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Se presenta en este trabajo el problema del contacto unilateral den
tro de la teoria lineal de la elastoestatica. El problema es.formulado-
como una inecuacion variacional 0 como el problema de la minimizacion de
un funcional definido en un convexo. La obtencion de soluciones aproxima
das es realizada a traves del metodo de los elementos finitos y tecnicas
de programacion matematica. Por ultimo son mostrados algunos ejemplos nu
mericos.

In this paper the unilateral contact problem within the elastostatic
linear theory is presented. The problem is formulated as a variational
inequality or as a constrained minimization problem. The accomplishment
of approximate solutions is done using the finite element method and
mathematical programming techniques. At last some numerical examples are
shown.



In the several areas of the engineering sciences are frequently
found structures which are in contact with their supports (or other
components) but without being perfectly bounded to it. In order to
emphasize the possibility that the structure will lose contact with
the support and/or the possibility of slippage are not excluded one
uses the expression unil4t~ contact.

As classical examples of the several engineering problems related
to the analysis and design of structures with unilateral supports, one
may enumerate piping in petrochemical plants, piping in nuclear power
plants, joints between mechanical components, etc.

As one will notice ,in this paper, the unilateral contact leads to
a non-linear problem, independently of the characteristics of the
materials behaviour with which the structural elements in contact are
build up. As a result most work related to numerical solutions for
contact problems in elasticity is done according to one of the two
following approaches:
i ) Incremental techniques which almost always require some sort of

iterative procedure and/or the introduction of special artificial
interface elements [1,2].

ii) Direct formulation based upon variational principles that, lead to
an optimization problem which is SOlved by mathematical programming
techniques [3-15]. '.

Efforts along (i) seem to be motivated by the desire, to redl:":edevelop-
ment costs by introducing special elements and procedures in existing
finite element computer codes for linear and non-linear analysis.
However the re,sulting algorithms often lack a convergence proof.

In this paper the second approach will be followed since, as one
shall see later,on, ~t enables a more accurate formulation from both
the mechanical and mathematical point of view, where the numerical
algorithms arise in a much more natural way and where mathematical
results concerning existence and uniqueness of the solution as well as
convergence of numerical algorithms are available [7-19].

On this presentation, which should be considered as a simple
introduction to the unilateral contact problem, one will analyse this
problem in the context of the classicai elasticity theory (displace-
ments and infinitesimal deformations) and where only equilibrium
problems in terms of displacements will be presented. The formulation
in terms of stresses or mixed formulations [3,4,5] and,dynamic problems
[7,12] will not be considered in this introduction.

In order to establish the variational formulation which one has
referred to, one uses the principle of virtual work where the
unilateral characteristic of the kinematical restriction' will be
considered.

Therefore the equilibrium will be characterized by a variational
inequality instead 'of a variational equation (as proposed by the other
formulations (i» which, for the type of material that has been adopted,
,is equivalent to the minimization of a functi~nal defined in a convex



As naturally suggested by this variational formulation the
numerical algorithm to obtain approximate solutions vill consist in
the redefinition of this problem in a subspace of finite dimension.
This vill lead to a mathematical programming problem.

Historically this problem has been formulated by Signorini in
1933 [6], but it vas recently from 1970 on, that the problem was deeply
studied from the mechanical and mathematical points of viev. In the
works [7-15] the reader vill also find a vast bibliography.

PART 1. FRICTIONLESS UNILATERAL CONTACT PROBLEMS IJfTHE
ELASTOSTATIC STRUCTURAL ANALYSIS

Consider a body which in its undeformed state occupies an open,
bounded, connected subset of the three-dimensional Euclidean point-
space, Figure 1. The boundary ao of ° is assumed to be regular and it
consists of three open, disjoint parts aou' aOf and aoc' i.e.;

an - aou U anf U aoc

anu n anf - anu n aoc -anf n anc - II

On aeu the displacements are prescribed and will be considered
nule in order to simplify the pres.ntation;

On aOf the surface forces are also prescribed and characterized
by the v@etor valu@ funetioa A. Oft 3Gc the body i. assumed to be
supported without friction by a rigid unilateral support s.



body when submitted to the action of the surface loads a and body forces
b. will be such that:

where n is the unit outward normal vector to the candidate contact
boundary aoc• On the other hand at thoSe points of aoc which remain in
contact with the support the reaction will be such that:

Due to the unilateral nature of the contact. the reaction points
away from the support. Hence:

where:
E(o) • I(V(o)+V(o)T) : is the strain operator
V : is the gradient operator

and where D is the fourth-order elasticity tensor field which satisfies
the usual properties of symmetry and ellipticity:



Comparina (P1) with the classical elastostatic problem of
equilibrium (without unilateral restrictions) one can observe, the
difficulty which rises froa the fact that aoc is in itself·unknowu. In
other words the solution of (P1) should also give us the contact re,ion.

Instead of considering the problem (P1) it will be shown its
equivalence to the variational formulation which is the principle of
virtual work.

lK • {v; v sufficiently regular in O. v-o on 30u'
v -V'uSO on ao }n c

where one vaguely assumes that regularity is sufficient to render
meaningful, at .least,in some generalized sense. the operations
introduced below.

hence lK is a convex cone and the solutionu of the problea (P1) also
belongs to the 'set It:

From the mechanical point of view lK is the set of all ~ematical
a.dm.i.44.i.bl.e d.i4 pl.ctc.emen.t 6ie.l.cl4.

