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RESUMEN

Se presenta en este trabajo el problema del contacto unilateral den
tro de la teoria lxneal de la elastoestatica. El problema es, formulado
como una inecuacion variacional o como el problema de la minimizacion de
un funcional definido en un convexo. La obtencion de soluciones aproxxma
das es realxzada a través del método de los elementos finitos y técnicas
de programacion matemitica. Por ultimo son mostrados algunos ejemplos nu

mericos.

ABSTRACT

In this paper the unilateral contact problem within the elastostatic
linear theory is presented. The problem is formulated as a variational
xnequalxty or as a constrained minimization problem. The accomplishment
of approximate solutions is done using the finite element method and
mathematical programming techniques. At last some numerical examples are

shown.




INTRODUCTION

In the several areas of the engineering sciences are frequently
found structures which are in contact with their supports (or other
components) but without being perfectly bounded to it. In order to
emphasize the possibility that the structure will lose contact with
the support and/or the possibility of slxppage are not excluded one
uses the expression unALazenaL contact.

As classical examples of the several engineering problems related
to the analysis and design of structures with unilateral supports, one
may enumerate piping in petrochemical plants, piping in nuclear power
plants, joints between mechanical components, etc.

As one will notice in this paper, the unilateral contact leads to
a non-linear problem, independently of the characteristics of the
materials behaviour with which the structural elements in contact are
build up. As a result most work related to numerical solutions for
contact problems in elasticity is done according to one of the two
following approaches:

i ) Incremental techniques which almost always require some sort of
iterative procedure and/or the introduction of special artificial
interface elements [1,2].

ii) Direct formulation based upon variational principles that lead to
an optimization problem_ vh1ch is solved by mathematical programm1ng
techniques [3-15].

Efforts along (i) seem to be motivated by the desire to redv~e develop-
ment costs by introducing special elements and procedures in existing
finite element computer codes for linear and non-linear analysis.
However the resulting algorithms often lack a convergence proof.

In this paper the second approach will be followed since, as one
shall see later on, it enables a more accurate formulation from both
the mechanical and mathematical point of view, where the numerical
algorithms arise in a much more natural way and where mathematical
results concerning existence and uniqueness of the solution as well as
‘convergence of numerical algorithms are available [7-19].

On this presentation, which should be considered as a simple
introduction to the unilateral contact problem, one will analyse this
problem in the context of the classical elasticity theory (displace~
ments and infinitesimal deformations) and where only equilibrium
problems in terms of displacements will be presented. The formulation
in terms of stresses or mixed formulations [3,4,5] and dynamic problems
{7,12] will not be considered in this introduction.

In order to establish the variational formulation which one has
referred to, one uses the principle of virtual work where the
unilateral characteristic of the kinematical restriction will be
considered.

Therefore the equilibrium will be characterized by a variational
inequality instead of a variational equation (as proposed by the other
formulations (i)) which, for the type of material that has been adopted,
is equivalent to the minimization of a functional defined in a convex
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set.

As naturally suggested by this variational formulation the
numerical algorithm to obtain approximate solutions will consist in
the redefinition of this problem in a subspace of finite dimension.
This will lead to a mathematical programming problem.

Historically this problem has been formulated by Signorini in
1933 [6), but it was recently from 1970 om, that the problem was deeply
studied from the mechanical and mathematical points of view. In the
works [7-15] the reader will also find a vast bibliography.

PART 1. FRICTIONLESS UNILATERAL CONTACT PROBLEMS IN THE
ELASTOSTATIC STRUCTURAL ANALYSIS

THE EQUILIBRIUM PROBLEM

Consider a body which in its undeformed state occupies an open,
bounded, connected subset of the three-dimensional Euclidean point-
space, Figure 1. The boundary 3Q of  is assumed to be regular and it
consists of three open, disjoint parts anu, 39f and anc, i.e.:

0N =N, U N U 0N,

anun anf-an“n anc--anfn anc-a 1)

@§: empty set

Figure 1

On 3R, the displacements are prescribed and will be considered
nule in order to simplify the presentation:

us0 on N
u

On 3Qf the surface forces are also prescribed and characterized
by the vector value funetion a. On . the body is assumed to be
supported without friction by a rigid unilateral support S.

Since the contact is unilateral, the actual displacement u of the
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body when submitted to the action of the surface loads a and body forces
b, will be such that:

un = u £0 ¥x e anc (2)

where n is the unit outward normal vector to the candidate contact
boundary 3:. On the other hand at those points of 3. which remain in
contact with the support the reaction will be such that:

A ern ¥x e 39c (3)

since it is supposed that the friction is nule.

Due to the unilateral nature of the contact, the reaction points
away from the support. Hence:

r s0 if g = 0
%)
A =0 if u <0
n n

The expressions. (2) and (4) can be rewritten in the following way:

" S0, u SO0, 2u=ru =0 ¥x e M (5)
n - n nn c

known as the complementarity condition.
The elastostatic equilibrium problem therefore will be:
P1) Find u sufficiently regular so that satisfy:
- Equitibrium equations
divE(u)) + b=0 in Q
-~ Boundarny conditions
DE(u)n = a on 3Q£

us=20 on of
™

r = DE(u)nen S 0 , u ®uen so0, Au = 0 on 3N

where:
E(e) = % (V(-)+V(r)T) : is the strain operator

¥V : is the gradient operator

and where D is the fourth-order elasticity tensor field which satisfies
the usual properties of symmetry and ellipticity:

. D(x)A*B = A-D(x) B
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. doaconst. >0 s.t. D(x)A*A 2 CA*A

¥x e, ¥A,B e Sym, Sym: space of symmetric 2nd order tensors.

Comparing (P1) with the classical elastostatic problem of
-equilibrium (without unilateral restrictions) one can observe the
difficulty which rises from the fact that ¥ is in itself. unknown. In
other words the solution of (P1) should also give us the contact region.

VARIATIONAL FORMULATION OF THE EQUILIBRIUM PROBLEM

Instead of conai'dering the problem (P1) it will be shown its
equivalence to the variational formulation which is the principle of
virtual work. ‘

Therefore, one will consider the set:

K = {v; v sufficiently regular in Q, v=0 on Bﬂu,

v_=vensS0 on 30 }
n ¢

where one vaguely assumes that regularity is sufficient to render
meaningful, at least in some generalized sense, the operations
introduced below.

