] Fdydz, h,1=5,6,7,8
A
ga = {1’827’ -V, _w%i
¢ =41,0%20 o2
g ) ’8 ) Z 8y M (43)

The Eq. B9) allows to calculate forces in terms of generalized strains. Moreover, it is pos-
sible to employ Eq.39) to calculate the forces associated to initial stresses, if vetof
generalized incremental deformations, is substitute@ooy.e. the vector of generalized initial
deformations.

2.5 An analytical solution

Under certain conditions it is possible to obtain a simple analytical solution of3Bjfdr
a free vibration problem. Thus in absence of a state of initial stresses and for the following
boundary conditions at the ends:

uyc:uzc:¢m:Qx:My:Mz:B:O (44)
the displacements given in Edp)(can be represented by means of the following expression:

Uze = Cy cos|[Qt] cos [kyx],
Uy = Cy cos[Q] sin [k, x]
0, = C; cos[2] cos [kyz]
Uye = Cycos[Q] sin [k,z], (45)
6, = C5 cos[Qt] cos [k,x],
¢ = Cg cos|Qt] sin [k,z]
0, = C7 cos[Qt] cos [k,z]
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where( is the circular frequency measured in rad/ség; = 1, ..., 7 are amplitude coefficient
and

n=1,23,.. (46)

Then, substituting Eq46) in Eq. (36) and manipulating algebraically it is possible to arrive
to the following frequency equation:

|k2M1IMT =k, (M1IMZ — M2IMT) Mg 4+ MIMJ — QM | = 0 (47)

where, M, M, andM are defined as follows:

10 -1/R 0 0000
00 0 0 1000
00 1 0 0000
Mi=|00 0 0 0100 (48)
01 0 1/R 0000
00 0 0 00T1°1
(00 0 1 000 0]
0 0 00 0 0 0 0 ]
/R 0 00 0 0 0 0
0O 0 00-10 0 0
My=| 0 0 00 0 0 0 0 (49)
O 0 00 0 1 0 1/R
0 —-1)R 00 0 0 0 0
0 0 00 0 0 -1 0 |
Mo = Diag[~1,1,—1,1,—1,1, 1] (50)

On the other hand matricés,, andJ are the ones defined in EQZ) in Eq. @1), respec-
tively.

3 FINITE ELEMENT FORMULATION

In order to solve problems of static, dynamic and buckling with several boundary conditions,
off-axis loading and arbitrary material gradation; iso-parametric finite elements with five nodes
are employed. It is clear that five-nodes elements imply approximation of quadric order. The
vector of nodal displacemenitt, can be arranged in the following form:

0, = {Ug”, Uf)} (51)
where:

Uij) = {uzcj7uy6g'7ezjauZijeyj’¢zj’6%‘} , J=L..5 (52)

Then, the variables,,, u,., 0., u.., 0,, ¢, andd,, can be interpolated along the element in
the following compact form as:

U= 5009 =15 =17 (53)

Jj=1
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Wherefj@ is the shape function of thg"-node of the element, Whereagf) is the correspond-

ing nodal displacement in thg"-node. The iso-parametric shape functiq@@,j =1,..,5,
can be found in every finite element textbo®athe 1982. From the previous equations, it is
clear that/; = Uge, Ug = Uyes Us=0,U;=1u,,Us = Hy, Ug = be andU7 =0,.

Now, substituting Eg.X1) into Eq. (L8) and applying the conventional steps of finite element
procedures, it is possible to arrive to the following general finite element equation:

(K+Kg)W+MU=P (54)

whereK, K andM are global matrices of elastic stiffness, geometric stiffness, and mass,

respectively; wheread/ , U andP are the global vectors of nodal displacements, nodal accel-
erations and nodal forces. In order to obtain the initial stresses, equatiobtdpas to be
employed before any other calculation. This equation corresponds to the finite element form
of the self-equilibrium condition of initial stresses, initial volume and surface forces given in

Eq. @):

KW’ =P’ (55)

In the previous Eq.55), W’ andP’ are the global vector of initial nodal displacements and
the global vector of initial volume and surface forces, respectively.

