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Abstract. Theoretical predictions are given for the mechanical behavior of two-dimensional porous
media comprised of a power-law viscoplastic or ideally plastic matrix containing arandomdistribution
of porosity and subjected tolarge deformations. The predictions follow from a homogenization-based
constitutive theory for two-phase nonlinear composites recently proposed by the author (M.I. Idiart,J.
Mech. Phys. Solids56:2599-2617, 2008). In view of the preliminary results given in this work, it is
conjectured that the new estimates provide more reliable predictions for viscoplastic porous media than
standard Gurson-type models.
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1 INTRODUCTION

Predicting the ductile failure of metals in terms of void nucleation, growth and coalescence
requires a constitutive model for plastic/viscoplastic porous media. Such models must be able
to account for the evolution of the microstructure due to thefinite changes in geometry induced
by the deformation. The most widely accepted model for the plastic behavior of isotropic
porous media is that of Gurson (1977). Extensions of this model have been proposed by several
authors to include the effects of power-law viscoplasticity (e.g., Leblondet al., 1994; Gǎrǎjeu
et al., 2000) and pore anisotropy (e.g., Gǎrǎjeuet al., 2000; Gologanuet al., 1993; Mariani and
Corigliano, 2001). Such micromechanical models are all based on approximate analyses of a
hollow sphere or ellipsoid subject to axisymmetric loadings, and recover the exact result for a
hollow sphere under hydrostatic loading.

In parallel developments, homogenization bounds for power-law porous materials with more
realistic microstructures and subject to general loading conditions have been generated by
means of ‘variational’ methods (Ponte Castañeda, 1991; Willis, 1991; Ponte Castañeda and
Zaidman, 1994) and Hölder’s inequality (Suquet, 1992). Atlow to moderate stress triaxial-
ities, these bounds are generally ‘tighter’ than Gurson models, indicating the inadequacy of
Gurson models to represent shear-dominated deformation processes. At large stress triaxiali-
ties, by contrast, ‘variational’ bounds can be significantly ‘stiffer’ than Gurson models, leading
to unrealistic predictions for pressure-dominated processes. Consequently, efforts have been
concentrated in developing models that satisfy the ‘linearcomparison’ bounds for the entire
range of stress triaxiality, and at the same time, that reproduce Gurson models for isotropic ma-
terials under hydrostatic loadings. A fairly general modelalong these lines has been recently
introduced by Danaset al. (2008a,2008b).

More recently, Idiart (2008a) proposed the use of certain theoretical constructions known
as ‘sequential laminates’, to model the macroscopic behavior of two-phase nonlinear media
with random, ‘particulate’ microstructures, which include porous materials as a special case.
The resulting homogenization estimates have the distinctive feature of beingrealizable, and are
therefore guaranteed to satisfy all pertinent bounds. In addition, when specialized to isotropic
porous materials with a power-law matrix, these estimates reproduce exactly the hydrostatic
behavior of a hollow sphere (Idiart, 2007; 2008a; 2008b), and therefore, the hydrostatic limit of
Gurson models. Thus, this approach delivers fairly generalestimates that meet the requirements
mentioned above. The purpose of this paper is to report preliminar comparisons between the
new estimates of Idiart (2008b) and the aforementioned models.

The common assumption is made that the matrix phase is a purely viscoplastic material
characterized by an incompressible, power-law dissipation potentialw, such that the Cauchy
stressσ and the Eulerian strain rateD are related by

σ =
∂w

∂D
(D), w(D) =







σ0D0

1 + m

(

De

D0

)1+m

if trD = 0,

+∞ otherwise,

(1)

wherem is the so-called strain-rate sensitivity, such that0 ≤ m ≤ 1, σ0 is a flow stress,D0 is a
reference strain rate, and the von Mises equivalent strain rate is given in terms of the deviatoric
part of the strain-rate tensor byDe =