From the definition of XK it follows that:

vZ0ekK

if veXK+Avek ¥A20

if vy,v, eK + vebv,+(1-0)v, e X ¥0e [0,1]

hence XK is a convex cone and the solutionm u of the problem (P1) also
belongs to the set K:

uek (6)

From the mechanical point of view K is the set of all kinematical
admissible displacement §ields.

Taking v e K arbitrarily one can multiply (P1), by v and
integrating over 2 one has:

I div(E(u) ) vdl + I b'v dQ = 0 YW ek
Y] Q

From the divergence theorem and from the fact that u is the
solution of (P1), the last expression gives:

IDE(U)°E(V)dﬂ = I bev dQ + I a.v daQ + [ AV d)l Vv eK
a Mg a9,

Q
(N

The difficulty remains since 3. is not known and therefore ome can




- 38 -

not evaluate the integral on anc of the expression (7). Observing that:

2 SO0 and v_ 50
n n

one will have:
Aoverv 20 Vx e N
nn c
and (7) can be substituted by the variational inequality:

IDE(u)'E(v)dﬂ 2 I bev dQ + L a'v d3  ¥v eK (8)
Q a

In particular if v=u the (8) is transformed in equality due to the
existing complementarity conditiom (5) between X and u:

IDE(u)*E(u)dﬂ - ! beu d + I asy dag
Q Q aﬂf

and from this expression and (8) one arrives at:

P2) IDE(uPE(v-u)dﬂ 2 I be(v-u)dQ + I a* (v-u)dan ¥v e X 9)
Q Q Bﬂf

The above result shows that the solution u of (P1) satisfies (P2). Ome
nov will show that if u satisfies (P2), therefore u is the solution for
(P1). In order to prove this one can apply the divergence theorem to
(P2):

-I [div@E(u))+b]+ (v-u)dQ + I - (DE(u)n-a)«(v-u)dan +
Q Bﬂf

+ I DE(u)n-(v-u)daﬂ 20 ¥v e X (10)
aoc

Taking:
vVeu+w , we Co(ﬂ) = {h; h suff. reg., h=0 on 3Q}
then v e K and (10) is reduced to:

—I [divIDE(u))+b ] wd20 ¥w e Co(ﬂ)
a :

As Co(Q) is a vector space, the previous inequality will occur for
both v and -w, therefore:

I [divDE(u))+b]ewd) = 0 ¥Ww e Co(ﬂ)
Q
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hence:
divDE(u)) + b =0 in 0 (11)

An analogous reasoning to the previous one made but now adopting fields
we C(R)={w; w suff.reg., w=0 on % and 3ﬂc} vill lead to:

DE(u)n =a on anf (12)

From the previous results (11) and (12), the expression (10) is
reduced to:

I DE(u)n*(v-u)dd 2 0 VW ekK (13)
0

Let (*), and (), be the respective tangential and normal components
of any vector field on &c, taking:

veu+w ; waeC(R) ={w; v suff.reg., v =0 on BQC)
the previous expression leads to:

Ian G)E(u)n)tvtdaﬂ 2 0 Yv e c, (@)
c

Again, as wy are elements of the space C, (), one obtains

G)E(u)n)t =0 on anc

vhich tells us that the reaction A associated to the unilateral
kinematical restrictions on 3¢ must be normal to the boundary, i.e.:

A=2a = DE(u)n on 3Q, , (14)
and (13) is reduced to:

Im an(vn-un)daﬂ R0 Vv ek (15)
c

Remembering that v ¢ X implies that vnSO and Av e K ¥)20, the above
expression leads to:

Iaa un(xvn-un)dan 20 Vv e X , ¥)A20 (16)
(3

Considering X arbitrarily large, the expressiom Av.-u_ has values
arbitrarily negatives, therefore (16) leads to: n

r, 50 on anc an

Finally, considering at (15) v=0 and ve2u one will have:




- 40 ~

j Au d3Q = 0
ap B0

Because 2 SO (eq. 17) and v S0 on 3R, (u e X), the previous expression
leads to:

"’nun =0 on anc (18)

The results (11), (12), (14), (17) and (18) show that the solution
u of the problem (P2) is also the solution of the problem (P1).

Therefore one-arrives at the variational characterization of the
contact problem without frictiom:

P2) u is the solution for the elastostatic equilibrium problem with
frictionless unildteral contact kinematical restrictions if and
only if u is the solution of the following variational inequality
problem: find u e K such that:

IDE(u)'E(v-u)dﬂ P I
Q

be (v~u)dl + I a* (v-u)daf ¥ ekK
Q N

The reader can observe that (P2) is nothing else but: the Principle
of Virtual Work extended to the case of unilateral contact kinematical
restrictions. It is also important to observe that (P2) is a non-linear
problem due to the characterization of XK and therefore (P2) is out of
the classical elasticity domain.

For the elastic material we adopted one can defme the potential
energy function ¢:

¢(u) = - JDE(u) E(u)dn

which is convex:

$(v) - d(u) 2 IDE(u)°E(v-u)dﬂ
Q

and where the equality holds if and only if v-u e N(E), i.e. iff v-u is
a rigid body motion. Sublt1tut1ng in (P2) one arrives at the equivalent
constrained minimization problem:

(P3) F(u) = min{F(v); v e K}

F(v) = 8(v) - j bev d0 - [ av 430
a 5

Functional F expresses the potential energy of the body and is the sum
of the elastic energy and the energy of the external loads. Proposition
(P3) may be regarded as a generalization of the Minimum Potential Energy
Principle of classical elasticity.
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EXISTENCE AND UNICITY OF THE SOLUTION

In this section some results which are well known (7,8,10,11,12,
15,16,28] and establish the existence and unicity of the solution of
(P3) will be presented.