Eq. (54) can be modified in order to account for "a posteriori” structural proportional Rayleigh
damping given by:

CRD =aM + T]K (56)

The coefficientsr andn in Eq. (23) can be computed from two experimental modal damping
coefficients (namelys; and&;) for the first and second frequencies according to the common
methodology presented in the bibliography related to finite element proced@atiss (1982
and vibration analysigeirovith, 1997). Remember tha¥l is the global mass matrix an€ is
the global elastic stiffness matrix.

For the case of free vibration analysis, the general &4). ¢an be reduced to the following
eigenvalue equation when damping effects are neglected and harmonic motion is prescribed.

(K +AKg — *°M)W* = O (57)

where() = 2xf, f is the natural frequency measured in hertz and a parameter appropri-

ately defined, in terms of beam-stress-resultants, for the characterization of initial stresses. It
is possible to see that Ecp4) allows the computation of natural frequenciésdr f) of beams
subjected or not (this implies = 1 or A = 0) to arbitrary initial stresses. On the other hand, the
same equation can be utilized to calculate buckling loads when the confditioris imposed.

4 COMPUTATIONAL STUDIES

In the present section a numerical testing of the procedure as well as parametric studies are
performed in order to check the validity and usefulness of the beam model and its finite element
approach.

Tab.1 shows the properties of different metallic (Steel SUS302 and aluminium) and ceramic
(Alumina Al,O3 and Silicon carbides'iC) materials to be employed in the next sections. The
hypothesis of proportionality between longitudinal modulus and transversal modulus is em-
ployed in some cases to calculate the remaining elastic properties, according to recent works
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| Properties | Steel| Alumina [ Aluminium [ Silicon Carbide]
Longitudinal Modulus of elasticity@Pa) | 214 390 67 302
Transversal Modulus of elasticityz(Pa) 80.0 137 — —
Poisson’s coefficient — — 0.33 0.17
Density (K g/m?) 7800 | 3200 2700 3200

Table 1: Material properties for metallic and ceramic components.

in the technical literatureGhakraborty et al.2003 Filipich and Piovan201Q Kapuria et al,
2008.

4.1 Convergence check

The first example corresponds to a convergence test of the finite element developed. The
curved beam properties are such that 1.0 m, L = 1.0 m, with a rectangular cross section
of b = 0.05 m, h = 0.01 m. The material properties are varying from a metallic surface
(SUS302 at = —h/2) to a ceramic surface (Alumina at= h/2) according to the following
exponential law:

Emz = Ece[_Al(%_%)]a G:ry = G:vyce[_AQ(%_%)]y Gzz = zece[_Afs(%_%ﬂu (58)

where:

E.
Al:Ln|:E

m

nyc Gaczc :| ‘ (59)

:| ’ ? " |:G$ym:| ’ ’ " [zem

In the previous equationg,. andF,, are the longitudinal modulus of elasticity of the ceramic
and the metallic materials, where@s,. andG,.. are the shear transverse modulus of elasticity
of the ceramic material an@,,,, andG,..,,, are the shear transverse modulus of elasticity of the
metallic material.

R/L | Approach Numberof f; fa f3 fa
Elements
0.5 | Analytical 18.695| 118.727| 286.438| 520.956
FEM 2 18.695| 118.771| 289.763| 529.443
5 18.695| 118.726| 286.434| 520.866
10 18.695| 118.726| 286.43 | 520.812
1.0 | Analytical 29.735| 130.674| 298.776| 533.684
FEM 2 29.742| 130.714| 301.352| 570.91
5 29.742| 130.673| 298.749| 533.705
10 29.742| 130.673| 298.746| 533.659
1.5 | Analytical 31.919| 132.929| 301.083| 536.057
FEM 2 31.938| 132.968| 303.476| 571.626
5 31.938| 132.928| 301.02 | 536.077
10 31.938| 132.928| 301.017| 536.034

Table 2: Convergence test of the first four frequencies [Hz] of a simply supported curved beam.

In Tab. 2 the convergence of the first four frequencies is presented. Thus, at least with five
element one can guarantee differences lower than 1.00% in the first four frequencies, when they
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are compared with the test values. In this case the test values were the frequencies calculated
with the analytical solution of the subsection 2.5.