Taking v elK arbitrarily one can multiply (P1)1 by v and
integrating over 0 one has:

From the divergence theorem and from the fact that u is
solution of (P1). the last expressioD gives:

J DE(u)'E(v)dQ - J b·v dO + J a'v dan + J ~·v dann Q aOf aOe



In particular if v-u the (8) is transformed in equality due to the
existing complementarity condition (5) between ~ and u:

JDE(u).E(u)dO - f b-u dO + J a-u daD
n n anf

P2) f DE(u)·E(v-u)dO ~ J b-(v-u)dO + J a-(v-u)dann 0 ~f

The above result shows that the solution u of (P1) satisfies (P2). One
now will show that if u satisfies (P2). thereforeu is tfiesolution for
(P1). In order to prove this one can apply the divergence theorem to
(P2):

-J [4ivODE(u»+bl-(v-u)dO + f . ODE(u)n-a)-(v-u)dan +
n anf

+ f DE(u)n-(v-u)daD ~ 0 Vv e){ (10)
ClOc

-f [divODE(u»+bl-w~O Vwe C (0)n . 0

As Co(n) is a vector space. the previous inequality will occur for
both V and -w. tbCte(oIci

IO[diVODE(U»+b1'WdO - 0 Vw e Co(O)



An analogous reasoning to the previou. one made but DOW adoptiac fields
w e C1(O).{w; w .uff. reg., _0 on 3Qu and anc} will lead to:

From the previou. result. (11) aDd (12). the expression (10) i.
reduced to:

I DE'(u)n·(v-u)d30 ~ 0
anc

Let (.)t and (·)n be the re.pective tangential and normal cOlllpODellta
of any vector field on 3Qc' takiac:

I ODE'(u)n)tWtdaO ~ 0
anc

Again, a. Wt are elemen't. of the .pace C. (0). one obtains

which tells us that the reaction ~ as.ociated to the unilateral
kinematical restrictions on agc must be normal to the boundary, i.e.:

I ~(v -u )dan ~ 0
annnn

c

Remembering that v e IC implies
expres.ion leads to:

I ~(Av -u )dao ~ 0an n n n
c

Considering A arbitrarily large. the expres.ion Av -u has values
arbitrarily neaatives, therefore (16) leads to: n n



f ~ u dan. 0an n n
c

Becau.e ~ ~o (eq. 17) and u ~O on anc (u .~), the previous expre••ion
leads to:n n

The results (11), (12), (14), (17) and (18) show that the .olution
u of the problem (P2) is also the solution of the problem (P1).

Therefore one-arrive. at the variational characterization of the
contact problem without friction:
P2) u is the solution for the elastostatic equilibrium problem with

frictionless unilateral contact kinematical restrictions if and
only if u is the solution of the following variational inequality
problem: find u eE such that:

J DE(u) "E(v-u)dO ~ f b"(v-u)dO+ f a" (v-u)dan
n n anf

The reader can observe that (P2) is nothing else but the Principle
of Virtual Work extended to the case of unilateral contact kinematical
restrictions. It is a180 important to observe that (P2) is a non-linear
problem due to the characterizatio~ of lKand therefore (P2) is out of
the classical elasticity domain. .

For the elastic material we adopted one can define- the potential
energy function t:

t(u) .!J~E(U)"E(U)dn

which is convex:
t(v) - t(u) ~ fnDE(U)"E(V-U)dn

and where the equality hold. if and only if v-u e N(E) , i.e. iff v-u i.
a rigid body motion. Subst~tuting in (P2) one arrive. at the equivalent
constrained minimization problem:
(P3) F(u) • min{F(v); v elK}

F(v) • t(v) - J b"v dn - f a"v dan
n ~f

Functional F expresses the potential energy of the body and is the Bum
of the elastic energy and the energy of the external loads. Proposition
(P3) may be regarded as a generalization "of the Minimum Potential Energy
Principle of elassical elasticity.



In this section some results which are well known [7,8,10,11,12,
15,16,28] and establish the existence and unicity of the solution of
(P3) will be presented.

V a real Hilbert space
F: V+1l a functional defined on V

X a non empty closed subset of V

1. X is convex
2. F is strictly convex; i.e. for 8 ~ (0,1) and u~v

F(8u+(1-8)v) < 8F(u) + (1-8)F(v)
3. F is differentiable on X; i.e. ,for each u eX there exists an

operator DF(u): V~' such that

lim
a+O+

8F(u+av) • <DF(u),v>au

where V' i. the dual 'space of V, and <','> denotes duality pairing
on'V 'xv' «DF(u), v> is the "first variation of F at u in the direction
v'') •

and the solution u can also be'characterized as the solution of the
variational inequality:

1F(u) • 2a(v,v) - lev)
••••here:

a(v,v) • JgDE(V)'E(V)dO



Then, as a consequence of the Kom's inequality [12] and from the
properties of the elasticity tensor the bilinear s~etric form
a(','): VXV+lR is continuous and V-elliptic, Le. there exists positive
constants M and m such that:

a(u,v) ::;Mil ul~1Ivl~

a(u,u) ~ milul~

Taking into account all theaeproperties, one verifies that F is
strictly convex, differentiable and coercive. Moreover, since:

is a nonempty closed convex subset of V one follows that there exists a
unique solution u of the problem (P3).