√

(2/3)Dd · Dd. In turn, the von Mises equivalent stress
is defined asσe =

√

(3/2)σd · σd. The limiting values of the exponentm = 1 andm = 0
correspond, respectively, to linearly viscous and rigid-ideally plastic behaviors, see fig.1a. In
the case of ideal plasticity, the potentialw is not differentiable at0, and the derivative in (1)1
should be understood as the subdifferential of convex analysis.
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The material systems of interest here demand anEulerian description of motion. We de-
note byΩ the domain occupied by the specimen in thedeformedconfiguration. The pores are
assumed to berandomlydistributed over the specimen and to have characteristic dimensions
that are much smaller than the size of the specimen and the scale of variation of the applied
loads. It is further assumed that the distribution of pores is statistically uniform and ergodic. At
each step of a deformation process, the spatial distribution of pores withinΩ can be formally
described by a random indicator functionχ(x) that takes the value 1 ifx is in the porous phase,
and 0 otherwise. The ensemble average ofχ(x) represents the one-point probabilityp(x) of
finding a pore atx; the ensemble average of the productχ(x)χ(x′) represents the two-point
probabilityp(x,x′) of finding simultaneously pores atx and atx′. Higher-order multi-point
probabilities can be defined similarly, but will not be considered in this work. Due to the as-
sumed statistical uniformity and ergodicity, the one-point probabilityp(x) can be identified with
the volume fraction of poresf —or porosity— in the deformed configuration. In addition, we
make the simplifying assumption that throughout the deformation process the porosity distribu-
tion is ‘elliptical’, in the sense that the two-point probabilities depend onx andx

′ only through
the combination|Z(x − x

′)|, whereZ is a second-order tensor describing the elliptical distri-
bution, such thatZ = I corresponds to statistical isotropy (see Ponte Castañedaand Zaidman,
1994). During a deformation process, the evolution of the microstructure can be characterized
by the evolving porosity levelf and pore anisotropy tensorZ.

The instantaneous macroscopic response of the porous material is defined as the relation
between the volume averages of the Cauchy stressσ and the Eulerian strain rateD overΩ, and
can be characterized by an effective dissipation potentialw, such that (e.g., Ponte Castañeda
and Suquet, 1998)

σ =
∂w

∂D
(D), w(D) = min

D∈K(D)

1

|Ω|

∫

Ω

(1 − χ(x))w(D) dΩ(x). (2)

In this expression, the overbar denotes averaged quantities, andK is the set of kinematically
admissible strain-rate fields with prescribed volume averageD.

The estimates for the potentialw proposed by Idiart (2008a) are given in Section2; approx-
imate stress-strain-rate relations then follow from (2)1. Although the formulation allows for
fairly general porosity distributions and completely arbitrary loading conditions, the prelimi-
nar comparisons presented here are restricted totwo-dimensional porous media with initially
isotropicporosity, subjected tobiaxial plane-strain deformations

D = D11e1 ⊗ e1 + D22e2 ⊗ e2 (3)

with fixed loading axes. Then, the deformation-induced anisotropy of porosity will have sym-
metry axes aligned with the loading axes throughout the deformation process, and we can write

Z = l−1
1 e1 ⊗ e1 + l−2

2 e2 ⊗ e2, ω =
l2
l1

, (4)

whereω is the aspect ratio of the assumed ‘elliptical’ distribution of porosity, see fig.2b. The
relevant microstructural variables are thereforef andω.

2 HOMOGENIZATION ESTIMATES

2.1 Effective dissipation potential

The central idea behind the estimates proposed by Idiart (2008a) is to approximate the effec-
tive dissipation potential by that of an infinite-rank sequential laminate with the same one- and
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Figure 1: a) Viscous material response for various values of strain-rate sensitivity (m = 0, 0.1, 1); b)
schematic of the problem.

two-point microstructural statistics as those of the porous material. For the material systems
considered here, the resulting estimate requires the solution of the first-order partial differential
equation

f
∂w

∂f
− H

(

D, w,
∂w

∂D

)

= 0, w|f=1 = 0, (5)

where
H

(

D, w, σ
)

= w + max
a(n)

〈a · σn − w
(

D + a ⊗s n
)

〉. (6)

In this last expression,a(n) is a vector-valued function of the unit vectorn, ⊗s denotes the
symmetric part of the tensor product, and

〈·〉 .
=

∫

|n|=1

(·)ν(n)ds(n) (7)

denotes an orientational average. The weighing functionν(n) depends on the angular variation
of the pore distribution functionp(x,x′) in the deformed configuration as characterized by the
tensorZ. An expression forν(n) can be found in Idiart (2008b), see expressions (5) and (6) in
that Ref.

