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Abstract. Theoretical predictions are given for the mechanical bienasf two-dimensional porous
media comprised of a power-law viscoplastic or ideally fitasatrix containing aandomdistribution

of porosity and subjected targe deformations. The predictions follow from a homogenizatiased
constitutive theory for two-phase nonlinear compositeemndy proposed by the author (M.1. Idiad,
Mech. Phys. Solid56:2599-2617, 2008). In view of the preliminary resultsegivin this work, it is
conjectured that the new estimates provide more relial@digtions for viscoplastic porous media than
standard Gurson-type models.
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1 INTRODUCTION

Predicting the ductile failure of metals in terms of void leation, growth and coalescence
requires a constitutive model for plastic/viscoplasticqus media. Such models must be able
to account for the evolution of the microstructure due tofthiége changes in geometry induced
by the deformation. The most widely accepted model for ttestp behavior of isotropic
porous media is that of Gurson (1977). Extensions of thisehleave been proposed by several
authors to include the effects of power-law viscoplasti¢#.g, Leblondet al, 1994; Garajeu
et al, 2000) and pore anisotropg.g, Garajeet al., 2000; Gologanet al., 1993; Mariani and
Corigliano, 2001). Such micromechanical models are alkkas approximate analyses of a
hollow sphere or ellipsoid subject to axisymmetric loadingnd recover the exact result for a
hollow sphere under hydrostatic loading.

In parallel developments, homogenization bounds for pdawporous materials with more
realistic microstructures and subject to general loadiogddions have been generated by
means of ‘variational’ methods (Ponte Castaifieda, 1991ljsyWi991; Ponte Castafieda and
Zaidman, 1994) and Holder’s inequality (Suquet, 1992).lo% to moderate stress triaxial-
ities, these bounds are generally ‘tighter’ than Gurson efgydndicating the inadequacy of
Gurson models to represent shear-dominated deformatamegses. At large stress triaxiali-
ties, by contrast, ‘variational’ bounds can be significatdtiffer’ than Gurson models, leading
to unrealistic predictions for pressure-dominated preess Consequently, efforts have been
concentrated in developing models that satisfy the ‘liranparison’ bounds for the entire
range of stress triaxiality, and at the same time, that pre Gurson models for isotropic ma-
terials under hydrostatic loadings. A fairly general moaleing these lines has been recently
introduced by Danast al. (2008a,2008b).

More recently, Idiart (2008a) proposed the use of certa@gottitical constructions known
as ‘sequential laminates’, to model the macroscopic behafi two-phase nonlinear media
with random, ‘particulate’ microstructures, which inceugorous materials as a special case.
The resulting homogenization estimates have the dist@m&ature of beingealizable and are
therefore guaranteed to satisfy all pertinent bounds. thtiath, when specialized to isotropic
porous materials with a power-law matrix, these estimagesoduce exactly the hydrostatic
behavior of a hollow sphere (Idiart, 2007; 2008a; 2008k, terefore, the hydrostatic limit of
Gurson models. Thus, this approach delivers fairly gerestanates that meet the requirements
mentioned above. The purpose of this paper is to reportnpirgdir comparisons between the
new estimates of Idiart (2008b) and the aforementioned fsode

The common assumption is made that the matrix phase is aypussoplastic material
characterized by an incompressible, power-law dissipgtiotentialw, such that the Cauchy
stresso and the Eulerian strain rai@ are related by