Consider the plane bending of a beam with discrete frictionless
unilateral supports. An elastic material is assumed as well as
infinitesimal strains (and displacements) and the bypothesis that plane
sections remain plane and normal to the axis of the beam after
deformation.

Reference will be made to the beam schematically shown in Figure 2,
which is subjected to the loading system t comprised of a distributed
loading q, concentrated forces Pi and concentrated moments mi. At point
A a frictionless unilateral support initially not in contact with the
beam is assumed.



The first step in the formulation is to define the space V of all
po~4ibledisplacements and its subset I of all ~4ibte displace-
ments.

v is said to be a possible transversal displacement, i.e. w e Y,
if v is sufficient regular 80 that one can calculate the strains
associated to w. From mechanical point of view v must be continuous
(otherwise the beam breaks) vith continuous first derivative (rotation
of the cross-section) w'.dv/dx (plastic hinges are not allowed since
the material is assumed to be elastic) and the second derivative
(curvature) must be sectionally continuous, the discontinuities
occurring at those points where concentrated moments are applied or El
is discontinuous (E is the Young's modulus and 1 is the moment of
inertia of the cross-section). Formally Y.IP (B), where H2 (B) is the
Hilbert space of functions v such that v,v' and v" are square
integrables in the interval B of the real line.

If v e Y is such that satisfies the kinematical constraints then
weE. In the case of the example shown in Figure 2 w must be zero at
both ends of the interval B and ~-a at the point A. Then:

If; denotes an arbitrary a~issible displacement, ; eI, such
that w(A)--a, then:

is a convex cone with the vertex at the origin and I is then a linear
variety of a convex cone.

The second step in the formulation consists in defining the strain
operator which is given according to the Bernoulli theory by:

f(.) • _ d~:)

A kinematically admissible displacement v is then said to be rigid if
v eE and f(v).Q. The set (subspace) of all ve Y such that f(v).O is
denoted by N(f) and is characterized by the functions (equivalence
class)

In the case of the example shown in Figure 2 E n N(f).{0} where 0 is
the identically zero function. However one should note that for other



boundary conditions that intersection may contain displacements w other
than e.

H • EI(- d1w)
dxl

Now the equilibrium problem of plane bending of an elastic beam with
frictionless uni~ateral supports can be stated as follows: find u e~
such that:

JL dIU dlv4(u.v). OEI dii" dii" dx

l(v) • r:qV dx + t Fiv(xi) + Im.v' (x.)
i 1 1

or equivalent. find u e IC such that

F(u) • min F(v)
veX

where:
F(v) 1 - 1(17)• 2' 4(v.v)

and J{ given by (19) in the case of Figure 2. For more general discrete
unilateral supports constraining the i-th component of the displacement
field u at the j-th support p~. the convex set J{ can be written as:

J::. {v; ve V, a ..:;iv.(P.) :;i b .•• P•• '.2•.••,m}
1J 1 J 1J J -

If a deformable body is indented by a rigid body of specified shape
one has the so called rigi.d indentation or punch problem •.For plane
problems where the punch is loaded by forces directed along the Xi-axis
(Figure 3) with resultants P and H, the configuration of the system can
be defined by the triple (a,a,u) where a and e· are respectively the
depth of indentation and the angle of rotation of the punch and u is the
displacement field of the deformable body.

Since one is dealing with infinitesimal deformations, the
linearized non-interpenetration kinematical restriction can be written
as:



V(X1 •• (X1» e aDe
(23)

where, describes the shape of the punch. n(nl'a.~ is the unit outward
normal vector to the candidate contact boua4ary auc. described by •• of
the deformable body. In this case. the set E is given by:

I< • {(a.a, u) e IlxlRXV: such that (23) !DUstbe satisfied
and also the kinematical restriction OD aD } (24)

u

and again. theequ~librium problem of the frictionless punch problem can
be stated as follows:

where:
F(a*.a*.v*) • J lDE(v*).E(v*)dn -Pa* - MS*n 2

If the contact is between two bodies 11 and I' then it will be
assumed that a ComDOn unit normal nla can be defined along the candidate
contact boundaries an~and 3n~and in such case one has:

I< • {(V1,vl) • VXV; vi-o on aD~,(vl_yl)'nll-s~O on 3n~.i-I.2}
(27)



where s is the initial gap (on the direction n11) between the two
bodies.

To obtain approximate solutions for the minimization problem P3).
finite dimensional approximation Ph and Itt are constructed and the
finite element method is chosen for the spacial discretization due to
its generality and widespread use in computer programs. One is then led
to the following quadratic programing problem defined in lin:

where n is the number of degrees of freedom. ~ is the standard· stiffness
matrix. fh is the vector of equivalent nodal loads. Uh is the unknown .
nodal displacement vector and h il the parameter associated to the mesh
that will be dropped from now on for ease of notation.