Equation (5) constitutes a nonlinear Hamilton-Jacobi equation where the current porosityf
and the macroscopic strain rateD play the role of ‘time’ and ‘space’ variables, respectively, and
the functionH plays the role of a Hamiltonian. In this regard, note that thematrix behavior,
porosity levelf , and pore distribution functionp(x,x′) are contained in the Hamiltonian (6),
while the behavior of the porous phase dictates the ‘initial’ condition —atf = 1. A solution
strategy to integrate equation (5) numerically has been given by Idiart (2008b).

2.2 Microstructure evolution

When the porous material is subjected to finite deformations, the underlying microstructure
evolves as a result of the finite changes in geometry. This evolution depends on the complex
interaction between the various microstructural variables, the loading conditions and the instan-
taneous constitutive response of the porous material. For the material systems considered here,
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Figure 2: Instantaneous response of isotropic (ω = 1) power-law materials with porosityf = 0.1. The
new estimates (LAM) are compared with the ‘variational’ (VAR) outer bound and the Gurson (GUR)
predictions: a) gauge surfaces for linear (m = 1) and strongly nonlinear (m = 0.1) materials; b) yield
surfaces for an ideally plastic (m = 0) material. Diagonal axes correspond to pure shear (PS) and purely
hydrostatic (PH) loadings.

the most relevant microstructural variables are the porosity levelf and the aspect ratioω of the
assumed ‘elliptical’ distribution of porosity. The evolution laws for these variables are (see, for
instance, Ponte Castañeda and Zaidman, 1994)

ḟ = (1 − f)trD and ω̇ = ω(D
(p)

22 − D
(p)

11 ), (8)

whereD
(p)

ij denote the components of the average strain rate undergone by the porous phase, rel-
ative to the coordinate system shown in fig.1a. Equation (8)1 follows from simple kinematical
arguments, while equation (8)2 requires the additional assumption that, on average, the shape of
the pores has the same aspect ratio as the shape of their distribution —as characterized byZ—
throughout the deformation process. The reader is referredto Ponte Castañeda and Zaidman
(1994) for a discussion on this last assumption.

Within the present formulation, an equation forD
(p)

can be obtained by following the pro-
cedure of Idiart and Ponte Castañeda (2007). The followingfirst-order differential equation is
obtained:

f
∂D

(p)

ij

∂f
−

∂D
(p)

ij

∂D
· 〈a⊗s n〉 = 0, D

(p)

ij |f=1 = Dij , (9)

where the vector functiona(n) is that optimizing the Hamiltonian (6) —and therefore depends

on f andD, but not onD
(p)

. This expression constitutes a linear Hamilton-Jacobi equation

for each componentD
(p)

ij , which can be solved numerically following the solution strategy em-
ployed for equation (5).

3 SAMPLE RESULTS AND DISCUSSION

3.1 Instantaneous response

The effective dissipation potential of a power-law porous material is also a power-law func-
tion of the macroscopic strain rate, with the same strain-rate sensitivitym and reference strain
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rateD0 as the matrix phase. It is commonly represented in terms of cross sections of its Legen-
dre transformw∗. Specifically,

w∗(σ) =
σ0D0

1 + 1/m
, w∗(σ)

.
= sup

D

[

σ · D − w(D)
]

. (10)

Expression (10)1 constitutes a parametric equation for the so-calledgauge surface(in stress
space) introduced by Leblondet al. (1994). Any other cross section ofw∗ represents a homo-
thetic surface to the gauge surface. In the limiting case of ideal plasticity, the gauge surface
reduces to the yield surface of the porous material. For the microstructural symmetry and load-
ing conditions considered here, the relevant stress space is (σ11, σ22).

In fig. 2, the new estimates (LAM) of Section2 are compared with the ‘variational’ (VAR)
estimates of Ponte Castañeda (1991) and the standard Gurson (GUR) model. The VAR esti-
mates are in fact rigorous ‘outer’ bounds for the gauge surface of the class of porous materials
considered here, and they reduce to the generalized Hashin-Shtrikman (HS) bounds of Willis
(1977) when the matrix material is linear. In turn, the GUR model delivers an outer bound for
the yield surface of porous materials with a special class ofmicrostructures known as ‘compos-
ite cylinder assemblages’. However, it is believed that in the hydrostatic limit, the GUR model
may actually deliver an outer bound for isotropic porous materials in general (see, for instance,
Idiart, 2007).