D D 1+m
ow 7070 (e if trD = 0
o=25MD). wD)=3 Trm <D0) s ) (1)
+00 otherwise,

wherem is the so-called strain-rate sensitivity, such that m < 1, o is a flow stressD, is a
reference strain rate, and the von Mises equivalent stadnis given in terms of the deviatoric
part of the strain-rate tensor By, = /(2/3)D, - Dg. In turn, the von Mises equivalent stress
is defined ar. = \/(3/2)o, - o4. The limiting values of the exponent = 1 andm = 0
correspond, respectively, to linearly viscous and rigieailly plastic behaviors, see figa. In
the case of ideal plasticity, the potentialis not differentiable a0, and the derivative inl),
should be understood as the subdifferential of convex arsly
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The material systems of interest here demandEalerian description of motion. We de-
note by() the domain occupied by the specimen in tiedormedconfiguration. The pores are
assumed to beandomlydistributed over the specimen and to have characteristiesions
that are much smaller than the size of the specimen and the sicaariation of the applied
loads. It is further assumed that the distribution of posegtatistically uniform and ergodic. At
each step of a deformation process, the spatial distributigoores within(2 can be formally
described by a random indicator functig(x) that takes the value 11 is in the porous phase,
and 0 otherwise. The ensemble average ©f) represents the one-point probabiljix) of
finding a pore ak; the ensemble average of the prody¢k)y(x’) represents the two-point
probability p(x, x’) of finding simultaneously pores atand atx’. Higher-order multi-point
probabilities can be defined similarly, but will not be calesied in this work. Due to the as-
sumed statistical uniformity and ergodicity, the one-ppiobabilityp(x) can be identified with
the volume fraction of poreg —or porosity— in the deformed configuration. In addition, we
make the simplifying assumption that throughout the de&dirom process the porosity distribu-
tion is ‘elliptical’, in the sense that the two-point proligles depend orx andx’ only through
the combinationZ(x — x’)|, whereZ is a second-order tensor describing the elliptical distri-
bution, such thaZ = I corresponds to statistical isotropy (see Ponte CastadisdiZaidman,
1994). During a deformation process, the evolution of therastructure can be characterized
by the evolving porosity levef and pore anisotropy tens@ér

The instantaneous macroscopic response of the porousiahdgedefined as the relation
between the volume averages of the Cauchy stressd the Eulerian strain rai@ over(2, and
can be characterized by an effective dissipation potemtiauch that €.g, Ponte Castaieda
and Suquet, 1998)

7= S50, w(D)= min = [ (1= x(x))u(D)d2x) @)
oD pekD) || Jq

In this expression, the overbar denotes averaged quant@nel/C is the set of kinematically

admissible strain-rate fields with prescribed volume ayela.

The estimates for the potenti@lproposed by Idiart (2008a) are given in Sectiympprox-
imate stress-strain-rate relations then follow fragy ( Although the formulation allows for
fairly general porosity distributions and completely &y loading conditions, the prelimi-
nar comparisons presented here are restricteddadimensional porous media with initially
isotropicporosity, subjected tbiaxial plane-strain deformations

D =Dje; ®e; + Dypey ® e, (3)

with fixed loading axes. Then, the deformation-induceda@nipy of porosity will have sym-
metry axes aligned with the loading axes throughout therdedtion process, and we can write

l>
= — 4
l17 ( )

wherew is the aspect ratio of the assumed ‘elliptical’ distribatimf porosity, see fig2b. The
relevant microstructural variables are thereférandw.

Z:lf1e1®el+lg2e2®e2, w

2 HOMOGENIZATION ESTIMATES
2.1 Effective dissipation potential

The central idea behind the estimates proposed by 1dia@8@0s to approximate the effec-
tive dissipation potential by that of an infinite-rank seojued laminate with the same one- and
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Figure 1: &) Viscous material response for various values of strati@-sensitivity . = 0,0.1,1); b)
schematic of the problem.

two-point microstructural statistics as those of the permaterial. For the material systems
considered here, the resulting estimate requires theigolot the first-order partial differential
equation

ow — _ Ow _
fW — H (D,w, a—ﬁ) = 0, U}|f:1 = 0, (5)
where
H(ﬁ,w,ﬁ):w+1rza>§<a-ﬁn—w(ﬁ+a®sn)>. (6)
a(n

In this last expressiora(n) is a vector-valued function of the unit vectar ®, denotes the
symmetric part of the tensor product, and

0= [ Ovimista) )

denotes an orientational average. The weighing funetier) depends on the angular variation
of the pore distribution functiop(x, x’) in the deformed configuration as characterized by the
tensorZ. An expression for(n) can be found in Idiart (2008b), see expressions (5) and (6) in
that Ref.