4.2 Comparisons with experimental data:the case of a straight beam

The curved beam model developed in Section 2 can be reduced to the case of a straight
beam if the conditiol? — oo is imposed. Then as a first example the values of free vibration
frequencies obtained experimentally Kgpuria et al. (2008 are compared with the frequen-
cies calculated with the present model reduced to the straight beam case. ThasHegs a
cantilever beam with five layers composed by different mixtures of aluminium and silicon car-
bide (see TalR2 for properties). The thickness of each layer is 2 mm whereas the depth of the
cross section is 15 mm. The constitutive law to calculate the longitudinal modulus of elasticity
is given in Eq. 60), which is a variety of the two-constituents rule of mixtur€npt et al,

1996, whereas the variation of the density and Poisson’s coefficient can be characterized with
the classic linear rule of mixtures given by EG1).

[VmEm (% + EC) + (1 - Vm) (QJ + Em) EC]
Vin (4o + Ec) + (1 = Vin) (4o + E)]

Eup = (60)

b= vmpm + ‘/cpc (61)

whereV,, andV, are the volumetric proportions of metallic and ceramic constituents, respec-
tively. E,, and E. are the longitudinal modulus of elasticity of metallic and ceramic con-
stituents, respectivelyp, p,, andp. identify, in a generic sense, the property of a FGM, the
property of metallic constituent and the property of the ceramic constituent, respectively. Fi-
nally, ¢, is the ratio of stress to strain transfer between the metallic and ceramic phases:

Oc —Om

Qo = — (62)

Ee — Em
If ¢, = oo, which means equal strain transfer, E&)(can be reduced to EgGT). The value

of ¢, for the materialAl/SiC' has been experimentally determined to be 91.6 GRa|(ria
et al, 2008.

AlSiC

6040
70f3o;_
80120

3010 80 mm

o0 el Be-

Figure 2: Experimental sample of the layered Al/SiC beam.

Tab. 3 shows the comparison of the first four natural frequencies obtained experimentally
by Kapuria et al.(2008 and the finite element approach introduced in the present paper. The
experimental data of three samples and their media are contrasted with a numerical model of
4 finite element of 5 nodes. It is possible to see a quite good correlation of the finite element
approach with the experimental data.
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Freq| Sample 1| Sample 2| Sample 3| Experiments Present FE
Media Approach
1 1433 1365 1441 1413 1424
2 8422 8075 8462 8320 8339
3 18388 18142 18411 18314 17737
4 21589 20970 21882 21480 21369

Table 3: Natural frequencies [Hz] of a Al/SiC straight layered beam. Comparison of experimental Kalpesd
et al, 2008 and the present approach.

4.3 Comparisons with other approaches

This section describes the comparison of the present model with other curved beam model
(Malekzadeh2009 Tufekci and Yasar Dogrug006. The beam is isotropic with equal height
and depth{ = 1), such that the Poisson’s coefficienis= 0.3, the shear stiffness is affected
by a shear correction coefficieht = 0.85 and the geometrical features of the beam are such
thatS, = R/hv/12 = 100 (Tufekci and Yasar Dogrug006. In the solved examples, the
following non-dimensional frequency parameter is used,

_ I
Q; = QlR%/ﬁ,i =1,2,3. (63)

| Angle | Approach ] | Q]
Malekzadek (2010) 19.398| 54.014| 105.611
60 Tufekci (2006) | 19.402| 54.031| 105.651

present 19.442| 54.093| 105.707
Malekzadek (2010) 4.452 | 12.825| 25.984
120 Tufekci (2006) 4451 | 12.826| 25.989

present 4471 | 12.885| 26.064
Malekzadek (2010) 1.805 | 5.198 | 10.918
180 Tufekci (2006) 1.804 | 5.198 | 10.918
present 1.817 | 5.239 | 10.984

Table 4: Comparison of the first three non-dimensional natural frequency parameter.

Tab.4 shows the non-dimensional natural frequency parameters of a clamped-clamped curved
beam. It is possible to see a quite good agreement of the three approaches; in fact differences
in percentage not higher than 0.6% have been observed.