Fig. 2b shows gauge surfaces for isotropic porous materials with alinear (m = 1) and a
strongly nonlinear (m = 0.1) matrix phase. It is observed that, while the linear LAM and VAR
surfaces both coincide with the HS bound, the nonlinear LAM surface is significantly ‘softer’
than the corresponding VAR surface, especially at large stress triaxialities. In fact, the VAR
surface is relatively insensitive to constitutive nonlinearity. It is also noted that the nonlinear
LAM surface deviates considerably from an elliptical shape, and develops a strong curvature on
the hydrostatic axis. This is in contrast with the VAR estimates, as well as with several other
nonlinear estimates proposed in the literature (see, for instance, Michel and Suquet, 1992),
which obey the equation of an ellipse for all values of the nonlinearity. The relevance of the
gauge surface shape stems from the fact that its normal dictates the direction of flow of the
porous material.

The limiting case of ideal plasticity is considered in fig.2c. The LAM surface is seen in
this case to lie not only within the VAR surface but also within the GUR surface. Moreover,
the LAM surface coincides with the GUR surface for hydrostatic loadings, as anticipated. By
contrast, the GUR surface lies outside the VAR surface at lowto moderate triaxialities, while
the VAR surface is significantly ‘stiffer’ than the GUR surface at large triaxialities. More inter-
estingly, however, is the fact that the LAM surface developsa corner on the hydrostatic axis,
in contrast to the VAR and GUR smooth surfaces. It then follows that the direction of flow at
hydrostatic stresses as predicted by the LAM estimates is not uniquely determined; instead, it
is confined by the cone of normals. For a more detailed discussion on this point the reader is
referred to Idiart (2008b).

3.2 Overall response under finite deformations

We now consider a porous material deformed quasi-statically with a constant strain rateD
and up to a prescribed macroscopic strain. At each step in thedeformation process, the effective

potentialw and the average strain rate in the poresD
(p)

are obtained by integrating equations
(5) and (9) with the current value of aspect ratioω and up to the current value of porosityf .
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Figure 3:Overall response of an isotropic (ω = 1) ideally plastic (m = 0) porous material with initial
porosityf0 = 0.1, subjected to finite deformations with strain-rate triaxialities XD = 0.1 andXD =

−0.05. The new estimates (LAM) are compared with the ‘variational’ (VAR) and the Gurson (GUR)
predictions: a) stress-strain response; b) hardening rate; c) porosity; d) void aspect ratio.

The corresponding value of Cauchy stressσ is obtained by evaluating the derivative (2)1 at the
appliedD. Expressions (8) are then invoked to update the microstructural variablesf andω by
a forward-Euler scheme, and the procedure is repeated untilthe desired value of macroscopic
strain is reached.

For simplicity, results are only reported here for the limiting case of ideal plasticity. It is
convenient to define macroscopic loading parameters

De =
|D11 − D22|√

3
, Dm =

D11 + D22

2
, XD =

Dm

De

, (11)

representing the standard equivalent and mean strain rate,and the strain-rate triaxiality, respec-
tively. The macroscopic strain is then defined asεe

.
=

∫ t

0
Dedt. Note thatDe is essentially a

time variable, and that the results for ideally plastic materials are independent ofDe since the
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model is rate-independent. Comparisons are shown in fig.3 for a porous material with an initial
porosity levelf0 = 0.1, subjected to two different loading conditions:

loading A(Dm > 0) :
D11

De

= XD −
√

3

2
,

D22

De

= XD +

√
3

2
, XD = 0.1, (12)

loading B(Dm < 0) :
D11

De

= XD +

√
3

2
,

D22

De

= XD −
√

3

2
, XD = −0.05. (13)

Note that loading A represents a shear deformation with superposed isotropicdilation, while
loading B represents a shear deformation with superposed isotropiccontraction. Note also that
|D22| > |D11| in both loadings.