Following J.T. Odén et al. [27] one will consider:

v a real Hilbert space
F: V+*R a functional defined on V

K a non empty closed subset of V

Then, there exists a unique solution u e K of the problem:
F(u) = min{F(v); v e K} .

whenever the following four conditions hold:

t. X is convex
2. F is strictly convex; i.e. for 8 e (0,1) and u#v
F(Bu+(1-0)v) < OF(uy + (1-0)F(v)

3. F is differentiable on X; i.e. for each u e K there exists an
operator DF(u): v+y' such that

lim = <DF(u),v> VeV

9F (u+av)
a0t da

where v' is the dual ‘space of Vv, and <-,+> denotes duality pairing
on V'xye (<DF(u),v> is the "first variation of F at u in the direction
v'.

4, F is coercive, i.e. for v e X

F(v) + 4 as | v +»

where " -" is the norm on Vv

and the solution u can also be characterized as the solution of the
variational inequality:

<DF(u),v-u> 2 0 Vv e X
For the unilateral contact problem the functional F is giiren by:

F(u) = % alv,v) - L(v)
where:

a(v,v) = IDE(V)-E(v)dﬂ
Q
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L(v) = I bev dQ + I asv doQ
Q anf

Then, as a consequence of the Korn's inequality [12] and from the
properties of the elasticity temsor the bilinear symmetric form

a(*,*): VxXV+R is continuous and V-elliptic, i.e. there exists positive
constants M and m such that:

a(u,v) s H" ulkllvlb Vu,veV
a(u,u) 2 m" uln VueV
where:

Ve{v; ve (B(R)®, ve0 on anu)

Also, £ is a continuous linear functional on V:
2v) s | el vll,

Taking into account all these properties, one verifies that F is
strictly convex, differentiable and coercive, Moreover, since:

K= {v; vev; v S0 on Bﬂc}

is a nonempty closedvconvex subset of V one follows that there exists a
unique solution u of the problem (P3).

EXAMPLES OF FRICTIONLESS UNILATERAL CONTACT PROBLEMS
The Beam Problem

Consider the plane bending of a beam with discrete frictionless
unilateral supports. An elastic material is assumed as well as
infinitesimal strains (and displacements) and the hypothesis that plane
sections remain plane and normal to the axis of the beam after
deformation.

Reference will be made to the beam schematically shown in Figure 2,
which is subjected to the loading system £ comprised of a distributed
loading q, concentrated forces F; and concentrated moments mj. At point
A a frictionless unilateral support initially not in contact with the
beam is assumed.

w

m; A x=A

Figure 2

x
"
(o]
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The first step in the formulation is to define the space V of all
possible displacements and its subset K of all admissible displace-
ments.

w is said to be a possible transversal displacement, i.e. w e V,
if w is sufficient regular so that one can calculate the strains
associated to w. From mechanical point of view w must be continuous
(otherwise the beam breaks) with continuous first derivative (rotation
of the cross-section) w's=dw/dx (plastic hinges are not allowed since
the material is assumed to be elastic) and the second derivative
(curvature) must be sectionally continuous, the discontinuities
occurring at those points where concentrated moments are applied or EI
is discontinuous (E is the Young's modulus and I is the moment of
inertia of the cross-section). Formally V=H? (B), where H? (B) is the
Hilbert space of functions w such that w,w' and w" are square
integrables in the interval B of the real line.

If w e V is such that satisfies the kinematical constraints then
v e K. In the case of the example shown in Figure 2 w must be zero at
both ends of the interval B and w2-a at the point A. Then:

K={w; we H;(B) and w(A)2-a} 19)

where:

H;(B) = {w; w e H (B) and w(0)=w(L)=0}

1f W denotes an arbitrary admissible displacement, w e K, such
that w(A)=-a, then:

K =vw + Var

where:

Var = {v; Vv e H;(B), v(A)20}

is a convex cone with the vertex at the origin and K is then a linear
variety of a convex cone.

The second step in the formulation consists in defining the strain
operator which is given according to the Bernoulli theory by:
d ()

E(+) = = —5—

dx?

A kinematically admissible displacement w is then said to be rigid if
v eK and E(v)=0. The set (subspace) of all w e V such that E(w)=0 is
denoted by N(E) and is characterized by the functions (equivalence
class)

w=basex , b,ceR

In the case of the example shown iun Figure 2 K {IN(E)={Q} where O is
the identically zero function. However one should note that for other
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boundary conditions that intersection may contain displacements w other
than O.

Finally, the constitutive equation for elastic beam is given by:

d?w
M = BI(- o

Now the equilibrium problem of plane bending of an elastic beam with
frictionless unilateral supports can be stated as follows: find u e K
such that:

a(u,v-u) = L(v-u) S 0 Vv eK (20)

where:

diy dtv
dx? dx?

L
au,v) = I El dx
0

L
L(v) = quv dx + § Piv(xi) + g miv'(xi)

or equivalent, find u e K such that

F(u) = min F(v) (21)
veK

where:

F(v) = % alv,v) - L(v)

and X given by (19) in the case of Figure 2. For more general discrete
unilateral supports constraining the i-th componeiat of the displacement
field u at the j-th support Bj, the convex set K can be written as:

K={v;vev, aijSVi(Pj) s bij' Pj-l,z,...,m} (22)

vhere m is the total number of discrete supports.
The Punch Problem

If a deformable body is indented by a rigid body of specified shape
one has the so called rigid indentation or punch problem. For plane
problems where the punch is loaded by forces directed along the x,-axis
(Figure 3) with resultants P and M, the configuration of the system can
be defined by the triple (a,0,u) where a and B are respectively the
depth of indentation and the angle of rotation of the punch and u is the
displacement field of the deformable body.

Since one is dealing with infinitesimal deformations, the
linearized non-interpenetration kinematical restriction can be written
as:
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(u(x;.O(x,))-[

"(X;)
asx, 0 ben S (0(x))-00(x))n,  ¥(x;,0(x,)) e I

(23)

where ¥ describes the shape of the punch, n(n,,n,) is the unit outward
normal vector to the candidate contact boundary +» described by ¢, of
the deformable body. In this case, the set K is given by:
K = {(a,6,u) e RXRXV; such that (23) must be satisfied
and also the kinematical restriction on anu} (24)

and again, the equilibrium problem of the frictionless punch problem can
be stated as follows:

FPind(a,6,u) e K such that F(x,8,u) = min Fla%, 0% v«)

(a*,0%,v*) e K (25)
where:
Fa*,0%,vk) = I %DE(V*)'E(V*)Q = Pak ~ MO* (26)
v}
Xy

Pxy) - § (x¢)

e emmwraniam

Figure 3

Contact Without Friction between Elastic Bodies
If the contact is between two bodies B! and B? then it will be

assumed that a common unit normal n,, can be defined along the candidate
contact boundaries 3Qé and 3Q'c and in such case one has:

K = {(v},v?) ¢ ¥xV; v a0 on an:, (v‘-v!)-nu--so on an:, i=t,2}

27)
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where s is the initial gap (on the direction n,,) between the two
bodies.