Equation B) constitutes a nonlinear Hamilton-Jacobi equation whieeecurrent porosity
and the macroscopic strain rdbeplay the role of ‘time’ and ‘space’ variables, respectivalyd
the functionH plays the role of a Hamiltonian. In this regard, note thatrtregrix behavior,
porosity levelf, and pore distribution functiop(x, x’) are contained in the HamiltoniaB)(
while the behavior of the porous phase dictates the ‘initi@hdition —atf = 1. A solution
strategy to integrate equatiob) (humerically has been given by Idiart (2008b).

2.2 Microstructure evolution

When the porous material is subjected to finite deformatithresunderlying microstructure
evolves as a result of the finite changes in geometry. ThikiBga depends on the complex
interaction between the various microstructural varigftiee loading conditions and the instan-
taneous constitutive response of the porous material.Heomaterial systems considered here,
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Figure 2:Instantaneous response of isotropic-€ 1) power-law materials with porosity = 0.1. The
new estimates (LAM) are compared with the ‘variational’ RPouter bound and the Gurson (GUR)
predictions: a) gauge surfaces for linear & 1) and strongly nonlineam¢ = 0.1) materials; b) yield
surfaces for an ideally plastie{ = 0) material. Diagonal axes correspond to pure shear (PS)wedyp
hydrostatic (PH) loadings.

the most relevant microstructural variables are the ptyrdéesiel f and the aspect ratio of the
assumed ‘elliptical’ distribution of porosity. The eval laws for these variables are (see, for
instance, Ponte Castaieda and Zaidman, 1994)

f=(1-puD and &=w(Dy - DY), 8)

whereﬁg) denote the components of the average strain rate undergdhe porous phase, rel-
ative to the coordinate system shown in filg. Equation); follows from simple kinematical
arguments, while equatioB), requires the additional assumption that, on average, dysesbi
the pores has the same aspect ratio as the shape of thebudistr —as characterized t#—
throughout the deformation process. The reader is refeadbnte Castafieda and Zaidman
(1994) for a discussion on this last assumption.

Within the present formulation, an equation B can be obtained by following the pro-
cedure of Idiart and Ponte Castafieda (2007). The follofisttorder differential equation is
obtained:

oD? oD

of oD

where the vector functioa(n) is that optimizing the Hamiltoniar6] —and therefore depends
on f andD, but not onD®”. This expression constitutes a linear Hamilton-Jacobagqo

for each compone@g), which can be solved numerically following the solutiorastgy em-

ployed for equations).

(a®smn) =0, ng)lle = Ez’ja 9)

3 SAMPLE RESULTS AND DISCUSSION
3.1 Instantaneous response

The effective dissipation potential of a power-law porowsenial is also a power-law func-
tion of the macroscopic strain rate, with the same strai@-sansitivitym and reference strain
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rate D, as the matrix phase. Itis commonly represented in termsoskcsections of its Legen-
dre transformw™. Specifically,

T (@) = -2 w @) = sup oD - w(D)]. (10)

1+ 1/m’ 5

Expression 10); constitutes a parametric equation for the so-cafjadge surfacgin stress
space) introduced by Leblored al. (1994). Any other cross section of* represents a homo-
thetic surface to the gauge surface. In the limiting caseledli plasticity, the gauge surface
reduces to the yield surface of the porous material. For flceostructural symmetry and load-
ing conditions considered here, the relevant stress spd€e i 722).

In fig. 2, the new estimates (LAM) of Sectidhare compared with the ‘variational’ (VAR)
estimates of Ponte Castaieda (1991) and the standardrG@&tR) model. The VAR esti-
mates are in fact rigorous ‘outer’ bounds for the gauge sartd the class of porous materials
considered here, and they reduce to the generalized H&$ftikman (HS) bounds of Willis
(1977) when the matrix material is linear. In turn, the GURd®mladelivers an outer bound for
the yield surface of porous materials with a special clagsiofostructures known as ‘compos-
ite cylinder assemblages’. However, it is believed thahmtiydrostatic limit, the GUR model
may actually deliver an outer bound for isotropic porousemats in general (see, for instance,
Idiart, 2007).