We begin by noting that the stress-strain curves predicted by the LAM estimates do not differ
significantly from those predicted by the ‘variational’ andGurson estimates, see fig.3a. How-
ever, substantial differences are found between corresponding predictions for the associated
hardening rate1 h(εe), shown in fig.3b. In this connection, it is recalled that for the loadings
considered here, the conditionh(εe) = 0 signals the onset of macroscopic shear-band instabili-
ties (Rice, 1977). Thus, according to the LAM estimates the porous material becomes unstable
at εe ≈ 0.24 for loading A, and atεe ≈ 0.04 for loading B. In contrast, the VAR estimates pre-
dict that the porous material is always stable for loading A,and becomes unstable at the larger
strainεe ≈ 0.087 for loading B, while the GUR estimates predict a stable response for both
loadings. These significantly different predictions can beexplained in terms of the associated
microstructure evolution.

The various predictions for the evolution of porosity and pore aspect ratio are shown in figs.
3c and3d, respectively. All estimates give the same evolution of porosity, which is completely
dictated by the kinematics of the problem. On the other hand,different predictions are obtained
for the evolution of pore aspect ratio. On the one hand, the Gurson estimate predicts a constant
aspect ratioω = 1 —i.e., isotropic porosity— throughout the deformation process,which is
a well-known limitation of this model. On the other hand, theLAM and VAR estimates are
able to capture the expected pore anisotropy induced by the applied deformation. The evolution
of porosity and pore anisotropy play competing roles in the macroscopic hardening rate of
the porous material, and the relative importance of each mechanism varies as the deformation
proceeds.

Under loading A, the porosity increases due to the imposed isotropic dilation, and as a result
the material should soften. At the same time, however, the pores elongate in the 2-direction
—i.e., ω ≥ 1— due to the fact thatD22 > 0 andD11 < 0. As a result, the material should
harden since the larger axis of the pores is aligned with the direction of maximum load. In the
LAM theory, the hardening mechanism overcomes the softening mechanism initially, giving
a positive hardening rate. The situation reverses, however, for sufficiently large strains, and
consequently the hardening rate vanishes at a certain critical strain (εe ≈ 0.24) at which the
predicted behavior becomes unstable. In the VAR theory, thesoftening mechanism overcomes
the hardening mechanism thoughout the deformation process, the hardening rate is thus always
negative, and the predicted behavior remains stable.

Under loading B, the role of each mechanism reverses. Indeed, the porosity decreases due to
the imposed isotropic contraction, and as a result the material should harden. At the same time,

1The hardening rate is calculated via the consistency condition of the plastic porous solid. The VAR and LAM
results follow from the yield surface defined by (10)1, while the GUR results follow from the standard expression
of Gurson’s two-dimensional yield surface as given by expression (3.19) in Gurson (1977).
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however, the pores elongate in the 1-direction —i.e., ω ≤ 1— due to the fact thatD11 > 0 and
D22 < 0. As a result, the material should soften, since the larger axis of the pores is aligned
with the direction of minimum load. In the LAM and VAR theories, the softening mechanism
overcomes the hardening mechanism initially so that the hardening rate is negative, but the
situation reverses at relatively small strains. Consequently, the hardening rate vanishes at a
certain critical strain at which the predicted behavior becomes unstable.

Gurson’s model, in contrast, accounts for one mechanism only: the change in porosity. Con-
sequently, this model cannot capture the subtle interplay between the changes in porosity and
pore anisotropy, and the GUR estimates thus predict stable behaviors under both loading con-
ditions. An extension of Gurson’s two-dimensional model that incorporates the effect of pore
anisotropy was proposed by Mariani and Corigliano (2001). Comparisons between the LAM
theory and Gurson’s extended model will be reported elsewhere.

4 CONCLUDING REMARKS

In view of the above preliminary results, it is conjectured that the estimates derived in this
work provide more reliable predictions for the macroscopicbehavior of porous materials than
standard Gurson models. The validity of this conjecture, however, should be confirmed by thor-
ough comparisons with full-field numerical simulations. Anadmittedly unfavourable criticism
against the new approach is that it may involve considerablecomputations in more general con-
texts, especially at low levels of porosity. In that case, the alternative approach proposed by
Danaset al. (2008a,2008b), which is based on a variational approximation, may result more
appropriate. The relative merits of these two approaches will be assessed in future work.
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