APPROXIMATE SOLUTIONS

To obtain approximate solutions for the minimization problem P3),
finite dimensional approximation Fy, and K are constructed and the
finite element method is chosen for the spacial discretization due to
its generality and widespread use in computer programs. One is then led
to the following quadratic programing problem defined in R":

. 1
u:::h{yh -3 uh-Khuh-ub'fh} (28)

where n is the number of degrees of freedom, Ky is the standard-stiffness
matrix, fy is the vector of equivalent nodal loads, uyp is the unknown
nodal displacement vector and h is the parameter associated to the mesh
that will be dropped from now on for ease of notation.,

One way to comstruct an approximation for K, is to approximate the
field v by the interpolation functions of the finite element method and
then to enforce the non-interpenetration condition at the nodal points
belonging to 3f.. This was the technique adopted for the numerical
examples presented here. As a result, for most problems, the constraint
set K will be described by a set of m linear inequalities:

Au S ¢ (29)

where A is a mxn matrix. However, the important particular case of
discrete unilateral supports (22) - which are often used in piping
systems - may lead to conmstraints that can be written as:

asushb (30)

In the following, various alternatives for the solution of the
minimization problem are discussed beginning with the case of the
constraint set (30).

a) The constraint set aSusb

This kind of constraint allows for the direct application of a very
simple iterative algorithm: Gauss-Seidel with relaxation and projection
(GSRP), see Glowinski et al [8] for details, which can be describes as
follows:

i) Initialization A
- Choose u’ admissible, i.e. asu®sph
- Pick w e (0,2)

ii) Tteration
For k=0,1,2,... execute:

For i=1,2,...,n execute:
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1-1 o
k+1 k
. * L e s . . - . I3 s
ut = {f, 5§ K, .u I Kk .u 7/ 9

1 B juiel 1] 3]
k+1 k
. = *
u; Pi[(l-w)uimmi]
until

[ ]

where Pi[-] is the projection operator for the interval [ai,bi), that
is:

Pi[a] = m’.n[bi, m'x(ai.a)] » G eR
and € is a suitable tolerance.

b) The constraint set AusSc

In this case the primal problem:

min {% u*Ku-u*f} (31)

Au S ¢
is equivalent to the saddle-point problem:

min max {% u*Ku-u*f+(Au-c)*A} (32)
u A20

vhere the Lagrange multiplier A e B™ has been introduced in order to
release the constraint AusSc. As the minimization over u is unconstrained,
it is attained by:

u = K-} (£-aTh)

when K is positive-definite (no rigid motions allowed). Substituting in
(32) one is led to the dual problem:

min{%rl'PA-X°d} (33)
20

where P is a mxm symmetric matrix and d is a m-vector given by:

P = AK™3AT , d=AKY - ¢ (34)

The resulting quadratic programming problem has a simpler comstraint set
and is usually wuch smaller than (31) as m is usually much smaller than
n. If A* is the solution of (33) the solution u* of (31) is given by:

u* = K-1(£-ATA%) (35)

For the solution of a quadratic programming problem (33) two
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possibilities are considered here. The first is the use of the Gauss-
Seidel algorithm with relaxation and projection, and the second is the
use of Lemke's algorithm to solve the linear complementary problem
associated to (33) (See Bazaraa and Shetty [17], Glowinski et al [8]
and Cottle [18] for details about the algorithm and pivoting methods on
wvhich the Lemke's algorithm is based). )

In fact, if one takes the standard quadratic programming problem:

min % u*Qu - ueb

Ausc, uz20 (36)

where Q is a symmetric positive-semidefinite nxn matrix, A is an mxn
matrix of rank m, ¢ e R®, u and b e R?, and demoting the Lagrangian
multiplier vectors of the constraints AuSc and u20 by A e R® and

p e R%, respectively, and denoting the vector of slack variables by
y e R® then, the Kuhn-Tucker conditions for (36) could be written as:

w-Mzw=gq
wez = 0

an
w20

z2 0

where:

0 -A c ‘ A
M= T s 9= y W= y sy 2 =
A" Q =b P u
which is a linear complementarity problem solvable in a §inite number
04 4leps by Lemke's algorithm.

In particular, as the constraint set AuSc is absent in (33) the
matrix M for Lemke's algorithm would be P itself and q=~b, w=p and z=u
in this case.

Instead of solving the dual problem (33) one could think of solving
the saddle-point problem given by (32) where the solution (u*,A*) must
satisfy: ’

Ku* - £ + ATA* =0

(Au*-c)*A* = 0

A2 0

Aut - eSO

Uzawa's algorithm, which is quite general, can be applied here and in
this case can be described as follows (see Kikuchi and Oden [9]):
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i) Initialization
- Choose A°20
- Find u®: Ku® = £ - ATA®
ii) Iteration
Ll R max{0, A"y (Au"-c) }

b. Find u™'; k1% o g o ATARH

a. Set

c. Repeat a2) and b) until " An+1-An" /“ An" S € where € is a
suitable tolerance

The parameter Y must be positive and sufficiently small and was
set, for the numerical examples presented here, to 0.005 times the
minimum coefficient of the diagonal of K.