One way to construct an approximation for E. is to approximate the
field v by the interpolation functions of the finite element method and
then to enforce the non-interpenetration condition at the nodal points
belonging to anc. This was the technique adopted for the numerical
examples presented here. As a result. for most problems. the constraint
set E will be described by a set of m linear inequalities:

where A is a ~n matrix. However. the important particular case of
discrete unilateral supports (22) - which are often used in piping
systeml - may lead to constraints that can be written as:

In the following. various alternatives for the solution of the
minimization problem are discussed beginning with the case of the
constraint set (30).

This kind of constraint allows for the direct application of a very
simple iterative algorithm: Gausl-SeidQl with relaxation and projection
(GSRP). lee Glowinski et al [8] for detaill. which can be describes al
follows:

_ Choose UO admissible, i.e ••~uo~b
- Pick lC1 e (0.2)

For k.0.l.2 •••• execute:
For i.'.2 •••••n execute:



i-I k+l n k
{f.- I K .•u. - I KiJ.uJ.}/Kii

1 j-l lJ J j-i+l

where p.[e) is the projection operator for the interval [a
1

.,b
1
.),that

is: 1

In this case the primal problem:
min {!ueKu-ued

2

min
u

where the Lagrange multiplier A elRm has been introduced in order to
release the constraint A~c. As the minimization over u is unconstrained,
it is attained by:

u _ K-1(f_ATA)

when K is positive-definite (no rigid motions allowed). Substituting in
(32) one is led to the dual problem:

The resulting quadratic programming problem has a simpler constraint set
and is usually much smaller than (31) as m is usually much smaller than
n. If A* is the solution of (33) the solution u* of (31) is given by:



possibilities are considered here." The first is the use of the Gauss-
Seidel algorithm with relaxation and projection, and the second is the
use of Lemke's algorithm to solve the linear complementary problem
associated to (33) (See Bazaraa and Shetty [17), Glowinski et al [8)
and Cottle [18) for details about the algorithm and pivoting methods on
which the Lemke's algorithm il based).

In fact, if one takes the standard quadratic programming problem:
min 1UoQu - uob

2

where Q is a symmetric positive-semidefinite nXn matrix, A is an mXn
matrix of rank m, c emm, u and b emn, and denoting the Lagrangian
multiplier vectors of the constraints Au~c and ~O by A emm and
P emn, respectively, ~d denoting the vector of slack variables by
y emm then, the Kuhn-Tucker conditions for (36) could be written as:

z ~ [~J
which is a linear complementarity problem ~olv4ble~ 4 6inite numb~
06 ~tep6 by Lemke's algorithm.

In particular, as the constraint let A~c is absent in (33) the
matrix M for Lemke's algorithm would be P itself and q--b, w.p and z-u
in this case.

Instead of solving the dual problem (33) one could think of solving
the saddle-point problem given by (32) where the solution (U*,A*) must
satisfy:

Ku* - f + AT),* _ 0

(Au*-C)OA* - 0
A* ~ 0

Uzawa's algorithm, which i. quite general, can be applied here and in
thil case can be described as follows (see Kikuchi and Oden [9):



i Ira.Uc:.aUza.ti.on

- Choose AO~O
_ Find uo: Kuo • f _ ATAO

ii) l.twz.ti.on

a. Set An+1,. max{O,An+Y(Aun_c)}
b. Find un+1: K-1un+1 • f _ ATAn+1

c. Repeat a) and b) until II An+1_Anll/ll AnI! :li £ vhere £ is a
suitable tolerance

The parameter Y must be positive and sufficiently small and vas
set, for the numerical examples presented here; to 0.005 times the
minimum coefficient of the diagonal of K.

In order to reduce the size of the problem a sub-structuring
technique could be used. For this, constrained degrees of freedom
denoted by ue and unconstrained ones ui are segregated and the
functional F is rewritten as:

T

[

K ••
u] 11.

e K!l.e

As the minimization over ui is unconstrained it is attained by:
-1ui • Kii(fi-KieUe)

min {l u .K* u -u ·f*}2 e ee e e e

and lee is the mXm identity matrix. One could now choose one of the
alternative schemes already described in order to solve the reduced
primal problem.

At this point it is interesting to note that for the rigid punch
problem considered here one could write:



[

K .• K.11 1e
K. K~ K1e ee

o 0

As the global stiffness matrix K is not positive-definite the dual
problem cannot be written as in (33). It is more convenient then to
construct a reduced primal problem by condensation of all degrees of.
freedom not re1ated'to the contact surface and solve the reduced problem
by Lemke's algorithm. The condensation process is always po.sib1e
provided that the deformable body is properly restrained.

From the point of view of computer implementation, the solution of
the unilateral contact problem by the Gauss-Seidel algorithm with
relaxation and projec~ion (restricted to constraint sets of the type
a~uSb) seems to be the simplest one. Bowever, substantial computer
savings may be achieved if a condensation process is performed before
the iterative phase begins. More efficient are the pivoting methods,
which were developed first in the theory of Linear and Quadratic
Progr_ing and then extended to the linear complementarity problem
(Lemke's algorithm). One of the most interesting properties of the
Lemke's algorithm is that if gives the exact solution of the discrete
problem in a 6inite number of .teps. .