The second example corresponds to the comparison of the present model with a full 3D
approach in curved beam with graded properties varying from an inner metallic core (steel) to
a ceramic (alumina) phase at both external surfacesz(i=e+z/2). The curved beam is such
thatR = 1 m andh = 2b = 0.02 m. The variation of properties has the following form:

n

2z
h
where as in the previous sectignp,, andp,. identify, in a generic sense, the property of a FGM,
the property of metallic constituent and the property of the ceramic constituent, respectively.
The term generic property, means indistinctly the longitudinal modulus of elaskigitpr the
densityp or the Poisson’s coefficient, etc;n is the power index of the variation law.

D= Pm + (pc - pm) (64)
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[n [ h/L JApproach] /i [ o [ £ [ fi |
1 1]0.025| IDFEM | 20.37 | 117.27 | 341.79 | 674.63

3D FEM | 20.42 | 118.15| 343.46 | 680.43

0.1 | 1D FEM | 320.19| 1969.96| 5402.62| 10334.6

3D FEM | 322.31| 1980.57| 5469.64| 10401.7

10| 0.05 | IDFEM | 59.8 | 366.66 | 1026.53| 2000.33

3D FEM | 59.37 | 362.97 | 1020.52| 2012.39

0.1 | 1D FEM | 237.25| 1461.48| 4015.65| 7669.83

3D FEM | 237.74| 1462.73| 4046.95| 7713.62

1551

Table 5: Comparison between 3D and curved beam approaches of the first four out-of-plane natural frequencies

Tab. 5 shows the comparison of the full 3D approach and the present curved beam model.
The full 3D calculation is performed with a flexible 3D general solver (called FlexPDE) of
partial differential equations with in the context of the finite element method. In this solver one
can easily cope with the complex material laws to be included in the structural model as well as
the model it self (see http://www.pdesolutions.com &aanirez and Piova(2009 for further
explanations). The agreement is good and the differences in percentage no higher than 2% have

been observed.

4.4 Dynamics of curved beams constructed with FGM

In this section parametric studies of the dynamics of curved beams constructed with FGM
are carried out. All the numerical computations are performed with a curved beam having
b= 5h = 0.05m, L = 1 m and with graded properties varying in the exponential form given in
Eqg. 68), from a metallic phase (steel, at= —h/2) to a ceramic phase (alumina,at h/2).
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Figure 3: Variation of the first and second frequencies with the fatib

In Fig. 3 and Fig.4 one can see the variation of the first to the fourth frequencies of curved
beams with doubly simply supported, doubly clamped and clamped-free boundaries, with re-
spect to the ratid? /L. This implies a variation from a very curved beam to a straight beam as
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Figure 4: Variation of the third and fourth frequencies with the rajd.

R/L — oo. In Fig. 4 one can see a different behavior in the variation of4tiemode, this is
due to the cross-over phenomenon that occurs in curved beams due to a different geometry (i.e.
stiffness,R and L), changing the mode shape to another.
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Figure 5: Variation of the ** and2"? frequencies with the rati® /L

Fig. 5 shows the variation of th&*t and2¢ frequencies with respect to the ratity L of a
simply supported curved beam. A comparison of the three laws of functionally graded materials
given in EqQ. 68), Eqg. 64) and Eq. 65) is performed.

pzpm+(pc—pm)(
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As in the previous sections, p,,, andp,. identify, in a generic sense, the property of a FGM,
the property of metallic constituent and the property of the ceramic constituent, respectively.

5 CONCLUSIONS

A general model for curved beams constructed with functionally graded materials was de-
rived. The model has been deduced applying the linearized Principle of Virtual Work based on a
displacement field with first- and second-order terms. The displacement has been conceived to
take into account shear flexibility in a full form. In the Principle of Virtual Work, arbitrary states
of initial stresses and initial volume and surface forces, general initial off-axis forces have been
considered. The present model can be employed for dealing with general dynamic and stability
problems as well as general static problems of functionally graded curved beams. The model
can be decoupled if appropriate restrictions in the geometry and the gradation of material prop-
erties are settled. Also the curved beam model can be reduced to a straight beam model. The
model is quite efficient and predicts very well experimental results as well as results of full
3D finite element approaches. This point is very important if time cost is crucial, especially in
active control and structural optimization which is the topic of the next development.
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