In order to reduce the size of the problem a sub-structuring
technique could be used. For this, constrained degrees of freedom
denoted by up and unconstrained ones u; are segregated and the
functional F is rewritten as:

.. K, u, f,
1 T T il ie 1 T T i

F(ui,ue) -3 [ui ue] KT . - [ui “e] ¢ (38)
ie “ee e e

As the minimization over uj is unconstrained it is attained by:

-1 B
up = Ky (E5Keue) (39)
Substituting into F(ui,ue) one obtains the xeduced paimal problem:

{ .‘. oKk -y *f*
min {2 ugK* u -u fe} (40)

Subjected to the m constraints associated to U, and where:

K K,
11 ie

1
ee

k* =c’kc , frtecf , C=
ee e

and I, is the mxm identity matrix. One could now choose one of the
alternative schemes already described in order to solve the reduced
primal problem.

At this point it is interesting to note that for the rigid punch
problem considered here one could write:
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As the global stiffness matrix K is not positive-definite the dual
problem cannot be written as in (33). It is more convenient then to
construct a reduced primal problem by condensation of all degrees of
freedom not related to the contact surface and solve the reduced problem
by Lemke's algorithm. The condensation process is always possible
provided that the deformable body is properly restrained.

From the point of view of computer implementation, the solution of
the unilateral contact problem by the Gauss-Seidel algorithm with
relaxation and projection (restricted to constraint sets of the type
asusb) seems to be the simplest one. However, substantial computer
savings may be achieved if a condensation process is performed before
the iterative phase begins. More efficient are the pivoting methods,
which were developed first in the theory of Linear and Quadratic
Programming and then extended to the linear complementarity problem
(Lemke's algorithm). One of the most interesting properties of the
Lemke's algorithm is that if gives the exact solution of the discrete
problem in a §inite number of steps. )

The fact that the class of unilateral contact problems reported
here can be associated with constrained minimization problems provides
the possibility of employing ‘the classical descent algorithms used in
the minimization of functionals: steepest descent, gradient, conjugate
gradient, etc. (See e.g. [8,16,17)). Another class of solution algorithms
is that of penalty algorithm (see [8,9,16]).

NUMERICAL EXAMPLES

In this section some numerical examples (reported by the authors at
{20-25)) are analysed in order to show the feasibility of the preceding
variational formulations and algorithms. .

The first example consists of an elastic heam, schematically shown
in Figure 4, which has been modelled by 8 beam element. The beam is
built-in at node 1 and has unilateral supports at nodes 3,5,7 and 9. Four
load cases have been considered, all of them consisting of the same
vertical concentrated load P applied at nodes 2,4,6 and 8, respectively.

For each load case the deformed configuration is shown in Figure 5
and the corresponding support reactions are listed in Table 1.

Reactions M, Ry R, Rs Ry Ry
Load Case 1 0.966 0.755 0.228 0.018 0.0 -0.00t
load Case 2 0.141 0.012 0.453 0.565 0.0 -0.029
Load Case 3 -0.138 -0.052 0.0 0.591 0.490 -0.030
Load Case & -0.115 ~-0.029 0.0 0.0 0.587 0.442

Table 1. Support reactions for example 1




- 51 -

Figure 5

ST 4
e
::::J " /'
poi e S|
} S
=t H
S
L
S
=i TN

1.4 1.8 t.8 2.
W




- 52 -

All these results agree with the exact solution and correspond to
the solution of the primal problem by the GSRP algorithm and the
termination criterion adopted was:

k ket
max ju.-u
i

-ul |/mi;x |u¥] < 0.0001

The relationship between the number of iterations and the overrelaxation
parameter W is also shown in Figure 5.

The second example is that of the tridimensional piping shown in
Figure 6 which was subjected to a temperature increase of 800°F, The
structure is built-in at nodes 1| and 8 and has unilateral supports (with
gaps) at nodes 4 and 6. The support reactions are listed in Table 2 and
correspond to W=1.85 and a tolerance €=0.00001. The number of iterations
performed was 197.

Node Rx Ry Rz Hx My‘ Mz
1 4036 4371 334 37648 - 34400 -117105
4 0 -5087 2218 . 0 ) 0
6 -2329 . 0 0 0 0 0
8 -1704 715 -2552 82848 131289 27075

Table 2. Support reactions for example 2

The third example is that of a long circular cylinder resting on a
rigid and frictionless horizontal support and subjected to a vertical
compressive distributed load as indicated in Figure 7(a). The cylinder
is analysed under uniform pressure q on the top and a state of plane-
strain is assumed. The cylinder is also assumed to be homogeneous,
isotropic, linearly elastic with Young's modulus E=1000 and Poisson's
ratio v=0.3 and has a radius R=8. The discrete model adopted is that
shown in Figure 7(a) where 136 four node isoparametric finite elements
are used resulting in 304 degrees of freedom. Four load cases were
considered corresponding to the distributed loadings of q=3.75, q=6.25,
q=12.5 and q=30.

In Figure 7(b) normalized contact stresses are shown together with
the results given by the classical Hertz solution [26]. Contact stresses
were calculated by averaging element nodal stresses obtained by solving
the dual problem by Lemke's algorithm.

Similar results were obtained solving the dual problem by the GSRP
algorithm with €+0.001. The number of iterations required is shown in
Table 3.

Solution of the primal problem by the GSRP algorithm with w=1.8 and
€=0.0001 required 275,266,307 and 321 iterations respectively for load
cases 1 to 4. Seting £=0.001 the number of iterations required for the
solution of the reduced primal problem is shown in Table 4.




P/

2re
/

o* [ ]

102 &

2® w20 ¥

- 53 -

L T P

e 30.4x10" pol
coanigbor-!
‘.s‘ %"
1z1/4"
4¢0.30

Ars 800°F

1@.1@.

-

[-X) — a
0.4
y L]
1SS BEEBEN
Il
TYPT I TYYVITYIVIVYY
te)

0125

a2s

x/R

0-0

0.3

t0

.S 2.0
(o)

Figure 7




- 54 -

LOAD CASE
w 1 2 3 4
0.6 17 19 20 24
0.8 12 16 19 26
1. 12 15 20 30
1.2 12 16 23 39
1.4 15 22 32 56

Table 3. Number of iterations required for
the solution of the dual problem by
the GSRP algorithm

LOAD CASE
w 1 2 3 4
1.2 37 33 28 20
1.4 25 23 19 13
1.6 16 16 16 15
1.8 29 30 31 31

Table 4. Number of iterations required for
the solution of the reduced primal
problem by the GSRP algorithm

Typical total CPU time in seconds (the algorithms were implemented
on FORTRAN 1V, compiled without optimization and. run under Michigan
Terminal System-MTS-in an IBM 370/158) for the 4 load cases considered
in this example were around:

34 sec. : for the solution of the dual problem by Lemke's and
GSRP algorithms.