The fact that the class of unilateral contact problems reported
here can be associated with constrained minimization problems provides
the possibility of employing'the classical descent algorithms used in
the minimization of functionals: steepest descent, graclient, conjugate
gradient, etc. (See e.l. [8,16,17D.Another class of solution algorithms
is that of penalty algorithm (see (8.9,16).

In this section some numerical examples (reported by the authors at
[20-25) are analysed in order to show the feasibility of the preceding
variational formulations and algorithms.

The first example consists of an elastic beam, schematically shown
in Figure 4, which has been modelled by 8 beam element. The beam is
built-in at node 1 and has unilateral supports at nodes 3,5,7 and 9. Four
load cases have been considered. all of them consisting of the same
vertical concentrated load P applied at nodes 2,4,6 and 8. respectively.

For each load case the deformed configuration is shown in Figure 5
and the corresponding support reactions are listed in Table 1.

Reactions "1 R1 It, Rs R7 R,
Load Case 1 0.966 0.755 0.228 0.018 0.0 -0.001
Load Case 2 0.141 0.012 0.453 0.565 0,0 -0.029
Load Case 3 -0.138 -0.052 0.0 0.591 0.490 -0.030
Load Case 4 -0.115 -0.029 0.0 0.0 0.587 0.442

Table 1. Support reactions for example 1
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All these results agree with the exact solution and correspond to
the solution of the primal problem by the GSRP algorithm and the
termination criterion adopted was:

max
i

The relationship between the number of iterations and the overrelaxation
parameter W is also shown in Figure 5.

The second example is that of the tridimensional plplng shown in
Figure 6 which was subjected to a temperature increase of 8000F. The
structure is built-in at nodes I and 8 and has unilateral supports (with
gaps) at nodes 4 and 6. The support reactions are listed in Table 2 and
correspond to Wa1.85 and a tolerance &-0.00001. The number of iterations
performed was ·'97.

Node It R R H H Hx Y z x y. z
1 4036 4371 334 37648 - 34400 -117105
4 0 -5087 2218 0 0 0
6 -2329 0 0 0 0 0
8 -1704 715 -2552 82848 131289 27075

Table 2. Support reactions for example 2

The third example is that of a long"circular cylinder resting on a
rigid and frictionless horizontal support and subjected to a vertical
compressive distributed load as indicated in Figure 7(a). The cylinder
is analysed under uniform pressure q on the top and a state of plane-
strain is assumed. The cylinder is also assumed to be homogeneous.
isotropic. linearly elastic with Young's modulus E-IOOO and Poisson's
ratio v-0.3 and has a radius R-8. The discrete model adopted is that
shown in Figure 7{a) where 136 four node isoparametric finite elements
are used resulting in 304 degrees of freedom. Four .load cases were
considered corresponding to the distributed loadings of q-3.75. q-6.25.
q-12.5 and q-30.

In Figure 7(b) normalized contact stresses are shown together with
the results given by the classical Hertz solution (26). Contact stresses
were calculated by averaging element nodal stresses obtained by solving
the dual problem by Lemke's algorithm.

Similar results were obtained solving the dual problem by the GSRP
algorithm with &eO.OOI. The number of iterations required is shown in
Table J.

Solution of the.primal problem by the GSRP algorithm with WaI.8 and
&-0.0001 required 275.266.307 and 321 iterations respectively for load
cases 1 to 4. Setlng &-0.001 the number of iterations required for the
solution of the reduced primal problem is shown in Table 4.
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LOAD CASE
W 2 3 4

0.6 17 19 20 24
0.8 12 16 19 26
1. 12 15 20 30
1.2 12 16 23 39
1.4 15 22 32 56

Table 3. Number of iterations required for
the solution of the dual problem by
the GSRP algorithm

LOAD CASE
W 1 2 3 4

1.2 37 33 28 20
1.4 25 23 19 13
1.6 16 16 16 15
1.8 29 30 31 31

Table 4. Number of iterations required for
the solution of the reduced primal
problem by the GSRP algorithm

Typical total CPU time in seconds (the algorithms were implemented
on FORTRAN IV. compiled without optimization and run under Michigan
Terminal System-HTS-in an IBM 370/158) for the 4 load cases considered
in this example were around:

34 sec. for the solution of the dual problem by Lemke's and
GSRP' algoritluu.

47 sec. for the solution of the reduced primal problem by the
GSRP algorithm.

573 sec. for the solution of the primal problem by the GSRP
algorithm.

Uzawa's algorithm was also applied to this example and seting £.0.0001
converged with 129. 119. 109 and 109 iterations for load cases 1 to 4.
The time required was about 5 times the CPU time used by Lemke's
algorithm.

The fourth example is that of a circular plate of radius R.60 and
constant thickness h.4 resting on a frictionless rigid horizontal
foundation. The plate is subjected to its own weight and to an upward
vertical load P.l00 uniformly distributed on a disk of radius r-8
concentric with the plate.



axissymmetric 4-node isoparametric finite elements being 30 along the
radius and 4 along the thickness (Figure 8) that results in 304 degrees
of freedom.

~ r
. / ,8

4

The material of the plate has an specific weight p-0.8085 and
elastic constants E_2.1xl06 and v-0.3.