Fig. 2b shows gauge surfaces for isotropic porous materials withear (n = 1) and a
strongly nonlinear = 0.1) matrix phase. It is observed that, while the linear LAM arkRV
surfaces both coincide with the HS bound, the nonlinear LAMage is significantly ‘softer’
than the corresponding VAR surface, especially at largessttriaxialities. In fact, the VAR
surface is relatively insensitive to constitutive nonéngy. It is also noted that the nonlinear
LAM surface deviates considerably from an elliptical shap®l develops a strong curvature on
the hydrostatic axis. This is in contrast with the VAR estiesa as well as with several other
nonlinear estimates proposed in the literature (see, &tante, Michel and Suquet, 1992),
which obey the equation of an ellipse for all values of thelimaarity. The relevance of the
gauge surface shape stems from the fact that its normalekctae direction of flow of the
porous material.

The limiting case of ideal plasticity is considered in figc. The LAM surface is seen in
this case to lie not only within the VAR surface but also witihe GUR surface. Moreover,
the LAM surface coincides with the GUR surface for hydrastitadings, as anticipated. By
contrast, the GUR surface lies outside the VAR surface atttomoderate triaxialities, while
the VAR surface is significantly ‘stiffer’ than the GUR suréaat large triaxialities. More inter-
estingly, however, is the fact that the LAM surface develagsrner on the hydrostatic axis,
in contrast to the VAR and GUR smooth surfaces. It then fadlolaat the direction of flow at
hydrostatic stresses as predicted by the LAM estimatestismquely determined; instead, it
is confined by the cone of normals. For a more detailed dismuss this point the reader is
referred to Idiart (2008b).

3.2 Overall response under finite deformations

We now consider a porous material deformed quasi-stativath a constant strain ra®
and up to a prescribed macroscopic strain. At each step ohetfoemation process, the effective

potentialw and the average strain rate in the poﬁ@ are obtained by integrating equations
(5) and @) with the current value of aspect ratioand up to the current value of porosify
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Figure 3: Overall response of an isotropi@ (= 1) ideally plastic {» = 0) porous material with initial
porosity fo = 0.1, subjected to finite deformations with strain-rate tridikies X7 = 0.1 and X757 =
—0.05. The new estimates (LAM) are compared with the ‘variatioedhR) and the Gurson (GUR)
predictions: a) stress-strain response; b) hardeningapporosity; d) void aspect ratio.

The corresponding value of Cauchy stréss obtained by evaluating the derivati®( at the
appliedD. Expressions8§) are then invoked to update the microstructural variallaadw by
a forward-Euler scheme, and the procedure is repeatedthatdesired value of macroscopic
strain is reached.

For simplicity, results are only reported here for the limgtcase of ideal plasticity. It is
convenient to define macroscopic loading parameters

D, — |D11—D22|’ D, — D11+D22’ X5:&7 (11)
V3 2 D.

representing the standard equivalent and mean strairaradeéhe strain-rate triaxiality, respec-
tively. The macroscopic strain is then definedcas= f(f D.dt. Note thatD. is essentially a
time variable, and that the results for ideally plastic mate are independent db. since the
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model is rate-independent. Comparisons are shown i figr. a porous material with an initial
porosity levelf, = 0.1, subjected to two different loading conditions:

. — Dy, V3 Dy V3
| g ( m > 0) De D 2 ) De D + 2 ) D 0 ) ( )
. — D 3 D 3

loading B(D,,, < 0) : ?“ = X5+ % 722 = X5 — \2[ X5 = —0.05. (13)

Note that loading A represents a shear deformation withrpased isotropidlilation, while
loading B represents a shear deformation with superpose@sc contraction Note also that
|Dya| > |Dy| in both loadings.