47 sec. : for the solution of the reduced primal problem by the
GSRP algorithm.

573 sec. : for the solution of the primal problem by the GSRP
algorithm.

Uzawa's algorithm was also applied to this example and seting €=0.0001
converged with 129, 119, 109 and 109 iterations for load cases 1 to 4.
The time required was about 5 times the CPU time used by Lemke's
algorithm.

The fourth example is that of a circular plate of radius R=60 and
constant thickness h=4 resting on a frictionless rigid horizontal
foundation. The plate is subjected to its own weight and to an upward
vertical load P=100 uniformly distributed on a disk of radius r=8
concentric with the plate.

The discrete model adopted corresponds to a uniform mesh of 120
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axissymmetric 4-node isoparametric finite elements being 30 along the
radius and 4 along the thickness (Figure 8) that results in 304 degrees
of freedom.

e

T

60
Figure 8

The material of the plate has an specific weight p=0.8085 and
elastic constants E=2,1x10° and v=0.3.

If one adopts the theory of plate bending [26] the value of the
radius of the circunference inscribing the raised part takes the value
a=44 and the deflection at the center is uc~1.337x10-".

For the axisymmetric solid discrete model adopted here the values
found were a=42 (the first 21 nodes from the center are raised) and
ue=1.347x10"", given by the solution of the dual problem by the Lemke's
algorithm. :

Essentially the same results are obtained after 795 iterations with
€=0.0001 and w=1, using the GSRP algotrithm.

The solution of the primal problem by the GSRP algorithm with
£=0.0001 and w=1.95 required 1203 iterations yielding uc=1.276X10~" and
poor results for the reactions.

Setting €=0.0001 and w=1.9 the solution of the reduced primal
problem by the GSRP algorithm leads, after 191 iterations, to results
ctose to those obtained by Lemke's algorithm.

Difficulties arised with the use of Uzawa's algorithm in this
example. To begin with the automatic choice for the parameter which
worked well in the third example did not work at all here and several
trials were made before the termination test with £=0.0001 could be
satisfied.

The values of uc corresponding to y=12000. (1123 iterations) and
Y=8000 (1747 iterations) were uc=1.358x10"* and uc=1.357x10"" respective-
ly. However the Lagrange multipliers obtained did not agree very well
with those given by Lemke's algorithm.

CPU time in seconds for all the alternatives were respectively 23,
34,260,34,211 (y=12000) and 313 (y=8000).
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The last example consists in the indentation of a rectangular block
by a rigid solid with a cylindrical contact surface of radius R=8 as
shown schematically in Figure 9(a). The material properties are: Young's
modulus E=1000, Poisson's ratio v=0.3. A state of plane-strain is
assumed and five "load" cases were considered, corresponding to
prescribed values for the depth of indentation a=0.1,0.2,0.3,0.4 and
o=0.5 while 8 was prescribed as zero.

Due to the symmetry of the problem only one-half of the block was
discretized by means of 202 four~node isoparametric finite elements
resulting in 440 degrees of freedom. Figure 9(b) displays the adopted
mesh before and after deformation (for a=0.8) and Figure 9(c) shows the
relationship between a and the total applied force P.

Finally Figure 9(d) shows the normalized contact pressure obtained
from Lagrange multipliers compared to the Hertz solution in solid lines.
These results correspond to the condensation of all degrees of freedom
not related to contact and solution of the reduced primal problem by
Lemke's algorithm.

PART II. UNILATERAL CONTACT PROBLEM WITH FRICTION

THE VARIATIONAL FORMULATION

Consider again the same body taken at Part 1, but now one supposes
there is an initial gaps between the body and the rigid foundation s on
c. Also, on ¥ friction boundary conditions are assumed to hold and

in the notation of Part 1 they read:

if lotl < nlcnl then ut-O on anc

if [o | =nfo | then ar20 s.t. u =-lo, on 0,

The classical formulation of the Signorini problem with friction
is: find the displacement field u which satisfies the equilibrium
equations and boundary conditions:

divDE(u)) + b = 0 in Q (42)
DE(u)n = a on anf (43)
u=0 on aau (44)

u'n - 8 £0

u*n - 8§ < 0 + DE(u)n= 0
u°n -8 =0+ on(u) = DE(u)n°n S 0 and on BQC (45)
IGt(u)| nlan(u)| +u =0

|ot(u)|

A

A

nl(!n(u)l » IR0 st. u =)o,

In order to give the variational formulation, one defines the set of
admissible displacements:

K= {vevV; vasl on 3ﬂu, ven-s$0 on anc}
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X is a nonempty closed convex subset of Ve(H(Q))’.

From eqs. (42)-(44) one obtains by means of the divergence theorem
the relation:

a(u,v-u) = L(v-u) + Ian Ot(u)(vt-ut)daﬂ +
A .

+ Iaﬂ On(u)(vn-un)daﬂ (46)
[

for every v such that v=0 on anu.

From (65)5,5 the following inequality results:

o (v -u) +nfo ] (v |-fo) 20 on an, (47)
which combined to (46) implies the variational inequality:
a(u,v-u) 2 2(v-u) - J nlo_(w|(v, |-|u |)d30 +
a0 n t t
¢

+ Iaﬂ on(u)(vn-un)daﬂ (48)
c

for any v such that v=0 on anu.

From (45), , , and v e K one has the following variational
inequality probled:

a(u,v-u) + j(u,v) - §(u,u) 2 L(v=-u) ¥ eX (49)
where:
jlu,v) = I nlan(u)||vt|dn (50)
Q

It can be shown {7] that the classical problem (42)-(45) is
formally equivalent to the problem (49). Since the normal component of
the stress density vector on 3¢ is defined only as linear form,

0n(u)| has no mathematical meaning.