If one adopts the theory of plate bending [26] the value of the
radius of the circunference inscribing the raised part takes the value
a-44 and the deflection at the center is uc.'.337xl0-~.

For the axisymmetric solid discrete model adopted here the values
found were a-42 (the first 21 nodes from the center are raised) and
uc-l.347Xl0-~, given by the solution of the dual problem by the Lemke's
algorithm.

Essentially the same results are obtained after 795 iterations with
£-0.0001 and W-l. using the GSRP algorithm.

The solution of the primal problem by the GSRP algorithm with
€-O.OOOI and ~~1.95 required 1203 iterations yielding uc-l.276xl0-~ and
poor results for the reactions.

Setting €.O.OOOI and W-l.9 the solution of the reduced primal
problem by the GSRP algorithm leads, after 191 iterations, to results
close to thoRe obtained by Lemke's algorithm.

Difficulties ariRed with the use of Uzawa's algorithm in this
example. To begin with the automatic choice for the parameter which
worked well in the third example did not work at all here and several
trials were made before the termination test with £-O~OOOI could be
satisfied.

The values of Uc corresponding to y.12000. (1123 iterations) and
y~8000 (1747 iterations) were uc.,.35SX'0-~ and uc·,.357xl0-~ respective-
ly. Ho_ever the Lagrange multipliers obtained did not agree very well
with those given by Lemke's algorithm.

CPU time in seconds for all the alternatives were respectively 23,
34,260,34,211 (y-12000) and 313 (y-SOOO).



The last example consists in the indentation of a rectangular block
by a rigid solid with a cylindrical contact surface of radius R-8 as
shown schematically in Figure 9(a). The material properties are: Young's
modulus E-l000, Poisson's ratio v-0.3. A state of plane-strain is
assumed and five "load" cases were considered, corresponding to
prescribed values for the depth of indentation a-O.l,O.2,O.3,O.4 and
a-0.5 while e was prescribed as zero.

Due to the symmetry of the problem only one-half of the block was
discretized by means of 202 four-node isoparametric finite elements
resulting in 440 degrees of freedom. Figure 9(b) displays the adopt~d
mesh before and after deformation (for a-0.8) and Figure 9(c) shows the
relationship between a and the total applied force P.

Finally Figure 9(d) shows the normalized contact pressure obtained
from Lagrange multipliers compared to the Hertz solution in solid lines.
These results correspond to the condensation of all degrees of freedom
not related to contact and solution of the reduced primal problem by
Lemke's algorithm.

Consider again the same body taken at Part I, but now one supposes
there is an initial gaps between the body and the rigid foundation 5 on
anc' Also, on anc friction boundary conditions are assumed to hold and
in the notation of Part 1 they read:

< nla In

- nla In

The classical formulation of the Signorini problem with friction
is: find the displacement field u which satisfies the equilibrium
equations and boundary conditions:

div<I>E(u» + b - 0 in n (42)
DE(u)n - a on anf (43)

u - 0 on an (44)u
uen - S ~ 0
u·n - s < o .•.DE (u)n- 0
u·n - s - 0'" a (u) _DE(u)nen ~ 0 and on an (45)n c
lat(u)1 < nla (u)1 .•.ut - 0n
lat(u)1 - nla (u)1 .•.3).'=0 s.to ut - -Aotn

In order to give the variational formulation, one defines the set of
admissible displacements:

K - {v e Vi v-o on ao ,ven-sSO on an }
u c





From eqs. (42)-(44) one obtains by means of the divergence theorem
the relation:

4(u,v-u) - l(v-u) + I a (u)(v -u )dan +an t t t
C

+ I a (u)(v -u )danan n n n
c

for every v such that v-O on anu'
From (45)_,5 the following inequality results:

which combined to (46) implies the variational inequality:

4(u,v-u) ~ l(v-u) - Ian nlon(u)I(IVtl-IUtl)dan +
c

+ I a (u)(v -u )danan D n n
c

for any v such that v-O on aGu'
From (45)1 I 3 and v e~ one has the following variational

inequality problem:

where:

j(u,v) - InnIOn(u)llvtldO

It can be shown (7) that the classical problem (42)-(45) is
formally equivalent to the problem (49). Since the normal component of
the stress density vector on anc is defined only as linear form,
IOn(u)I has no mathematical meaning.

The issue of existence and uniqueness of solutions for (49) is still
open. For a particular situation Necas et al (29) showed the existence of
solutions to (49) provided that n is sufficiently small. Duvaut (30)
introduced the idea of non-local friction law and stablished an existence
result for any friction and also uniqueness for the case of small
Eriction. Oden and Pires (31,32,33) proposed a elass of.nonlocal laws as
well as numerical algorithms for obtaining approximate solutions for
contact problem. See also (12) and the results reported by M. Cocu (34).



prescribed along aQc' (On-'n), Duvaut and Lions [7] established the
existence and uniqueness of the solution. In this case the contact
surface anc is known in advance and un i. not prescribed on 3Oc• The
boundary conditions on aGc reduce to:

lOti < g + ut - 0

lOti - g + ut - -Aot for some A~O

where g-nl'nl is given and represents the maximum tangential stress that
can be developed due to friction along anc•