We begin by noting that the stress-strain curves predicteddoL AM estimates do not differ
significantly from those predicted by the ‘variational’ a@drson estimates, see figa. How-
ever, substantial differences are found between correlpgrpredictions for the associated
hardening rateh(z.), shown in fig. 3b. In this connection, it is recalled that for the loadings
considered here, the conditiéiE,) = 0 signals the onset of macroscopic shear-band instabili-
ties (Rice, 1977). Thus, according to the LAM estimates th@ps material becomes unstable
atz, ~ 0.24 for loading A, and at. ~ 0.04 for loading B. In contrast, the VAR estimates pre-
dict that the porous material is always stable for loading#d becomes unstable at the larger
straing, =~ 0.087 for loading B, while the GUR estimates predict a stable raspdor both
loadings. These significantly different predictions carekplained in terms of the associated
microstructure evolution.

The various predictions for the evolution of porosity andepaspect ratio are shown in figs.
3c and3d, respectively. All estimates give the same evolution abpity, which is completely
dictated by the kinematics of the problem. On the other hdifigrent predictions are obtained
for the evolution of pore aspect ratio. On the one hand, thes@uestimate predicts a constant
aspect ratiav = 1 —i.e., isotropic porosity— throughout the deformation proceskich is
a well-known limitation of this model. On the other hand, th&M and VAR estimates are
able to capture the expected pore anisotropy induced bypihleed deformation. The evolution
of porosity and pore anisotropy play competing roles in thecimscopic hardening rate of
the porous material, and the relative importance of eactharesm varies as the deformation
proceeds.

Under loading A, the porosity increases due to the impos#dogic dilation, and as a result
the material should soften. At the same time, however, thhegpelongate in the 2-direction
—i.e, w > 1— due to the fact thaD,, > 0 andD;; < 0. As a result, the material should
harden since the larger axis of the pores is aligned with iteetion of maximum load. In the
LAM theory, the hardening mechanism overcomes the softemachanism initially, giving
a positive hardening rate. The situation reverses, howéwesufficiently large strains, and
consequently the hardening rate vanishes at a certainatrgiirain €, ~ 0.24) at which the
predicted behavior becomes unstable. In the VAR theorysdftening mechanism overcomes
the hardening mechanism thoughout the deformation protteskardening rate is thus always
negative, and the predicted behavior remains stable.

Under loading B, the role of each mechanism reverses. Indeegorosity decreases due to
the imposed isotropic contraction, and as a result the magtould harden. At the same time,

1The hardening rate is calculated via the consistency dondif the plastic porous solid. The VAR and LAM
results follow from the yield surface defined W0, while the GUR results follow from the standard expression
of Gurson'’s two-dimensional yield surface as given by esgien (3.19) in Gurson (1977).
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however, the pores elongate in the 1-directiones<w < 1— due to the fact thab,; > 0 and
Dy < 0. As a result, the material should soften, since the largir @ixthe pores is aligned
with the direction of minimum load. In the LAM and VAR theosiethe softening mechanism
overcomes the hardening mechanism initially so that thedrang rate is negative, but the
situation reverses at relatively small strains. Consetlyethe hardening rate vanishes at a
certain critical strain at which the predicted behaviordyaes unstable.

Gurson’s model, in contrast, accounts for one mechanisgn &m change in porosity. Con-
sequently, this model cannot capture the subtle interpéaydsen the changes in porosity and
pore anisotropy, and the GUR estimates thus predict stablaviors under both loading con-
ditions. An extension of Gurson’s two-dimensional modeittimcorporates the effect of pore
anisotropy was proposed by Mariani and Corigliano (2001gm@arisons between the LAM
theory and Gurson’s extended model will be reported elsesvhe

4 CONCLUDING REMARKS

In view of the above preliminary results, it is conjecturbdttthe estimates derived in this
work provide more reliable predictions for the macroscdgbavior of porous materials than
standard Gurson models. The validity of this conjecturgyéveer, should be confirmed by thor-
ough comparisons with full-field numerical simulations. aamittedly unfavourable criticism
against the new approach is that it may involve considem@igutations in more general con-
texts, especially at low levels of porosity. In that case, éliternative approach proposed by
Danaset al. (2008a,2008b), which is based on a variational approxonatinay result more
appropriate. The relative merits of these two approachkb¥assessed in future work.
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