The issue of existence and uniqueness of solutions for (49) is still
open. For a particular situation Necas et al [29] showed the existence of
solutions to (49) provided that 7 is sufficiently small. Duvaut [30]
introduced the idea of non-local friction law and stablished an existence
result for any friction and also uniqueness for the case of small
friction. Oden and Pires [31,32,33) proposed a e¢lass of nonlocal laws as
well as numerical algorithms for obtaining approximate solutions for
contact problem. See also [12] and the results reported by M. Cocu {34].

However, for the special case where the normal stress On is
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prescribed along 3Q, (OnJFn), Duvaut and Lions [7] established the
existence and uniqueness of the solution. In this case the contact
surface ) is known in advance and u, is not prescribed on 3. The
boundary conditions on 3flc reduce to:
< g+ -
Ictl 8> u, 0

|Ut| =g*u = -Aot for some A20
where g-ﬂl?il is given and represents the maximum tangential stress that
can be developed due to friction along 9.

Introducing the functionals

i () .I glv, |das £ (v) .I F v _df (51)
8 an t n anc nn

where g is a given positive function on 3, and F, is a given normal
stress distribution on 3Q. and defining the subspace V
Veivev: VIF =0}
u
the PVW for the special problem of friction with prescribed normal stress
can be stated as:

Find u e V such that

-I DEU)E(v-u)d? - j (V) + j (u) + L(v-u) +
0 4 8
+ fn(v-u)dr S0 Yv eV (52)

It can be shown [7]) that to solve this inequality is equivalent to
solving the following minimization problem

inf [F(v)+j (v)~£ (v)] (53)
veK g n

For Signorini's problem with friction, inequality (49), the following
iterative procedure can be envisaged:
i ) Solve Signorini's problem without frictiom, problem (P2) or (P3).

ii ) With the normal stress in 3Q. found im (i) solve the special
friction problem with prescribed normal stress, inequality (52),

iii) Tangential stress found in (ii) are then used as additional loads
in Signorini's problem without friction (i) and the steps (i), (ii)
and (iii) are repeated until convergence is (hopefully) achieved.

Introducing the functional:
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fl’. (V) - Iancpt 'thaﬂ

where F, is a given distribution of tangential forces along 3, the
procedure described above can be written as:

1) Given ?:-' find u* solution of the minimization problem

inf [F(v)-ft(v)]
veK

2) Calculate ?:-on(uk) and g-nlon(uk)l

3) Find u* solution of the minimization problem

inf [F(v)+j (v)-f (v)}
veV 8 "

4) Calculate f::ot(u*) and repeat all steps for k=2,3,... until

convergence is achieved.

The procedure just described, whose convergence has not been formally
proved yet, involves two minimization problems. In the frist one the
main difficulty is due to the constraint set K while in the second one
the difficulty arises due to the non-differentiability of jg(v).

Panagiotopoulos [35] follows the scheme described above solving
both minimization problems by non-linear programming techniques; Campos,
Oden and Kikuchi [36] adopt a penalization technique in the first problem
and a regularization technique in the second one. Some other
possibilities are presented by Raous [37] and Haslinger and Panagiotopou-
los [3]. The basic idea used here is duality [7}. The first minimization
problem is substituted by the equivalent saddle-point problem:

inf sup L‘(V’An) (54)
veV ano

where the constraint set K is absent. The Lagrangean Lx(v,An) is given
by:

Ll(v,xn) = F(v) - ft(v) + I A“(v-n-s)daﬂ
1]
c
In the second minimization problein the non-differentiable functional
jg(v) is replaced by:
sup I A _ev _doR
e o ©OF

where:
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3
A= D=0, i21 M) s, xed)

and one is led to the equivalent saddle-point problem:

inf sup Lz(v,At) (55)
veV A el
t
with:
Lz(v,kt) = F(v) - fn(v) + Iag At-vtdag
¢

The Lagrange multipliers A\, and A\, can be interpreted, by duality,
respectively as the normal stress on 30 and the tangential stress, due
to friction, on 3.

APPROXIMATE SOLUTIONS

To obtain approximate solutions for the probems formulated in the
preceding section the finite element method is used to construct finite-
dimensional approximation spaces. For plane problems the following
interpolation scheme can be adopted:

v = &q » An'WP ’ Xt-\“t

where ¢ is the matrix of interpolation functions for the displacements
field v in terms of the nodal unknowns q and ¥ is a row-vector with
interpolation functions for the Lagrange multipliers Ap and )¢ in terms
of the parameters p and t. The global interpolants are constructed
from local bilinear interpolatns associated to a four-node quadrilateral
isoparametric finite element. The interpolation of A¢ and A, is done by
means of piecewise constant functions along the sides of the elements

on 3. In this way problems (54) and (55) are approximated by:

min max 1 q°kq-q'F-q-F +q*Mp+Sep (56)
> 2 t
q p20
and
ain max % q~Kq-q'F-q-Fn*qut (57)
q |vefsg

where K is the standard stiffness matrix, F, Fy and F, are vectors of
nodal loads which are equivalent, respectively, to the applied load
system £, tangential loads due to friction and normal reactions in the
contact surface. The matrices M and A and the vector § are given by:

T nx T t

M= I o' *ldan  , A = j o { *}ypdan (58)

. "y .y
[ [
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and

S = I Y sdan (59)
mc

where (nx,ny) and (ty,ty) are the components of unitary vectors respect-
ively outward normal and tangent to the boundary 8Q¢. It is clear that
qeRR pe R™ and t e R® where n is the number of degrees of freedom of
the discrete model defined by the finite element mesh adopted and m is
the number of elements along the boundary 3.

As the minimization over q is unconstrained and K is assumed
positive-definite this variable can be eliminated using the stationarity
conditions:

Kq - (F+F,) + Mp = 0 ‘ (60)
and
Kq - (F+Fn) + At =0 (61)
Combining (56) with (60) and (57) with (61) one obtains:
min %»p°Pp - p-d, (62)
p>0
_min_ % teTt - ted, (63)
-gsStsg
where:
P = KN . d, = MTK'1(F+Ft) -8
T

T =aAK'A . d

T,-1
, = AK (F#Fn)

The vector g e R™ has its i-th entry equal to n times the absolute value
of the (prescribed) normal stress along the side of the i-th element in
e .