Introducing the functionals

j (v) - f glvtldaQ
g aGc

fn(v) - f ' v daGaQ n n
c

where g is a given positive function on aGc and 'n is a given normal
stress distribution on anc and defining the subspace V

v - {v e V: vir -O}
u

the PVW for the special problem of friction with prescribed normal stress
can be stated as:

-!DE(u)oE(V-u)dQ - j (v) + j (u) + 1(v-u) +Q g g

It can be shown [7] that to solve this inequality is equivalent to
solving the following minimization problem

inf [F(v)+j (v)-f (v)]vaK g n

For Signorini's problem with friction, inequality (49), the following
iterative procedure can be envisaged:
i Solve Signorini's problem without friction, problem (P2) or (P3).
ii With the normal stress in anc found in (i) solve the special

friction problem with prescribed normal stress, inequality (52).
iii) Tangential stress found in (ii) are then used as additional loads

in Signorini's problem without friction (i) and the steps (i), (ii)
and (iii) are repeated until convergence is (hopefully) achieved.



f (v) • J F'v dan
t an t t

C

where Ft is a given distribution of tangential forces along anc• the
procedure described above can be written as:

1) Given ~-1 find uk solution of the minimization problem

inf [F(v)-ft(v)]
vtiK

inf [F(v)+j (v)-f (v)]
veV g n

~4) Calculate Ft-Ot(u*) and repeat all steps for k.2.3•••• until
convergence is achieved.

The procedure just described. whose convergence has not been formally
proved yet. involves two minimization problems. In the frist one the
main difficulty is due to the constraint set ~ while in the second one
the difficulty arises due to the non-differentiability of ig(v).

Panagiotopoulos [35] follows the scheme described above solving
both minimization problems by non-linear programming techniques; Campos,
Oden and Kikuchi [36] adopt a penalization technique in the first problem
and a regularization technique in the second one. Some other
possibilities are presented by Raous [37] and Haslinger and Panagiotopou-
los [3]. The basic idea used here is duality [7]. The first minimization
problem is substituted by the equivalent saddle-point problem:

where the constraint set I is absent. The Lagrangean L1(v.An) is given
by:

In the second minimization problem the non-differentiable functional
i (v) is replaced by:g

sup J A'V dan
AteA aoc t t



3
II • o.·()"l ').2').'); L ).1 (x) :> g2 (x) •

i·l

L2(v').t) • F(v) - f (v) + f A·v dann antt
c

The Lagrange multipliers ).n and At can be interpreted. by duality,
respectively as the normal stress on anc and the tangential stress. due
to friction, on anc'

To obtain approximate solutions for the probems formulated in the
preceding section the finite element method is used to construct finite-
dimensional approximation spaces. For plane problems the following
interpolation scheme can be adopted:

where ~ is the matrix of interpolation functions for the displacements
field v in terms of the nodal unknowns q and ~ is a row-vector with
interpolation functions for the Lagrange multipliets ).n and ).t in terms
of the parameters p and t. The global interpolants are constructed
from local bilinear interpolatns associated to a four-node quadrilateral
isoparametric finite element. The interpolation of At and An is done by
means of piecewise constant functions along the sides of the elements
on anc' In this way problems (54) and (55) are approximated by:

min
q

max
I~tl:>g

where K ia the standard stiffness matrix, F. Ft and Fn are vectors of
nodal loads which are equivalent. respectively, to the applied load
system R.,tangential loads due to friction and normal reactions in the
contact surface. The matrices H and A and the vector S are given by:



where (nx.ny) and (tx.ty) are the components of unitary vectors respect-
ively outward normal ana tangent to the boundary anc• It is clear that
q eRn. p e IRm and t elRm where n is the number of degrees of freedom of
the discrete model defined by the finite element mesh adopted and m is
the number of elements along the boundary anc'

As the minimization over q is unconstrained and K is assumed
positive-definite this variable can be eliminated using the stationarity
conditions:

1min 2 P'Pp - p'd1
p>O

ain ! t'Tt - t'd,-i:lt:li 2

where:

P • MTK-1M d1 • MTK-1(F+F ) - St
T • ATK-1A d, • ATK_l (F+F )n

The vector i e mM has its i-th entry equal to n times the absolute value
of the (prescribed) normal stress along the side of the i-th element in
anc'

Due to the type of constraints that arise in problems (62) and (63)
a very simple numerical algorithm can be used: Gauss-Seidel with
relaxation and projection (GSRP). Finally. from (60) nodal unknowns q
are obtained and element stresses can be computed.

Remark 1. Although a piecewise constant interpolation for the Lagrange
multipliers An and At has been used to obtain the finite--dimensional
approximations (56) and (57) it is important to note that matrices M and
A in (56) and (57) result from the approximation of the integrals:

J A (v'n-s)dan and J A'u dan
ann antt

c c



and, as such, can take different forms according to the numerical scheme
adopted in the approximation of these integrals. In fact, in addition to
the piecewise constant interpolation scheme already mentioned another
scheme was tried which resulted in an improved performance of the
numerical algorithm. The idea was to take concentrated Lagrange
multipliers in the nodal points along ailc. In this case, M, A and Scan
still be given by (58) and (59) provided we take the entries of row-
vector 1/1 as Dirac's delta "functions" associated to the nodal" points
along rc.

Remark 2. The problem of contact with Coulomb friction between two
deformable bodies and the problem of indentation of a deformable body by
a rigid one can both be treated along the same basic lines. Indeed work
is under way in this direction and the results will be reported soon.

This section describes the results of some numerical experiments
performed with the algorithm discussed in the preceding section. The
problem considered is that of a rectangular block pressed against a
rigid horizontal foundation on which Coulomb's law of friction is assumed
to hold. The block is also submitted to a horizontal uniformly
distributed load as shown in Figure 10 and a state of plane strain is
assumed. The material of the block is homogeneous and isotropic with
Young's modulus E-13000 and Poisson's coefficient v-0.2. Due to the
symmetry of the problem, only half of the block was discretized by means
of 194 four-node isoparametric finite elements leading to a discrete
model with 439 degrees of freedom.

The first load case considered here corresponds to F-15, f-5 and a
coefficient of friction n-1.O. Figure 11 shows the deformed mesh
amplified by a factor of 100. Normal and tangentia~ nodal displaments as
well as normal and tangential nodal reactions along the contact surface
are displayed in Table 5 where regions with different behaviour are easily
identified: adhesion (from node 1 to node 9), sliding (from node 10 to
node 30) and a region where contact was lost (from node 31 to node 33).
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Table 5

NODE u u F Ftn t n

O. O. 5.23 O.
2 O. O. 10.47 0.64
3 O. O. 10.47 1.28
4 O. O. 10.46 1.96
5 O. O. 10.44 2.69
6 O. O. 10.41 3.52
7 O. O. 10.38 4.48
8 O. O. 10.31 5.75
9 O. O. 9.80 8.57

10 O. 0.0003 8.93 8,93
11 O. 0.0009 8.28 8.28
12 O. 0.0016 7.86 7.86
13 O. 0.0025 7.52 7.52
14 O. 0.0034 7.21 7.21
15 O. 0.0043 6.93 6.93
16 O. 0.0054 6.66 6.66
17 O. 0.0065 6.39 6.39
18 O. 0.0076 6.13 6.13
19 O. 0.0088 5.86 5.86
20 O. 0.0101 5.59 5.59
21 O. 0.0113 5.30 5.30
22 O. 0.0127 5.00 5.00
23 O. 0140 4.68 4.68
24 O. 0.0154 4.34 4.34
25 O. 0.0169 3.96 3.96
26 O. 0.0183 3.53 3.53
27 O. 0.0198 3.04 3.04
28 O. 0.0213 2.46 2.46
29 O. 0.0229 1.72 1.72
30 O. 0.0244 0.66 0.66
31 0.0001 0.0258 O. O.
32 0.0003 0.0272 O. O.
JJ 0.0006 0.0286 O. O.
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Table 6

NODE u F F
t n t

1 O. 10.40 O.
2 O. 20.80 O. T7
3 O. 20.80 0.34
4 O. 20.79 0.52
5 O. 20.77 0.70
6 O. 20.76 0.88
7 O. 20.74 1.08
8 O. 20.71 1.28
9 O. 20.68 1.50

10 O. 20.65 1.73
11 O. 20.61 1.99
12 O. 20.57 2.30
13 O. 20.52 2.66
14 O. 20.42 3.23
15 0.00003 20.17 4.03
16 0.00016 19.86 3.97
17 0.00036 19.63 3.93
18 0.00060 19.43 3.89
19 0.00088 19.24 3.85
20 0.00119 19.04 3.81
21 0.00153 18.84 3.77
22 0.00189 18.63 3.73
23 0.00228 18.40 3.68
24 0.00270 18.15 3.63
25 0.00314 17.86 3.57
26 0.00360 17.53 3.51
27 0.00409 17.14 3.43
28 0.00461 16.65 3.33
29 0.00515 16.03 3.21
30 0.00572 15.17 3.03
31 0.00633 13.88 2.78
32 0.00699 11.50 2.30
33 0.00776 3.64 0.73



A second load case. corresponding to F.l0 and f~15. was analysed
considering n.O.2 and the results are summarized in Table 6 where it can
be seen that nodes 1 to 14 are in adhesion and nodes 15 to 33 are in a
sliding condition.

Other load cases were also analysed and the results obtained agree
with those found by Raous using a different algorithm (37).

Concluding this introduction and following Prof. G. Del Piero's
remarks it is important to emphasize that besides the unilateral problem
which was seen before, there are other type of problems which are also
associated to unilateral restrictions.

Among these problems which approximate solutions will be given by
mathematical programming techniques one may enumerate fracture problems.
problems which arise on non resisting tension materials (concrete,
rocks, ceramics, soils, bricks, etc.). limited strength in tension, etc.

Problems associated to plasticity should also be mentioned. Elastic-
plastic behavior is another important example of unilateral internal
restrictions. Here the reader will find a wide variety of applications
of mathematical programming problems (40).

Finally, the problems associated to structural optimization should
be emphasized. Here the reader can observe that the numerical algorithms
applied to optimization will from now on be applied to structural
analysis (41).
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