Due to the type of constraints that arise in problems (62) and (63)
a very simple numerical algorithm can be used: Gauss-Seidel with
relaxation and projection (GSRP). Finally, from (60) nodal unknowns q
are obtained and element stresses can be computed.

Remark 1. Although a piecewise constant interpolation for the Lagrange
multipliers A, and At has been used to obtain the finite-dimensional
approximations (56) and (57) it is important to note that matrices M and
A in (56) and (57) result from the approximation of the integrals:

j A {ven-s)daQ and J A eu_ dof2
an " am bt
c
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and, as such, can take different forms according to the numerical scheme
adopted in the approximation of these integrals. In fact, in additionm to
the piecewise constant interpolation scheme already mentioned another
scheme was tried which resulted in an improved performance of the
numerical algorithm. The idea was to take concentrated Lagrange
multipliers in the nodal points along 3. In this case, M, A and S can
still be given by (58) and (59) provided we take the entries of row-
vector Y as Dirac's delta "functions" associated to the nodal points
along Te.

Remark 2. The problem of contact with Coulomb friction between two
deformable bodies and the problem of indentation of a deformable body by
a rigid one can both be treated along the same basic lines. Indeed work
is under way in this direction and the results will be reported soon.

A NUMERICAL EXAMPLE

This section describes the results of some numerical experiments
performed with the algorithm discussed in the preceding section. The
problem considered is that of a rectangular block pressed against a
rigid horizontal foundation on which Coulomb's law of friction is assumed
to hold. The block is also submitted to a horizontal uniformly
distributed load as shown in Figure 10 and a state of plane strain is
assumed. The material of the block is homogeneous and isotropic with
Young's modulus E=13000 and Poisson's coefficient v=0.2. Due to the
symmetry of the problem, only half of the block was discretized by means
of 194 four-node isoparametric finite elements leading to a dlscrete
model with 439 degrees of freedom.

The first load case considered here corresponds to F=15, f=5 and a
coefficient of friction ne1.0. Figure 11 shows the deformed mesh
amplified by a factor of 100. Normal and tangential nodal displaments as
well as normal and tangential nodal reactions along the contact surface
are displayed in Table 5 where regions with different behaviour are easily
identified: adhesion (from node 1 to node 9), sliding (from node 10 to
node 30) and a region where contact was lost (from node 31 to node 33).
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Table 5
NODE u u, P F,

1 0. 0. 5.23 0.

2 0. 0. 10.47 0.64
3 0. 0. 10.47 1.28
4 0. 0. 10.46 1.96
5 0. 0. 10.44 2.69
6 0. 0. 10.41 3.52
7 0. 0. 10.38 4.48
8 0. 0. 10.31 5.75
9 0. 0. 9.80 8.57
10 0. 0.0003 8.93 8,93
" 0. 0.0009 8.28 8.28
12 0. 0.0016 7.86 7.86
13 0. 0.0025 7.52 7.52
1" 0. .~ 0.0034 7.21 7.21
15 0. 0.0043 6.93 6.93
16 0. 0.0054 6.66 6.66
7 0. 0.0065 6.39 6.39
18 0. 0.0076 6.13 6.13
19 0. 0.0088 5.86 5.86
20 0. 0.0101 5.59 5.59
21 0. 0.0113 5.30 5.30
22 o. 0.0127 5.00 $.00
23 0. 0140 4.68 4.68
2 0. 0.0154 4.34 4.34
25 0. 0.0169 3.96 3.96
26 0. 0.0183 3.53 3.53
27 0. 0.0198 3.04 3.04
28 0. 0.0213 2.46 2.46
29 0. 0.0229 1.72 1.72
30 0. 0.0244 0.66 0.66
3 0.0001 0.0258 0. 0.
32 0.0003 0.0272 0. 0.
33 0.0006 0.0286 0. 0
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Table 6

NODE u, F F,

1 0. 10.40 0.
2 0. 20.80 0.17
3 0. 20.80 0.34
4 0. 20.79 0.52
5 0. 20.77 0.70
6 0. 20.76 0.88
7 0. 20.74 1.08
8 0. 20.71 1.28
9 0. 20.68 1.50
10 0. 20.65 1.73
1 0. 20.61 1.99
12 0. 20.57 2.30
13 0. 20.52 2.66
14 0. 20.42 3.23
15 0.00003 20.17 4.03
16 0.00016 19.86 3.97
17 0.00036 19.63 3.93
18 0.00060 19.43 3.89
19 0.00088 19.24 3.85
20 0.00119 19.04 3.81
21 0.00153 18.84 3.77
22 0.00189 18.63 3.73
23 0.00228 18.40 3.68
24 0.00270 18.15 3.63
25 0.00314 17.86 3.57
26 0.00360 17.53 3.51
27 0.00409 17.14 3.43
28 0.00461 16.65 3.33
29 0.00515 16.03 3.2
30 0.00572 15.17 3.03
31 0.00633 13.88 2.78
32 0.00699 11.50 2.30
33 0.00776 3.64 0.73
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A second load case, corresponding to F=10 and f=15, was analysed
considering n=0.2 and the results are summarized in Table 6 where it can
be seen that nodes 1 to 14 are in adhesion and nodes 15 to 33 are in a
sliding condition.

Other load cases were also analysed and the results obtained agree
wvith those found by Raous using a different algorithm [37].

FINAL REMARKS

Concluding this introduction and following Prof. G. Del Piero's
remarks it is important to emphasize that besides the unilateral problem
which was seen before, there are other type of prcblems which are also
associated to unilateral restrictions.

Among these problems which approximate solutions will be given by
mathematical programming techniques one may enumerate fracture problems,
problems which arise on non resisting tension materials (concrete,
rocks, ceramics, soils, bricks, etc.), limited strength in tension, etc.

Problems associated to plasticity should also be mentioned. Elastic-
plastic behavior is another important example of unilateral internal
restrictions. Here the reader will find a wide variety of applications
of mathematical programming problems [40].

Finally, the problems associated to structural optimization should
be emphasized. Here the reader can observe that the numerical algorithms
applied to optimization will from now on be applied to structural
analysis [41].
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